
https://doi.org/10.1007/s10846-022-01619-y

REGULAR PAPER

Deep Reinforcement Learning for Humanoid Robot Behaviors

Alexandre F. V. Muzio1 ·Marcos R. O. A. Maximo1 · Takashi Yoneyama2

Received: 21 February 2022 / Accepted: 27 February 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
RoboCup 3D Soccer Simulation is a robot soccer competition based on a high-fidelity simulator with autonomous
humanoid agents, making it an interesting testbed for robotics and artificial intelligence. Due to the recent success of Deep
Reinforcement Learning (DRL) in continuous control tasks, many teams have been using this technique to develop motions
in Soccer 3D. This article focuses on learning humanoid robot behaviors: completing a racing track as fast as possible and
dribbling against a single opponent. Our approach uses a hierarchical controller where a model-free policy learns to interact
model-based walking algorithm. Then, we use DRL algorithms for an agent to learn how to perform these behaviors. Finally,
the learned dribble policy was evaluated in the Soccer 3D environment. Simulated experiments show that the DRL agent
wins against the hand-coded behavior used by the ITAndroids robotics team in 68.2% of dribble attempts.

Keywords Deep reinforcement learning · Robot soccer · Humanoid robots · Robotics

1 Introduction

RoboCup is an international academic competition created
to foster robotics and artificial intelligence research [27].
It has an ambitious long-term goal of having a team of
humanoid robots beating the human soccer World Cup
champions by 2050. There are many leagues with different
game rules and constraints on robot designs to accelerate
progress towards this objective.

RoboCup 3D Soccer Simulation (Soccer 3D) is a league
of RoboCup based on a robot soccer simulator with
a high-fidelity simulation model of the Nao humanoid
robot. The particular contributions to RoboCup reside in
being a research environment for high-level multi-agent
cooperative decision-making, and humanoid robot control
[44]. A simulation environment is convenient for machine
learning algorithms due to their need for large amounts

� Marcos R. O. A. Maximo
mmaximo@ita.br

1 Autonomous Computational Systems Lab (LAB-SCA), Com-
puter Science Division, Aeronautics Institute of Technology,
Praça Marechal Eduardo Gomes, 50, Vila das Acácias, 12228-
900, São José dos Campos, SP, Brazil

2 Electronic Engineering Division, Aeronautics Institute
of Technology, Praça Marechal Eduardo Gomes, 50, Vila das
Acácias, 12228-900, São José dos Campos, SP, Brazil

of data [36]. Dealing with real robots is time-consuming
due to the need to recharge batteries or reallocate robots
manually to set up experiments. Moreover, experience
collection may be largely accelerated by running many
simulations in parallel and executing in faster than real-time.
Unfortunately, transferring behaviors learned in simulation
to real robots is challenging due to the so-called reality gap.
Still, some works have succeeded in doing so, usually by
executing a final fine-tuning process on the real robot [36].

Recent deep reinforcement learning (DRL) techniques
have solved complex continuous robotic control tasks in
simulation [24, 54]. Indeed, many DRL benchmarks involve
legged robot tasks. In contrast to model-based methods,
DRL does not require an explicit mathematical model
of the robot. This is not only advantageous from an
implementation perspective but also makes room for better
motions since explicit models often include simplifying
assumptions. In Soccer 3D, DRL has became popular for
developing high-performance motions [3, 12, 32, 41, 43, 44,
62]. Nevertheless, there is still little research in applying
these techniques for high-level behaviors.

This article contributes by presenting how to use DRL
to develop humanoid robot behaviors. Instead of learning
a policy that issues joint commands directly, we seek an
approach where the agent learns to command a model-based
walking engine not subject to learning.

We highlight to the reader that this article is an extension
of the conference paper [50], where the Proximal Policy

/ Published online: 27 April 2022

Journal of Intelligent & Robotic Systems (2022) 105: 12

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-022-01619-y&domain=pdf
https://orcid.org/0000-0002-4665-0039
http://orcid.org/0000-0003-2944-4476
https://orcid.org/0000-0001-5375-1076
mailto: mmaximo@ita.br

Optimization (PPO) algorithm is used to make a humanoid
robot learn how to dribble a single opponent. To the best
of our knowledge, our previous work was the first one to
use DRL to learn a high-level behavior in Soccer 3D. In
this article, we enhanced the presentation of many parts.
Furthermore, we also present a completely new task in
Section 5.1, which we call the “Humanoid Racing Task”.
Finally, we also refer the interested reader to the dissertation
[49] for a more detailed presentation of some parts.

The remainder of this paper is organized as follows.
Section 2 provides theoretical background. Section 3
presents related works. Section 4 describes the methodology
used for agent development and evaluation. In Section 5,
results for the racing and dribbling tasks are shown. Finally,
Section 6 concludes and shares our ideas for future work.

2 Theoretical Background

This section presents background about reinforcement
learning (RL) and deep reinforcement learning, focusing on
the algorithms actually used in this work.

2.1 Reinforcement Learning

In reinforcement learning, an agent learns by interacting
with the environment [64]. The interaction happens in a
discrete manner: at each timestep t , the agent is in state St

and executes action At ; then, the environment transits to
state St+1 and emits a reward signal Rt+1.

The agent’s objective is to maximize the cumulative
reward, which considers future rewards while interacting
with the environment. These interactions may be episodic,
i.e., the task may restart after some number of timesteps, or
continuing, i.e., the task continues indefinitely.

Mathematically, RL is based on the concept of a Markov
Decision Processes (MDP). An instance of an MDP is
defined by

– State set S.
– Action set A.
– Initial state distribution P(S1) : S → [0, 1].
– Transition probability function P(St+1|St , At) : S ×

A × S → [0, 1].
– Reward function R : S × A → R.

The return Gt from state St is defined as

Gt = Rt+1 + γRt+2 + ... =
∞∑

k=0

γ kRt+k+1, (1)

where γ ∈ [0, 1] is the so-called discount factor, which
introduces the concept of discounting, so the agent prefers

immediate rewards instead of long-term gains. A stochastic
policy π : S → P(A) is given by

π(a|s) = P[At = a|St = s]. (2)

For a policy, the state-value function is defined as the
expected return starting at a given state:

vπ(s) = E[Gt |St = s]. (3)

The action-value function is similar, but also takes into
account the action taken:

qπ(s, a) = E[Gt |St = s, At = a]. (4)

Hence, the goal of an RL problem may be reframed as
obtaining the optimal value function (or, equivalently, the
optimal policy). Classic value-based RL algorithms, such
as Q-Learning and Sarsa, estimate the value function using
a table [64]. Nevertheless, these methods do not scale to
large or continuous state or action spaces. This is known as
the curse of dimensionality [8]. To overcome this limitation,
function approximators must be used [64].

2.2 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) is based on the idea
of using neural networks as function approximators. In this
subsection, we will explain the DRL techniques used in this
work.

Deep Deterministic Policy Gradients (DDPG) [30] uses
two neural networks:

– Actor function μ(s|θμ): represents the current deter-
ministic policy.

– Critic function Q(s, a|θQ): approximates the action-
value function.

DDPG extends the Deterministic Policy Gradient Algo-
rithm (DPG) [61], which is based on the Deterministic
Policy Gradient Theorem. DDPG innovation lies in incorpo-
rating ideas from DQN [46] to stabilize learning with deep
neural networks (DNNs), namely:

– Experience replay: instead of immediately using
the agent’s experience, store it in a replay buffer
and, at each learning update, sample a minibatch of
experiences from the buffer.

– Target networks: use copies of the actor and the critic
to compute the targets. These networks are updated at a
slower pace.

DDPG (as an off-policy algorithm) can explore indepen-
dently from learning and uses an exploration policy given
by

μ′(St) = μ(St |θμ) + N , (5)

12 Page 2 of 16 J Intell Robot Syst (2022) 105: 12

where N is a noise process. A modern approach for
the problem of action exploration is to add noise to the
parameter space rather than on the action space [55], which
may be implemented by inserting adaptive noise in the
parameters of the neural network policy. This is used in this
work.

Trust Region Policy Optimization (TRPO) frames RL
an optimization problem [57]. The algorithm optimizes
a surrogate, i.e. alternate, objective function constraining
the policy update to lie within a trust region to guarantee
monotonic improvement. TRPO also uses neural networks
as function approximators.

TRPO constrains the policy step size through the
Kullback-Leibler (KL) divergence. The KL divergence
DKL[P, Q] is a measure of how one probability distribution
diverges from a second one and is defined as the relative
entropy between two continuous random variables P and Q.

TRPO solves the following optimization problem:

maximize
θ

Êt

[
πθ(at |st)

πθold(at |st) Ât

]
(6)

subject to Êt [DKL[πθold(·|st), πθ (·|st)]] ≤ δ, (7)

where Êt [...] is the empirical average over a finite batch of
samples, and Ât is an estimator for the advantage function
A(St , At) = Q(St , At)−V (St) at timestep t . We define the
policy πθ(a|s) by a normal distribution N where the mean
and log standard deviation are outputs of a neural network
[57].

TRPO limits the step size of the policy (using the KL
divergence) to guarantee policy improvement. However,
despite being more data-efficient and reliable than DDPG,
TRPO is computationally costly and hard to implement
[59].

PPO is similar to TRPO but uses a different surrogate
objective function [59] in order to be simpler to implement.
Let

rt (θ) = πθ(at |st)
πθold

(at |st) . (8)

Therefore, PPO’s surrogate objective is

L(θ) = Êt

[
min(rt (θ)Ât , clip(rt (θ), 1 − ε, 1 + ε)Ât

]
, (9)

where

clip(x, a, b) =

⎧
⎪⎨

⎪⎩

a, if x < a,

x, if a ≤ x ≤ b,

b, if x > b.

(10)

Moreover, L(θ) is the loss function and Ât is an estimator
for the advantage function at timestep t . The clip function
restricts policy updates to avoid catastrophic steps. We use
an actor-critic implementation with two different neural
networks, i.e., one network for the actor and another one
for the critic. The advantage function is estimated through

Generalized Advantage Estimation (GAE) [58]. PPO’s
objective can be further improved by adding an entropy
bonus to incentivize exploration [45, 68]. Empirically, PPO
outperforms TRPO in terms of sample complexity.

2.3 Curriculum Learning

In many tasks, defining a reward function that provides
adequate guidance for the learning algorithm and at same
time represents the intended behavior is hard [18]. For
example, sparse rewards make the task really hard since the
agent does not receive sufficient feedback for learning while
doing random exploration [35]. To circumvent this problem,
we adopt curriculum learning [9].

In curriculum learning, the agent starts with an easy task
and then moves to a harder one when it has learned to
accomplish the current task. To apply curriculum learning,
the designer must order tasks by difficulty and define
heuristics to decide when a task has been mastered [35]. An
interesting result is shown in [69], where the authors apply
curriculum learning to evaluate short computer programs.
Furthermore, Bansal et al. show that self-play may provide
a natural curriculum in an environment with multi-agent
competition [6].

3 RelatedWorks

Model-free methods are very popular for developing
behaviors in RoboCup [11, 32, 34]. They are especially
useful in simulated leagues where data collection is easier
[36]. In the grand scheme of RoboCup, researchers expect
that the knowledge gained in simulation will transfer to real
robots when better sim2real methods are developed [16].

In RoboCup Soccer Simulation 2D, a seminal work
demonstrates how an agent may learn to hassle an opponent
player in a defensive situation using RL [20]. Moreover,
Hausknecht and Stone used DDPG to develop an agent
for the Half Field Offense (HFO) subtask of Soccer 2D
[23]. In IEEE Very Small Size Soccer (VSSS), Medeiros
et al. used PPO augmented with curriculum learning to
make a soccer robot learn to intercept the ball against a
nearby opponent [39]. They used an approach similar to
ours, where the RL agent interacts with a model-based
controller. Finally, in RoboCup Small Size, a league with
physical robots endowed by omnidirectional movement
and kicking devices, some works also present behaviors
developed through DRL [26, 60]. Notice that developing
behaviors in these domains is expected to be easier since
the agents do not need to deal with the complex underlying
dynamics of a humanoid robot.

In Soccer 3D, metaheuristic optimization algorithms
have been extensively used for developing motions and

Page 3 of 16 12J Intell Robot Syst (2022) 105: 12

behaviors [2, 17, 34, 47]. Maximo et al. use Particle Swarm
Optimization (PSO) to optimize parameters that define
joint trajectories based on periodic functions [36]. Urieli et
al. evaluated many optimization algorithms in the context
of optimizing individual skills in Soccer 3D [65]. The
authors reported CMA-ES as the algorithm with the best
performance in this domain. Since then, CMA-ES has been
used for many optimization tasks in Soccer 3D [13, 31, 32].

Reinforcement Learning (RL) has been an active area of
research for over 30 years. Many classical RL algorithms
are based on estimating the value function [7]. A very
popular classical method is Q-Learning [67], which learns
the action-value function to determine an optimal policy.

On the other hand, policy gradient methods directly
search for an optimal policy without necessarily estimating
the value function. REINFORCE is a seminal algorithm
in this class of methods [68]. Policy gradient algorithms
have been pursued in DRL, since this approach handles
continuous state and action spaces.

Deep Reinforcement Learning (DRL) scaled RL to
problems with much larger state and action spaces
by using deep neural networks (DNNs) as function
approximators. The seminal work Deep Q-Networks (DQN)
[46] introduced novel ideas to stabilize learning when a deep
neural network is used to approximate the value function.

DQN allows a continuous state space but still restricts
the action space to be discrete. In this regard, as a policy
gradient algorithm, DDPG also includes an explicit policy,
allowing continuous action spaces. DPPG is based on the
Deterministic Policy Gradient (DPG) theorem [61] and
is capable of solving continuous control problems with
high dimensional visual inputs [30]. It uses an actor-critic
approach where DNNs estimate both the policy and the
value function.

Another recent approach frames DRL as an optimization
problem. Since policy gradient methods are very sensitive
to the size of the policy update, which may result in so-
called catastrophic drops in performance if too large, these
methods restrict policy updates within a trust region. This
family of methods is mainly represented by Trust Region
Policy Optimization (TRPO) [57] and Proximal Policy
Optimization (PPO) [59].

Recently, the Soccer 3D community is seeing a shift
towards reinforcement learning methods. One of the first
works in this regard used TRPO to optimize a kicking
motion [34]. The authors argue that descriptions with more
parameters typically lead to better motions, and while
CMA-ES is able to optimize a few hundred parameters,
DRL can optimize motions with thousand or millions of
parameters encoded as weights of a neural network. Melo
contributed in a similar fashion where imitation learning
encodes an existing kicking motion in a neural network,
which is enhanced through DRL [42]. Later, Melo et al.

proposed a meta-learning algorithm to develop a policy to
precisely kick the ball to any desired distance [43]. Dorer
et al. also used PPO for multi-directional kick-learning
[62]. In an approach combining model-based and model-
free methods, Melo et al. used PPO to learn push recovery
strategies on top of a model-based walking engine [41].

DRL has also been used for developing running motions
in Soccer 3D. Abrel et al. achieved a high-performance
running motion by learning from scratch with PPO [3].
Then, Melo and Maximo enhanced this work by adding the
center of mass’ coordinates to the state space, tuning PPO’s
hyperparameters for the task, and changing how the policy
roll-outs are collected; with these modifications, the learned
policy surpassed, by approximately 50%, the top speed
previously achieved by [3]. Later, Melo et al. extended this
method by using a technique to encourage symmetry in the
sagittal plane, obtaining a more natural-looking movement
[44].

Some works investigated how a humanoid robot may
learn to dribble a ball [5, 28, 29, 31]. Leottau and Ruiz-
del-solar propose a methodology where the behavior is split
into two subproblems: alignment and ball pushing. Then,
they use a fuzzy controller for alignment while ball pushing
is achieved by an RL controller. In Soccer 3D, MacAlpine
and Stone used layered learning and the CMA-ES algorithm
to learn how to conduct the ball without directly taking
opponents into account [28, 33]. This approach is one of the
key ingredients of the success of team UT Austin Villa in
the league.

To the best of our knowledge, our previous work was the
first one to apply DRL to develop a high-level behavior in
Soccer 3D, namely how to dribble against a single opponent
[50]. In this article, we extend this work by expanding our
presentation and showing how to use DRL in another task
in this domain.

4Methodology

This section explains the methodology used in this
work, including the simulation environment SimSpark
[1], the model-based omnidirectional walking engine [38],
how the learning environment is implemented, and the
hierarchical approach combining model-based and model-
free techniques used to solve the tasks.

4.1 Simulation Environment

The chosen simulation environment is SimSpark [1], the
simulator used in Soccer 3D. It is a multi-agent simulator
and uses Open Dynamics Engine [52] as its physics engine.
In the Soccer 3D environment of SimSpark, two teams of
eleven humanoid agents compete in a soccer match.

12 Page 4 of 16 J Intell Robot Syst (2022) 105: 12

Fig. 1 SimSpark Simulation Environment running

Robotic simulations in SimSpark are stochastic since its
implementation does not guarantee determinism of events
and noise is added to the robot’s sensor measurements.
Thus, different trials of the same simulation setting may
generate different results.

The server also publishes information regarding the
simulation’s state for visualization purposes. This interface
provides ground truth information about the simulation,
e.g., the global positions of the robots, which is useful for
machine learning tasks. Figure 1 shows a game simulation
between two teams within RoboViz [63], a visualization tool
for SimSpark.

Agents communicate with the simulator through TCP.
The agents receive perceptual data from the server and
send desired actions back to the simulator. Then, the server
executes a simulation step of �t = 0.020 s. To move,
the robot sends the desired velocity values of each joint
[51]. During official matches, the server does not wait for
the agents’ commands before simulating a new step, which
imposes time restrictions for the agent’s decision-making.
Nevertheless, during training, we run the simulator in sync
mode, therefore the server waits an response from every
agent reply before executing a new step. On the other hand,
sync mode allows faster than real-time simulation since the
server may promptly execute a new simulation step after
receiving commands from all connected agents.

The simulated agent is based on the Nao humanoid robot
from SoftBank Robotics [56]. It has 22 joints, which receive
velocity commands.

SimSpark was chosen mainly because it is the official
simulator of the RoboCup Soccer Simulation 3D competi-
tion.

We also use the ITAndroids Soccer3D code base, which
was developed in C++ by our research group to compute in
the Soccer 3D competition. For more information about this
code base, we refer the interested reader to [40, 48].

4.2 Omnidirectional Walking Engine

We adopt a hierarchical approach where the learning agent
issues commands to a model-based omnidirectional walking
engine. This walking algorithm was developed using control
theory in previous works [37, 38] and was already present in
ITAndroids code base. Despite not modifying the walking
engine in this work, we provide a high-level description of
the algorithm here since it influences how the robot walks,
so it is part of the environment from the learning agent’s
perspective.

The walking engine is commanded with a desired
velocity v = [ux, uy, uθ]T , where ux , uy and uθ are desired
velocities in the forward, lateral and rotational directions,
respectively. The output is the joint angles trajectories so
the robot walks at the desired velocity while maintaining
balance. PID controllers at the joint level compute the joint
velocities which are sent to the server. The algorithm is
based on the Zero Moment Point (ZMP) stability criterion
and uses the Linear Inverted Pendulum Model (LIPM) to
approximate the robot dynamics [25]. A block diagram of
the walking engine is shown in Fig. 2, where the following
blocks are present:

– Next Torso and Swing Foot Poses Selector: based on
the desired velocity, it plans the poses of the torso and
the swing foot at the end of the step.

– CoM Trajectory Generator: computes the trajectory
of the center of mass (CoM) so the robot achieves
the planned torso and swing foot poses. The ZMP

Fig. 2 Block diagram of the omnidirectional walking engine

Page 5 of 16 12J Intell Robot Syst (2022) 105: 12

is constrained to follow a polygonal trajectory within
the support polygon during the step, while the CoM
trajectory must match the CoM positions at the
beginning and at the end of the step. Then, a boundary
value problem is solved analytically to yield the
trajectory of the CoM based on these constraints.

– Swing Foot Trajectory Generator: determines the
swing foot’s trajectory by interpolating between the
initial and final poses of the swing foot.

– Inverse Kinematics (IK) Solver: computes the joint
angles through an analytical IK method.

The walk cycle duration is constant, and the robot
always alternates between the left and right feet as
support foot. Moreover, the walking always undergoes
a double support phase before changing the support
foot. Furthermore, the acceleration is bounded since large
velocity changes may destabilize the robot, so the robot
may need multiple steps to reach the desired velocity. The
parameters of this walking engine were optimized using
CMA-ES [47]. For details, we refer the interested reader
to [37, 38].

4.3 Environment and Implementation

For the implementations of the RL algorithms DDPG,
TRPO, and PPO, we use the OpenAI Baselines repository
[14], which is a set of high-quality implementations of
reinforcement learning algorithms made by OpenAI.

Two modules compose the project, each one running as a
separate process:

– Learning Client: runs the RL algorithms and makes
remote procedure calls (RPCs) to the server exchanging
state and action information regarding the soccer
agent. This module was implemented in Python 3.5
and TensorFlow through the OpenAI Baselines [14]
framework.

– Soccer Agent: acts as a bridge between SimSpark and
the learning client. This module was implemented in
C++ using the ITAndroids’ code base.

The communication between server and client is based
on Protocol Buffers [21] and uses RPCs to exchange
information. Figure 3 shows a pictorial overview.

Therefore, another contribution of this work is the
implementation of a framework for DRL in the context of
the RoboCup 3D Soccer Simulation League. Other teams
from the league may benefit from using the code to learn
their own behaviors. The client’s code is available as open-
source at:

https://github.com/alexandremuzio/rlearning3d

Fig. 3 Learning architecture diagram

4.4 Approach and Task Modeling

We use a hybrid hierarchical controller that combines
a learned policy and a model-based algorithm (walking
engine):

– High-Level Controller: the policy learned through
DRL. It runs at a sampling rate of 10 Hz.

– Lower Level Controller: model-based walking con-
troller that runs at a higher sampling rate of 50 Hz. This
algorithm does not contain learning parameters.

Figure 4 presents this architecture.
The main task we intend to learn is soccer dribbling.

We also learned a much easier task regarding completing a
racing track. Learning this additional task acted as a warm-
up, allowing us to get a better grasp on how to model
tasks in this environment and how to provide good reward
shaping.

A vector [x, y, z, θ]T describes an agent’s pose, as
presented in Fig. 5. For learning, ground truth information
is used, which is retrieved from the server using an entity
called the “Wizard” in ITAndroids’ base code. Velocities
are obtained by deriving the positions numerically. Since
numeric differentiation may introduce too much noise, we
use low-pass filters to smooth out the signals.

Fig. 4 Hierarchical hybrid controller

12 Page 6 of 16 J Intell Robot Syst (2022) 105: 12

https://github.com/alexandremuzio/rlearning3d

Fig. 5 Robot pose representation. It is composed of 3 variables: the
robot’s x and y coordinates and its orientation θ

The hardware used for all experiments consisted of a
notebook with an Intel i7-7500U CPU and a GeForce
940MX GPU. Notice that SimSpark’s physical simulation
is the bottleneck in terms of computational cost in our case;
therefore, the training time is mainly CPU-bound.

5 Experiments and Results

In this section, we describe how we modeled each task in
a reinforcement learning framework. We also present and
discuss the obtained results.

When using RL (and machine learning in general),
it is important to use metrics to monitor the training
performance. In this work, we mainly observed episode
duration, accumulated reward, and each algorithm’s data
efficiency.

5.1 Humanoid Racing Task

In this task, the robot must reach the finish line of a race
track of 18x4 m while remaining between the two lateral
lines. Despite looking trivial at first glance, recall that to
accomplish this task with high performance, the policy
needs to take the walking engine close to its limits without
falling over. ITAndroids’ agent relies on many hand-coded
heuristics to navigate at high walking speeds. Also, notice
that the robot rarely finishes the race track when the walking
engine is used in an open-loop fashion, as will be discussed
later.

Figure 6 presents the task visually. The robot starts the
race in the center of the green line and needs to reach the
red finish line while staying within the region defined by the
black border lines.

State space: consists of the x, y, z coordinates of the
torso, the yaw angle of the torso θ , and the forward velocity
vx , sideways velocity vy and rotational velocity vθ . Notice
that these are actual velocities, not the commanded ones.

Action space: consists of ux , uy and uθ , which are
velocity control signals in forward, sideways and rotational
directions, respectively.

Reward signal: the reward is defined by

r(s, a) = vx − 0.005(v2
θ + v2

y) − 0.05(u2
x + u2

y + u2
θ) − 0.05y2

+ 50Ifinish line − 10Ileave track − 10Irobot fell, (11)

where I
finish line = 1 if the robot arrives the finish line and

0 otherwise; and I
leave track = 1 if the robot leaves the track

and 0 otherwise.

Fig. 6 Humanoid Racing
Domain

Page 7 of 16 12J Intell Robot Syst (2022) 105: 12

Table 1 Experiments parameters

Hyperparameter Value

Horizon (T) 2000

Discount (γ) 0.99

The term vx rewards the robot for moving in the forward
direction of the race track, while the terms −0.005(v2

θ + v2
y)

and −0.05y2 penalize deviation from this direction. We took
inspiration from [15] for these terms.

The episode duration is 2,000 steps, and the episode
terminates if the robot falls or if the robot leaves the race
track. We consider the agent to have fallen if its CoM gets
below 0.2 m.

In this domain, we ran DDPG, TRPO, and PPO during
106 timesteps. Each experiment needed around 3 hours to
complete.

Table 1 shows parameters used to configure the experi-
ments. Moreover, Tables 2, 3, and 4 present hyperparame-
ters for DDPG, TRPO, and PPO, respectively. These values
were mainly based on the hyperparameters from [15] and
[59].

To obtain more statistically significant results, we ran the
experiments 5 times for each algorithm and use the mean
and standard deviation over all runs. Figure 7 shows the
episode rewards during the training phase for all runs. The
dark line and the transparent filling represent the mean and
the standard deviation, respectively, of reward considering
the 5 executions. Likewise, Fig. 8 presents the mean and
the standard deviation of the episode length over the 5 runs,
respectively.

By looking to Figs. 7 and 8, we conclude that the
performance of PPO is consistently higher than DDPG and
TRPO in this task. However, we need to clarify that this may
be due to a lack of hyperparameter tuning for DDPG and
TRPO.

For TRPO and PPO, the episode length in the first
200,000 timesteps is shorter than at the end of training.
Intuitively, we may say that the robot is initially falling
down or leaving the race track until it learns to avoid falls

Table 2 DDPG hyperparameters used for the two tasks

Hyperparameter Value

Batchsize 64

Actor learning rate 10−4

Critic learning rate 10−3

Adaptive param. noise 0.2

Table 3 TRPO hyperparameters used for the two tasks

Hyperparameter Value

Stepsize (DKL) 0.01

GAE parameter (λ) 0.98

Timesteps per batch 1024

and to stay on track, so the episodes get longer over time.
Also, notice that the DDPG agent barely learns.

During evaluation, we noticed that the only agent capable
of consistently reaching the finish line was the one trained
with PPO. Therefore, we chose one of the policies trained
with PPO and compared it against a baseline consisting
of an open-loop “go-straight” controller (i.e., we command
only forward velocity to the omnidirectional walking pattern
generator). We generated 20 trajectories for each controller
and compared them graphically, as shown in Fig. 9.

Finally, we summarize the results obtained for these
trajectories:

– The total race average speed is vx ≈ 0.6 m/s. This
expresses how fast the agent completed the race on
average. Note that the walking engine limits the forward
speed command to 0.9 m/s due to stability concerns.
Therefore, when compared to both the baseline and the
theoretical fastest agent, the learned policy has a good
performance on this task.

– The horizontal displacement average is ymean ≈ 0.47
m. This measures, on average, how much the agent
has deviated from the centerline of the race track when
it reaches the finish line. When we take into account
that the race track has a width of 4 m, the average
horizontal displacement looks small, as presented in
Fig. 9. Furthermore, the robot remained within the track
limits in all 20 executions.

Therefore, the agent trained with PPO accomplishes the
task with a performance far superior than the baseline,
since the learned policy compensates deviations that occur
during execution. Nevertheless, Fig. 9 shows that there is a
significant bias in the lateral direction, so there is still room

Table 4 PPO hyperparameters used for all two tasks

Hyperparameter Value

Adam stepsize 3 × 106

Num. epochs 10

Minibatch size 64

GAE parameter (λ) 0.95

Timesteps per batch 2048

12 Page 8 of 16 J Intell Robot Syst (2022) 105: 12

Fig. 7 Average reward for PPO, TRPO, and DDPG in the Racer task. The dark line and the transparent filling are the mean and the standard
deviation over the 5 trials, respectively

Fig. 8 Episode length for PPO, TRPO, and DDPG in the Racer task. The dark line and the transparent filling are the mean and the standard
deviation over the 5 runs, respectively

Page 9 of 16 12J Intell Robot Syst (2022) 105: 12

Fig. 9 Trajectories comparison between one of the trained PPO policies and the open-loop “go-straight” controller

for improvement. A video of the agent executing this task
may be seen at 1.

5.2 Humanoid Soccer Dribbling Task

In this task, a learning agent and an opponent dispute the
control of the ball within a rectangle of 4 × 3 m. This task’s
goal is for the learning agent to take control over the ball and
take it to the right edge of the rectangle. This task is used as
a surrogate for the actual dribbling behavior, assuming that
an agent that learns to accomplish this task will also perform
well in dribbling in an actual soccer match. Notice that the
opponent does not learn.

Figure 10 presents this task. The yellow lines represent
the 4 × 3 m rectangle while the blue and red agents are
the learning and opponent agents, respectively. Moreover,
notice that the blue or red line in front of an agent denotes
the respective robot’s torso orientation. These lines are
drawn for visualization and debugging purposes.

State space: consists of the x, y, z coordinates of the
robot’s torso, the yaw angle of the torso θ , the forward
velocity vx , sideways velocity vy and rotational velocity vθ .
Moreover, we also consider the ball’s position with respect
to (w.r.t.) the agent, the opponent’s pose w.r.t. the agent, and
the ball’s position w.r.t. the opponent. After some trial and
error, we also included the ball-agent, ball-opponent and
agent-opponent distances as observations.

Action space: the desired velocity vector v =
[ux, uy, uθ]T used to command the walking engine.

Reward signal: defined by

r(s, a) = (dt−1
ball-agent − dt

ball-agent) + 0.05e
(−dt

ball-agent)

−(dt−1
opp-agent − dt

opp-agent) + 5�xball

+10Iagent completed dribble − 10Iopp completed dribble − 1Iagent fell, (12)

where I
agent completed dribble = 1 if the agent suc-

cessfully completed the dribble and 0 otherwise; and

1https://www.youtube.com/watch?v=IF8kUpi96lE&feature=youtu.be

I
opp completed dribble = 1 if the opponent successfully com-

pleted the dribble and 0 otherwise. The term �xball rep-
resents the difference between the current x position of
the ball and the one on the previous timestep, which
incentivizes the agent to move the ball forward. The term

e
(−dt

ball-agent) incentivizes the robot stay close to the ball.
Finally, (dt−1

ball-agent−dt
ball-agent) rewards the agents for getting

closer to the ball while the equivalent term for the opponent
punishes the agent if the opponent gets closer to the ball.

Unfortunately, some reward engineering was required
since dribbling inherently has very sparse rewards. Notice
that a random agent has a negligible chance of performing a
successful dribble, so it would almost never receive rewards
to guide its learning. We based the reward signal on some
ideas from [15, 53].

The episode duration is set to 5,000 steps. The episode
may also terminate earlier if the agent falls (CoM below
0.2 m) or leaves the rectangle used to define the task. On
the other hand, if the opponent leaves the rectangle, we
respawn it back within the arena. A video of the learned
agent performing dribbles may be seen at 2. Furthermore,
some failures cases are shown at 3.

To successfully learn this task, we employed curriculum
learning [9]. It helped to guide exploration since the agent
has a higher probability of obtaining positive reward from
random actions in an easier task [6]. The curriculum
considers two features:

– Agent-ball distance at the beginning of the episode:
the agents start at a random position. Nonetheless,
our curriculum dictates that the maximum distance
the learning agent can spawn from the ball increases
over the duration of the training, while the distance
the opponent can start from the ball decreases. The
intention here is to help the agent to touch the ball,
especially at the beginning of the training, when
the policy is mostly random. Figure 11 shows this

2https://www.youtube.com/watch?v=2i2q9fLjQBY
3https://www.youtube.com/watch?v=jtmxJuAu2dk

12 Page 10 of 16 J Intell Robot Syst (2022) 105: 12

https://www.youtube.com/watch?v=IF8kUpi96lE&feature=youtu.be
https://www.youtube.com/watch?v=2i2q9fLjQBY
https://www.youtube.com/watch?v=jtmxJuAu2dk

Fig. 10 Humanoid Soccer
Dribbling Domain

curriculum – during training, the distance dag between
the agent and the ball increases while the distance dopp

between the opponent and the ball decreases.
– Opponent skill: the opponent’s skill level changes. At

first, the opponent does not move. Then, after some
time, we change to the opponent to the ITAndroids
agent our team actually uses in competitions. Its dribble
behavior is based on hand-coded heuristics and control
theory.

Curriculum learning was essential for this task. A skilled
opponent at the beginning would completely overpower
a policy initialized randomly, leaving the learning agent
deprived of the high rewards that come with accomplishing
the task.

We ran DDPG, TRPO and PPO during 1.7x106

timesteps. We compare these algorithms and analyze how
the learned policy rivals with the baseline dribble behavior
implemented by the ITAndroids team. In this task, each
training required around 8 hours to finish, being much

Fig. 11 Agent-ball distance curriculum. During training, we gradually
increase dag and decrease dopp

longer than in the previous task. We hypothesize that this
is due to the additional opponent present in this task. This
made testing new ideas much slower, therefore solving this
task was very challenging.

In a similar manner, we executed the experiments 5
times for each algorithm and computed means and standard
deviations. Figure 12 presents the episode rewards during
the training phase for all executions. The dark line and
the transparent filling represent the mean and the standard
deviation, respectively, of the reward taking all executions
into account.

For PPO, there is a sudden reduction in reward when the
opponent’s skill is changed. This is expected since a better
opponent makes completing the dribble harder, so the agent
gets less reward. Similarly, Fig. 13 illustrates the mean and
the standard deviation of episode length over the same five
runs.

The curriculum change also induces a sharp drop in the
episode duration. Notice that in this case, the agent must
learn to dribble faster to beat the more skilled opponent.
Moreover, the average reward here has a higher variance
than in the previous task. This behavior indicates that
the space of successful policies in this task is bigger
than in the previous task because it is significantly more
complex.

To evaluate our results, we ran the learned policy against
the baseline agent for 2,000 episodes. As a metric of
performance, we consider the ratio of successful dribbles:

M = Nagent dribbles

Nagent dribbles + Nopp dribbles
, (13)

where Nagent dribbles and Noppdribbles are the number of
successful dribbles by the agent and the opponent,
respectively. A successful dribble happens when an agent
manages to push the ball out of the task region towards its
attacking side. We also computed how long, on average,

Page 11 of 16 12J Intell Robot Syst (2022) 105: 12

Fig. 12 Average reward for PPO, TRPO and DDPG in the dribbling task during training. The dark line is the mean over the 5 runs, and the
transparent filling is the standard deviation in regards to the mean and the dotted line represents when the curriculum changes

Fig. 13 Episode length for DDPG, TRPO and PPO in the dribbling task during training. The dark line is the mean over the 5 runs and the
transparent filling is the standard deviation in regard to the mean and the dotted line represents when the curriculum changes

12 Page 12 of 16 J Intell Robot Syst (2022) 105: 12

each robot takes to accomplish the task. Table 5 presents the
results.

Notice that the learned agent greatly outperforms the
baseline, despite taking longer on average to accomplish the
task. Qualitatively, we can say that the learned policy has a
good performance on average, but makes terrible decisions
sometimes. Moreover, intelligent behaviors appear to
emerge from the RL agent: for example, when the opponent
tries to steal the ball, the agent appears to use its body to
block the opponent’s movement.

5.3 Concluding Remarks

As expected, dribbling presented itself as a much more
challenging task compared to the other task. While the agent
learned to accomplish the racing task with no curriculum
learning, it was unable to learn how to dribble without a
curriculum. Moreover, TRPO obtained a working policy in
the racing task, but it failed to learn in the dribbling task.
Finally, the dribbling task required much more data for the
agent to learn an adequate policy.

As discussed in Section 3, to the best of our knowledge,
this is the first work to adopt DRL to develop high-
level behaviors in Soccer 3D. Therefore, we unfortunately
do not know of related works similar enough to permit
a performance comparison. However, the conclusions we
obtained are supported by the literature. In robot soccer,
many works have obtained good results for continuous
control tasks using actor-critic DRL methods [3, 12,
39, 41, 43], especially PPO, as we did. Moreover, PPO
is known to outperform DDPG and TRPO in complex
tasks [59].

Despite using a different robot soccer competition
(VSSS), Medeiros et al. is close in terms of methodology
to ours [39], while also reaching similar conclusions. They
also used PPO augmented by curriculum learning (CL)
for an agent to learn to play against an opponent by
commanding a model-based controller. In their problem,
CL helped achieve a policy with a better final performance,
but, differently from our case, the agent was also able to
learn a good policy without CL. We hypothesize that the
complexity of dealing with a humanoid robot makes our
problem harder.

Table 5 Evaluation results of the dribbling task

Agent Successful drib-
ble rate (M)

Avg. drib-
ble duration
(timesteps)

Learning Agent 68.2% 298.2

Baseline Agent 31.8% 321.6

6 Conclusions

Our main objective was to learn high-level soccer behaviors
using reinforcement learning in this work. We addressed
the problem with state-of-the-art model-free deep reinforce-
ment learning algorithms, namely DDPG, TRPO, and PPO.
Therefore, we learned behaviors while dealing with the
complex dynamics of a humanoid robot.

To facilitate, we used a hierarchical approach where the
agent learns to command a model-based walking engine
based on the Zero Moment Point (ZMP) concept. The
walking engine receives the desired velocities in forward,
lateral and rotational directions and outputs the joint angles.

We developed a DRL framework for integrating DRL
algorithms with the RoboCup 3D Soccer Simulation
environment to accomplish our objective. In our results,
PPO achieved the best performance, which was expected,
and effectively learned humanoid robot behaviors.

This work could be extended by enhancing the perfor-
mance of the learned tasks or by learning new behaviors
in this environment. There are also many approaches to
enhance the dribbling soccer agent, for example:

– Add more information to the state space. For example,
we may include feet pressure measures to try to capture
walking stability.

– Instead of considering the walking engine’s parameters
as fixed, we could also try to learn these parameters in
a hierarchical manner, similar to [33].

– Using a walking engine makes the tasks easier to be
learn, but it also restricts the robot’s movement to
follow a certain gait pattern. A hierarchical end-to-end
approach that directly learns to command the robot’s
joint angles could lead to better performance [19].

– In the soccer task, the (fixed) opponent is assumed
as part of the environment. A novel approach for
competitive environments is to employ self-play, i.e.,
both the agent and its opponent are learning the task.
For example, [4] shows it is possible to use meta-
learning in non-stationary tasks such as those of self-
play.

– Try different state-of-the-art DRL algorithms, such as
Actor-Critic with Experience Replay (ACER) [66] or
Soft Actor-Critic (SAC) [22].

– Execute hyperparameter search for better learning
performance [10].

Finally, the same learning framework can be used to
learn other high level soccer behaviors, such as stealing
the ball or goalkeeping. An even harder challenge is to
transfer the skills learned on the simulated robot to a
real robot. Unfortunately, learning algorithms are known
to overfit to inaccuracies present even in high-fidelity
simulators [16], making this transfer impracticable. This

Page 13 of 16 12J Intell Robot Syst (2022) 105: 12

problem is exacerbated with humanoid robots, due to their
complex dynamics. For example, optimizing walking skills
in SimSpark often leads to tiny step sizes, generating
walking patterns that do not look realistic [31].

Acknowledgements The authors acknowledge the ITAndroids’ Soc-
cer3D team for developing the code base used in this work. Moreover,
we would like to thank ITAndroids’ sponsors: Altium, Cenic, Intel,
ITAEx, Mathworks, Metinjo, Micropress, Polimold, Rapid, Solid-
works, ST Microelectronics, WildLife, and Virtual Pyxis.

Author Contributions All authors have contributed to the concept and
design of the research. Alexandre Muzio is the main contributor: he
developed the RL formulations, implemented the source code, and
executed the experiments. Marcos Maximo and Takashi Yoneyama
assumed advisor roles during the research, discussing ideas and
providing insights when needed. Marcos Maximo prepared this
manuscript based on material previously written by Alexandre Muzio.
Takashi Yoneyama further contributed by revising the text. The final
manuscript was revised and approved by all authors.

Funding Alexandre Muzio received an Master’s scholarship from
CAPES (number 88882.161989/2017-01). Takashi Yoneyama is
partially funded by CNPq – National Research Council of Brasil
through the grant 304134/2-18-0.

Availability of data andmaterial No extra data or material is available.

Code Availability The source code for the client is available at:
https://github.com/alexandremuzio/rlearning3d

Declarations

Conflict of Interests The authors declare that they have no conflicts of
interest/competing interests.

References

1. Simspark. http://simspark.sourceforge.net/wiki/index.php/Main
Page (2004)

2. Abdolmaleki, A., Simões, D., Lau, N., Reis, L.P., Neumann,
G., Sarıel, S., Lee, D.D.Behnke, S., Sheh, R. (eds.): Learning a
humanoid kick with controlled distance. Springer International
Publishing, Cham (2017)

3. Abrel, M., Reis, L.P., Lau, N.: Learning to run faster in
a humanoid robot soccer environment through reinforcement
learning. In: Proceedings of the 2019 RoboCup Symposium.
RoboCup, Australia (2019)

4. Al-Shedivat, M., Bansal, T., Burda, Y., Sutskever, I., Mordatch,
I., Abbeel, P.: Continuous adaptation via meta-learning in
nonstationary and competitive environments. arXiv:1710.03641
(2017)

5. Alcaraz-Jiménez, J., Herrero-Perez, D., Barberá, H.: A closed-
loop dribbling gait for the standard platform league (2014)

6. Bansal, T., Pachocki, J., Sidor, S., Sutskever, I., Mor-
datch, I.: Emergent complexity via multi-agent competition.
arXiv:1710.03748 (2017)

7. Barto, A.G., Sutton, R.S., Anderson, C.W.: Neuronlike adaptive
elements that can solve difficult learning control problems (1983)

8. Bengio, Y., Courville, A.C., Vincent, P.: Unsupervised feature
learning and deep learning: A review and new perspectives.
arXiv:1206.5538 (2012)

9. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum
learning. In: Proceedings of the 26th Annual International
Conference on Machine Learning, ICML ’09, pp. 41–48. ACM,
New York (2009). https://doi.org/10.1145/1553374.1553380

10. Bergstra, J., Bengio, Y.: Random search for hyper-parameter
optimization. J. Mach. Learn. Res. 13, 281–305 (2012). http://dl.
acm.org/citation.cfm?id=2188385.2188395

11. Carvalho Melo, D., Quartucci Forster, C.H., Omena de Albu-
querque Máximo, M.R.: Learning when to kick through deep
neural networks. In: 2019 Latin American Robotics Symposium
(LARS), 2019 Brazilian Symposium on Robotics (SBR) and 2019
Workshop on Robotics in Education (WRE), pp. 43–48 (2019)

12. Carvalho Melo, L., Omena Albuquerque Máximo, M.R.: Learning
humanoid robot running skills through proximal policy optimiza-
tion. In: 2019 Latin American Robotics Symposium (LARS),
2019 Brazilian Symposium on Robotics (SBR) and 2019 Work-
shop on Robotics in Education (WRE), pp. 37–42 (2019)

13. Depinet, M., MacAlpine, P., Stone, P.Bianchi, R.A.C., Akin,
H.L., Ramamoorthy, S., Sugiura, K. (eds.): Keyframe sampling,
optimization, and behavior integration: Towards long-distance
kicking in the Robocup 3D simulation league. Springer, Berlin
(2015)

14. Dhariwal, P., Hesse, C., Plappert, M., Radford, A., Schulman,
J., Sidor, S., Wu, Y., Openai baselines. https://github.com/openai/
baselines (2017)

15. Duan, Y., Chen, X., Houthooft, R., Schulman, J., Abbeel,
P.: Benchmarking deep reinforcement learning for continuous
control. arXiv:1604.06778 (2016)

16. Farchy, A., Barrett, S., MacAlpine, P., Stone, P.: Humanoid robots
learning to walk faster: From the real world to simulation and
back. In: Proc. of 12Th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS). AAMAS, Saint Paul (2013)

17. Farchy, A., Barrett, S., MacAlpine, P., Stone, P.: Humanoid Robots
Learning to Walk Faster: From the Real World to Simulation and
Back. In: Proc. of 12Th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS) (2013)

18. Florensa, C., Held, D., Wulfmeier, M., Abbeel, P.: Reverse cur-
riculum generation for reinforcement learning. arXiv:1707.05300
(2017)

19. Frans, K., Ho, J., Chen, X., Abbeel, P., Schulman, J.: Meta
learning shared hierarchies. arXiv:1710.09767 (2017)

20. Gabel, T., Riedmiller, M., Trost, F.: A Case Study on
Improving Defense Behavior in Soccer Simulation 2D: The
NeuroHassle Approach, pp. 61–72. Springer, Berlin (2009).
https://doi.org/10.1007/978-3-642-02921-9 6

21. Google: Protocol buffers. https://developers.google.com/
protocol-buffers/ (2017)

22. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor (2018)

23. Hausknecht, M., Stone, P.: Deep reinforcement learning in
parameterized action space. In: Proceedings of the International
Conference on Learning Representations (ICLR). ICLR, San Juan
(2016)

24. Heess, N., TB, D., Sriram, S., Lemmon, J., Merel, J., Wayne,
G., Tassa, Y., Erez, T., Wang, Z., Eslami, S.M.A., Riedmiller,
M., Silver, D.: Emergence of locomotion behaviours in rich
environments (2017)

25. Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., Hirukawa, H.:
The 3D linear inverted pendulum mode: A simple modeling for
a biped walking pattern generation. In: Proceedings of the 2001
IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, Hawaii (2001)

26. Kim, J., Kim, B., Yoon, J., Lee, M., Jung, S.Y., Choi, J.: Robot
soccer using deep q network. In: 2018 International Conference
on Platform Technology and Service (Platcon), pp. 1–6 (2018)

12 Page 14 of 16 J Intell Robot Syst (2022) 105: 12

https://github.com/alexandremuzio/rlearning3d
http://simspark.sourceforge.net/wiki/index.php/Main_Page
http://simspark.sourceforge.net/wiki/index.php/Main_Page
http://arxiv.org/abs/1710.03641
http://arxiv.org/abs/1710.03748
http://arxiv.org/abs/1206.5538
https://doi.org/10.1145/1553374.1553380
http://dl.acm.org/citation.cfm?id=2188385.2188395
http://dl.acm.org/citation.cfm?id=2188385.2188395
https://github.com/openai/baselines
https://github.com/openai/baselines
http://arxiv.org/abs/1604.06778
http://arxiv.org/abs/1707.05300
http://arxiv.org/abs/1710.09767
https://doi.org/10.1007/978-3-642-02921-9_6
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/

27. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.,
Matsubara, H.: Robocup: A challenge problem for ai. AI Maga-
zine 18(1), 73 (1997). https://doi.org/10.1609/aimag.v18i1.1276.
https://aaai.org/ojs/index.php/aimagazine/article/view/1276

28. Leottau, D.L., del Solar, J.R., MacAlpine, P., Stone, P.: A study
of layered learning strategies applied to individual behaviors in
robot soccer. In: Almeida, L., Ji, J., Steinbauer, G., Luke, S. (eds.)
RoboCup-2015: Robot Soccer World Cup XIX, Lecture Notes in
Artificial Intelligence. Springer, Berlin (2016)

29. Leottau, L., Celemin, C., del solar, J.R.: Ball dribbling for
humanoid biped robots: A reinforcement learning and fuzzy
control approach (2014)

30. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa,
Y., Silver, D., Wierstra, D.: Continuous control with deep
reinforcement learning. arXiv:1509.02971 (2015)

31. MacAlpine, P., Barrett, S., Urieli, D., Vu, V., Stone, P.: Design and
optimization of an omnidirectional humanoid walk: A winning
approach at the roboCup 2011 3D simulation competition. In:
Proceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence (AAAI). AAAI, Toronto (2012)

32. MacAlpine, P., Stone, P.: Overlapping layered learning. Artificial
Intelligence 254, 21–43 (2018). https://doi.org/10.1016/j.artint.
2017.09.001. https://www.sciencedirect.com/science/article/pii/
S0004370217301066

33. MacAlpine, P., Stone, P.: Overlapping layered learning. Artificial
Intelligence 254, 21–43 (2018). https://doi.org/10.1016/j.artint.
2017.09.001. https://www.sciencedirect.com/science/article/pii/
S0004370217301066

34. MacAlpine, P., Stone, P.: UT Austin Villa: RoboCup 2017
3D simulation league competition and technical challenges
champions. In: Sammut, C., Obst, O., Tonidandel, F., Akyama,
H. (eds.) RoboCup 2017: Robot Soccer World Cup XXI, Lecture
Notes in Artificial Intelligence. Springer, Berlin (2018)

35. Matiisen, T., Oliver, A., Cohen, T., Schulman, J.: Teacher-student
curriculum learning. arXiv:1707.00183 (2017)

36. Maximo, M.R., Colombini, E.L., Ribeiro, C.H.: Stable and fast
model-free walk with arms movement for humanoid robots.
Int. J. Adv. Robot. Syst 14(3), 1729881416675135 (2017).
https://doi.org/10.1177/1729881416675135

37. Maximo, M.R.O.A.: Omnidirectional Zmp-based walking for
a humanoid robot. Master’s thesis, Instituto Tecnológico de
Aeronáutica (2015)

38. Maximo, M.R.O.A., Ribeiro, C.H.C.: ZMP-based humanoid
walking engine with arms movement and stabilization. In:
Proceedings of the 2016 Congresso Brasileiro de Automática
(CBA), SBA. Vitória, Brazil (2016)

39. de Medeiros, T.F., de Máximo, A., M.R.O., Yoneyama, T.:
Deep reinforcement learning applied to ieee very small size
soccer strategy. In: 2020 Latin American Robotics Symposium
(LARS), 2020 Brazilian Symposium on Robotics (SBR) and 2020
Workshop on Robotics in Education (WRE), pp. 1–6 (2020).
https://doi.org/10.1109/LARS/SBR/WRE51543.2020.9306954

40. Melo, D., Soares, E.E., Moreira, E., Muniz, F., Marra, G.,
Nahum, G., Lopes, H., Saraiva, J.L., José Otávio Vidal, J.F.,
Melo, L., Maximo, M.: Itandroids soccer3d team description paper
2017. https://www.robocup2017.org/file/symposium/soccer sim
3D/ITAndroids3D TDP.pdf (2017)

41. Melo, D.C., Máximo, M.R.O.A., da Cunha, A.M.: Push
recovery strategies through deep reinforcement learning. In:
2020 Latin American Robotics Symposium (LARS), 2020
Brazilian Symposium on Robotics (SBR) and 2020 Work-
shop on Robotics in Education (WRE), pp. 1–6 (2020).
https://doi.org/10.1109/LARS/SBR/WRE51543.2020.9306967

42. Melo, L.C.: Imitation Learning and Meta-Learning for Optimizing
Humanoid Robot Motions. Master’s Thesis, Instituto tecnológico
de aeronáutica, são josé dos Campos, SP Brazil (2019)

43. Melo, L.C., Maximo, M.R.O.A., da Cunha, A.M.: Bottom-up
meta-policy search. In: Proceedings of the Deep Reinforcement
Learning Workshop of NeurIPS 2019 (2019)

44. Melo, L.C., Melo, D.C., Maximo, M.R.O.A.: Learning humanoid
robot running motions with symmetry incentive through proximal
policy optimization. Journal of Intelligent &, Robotic Systems
102(3), 54 (2021). https://doi.org/10.1007/s10846-021-01355-9

45. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T.P.,
Harley, T., Silver, D., Kavukcuoglu, K.: Asynchronous methods
for deep reinforcement learning. arXiv:1602.01783 (2016)

46. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J.,
Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K.,
Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou,
I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D.:
Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015). https://doi.org/10.1038/nature14236.
Letter

47. Muniz, F., Maximo, M.R., Ribeiro, C.H.: Keyframe movement
optimization for simulated humanoid robot using a parallel
optimization framework. In: 2016 XIII Latin American Robotics
Symposium and IV Brazilian Robotics Symposium (LARS/SBR),
pp. 79–84 (2016). https://doi.org/10.1109/LARS-SBR.2016.20

48. Muzio, A., Melo, D., Henrique, E., Muniz, F., Marzzo, I.,
Saraiva, J.L., Melo, L., Aguiar, L.G., Maximo, M., Bertolino, M.:
Itandroids soccer3d team description paper 2016. http://www.
robocup2016.org/media/symposium/Team-Description-Papers/
Simulation3D/RoboCup 2016 Sim3D TDP ITAndroids3D.pdf/
(2016)

49. Muzio, A.F.V.: Curriculum-based Deep Reinforcement Learning
Applied to Humanoid Robots. Master’s Thesis, Instituto tec-
nológico de aeronáutica, são josé dos Campos, SP Brazil (2018)

50. Muzio, A.F.V., Maximo, M.R.A., Yoneyama, T.: Deep
reinforcement learning for humanoid robot dribbling. In:
2020 Latin American Robotics Symposium (LARS), 2020
Brazilian Symposium on Robotics (SBR) and 2020 Work-
shop on Robotics in Education (WRE), pp. 1–6 (2020).
https://doi.org/10.1109/LARS/SBR/WRE51543.2020.9307084

51. Obst, O., Murray, J., Boedecker, J., Rollmann, M., Ebrahimi, M.,
Vatankhah, H., van Dijk, S., Yuan, X.: Simspark effectors. https://
gitlab.com/robocup-sim/SimSpark/wikis/Effectors (2004)

52. ODE: Open dynamics engine (ode). http://www.ode.org/ (2004)
53. Peng, X.B., Berseth, G., Yin, K., van de Panne, M.: Deeploco:

Dynamic locomotion skills using hierarchical deep reinforcement
learning. ACM Transactions on Graphics Proc SIGGRAPH 36(4),
2017 (2017)

54. Peng, X.B., Chang, M., Zhang, G., Abbeel, P., Levine, S.: Mcp:
Learning composable hierarchical control with multiplicative
compositional policies. In: Wallach, H., Larochelle, H., Beygelz-
imer, A., D’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in
Neural Information Processing Systems, vol. 32, pp. 3681–3692.
Curran Associates Inc (2019). http://papers.nips.cc/paper/8626-
mcp-learning-composable-hierarchical-control-with-multiplicative-
compositional-policies.pdf

55. Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R.Y.,
Chen, X., Asfour, T., Abbeel, P., Andrychowicz, M.: Parameter
space noise for exploration. arXiv:1706.01905 (2017)

56. Robotics, S.: Nao robot. https://www.ald.softbankrobotics.com/
en/robots/nao (2018)

57. Schulman, J., Levine, S., Moritz, P., Jordan, M.I., Abbeel, P.: Trust
region policy optimization. arXiv:1502.05477 (2015)

Page 15 of 16 12J Intell Robot Syst (2022) 105: 12

https://doi.org/10.1609/aimag.v18i1.1276
https://aaai.org/ojs/index.php/aimagazine/article/view/1276
http://arxiv.org/abs/1509.02971
https://doi.org/10.1016/j.artint.2017.09.001
https://doi.org/10.1016/j.artint.2017.09.001
https://www.sciencedirect.com/science/article/pii/S0004370217301066
https://www.sciencedirect.com/science/article/pii/S0004370217301066
https://doi.org/10.1016/j.artint.2017.09.001
https://doi.org/10.1016/j.artint.2017.09.001
https://www.sciencedirect.com/science/article/pii/S0004370217301066
https://www.sciencedirect.com/science/article/pii/S0004370217301066
http://arxiv.org/abs/1707.00183
https://doi.org/10.1177/1729881416675135
https://doi.org/10.1109/LARS/SBR/WRE51543.2020.9306954
https://www.robocup2017.org/file/symposium/soccer_sim_3D/ITAndroids3D_TDP.pdf
https://www.robocup2017.org/file/symposium/soccer_sim_3D/ITAndroids3D_TDP.pdf
https://doi.org/10.1109/LARS/SBR/WRE51543.2020.9306967
https://doi.org/10.1007/s10846-021-01355-9
http://arxiv.org/abs/1602.01783
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/LARS-SBR.2016.20
http://www.robocup2016.org/media/symposium/Team-Description-Papers/Simulation3D/RoboCup_2016_Sim3D_TDP_ITAndroids3D.pdf/
http://www.robocup2016.org/media/symposium/Team-Description-Papers/Simulation3D/RoboCup_2016_Sim3D_TDP_ITAndroids3D.pdf/
http://www.robocup2016.org/media/symposium/Team-Description-Papers/Simulation3D/RoboCup_2016_Sim3D_TDP_ITAndroids3D.pdf/
https://doi.org/10.1109/LARS/SBR/WRE51543.2020.9307084
https://gitlab.com/robocup-sim/SimSpark/wikis/Effectors
https://gitlab.com/robocup-sim/SimSpark/wikis/Effectors
http://www.ode.org/
http://papers.nips.cc/paper/8626-mcp-learning-composable-hierarchical-control-with-multiplicative-compositional-policies.pdf
http://papers.nips.cc/paper/8626-mcp-learning-composable-hierarchical-control-with-multiplicative-compositional-policies.pdf
http://papers.nips.cc/paper/8626-mcp-learning-composable-hierarchical-control-with-multiplicative-compositional-policies.pdf
http://arxiv.org/abs/1706.01905
https://www.ald.softbankrobotics.com/en/robots/nao
https://www.ald.softbankrobotics.com/en/robots/nao
http://arxiv.org/abs/1502.05477

58. Schulman, J., Moritz, P., Levine, S., Jordan, M.I., Abbeel, P.:
High-dimensional continuous control using generalized advantage
estimation. In: Bengio, Y. (ed.) 4th International Conference
on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings (2016).
arXiv:1506.02438

59. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov,
O.: Proximal policy optimization algorithms. arXiv:1707.06347
(2017)

60. Schwab, D.: Robot deep reinforcement learning: Tensor state-
action spaces and auxiliary task learning with multiple state
representations. Ph.D. thesis, Carnegie Mellon University (2020)

61. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D.,
Riedmiller, M.: Deterministic policy gradient algorithms. In:
Proceedings of the 31st International Conference on International
Conference on Machine Learning - vol 32, ICML’14, pp.
I–387–I–395. JMLR.org (2014). http://dl.acm.org/citation.cfm?
id=3044805.3044850

62. Spitznagel, M., Weiler, D., Dorer, K.: Deep reinforcement multi-
directional kick-learning of a simulated robot with toes. In:
2021 IEEE International Conference on Autonomous Robot
Systems and Competitions (ICARSC), pp. 104–110 (2021).
https://doi.org/10.1109/ICARSC52212.2021.9429811

63. Stoecker, J.: Roboviz. https://github.com/magmaOffenburg/
RoboViz (2011)

64. Sutton, R.S., Barto, A.G. Introduction to Reinforcement Learning,
1st edn. MIT Press, Cambridge (1998)

65. Urieli, D., MacAlpine, P., Kalyanakrishnan, S., Bentor, Y., Stone,
P.: On optimizing interdependent skills: A case study in simulated
3d humanoid robot soccer. In: Tumer, K., Yolum, P., Sonenberg,
L., Stone, P. (eds.) Proc. of 10th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS), vol. 2, pp. 769–776.
IFAAMAS (2011)

66. Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R.,
Kavukcuoglu, K., de Freitas, N.: Sample efficient actor-critic with
experience replay. arXiv:1611.01224 (2016)

67. Watkins, C.J.C.H.: Learning from delayed rewards. Ph.D. thesis,
King’s College (1989)

68. Wiliams, R.J.: Simple statistical gradient-following algorithms for
connectionist reinforcement learning (1992)

69. Zaremba, W., Sutskever, I.: Learning to execute. arXiv:1410.4615
(2014)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Alexandre F. V. Muzio received the BSc degree in Computer
Engineering and the MSc degree in Electronic and Computer
Engineering from Aeronautics Institute of Technology (ITA), Brazil,
in 2017 and 2018, respectively. Alexandre Muzio is currently at
Microsoft working on large scale multilingual machine translation.

Marcos R. O. A. Maximo received the BSc degree in Computer
Engineering (with Summa cum Laude honours) and the MSc and PhD
degrees in Electronic and Computer Engineering from Aeronautics
Institute of Technology (ITA), Brazil, in 2012, 2015 and 2017,
respectively. Maximo is currently a Professor at ITA, where he is a
member of the Autonomous Computational Systems Lab (LAB-SCA)
and leads the robotics competition team ITAndroids. He is especially
interested in humanoid robotics. His research interests also include
mobile robotics, dynamical systems control, and artificial intelligence.

Takashi Yoneyama received the bachelor’s degree in electronic
engineering from the Aeronautics Institute of Technology (ITA), São
José dos Campos, Brazil, the M.D. degree in medicine from the
Universidade de Taubaté, Taubaté, Brazil, and the Ph.D. degree in
electrical engineering from the Imperial College London, London,
U.K., in 1983. He is with the Electronic Engineering Department,
ITA as a Professor of Control Theory. He has published more than
100 journal papers, 300 articles in scientific events, four books and
has supervised more than 110 theses and dissertations. His research
concerns mainly stochastic optimal control theory. Prof. Yoneyama
served as the President of the Brazilian Automatics Society from 2004
to 2006.

12 Page 16 of 16 J Intell Robot Syst (2022) 105: 12

http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1707.06347
http://dl.acm.org/citation.cfm?id=3044805.3044850
http://dl.acm.org/citation.cfm?id=3044805.3044850
https://doi.org/10.1109/ICARSC52212.2021.9429811
https://github.com/magmaOffenburg/RoboViz
https://github.com/magmaOffenburg/RoboViz
http://arxiv.org/abs/1611.01224
http://arxiv.org/abs/1410.4615

	Deep Reinforcement Learning for Humanoid Robot Behaviors
	Abstract
	Introduction
	Theoretical Background
	Reinforcement Learning
	Deep Reinforcement Learning
	Curriculum Learning

	Related Works
	Methodology
	Simulation Environment
	Omnidirectional Walking Engine
	Environment and Implementation
	Approach and Task Modeling

	Experiments and Results
	Humanoid Racing Task
	Humanoid Soccer Dribbling Task
	Concluding Remarks

	Conclusions
	Declarations
	References

