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ABSTRACT
Autonomous logistics cart transportation is a challenging problem because of the complicated
dynamics of the logistics cart. In this paper, we tackle the problem by using two robots system with
reinforcement learning. We formulate the problem as the problem of making a logistics cart track
an arc trajectory. Our reinforcement learning (RL) controller consists of a feedback controller and
residual reinforcement learning. The feedback controller regards a logistics cart as a virtual leader
and robots as followers, and the robots’ position and velocity are controlled to maintain the forma-
tion between the logistics cart and the robots. Residual reinforcement learning is used to modify
the other model’s output. Simulation results showed that the residual reinforcement learning con-
troller trained in a physical simulation environment performedbetter than othermethods, especially
under the condition with a large trajectory curvature. Moreover, the residual reinforcement learn-
ing controller can be transferred to a real-world robot without additional learning in a real-world
environment.
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1. Introduction

Object transportation is increasingly being automated
through the use of automated guided vehicles (AGVs)
in large warehouses. However, this is less common in
smaller warehouses, where objects are typically conveyed
by human workers with logistics carts because existing
automation systems by AGVs are not supported to trans-
port existing logistics carts. For example, a space below
a logistics cart is too small to move under and lift it. To
address this, an automated object transportation system
for these warehouses [1] was proposed. In this system,
the robot’s position is estimated by utilizing images from
a camera on the ceiling, and two robots grasp a logistics
cart and transport it as shown in Figure 1. The strategy
of having two robots hold a logistics cart makes it pos-
sible to automate the transportation without additional
equipment. However, control for transporting a logistics
cart remains a difficult problem because robots need to
keep holding the cart. There is currently no method for
making a logistics cart track a trajectory.

Reinforcement learning (RL) has enjoyed success
in many gaming tasks and shows promise for con-
structing a controller that can adapt to controlling an
agent in complex dynamics. Several deep reinforcement
learning (DRL) methods for continuous control [2–7]
have yielded impressive results in various robotics
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applications. However, as RL for robotics requires expe-
riences to be gathered in the real world, the cost can
become expensive. One solution is to use a physical sim-
ulator such as MuJoCo [8], Pybullet [9], V-REP [10],
Gazebo [11], or Unity [12]. These improve the learn-
ing efficiency and reduce costs for managing robot
safety. Furthermore, combining these simulators with
a distributed reinforcement learning method [4,13–15]
accelerates the learning speed. Distributed reinforcement
learning is a method where multiple environments are
simulated in parallel, so a high number of diverse expe-
riences can be obtained efficiently.

In the context of control byDRL, uniquemethods such
as residual reinforcement learning [16–18] and control
structured policy learning [19], which include a feedback
control structure, have been proposed. These methods
improve the learning efficiency by utilizing prior knowl-
edge.

In this work, we propose a method for constructing
a residual reinforcement learning controller that modi-
fies the base controller by reinforcement learning for the
logistics cart transportation along a given trajectory. We
do not consider trajectory planning. Our main contribu-
tions are as follows.

• Weachieve logistics cart transportation by a reinforce-
ment learning controller.
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Figure 1. System overview.

• Weutilize the physical simulator and knowledge of the
feedback controller to make the controller learn the
policy efficiently.

• Our proposed controller learned by physical simula-
tion can be transferred to real-world robots without
additional parameter tuning.

2. Related works

2.1. Deep reinforcement learning for cooperative
multi-agent control

Deep reinforcement learning methods that deal with
high-dimensional observation for multi-agent control
have been extensively researched (see [20] for a survey).
Much research has focused on discrete action space, with
less attention paid to continuous action space.

Lowe et al. [21] implemented an actor-critic model in
a cooperative multi-agent system where each agent has
an independent Q-function whose inputs include its own
observation, other agents’ observations, and the policy.
In the training phase, each agent learns the Q-function
with the other agents’ information and the policy learned
using this Q-function. Then, in the execution phase, each
agent utilizes the policy with only local information.

Gupta et al. [22] compared three strategies and learn-
ing algorithms in various simulations that request dis-
crete action or continuous action at first. The three strate-
gies are (i) Centralized, where one model includes joint
observation and joint action, (ii) Concurrent, where each
agent has an independent observation and model, and
(iii) Parameter Sharing, where each agent has an inde-
pendent observation and sharing model parameter. The

authors found that Parameter Sharing was the most scal-
able to the number of agents and proposed Parameter
Sharing TRPO (PS-TRPO). TRPO is a method of deep
reinforcement learning for continuous control [3]. In our
system, two robots are controlled as a single agent, how-
ever, it is related to centralized strategy in the context of
multi-agent reinforcement learning.

2.2. Cooperative object transportation

Cooperative object transportation has been researched
since the 90s. The strategies for solving this problem are
mainly divided into three groups: the pushing strategy,
the grasping strategy (where the object is fixed between
robots by some equipment or is placed directly on the
robots), and the caging strategy [23]. The pushing-only
strategy appears simple strategy, however, robots can only
push an object, therefore, the system requires delicate
control. The grasping strategy has physical connection
between robots and an object. Thus, it is easy to real-
ize stable transportation and robots can exert pulling
power on an object. However, physical connection is
required. The caging strategy can realize stable trans-
portation by caging an object by robots, however, a con-
troller is required to keep caging an object and caging
an object by a few robots is difficult. We adopt the
caging strategy because of two reasons: (i) a logistics
cart has casters, therefore, it is easy to keep moving due
to inertia, and (ii) our system is introduced to exist-
ing warehouses and transports existing logistics carts,
thus, an additional attachment for physical connection is
undesirable.
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Research by Ohsaki et al. [24] utilizes the pushing
strategy with the object on casters. Two cooperating
robots arrange small dollies under an object and then one
robot pushes the object for transportation. This research
focused on arranging the dollies and stabilizing the push-
ing robot, and did not discuss the details of the object
transportation. Our research differs in that we focus
specifically on logistics cart transportation. Another dif-
ference is that the weight of the object in [24] was 35 kg,
whereas ours is considerably heavier.

As for the grasping strategy, some studies have
examined leader-follower systems with two mobile
robots [25–27]. In a leader-follower system, the leader
tracks a given trajectory and the follower follows the
leader for transporting the object. Extended methods
where the object is regarded as a virtual leader and the
robots are followers have been proposed [28].

Brown et al. [29] proposed a simple controller for
cooperative object transportation by using the caging
strategy with two robots. One of the robots guides the
object movement, and the other pushes the object. Their
research assumes that the contact point between the
robots and the object slides for making the guidance
robot track an arc trajectory, while in contrast, our sys-
tem assumes that the contact point between the logis-
tics cart and the robots does not slide. Moreover, the
object property in [29] is different from that in our
research.

With regard to the caging strategy, leader-follower
systems that utilize three or more robots have been pro-
posed.Wang et al. proposed a system featuring one leader
and some followers [30]. Wan et al. [31] proposed a sys-
tem where the object is regarded as the leader and robots
are followers. Wan et al. developed a leader-follower sys-
tem featuring a multi-fingered mechanism [32].

Methods for caging a concave object by means
of a two-fingered mechanism have also been pro-
posed [33–35]. See the work byMakita et al. for a detailed
survey of the methods utilizing the caging strategy [36].

A reinforcement learning controller for cooperative
object transportation by the grasping strategy has been
proposed [37]. In this method, the controller is con-
structed by a deep Q network (DQN) that outputs a
discrete action. Two robots and an object are arranged in
a fixed environment and their purpose is to arrive at an
exit. This research differs from our own inmany respects,
including the property of the object, themethod of trans-
portation, the action space, and the concept underlying
the processing observation.

Whilemuch research has examined cooperative object
transportation, there has been almost no research on the
transportation of a logistics cart by two robots using the
caging strategy, to the best of our knowledge.

3. Methodology

3.1. Hardware architecture

The hardware architecture is shown in Figure 2. The plate
that contacts a logistics cart has a spring mechanism to
enable flexible holding. This plate is covered by a high-
friction material to avoid slippage between the robot and
the cart. The holding mechanism has a spring-damper
characteristic that rotates to track a circular trajectory. It
stays at the center when it is in the free state, as shown in
Figure 2 (a).

This system utilizes two robots: a supporting robot
that supports a change in the direction of the logistics
cart, and a pushing robot that pushes the cart. These roles
are fixed when the logistics cart transportation is started
and do not change during transportation.

3.2. Problem statements

3.2.1. Observation
The position and orientation of the robots are estimated
by the image from the ceiling camera, which utilizes rect-
angular recognition. The robot position corresponds to
the center of rotation and the installation point of the
holding mechanism. The position and orientation of the
logistics cart, in contrast, cannot be estimated by the
image because of the complexity of the logistics cart and
the loading object.

If the controller utilizes the robots position and ori-
entation in global coordinates, it does not work when
the scale of the environment changes. Therefore, we uti-
lize local coordinates calculated by the estimated position
and orientation of the logistics cart. Figure 3 shows the
ideal arrangement of the robots and logistics cart in local
coordinates. The orange line is the ideal trajectory of the
logistics cart and is given in advance, i.e. we do not con-
sider trajectory planning. The true position and orienta-
tion of the logistics cart is calculated by the pushing robot
position, orientation, and rotation angle of the holding
mechanism. The y-axis of local coordinates corresponds
to the line from the logistics cart position to the center
of the circular trajectory and the x-axis is the tangent of
the circular trajectory. The position and orientation of the
robots in these local coordinates is the observation of the
reinforcement learning controller. However, in real situ-
ations, robots often cannot maintain the ideal holding, so
the position and orientation of the logistics cart become
estimated values and local coordinates are calculated by
the estimated position and orientation. The reason we
only use the pushing robot for calculating the logistics
cart position and orientation is that the pushing robot is
required to contact the logistics cart for transporting it,
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Figure 2. Hardware architecture: (a) prototype and (b) holding mechanism.

Figure 3. Local coordinates for calculating observation.

which means the estimated logistics of the cart position
and orientation are calculated more accurately.

Additionally, the variation of each robot’s touch plate
and the rotation angle of the holding mechanism are
included in the observation, and time differentials of
these observations are added. Finally, an action before
one step, the trajectory curvature, and the size of the
logistics cart are appended to the observation.

3.2.2. Action
The continuous action space is defined as each robot’s
linear velocity and rotational velocity. Therefore, the
action space has four dimensions. The range of the linear
velocity of each robot is [−0.5, 0.5] m/s and the range of
the rotational velocity of each robot is [−π/6,π/6] rad/s.
The observation variables and action variables are listed
in Table 1.

Table 1. Observation variables and action variables. FB obs.
means the observations for the feedback controller.

Observation variables Symbols FB obs.

Supporting robot position xsr, ysr �
Supporting robot orientation cos θ sr, sin θ sr �
Pushing distance of grasping mechanism of
supporting robot

dsr

Rotation angle of rotation mechanism of
supporting robot

φsr

Pushing robot position xpr, ypr �
Pushing robot orientation cos θpr, sin θpr �
Pushing distance of grasping mechanism of
pushing robot

dpr

Rotation angle of grasping mechanism of
pushing robot

φpr

Estimated position of logistics cart ŷlc

Estimated orientation of logistics cart cos θ̂ lc, sin θ̂ lc

Time derivatives of above variables 15 dimensions
Logistics cart size Llc �
Curvature ρ �
Action before one step vsr,wsr, vpr,wpr

Action variables
Each robot’s velocity and angular velocity vsr,wsr, vpr,wpr

3.3. Reward shaping

The reinforcement learning controller is required to
make the logistics cart follow the trajectory as accurately
and speedily as possible. Therefore, the reward is shaped
by three elements: a) logistics cart’s position and orienta-
tion errors from the trajectory, b) logistics cart’s velocity,
and c) each robot’s position and orientation relative to the
logistics cart’s position and orientation. The reward ele-
ment a) is based on [38,39] and b) is based on [39], which
are studies on trajectory tracking using reinforcement
learning. In the real world, the true position, orienta-
tion, and velocity of the logistics cart cannot be obtained,
but in simulation, the reward calculator can refer to the
ground truth and then calculate the reward by utilizing it.
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3.3.1. Logistics cart’s position and orientation errors
First, we introduce the reward for precision of tracking
the trajectory. This is divided into two elements: the posi-
tion deviation and the orientation deviation. The reward
for position deviation rpd is defined as

rpd = exp
(
−kpd|ylc|

)
, (1)

where ylc is the logistics cart’s position in the local y-
coordinate and kpd is a coefficient set to 7.5.

The reward for orientation deviation rod is defined as

rod = exp
(
−kod|θ lc|

)
, (2)

where |θ lc| is the logistics cart’s orientation in the local
coordinates and kod is a coefficient set to 13.5/π .

3.3.2. Logistics cart’s velocity
Ideally, the logistics cart should be transported as speed-
ily as possible. Therefore, the reward for the logistics
cart’s velocity rdv is defined as

rdv = kdvdd, (3)

where dd is the amount of the logistics cart’s advance-
ment along a given trajectory and kdv is a coefficient set to
10. To calculate dd, first, polar coordinates whose origin
is the center of a circular trajectory are defined and the
moving angle of the logistics cart in one step is defined as
�θd. Then, if the radius of curvature is R, dd is calculated
as dd = R�θd.

3.3.3. Each robot’s position and orientation relative
to logistics cart’s position and orientation
Stable holding of a logistics cart is important for users’
sense of security. Thus, we introduce the reward for hold-
ing it as long as possible. For holding the logistics cart,
each robot’s position and orientation relative to the logis-
tics cart’s position and orientation are required to stay
in a certain area. This area is decided by the range of
motion of the touch mechanism dlim, the width of the
touch mechanismW, and the angle range of the rotation
mechanism φlim. Therefore, the area is defined as

x−axis : L
lc

2
+ Lgm − dlim ≤ |r{sr,pr}x | ≤ Llc

2
+ Lgm,

y−axis : |r{sr,pr}y | ≤ W
5
,

orientation : |r{sr,pr}θ | ≤ φlim, (4)

where r{sr,pr}x , r{sr,pr}y , r{sr,pr}θ are each robot’s position and
orientation relative to the logistics cart’s position and ori-
entation and Lgm is the length from the robot’s origin

to the touch plate of the holding mechanism. Llc is the
length of the logistics cart (see Figure 3). The reward for
relative position and orientation is defined as

rrp =
{
1.0 (bothrobotsareintheareadefinedby(4))
0.1 (otherwise)

.

(5)
Finally, the reward is defined by combining all

elements:

r =
{
rdvrrp

(
rpd + rod

)
(0 ≤ rdv)

rdv
(
4− rpd − rod

)
(otherwise)

. (6)

This equation means that not only that the logistics
cart tracks a given trajectory but also that an amount of
the logistics cart advancement along a given trajectory
is needed for obtaining the reward. If the logistics cart
moves backwards along a given trajectory, the system is
given a minus reward even if it tracks a given trajectory
perfectly.We calculate the reward shaping by the product
of the error elements and the velocity element as in [39].
This product makes each element improve for obtaining
higher reward. As our research scenario allows a logistics
cart to move backwards, we have added the reward for
moving backwards.

3.4. Formation-based feedback controller

We utilize the feedback controller proposed in [28] for
logistics cart transportation by formation-based control,
which corresponds to the grasping strategy as the base
controller. In this method, the system regards an object
as a virtual leader (VL) and the robots as followers, and
the leader-follower system controls the robots by feed-
back control for maintaining formation. We show later
that the robots target orientation can be written simply.

The robots target is calculated as the relative state
of VL. VL’s target velocity, position, and orientation in
local coordinates at time k are vVLtgt (k) = [vVLtgt ,ωVL

tgt ]�,
xVLtgt (k) = [0, 0]�, θVLtgt (k) = 0. Local coordinates are on a
given trajectory and x-axis corresponds to the tangent of
a given trajectory, so the logistics cart’s target position
and orientation are both zero. Also, VL’s target position
at time k+ 1 in local coordinates at time k is

xVLtgt (k+ 1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[
R sinωVL

tgt ts,

R(1− cosωVL
tgt ts)

]� (
ωVL
tgt �= 0

)
[
vVLtgt ts, 0

]� (
ωVL
tgt = 0

) ,

(7)
where R is the radius of the curvature of a given tra-
jectory. In addition, ts [s] is the time elapsed in one
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step, which we set to 0.1 s in this paper. The support-
ing robot’s target position at time k in local coordi-
nates at time k is xsrtgt(k) = [L, 0]�, and the supporting
robot’s target position at time k+ 1 in local coordi-
nates at time k is written as xsrtgt(k+ 1) = xVLtgt (k+ 1)+
[L cosωVL

tgt ts, L sinωVL
tgt ts]�.

The supporting robot’s target velocity is ||xsrtgt(k+
1)− xsrtgt(k)||/ts. The result of calculating this equation
is

vsrtgt(k) =
√
vVLtgt

2 + 2L2
(
1− cosωVL

tgt ts
)

/t2s . (8)

Additionally, the supporting robot’s target orienta-
tion in local coordinates at time k is calculated from its
positions at times k−1 and k as

θ srtgt(k) = π + tan−1
ysrtgt(k)− ysrtgt(k− 1)
xsrtgt(k)− xsrtgt(k− 1)

= π + ρL− ωVL
tgt ts
2

, (9)

where ρ is the curvature of a given trajectory, which
means the target orientation can be calculated simply.
The details of the calculation process are shown in the
Appendix A. The first item π is added so that the sup-
porting robot moves backwards. From the above, the
supporting robot’s targets in local coordinates at time k
are

vsrtgt(k) =
[
vsrtgt,ω

sr
tgt

]�
=
[√

vVLtgt
2 + 2L2

(
1− cosωVL

tgt ts
)

/t2s , ωVL
tgt

]�
,

xsrtgt(k) = [L, 0]� ,

θ srtgt(k) = π + ρL− ωVL
tgt ts/2. (10)

The pushing robot’s targets are calculated in the same
way.

vprtgt(k) =
[
vprtgt,ω

pr
tgt

]�
=
[√

vVLtgt
2 + 2L2

(
1− cosωVL

tgt ts
)

/t2s ,

ωVL
tgt

]�
,

xprtgt(k) = [−L, 0]� , θ
pr
tgt(k) = −ρL− ωVL

tgt ts/2. (11)

After calculating each robot’s targets, each robot’s
position and orientation errors between the targets and

the observations are calculated as

x{sr,pr}e =
[
x{sr,pr}e y{sr,pr}e

]� ={sr,pr} Ttrj

(
x{sr,pr}tgt − x{sr,pr}obs

)
θ
{sr,pr}
e = θ

{sr,pr}
tgt − θ

{sr,pr}
obs , (12)

where {sr,pr}Ttrj is the transformation matrix from local
coordinates to each robot’s coordinates. x{sr,pr}obs , θ {sr,pr}obs
are the observation value of each robot’s position and
orientation. Following [40], each robot’s velocity is cal-
culated as

π
{sr,pr}
fb (ofb) =

[
v{sr,pr}fb

ω
{sr,pr}
fb

]

=

⎡⎢⎢⎢⎣
v{sr,pr}tgt cos θ {sr,pr}e + Kxx

{sr,pr}
e

ωVL
tgt + v{sr,pr}tgt(

Kyy
{sr,pr}
e + Kθ sin θ

{sr,pr}
e

)
⎤⎥⎥⎥⎦ , (13)

where Kx,Ky,Kθ are the feedback gains and ofb is the
observation for calculating the feedback controller out-
put (refer to Table 1). In our work, the feedback gains
are decided by the Tree-structured Parzen Estimator
Approach (TPE) [41] (a Bayesian optimization method)
so that the reward for one episode is maximized. For
the implementation of TPE, we utilize Optuna [42]. This
feedback controller is locally stable from the perspective
of Lyapunov function, but it is not enough for transport-
ing the logistics cart, as discussed later in Section 4.

3.5. Residual reinforcement learning

Here, we introduce our logistics cart transportation con-
troller using residual reinforcement learning. In resid-
ual reinforcement learning, the control output is calcu-
lated as the sum of the base controller output and the
reinforcement learning controller output. The output of
the reinforcement learning controller is defined as each
robot’s linear velocity v{sr,pr}res and rotation velocityω

{sr,pr}
res ;

thus, the reinforcement learning controller outputs four
dimensions of action:

πres (ofb, orl)→
[
vsrres, ωsr

res, v
pr
res, ω

pr
res
]� , (14)

where orl is the observation that is used for reinforce-
ment learning. Finally, each robot’s control output is
calculated as

π (ofb, orl) =
[
vsr, ωsr, vpr, ωpr]�

= πfb (ofb)+ πres (ofb, orl) , (15)

where πfb(ofb) = [π sr
fb(ofb),πpr

fb (ofb)]�.
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3.6. Learning algorithm

We use Twin Delayed DDPG (TD3) [6] as the learn-
ing algorithm. We considered using another promising
method, Soft-Actor Critic [7], which utilizes the stochas-
tic action and maximizes the trade-off objective between
the expected sum of rewards and the entropy of the
stochastic action. However, in residual reinforcement
learning, we think that exploitation is more important
than exploration, so we adopt TD3, which is exploration
by fixed distributed noise.

The reinforcement learning objective is to maximize
the expected reward, defined as

J(φ) = Esi∼pπ ,ai∼π

[ T∑
i=0

γ iri

]
, (16)

where π is the policy, φ is the parameters in the policy,
and γ is the time discount factor. Also, the state-action
value function Q is defined as

Qπ
θ (st , at) = Esi∼pπ ,ai∼π

[ T∑
i=t

γ iri|st , at
]
, (17)

which means that the action at causes the time-
discounted and cumulated reward when the state is st . Q-
learning minimizes the temporal differential error (TD
error). Q-function is written as follows based on a Bell-
man equation:

Qπ
θ (st , at) = rt + γEst+1,at+1

[
Qπ

θ (st+1, at+1)
]
. (18)

We utilize multi-step learning, which is a method for
stabilizing the learning process by using the forward-
view n-step rewards. In Q-learning, the parameters of the
target network are defined as θ̄ and the target value is
defined as

y = rt + γ rt+1 + · · · + γ nQπ

θ̄
(st+n, at+n). (19)

Therefore, the objective for minimizing the TD error
is written as

LQ(θ) = 1
N

∑
i
HuberLoss

(
y− Qπ

θ (si, ai)
)
,

HuberLoss(δ) =
{

δ2/2 (|δ| < 1)
|δ| − 0.5 (otherwise)

, (20)

where Huber loss is used for robustness to outliers.
Also, θ̄ , which is the parameter of the target network,
is updated for tracking θ . Concretely, θ̄ is updated as
θ̄ ← (1− τ)θ̄ + τθ , where τ is the hyper-parameter and
the smaller τ is, the more slowly the target network
is updated. Additionally, TD3 utilizes two methods for

Q-learning: (i) clipped double Q-learning, where two
Q-functions are used and a small value of the two Q-
functions is adopted as the target value for avoiding over-
estimation, and (ii) target policy smoothing, where noise
is added to the action when the Q value of the target
network in the target value calculation is calculated for
stabilizing learning.

Then, for optimizing the policy, we utilize the deter-
ministic policy gradient method proposed by Silver
et al. [43]. The gradient is calculated formaximizing J(φ),
so it is obtained by using the Q-function as follows:

∇φJ(φ) = Es∼pπ

[∇aQ(s, a)|a=π(·|s)∇φπφ(·|s)] . (21)

The basic policy gradient method updates the Q-
function and the policy in one learning step, but TD3
makes the policy update once every multiple steps of
learning, which is called a delayed policy update. In addi-
tion, we utilize prioritized experience replay [44] and
distributed learning for learning efficiently.

Prioritized experience replay is a method where the
experience that has a large TD error is sampled with pri-
ority, which makes it possible to learn efficiently. The
priority is defined as

pi =
∣∣y− Qπ

θ (si, ai)
∣∣+ ε, (22)

where ε is a small value for avoiding the priority becom-
ing zero. Then, the probability of the i-th experience is

P(i) = pα
i∑
i p

α
i
, (23)

where α is the hyper-parameter. Also, importance sam-
pling is applied for compensating the biased sampling.
The weight for the importance sampling is defined as

wi =
(
1
N
· 1
P(i)

)β

, (24)

where β is the hyper-parameter for deciding the degree
of importance sampling and its bias is corrected if β =
1. N is the size of replay memory. Also, for stabiliz-
ing, the weight is normalized to 1/maxi wi. By using
Equation (23), the weight is written simply as

wi← wi

wmax
=
(
1
N
·
∑

i p
α
i

pα
i

)β ( 1
N
·
∑

i p
α
i

pα
min

)−β

=
(
pmin

pi

)αβ

. (25)

For distributed learning, eight actor modules and one
learner module are executed in parallel. The algorithm
using prioritized experience replay and distributed learn-
ing is similar to the one in [14]. In [14], a large number
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of actors (∼ 256) is executed in parallel, so in the actor
module, the priority is calculated. However, our imple-
mentation does not calculate the priority in the actor
module because paralleled actor modules are not large.
The pseudo codes are shown in Algorithms 1 and 2.

Algorithm 1 Actor.
Input: index of Actor i, Learner, policy update interval

K, multi-step learning size n,
standard deviation of action noise σ , time discount
factor γ , feedback policy πfb:

1: Initialize policy network πφ

2: Initialize Environment env
3: Initialize local replay memory LR
4: for episode = 0, 1, . . . do
5: env.reset(i)
6: so← env.observation()
7: for t = 0, 1, . . . do
8: if tmodK = 0 then πφ ←

Learner.copy_policy() end if
9: at ← πφ(st)+ ε, ε ∼ N (0, σ)

10: a′t = πfb(st)+ at
11: rt , done = env.step(a′t)
12: st+1← env.observation()
13: LR.add(st , at , rt , st+1, done)
14: if LR.size()≥ n or done then
15: p← Learner.pmax
16: (st , at ,

∑n
τ=0 γ τ rt+τ−1, st+n, done)←

LR.make_n_step_return()
17: Learner.add_to_replay_memory(p, (st , at ,∑n

τ=0 γ τ rt+τ−1, st+n, done))
18: end if
19: if done then break end if
20: end for
21: end for

4. Experiments

4.1. Simulation setting

We utilize Pybullet [9] for constructing the simulation
environment. Three logistics cart sizes {0.6, 0.795, 0.8}m
are prepared. These models and the robot model, which
are based on real-world logistics carts and robots, are
shown in Figure 4. The weight of the load is sampled
from a uniform distribution between 120 and 130 kg at
the start of the episode if the size of the logistics cart is
{0.795, 0.8} m or between 100 and 110 kg if the size of
the logistics cart is 0.6 m. The range of the curvature is
[−0.06, 0.66]m−1 and this is divided into eight areas uni-
formly. Each area is allocated to one of the actormodules.

Algorithm 2 Learner.
Input: standard deviation of target policy smoothing

noise σ̄ , noise clipping coefficient c,
time discount factor γ ,multi-step return sizen,target
network update coefficient τ ,
policy update frequency F, mini-batch size N:

Output: optimal policy π∗
1: Initialize critic networksQθ1 ,Qθ2 and policy network

πφ

2: Initialize target networks θ̄1, θ̄2, φ̄← θ1, θ2,φ
3: Initialize ReplayMemory R
4: pmax ← 1.0
5: for i = 0, 1, . . . do
6: mini-batch(p,w, (s, a, r, s′, done))←

R.prioritized_sample()
7: a′ ← πφ(·|s)+ ε, ε ∼ clip(N (0, σ̃ ),−c, c)
8: y← r + γ nminj=1,2 Qθ̄j

(s′, a′)
9: update p by TD error
10: if p > pmax then pmax ← p end if
11: update critics θj by LQ(θj) =

N−1
∑

wHuberLoss(y,Qθj(s, a))
12: if imodF = 0 then
13: update policy φ by Jπ(φ) =

N−1
∑

Qθ1(s,πφ(·|s))
14: update target networks:

θ̄j← τ θ̄j + (1− τ)θj
φ̄← τ φ̄ + (1− τ)φ

15: end if
16: end for

The value of the curvature is sampled from a uniformdis-
tribution in the allocated area at the start of the episode.
The frequency of the observation and control is 10 Hz.
The termination conditions of the episode are that 30 s
has passed or one or more of the following conditions
have persisted for 1 s.

• The deviation from the trajectory is larger than 0.4 m
• The orientation deviation from the reference is larger

than π/4.5 rad
• Moving distance along the trajectory is smaller than

0.005 m
• At least one of the robots has been out of a certain area

(refer to Equation (4))

If the episode satisfies at least one of the termination
conditions (except that time is up), the reinforcement
learning controller receives a reward of−10.
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Figure 4. (a) Robot model. (b) Logistics cart model (size: 0.6 m). (c) Logistics cart model (size: 0.795 m). (d) Logistics cart model (size:
0.8 m).

4.2. Implementation details of proposed
methodology

The output of the feedback controller is calculated by
Equation (13). The target velocity of the feedback con-
troller vVLtgt is set to 0.5 m/s. The feedback gains are set to
the same values as the feedback controller in Section 4.3.
The policy network and the Q network architectures are
shown in Figure 5. In training, we use theAdam [45] opti-
mizer, and hyper-parameters are set as follows: learning
rate of 3× 10−4, replay memory size of 105, target net-
work update coefficient τ of 0.005, time discount factor γ

of 0.99, policy update interval K of 100, multi-step learn-
ing size n of 4, batch size of 256, standard deviation of
action noise σ of 0.1× (amax − amin), standard devia-
tion of target policy smoothing noise σ̄ of 0.2× (amax −
amin), noise clipping coefficient c of 0.5× (amax − amin),
policy update frequency F of 2, and the hyper-parameters
of prioritized experience replay α, ε,β of 0.6, 0.01, 0.4.

4.3. Baselines

4.3.1. RL-only
RL-only has each robot’s linear velocity and angular
velocity, both of which are four dimensions of continuous
action. The network architecture and hyper-parameters
are the same as the residual reinforcement learning
implementation. RL-only does not use knowledge and
instead learns from scratch.

Figure 5. Network architecture.

4.3.2. Feedback controller
The output of the feedback controller is calculated
by Equation (13). The target velocity of the logis-
tics cart is set to 0.5 m/s and the target angular
velocity of the logistics cart is set to ωVL

tgt = ρvVLtgt =
0.5ρ, where ρ is the curvature. The feedback gains
Kx,Ky,Kθ are explored in the range [0, 10] by TPE
with 100 steps and are set to values that maximize
the expected total reward of one episode. The expected
total reward for one episode is calculated by running 15
episodes that are a combination of three logistics cart
sizes {0.6, 0.795, 0.8} m and five curvatures {0, 0.15, 0.3,
0.45, 0.6} m−1. The weight of the load is set to 120 kg
at the start of the episode if the size of the logistics cart
is {0.795, 0.8} m or to 100 kg if the size of the logis-
tics cart is 0.6 m. As a result, the feedback gains are
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Figure 6. Learning curves of action scales’ residual RL (a) with exploration noise and (b) without exploration noise.

Figure 7. Learning curve of residual RL, RL-only, and feedback controller (a) with exploration noise and (b) without exploration noise.

set to (Kx,Ky,Kθ ) = (3.82, 6.02, 1.43) and these are fixed
during evaluation.

4.4. Learning evaluation

4.4.1. Effect of residual RL’s action scale
Three action scales of residual reinforcement learn-
ing are compared. When the action scale is 1.0, the
linear velocity range of residual reinforcement learn-
ing is [−1.0, 1.0] m/s and its rotation velocity is
[−π/3,π/3] rad/s. The results of five trials of each
action scale are shown in Figure 6. The left side of
the figure plots the smoothed reward during train-
ing. The right side plots the results evaluated by exe-
cuting 15 episodes that are a combination of three
logistics cart sizes {0.6, 0.795, 0.8} m and five curva-
tures {0, 0.15, 0.3, 0.45, 0.6} m−1 with models that are
stored for each of 105 experiences. The rule for sampling
the weight of the load is the same as in Section 4.3.2. The
results on the left are evaluated with exploration noise

and those on the right without exploration noise. The
lines mean the average and the shaded region represents
half the standard deviation.

From Figure 6, we can see that the large action scale
delays improvement of the policy. The maximum reward
without exploration noise is obtained when the action
scale is 0.5 and the timestep is 5× 105; therefore, the
action scale is set to 0.5.

4.4.2. Feedback controller vs RL-only vs residual RL
Figure 7 shows the learning curves. As in Section 4.4.1,
the left side of the figure shows the training results and the
right side shows the results of running episodes without
exploration noise. The results of the feedback controller
are also plotted, where those on the right side do not
have a shaded area because Pybullet is the deterministic
simulator.

Residual reinforcement learning achieves more effi-
cient learning and a smaller standard deviation than
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reinforcement learning. Final reward of residual rein-
forcement learning is slightly higher than that of rein-
forcement learning. Also, from the results on the right,
it is clear that the reinforcement learning controllers
acquire a higher reward than the feedback controller.

4.5. Simulation experiments

Next, we compare the reinforcement learning controllers
and the feedback controller in a simulation environ-
ment. For this evaluation, each model of the reinforce-
ment learning controllers at 5× 105 steps is utilized.
The expected total reward for one episode is calculated
by running 15 episodes that are a combination of three
logistics cart sizes {0.6, 0.795, 0.8} m and five curva-
tures {0, 0.15, 0.3, 0.45, 0.6} m−1. The weight of the load
is set to 120 kg at the start of the episode if the size of the
logistics cart is {0.795, 0.8} m or to 100 kg if the size of
the logistics cart is 0.6 m. These conditions are the same
as in Section 4.3.2.

4.5.1. Metrics
We evaluate the simulation results with the following five
metrics. Reward is the total reward for one episode cal-
culated by Equation (6). Average velocity is the average
velocity of the logistics cart for one episode. Trajectory
error is the average deviation from the trajectory for one
episode, which is defined as the shortest distance between
the logistics cart and the trajectory. Orientation error
is the average deviation from the reference orientation
that is the tangential direction of the trajectory for one
episode.Holding ratio is the average ratio of holding the
logistics cart with the robots for one episode. If the robots
stay in area defined byEquation (4), holding is considered
to be maintained.

4.5.2. Simulation results
The results of the simulation experiments are shown in
Table 2. Metrics without rewards are set to ‘–’ if the
reward is smaller than 0, as metrics without rewards can-
not be evaluated precisely when the logistics cart is not
transported far enough. The results of the learning-based
controllers are represented by the average values of five
learned models.

The feedback controller cannot make the logistics cart
track the trajectory when the curvature is large, so its
reward is lower than that of the learning-based con-
troller. Also, the residual reinforcement learning con-
troller improves the transportation performance com-
pared to the feedback controller in many conditions. The
reinforcement learning controller only performed better
than the other methods in the Holding ratio.

Figures 8 and 9 show snapshots of the simulation
experiments. The feedback controller cannot keep hold-
ing the logistics cart, while in contrast, the residual
reinforcement learning controller keeps holding it and
achieves stable transportation.

Figure 10 shows the residual reinforcement learn-
ing controller’s output in simulation experiments. The
amount of compensation of linear velocity is large in the
beginning of the movement. That of angular velocity is
large throughout the episode.

4.6. Real-world experiments

Next, in real-world experiments, we compare the feed-
back controller and the residual reinforcement learning
controller that obtained a higher reward than RL-only
controller. We use the residual reinforcement learning
controller learned in the simulation environment with no
additional parameter tuning.

We run the experiment twice for each of 15 con-
ditions that are a combination of three logistics cart
sizes {0.6, 0.795, 0.8} m and five curvatures {0, 0.15, 0.3,
0.45, 0.6} m−1. The weight of the load is set to 120 kg if
the size of the logistics cart is {0.795, 0.8}m or to 100 kg
if the size of the logistics cart is 0.6 m. Also, the error rate
of relative positions between robots by camera on ceil-
ing is up to 1%, which is evaluated by a total station as a
measurement instrument.

4.6.1. Real-world results
The results of the real-world experiments are shown in
Table 3. The residual reinforcement learning controller
has a better performance for the logistics cart transporta-
tion than the feedback controller, the same as in the
simulation experiments. A snapshot of the real-world
experiment is shown in Figure 11. In this figure, when
the curvature is 0.6 m−1, the feedback controller cannot
transport the logistics cart because the holding mecha-
nism becomes unfastened. This behavior is similar to the
results of the simulation experiments shown in Figure 11.
In contrast, the residual reinforcement learning con-
troller can keep holding the logistics cart and achieves
stable transportation.

5. Discussion

5.1. Effect of residual RL’s action scale

The larger the action scale becomes, the worse the learn-
ing efficiency gets, as the high cost of exploration makes
the action space large. In contrast, a small action scale
reduces the better localminima in the action space, so the
reward may be small. The fact that the reward becomes
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Table 2. Results of simulation experiments by the controllers at 5× 105 steps. Feedback: Feedback controller, RL: RL-only controller, RRL: Residual RL controller.

Reward Average velocity [m/s] Trajectory error [m] Orientation error [rad] Holding ratio

Logistics cart size [m] Curvature Feedback RL RRL Feedback RL RRL Feedback RL RRL Feedback RL RRL Feedback RL RRL

0.6 0 284.70 203.19 264.12 0.491 0.404 0.491 0.0039 0.0324 0.0089 0.0032 0.0341 0.0299 0.977 0.979 0.980
0.15 278.65 214.51 269.41 0.487 0.427 0.488 0.0046 0.0405 0.0085 0.0098 0.0323 0.0176 0.977 0.993 0.982
0.30 257.99 198.49 271.61 0.480 0.436 0.482 0.0108 0.0543 0.0067 0.0288 0.0630 0.0148 0.977 0.996 0.993
0.45 252.2 181.61 211.27 0.470 0.423 0.449 0.0100 0.0461 0.0167 0.0337 0.1008 0.0202 0.977 0.993 0.888
0.60 −9.61 164.61 251.02 – 0.399 0.456 – 0.0477 0.0118 – 0.1203 0.0187 – 0.975 0.999

0.795 0 282.05 211.41 264.88 0.492 0.402 0.496 0.0028 0.0275 0.0158 0.0096 0.0237 0.0188 0.973 0.992 0.976
0.15 273.60 213.04 269.20 0.489 0.423 0.491 0.0070 0.0455 0.0094 0.0153 0.0330 0.0206 0.977 0.996 0.986
0.30 242.86 194.21 262.08 0.470 0.428 0.480 0.0194 0.0596 0.0107 0.0333 0.0478 0.0222 0.977 0.993 0.992
0.45 −9.60 169.65 251.80 – 0.398 0.465 – 0.0289 0.0145 – 0.0502 0.0229 – 0.916 0.997
0.60 −9.61 125.78 240.78 – 0.385 0.447 – 0.0820 0.0131 – 0.1010 0.0291 – 0.925 1.000

0.8 0 276.67 212.79 211.16 0.488 0.398 0.449 0.0045 0.0237 0.0111 0.0127 0.0214 0.0141 0.973 0.991 0.777
0.15 265.06 207.35 266.35 0.486 0.417 0.486 0.0138 0.0474 0.0091 0.0157 0.0377 0.0206 0.977 0.997 0.979
0.30 241.28 203.45 258.57 0.469 0.422 0.475 0.0186 0.0617 0.0119 0.0354 0.0421 0.0217 0.97 0.989 0.988
0.45 −7.34 177.34 248.44 – 0.406 0.460 – 0.0472 0.0151 – 0.0882 0.0237 – 0.932 0.993
0.60 −9.66 89.45 235.47 – 0.360 0.440 – 0.1055 0.0129 – 0.1508 0.0333 – 0.950 0.995
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Figure 8. Example of feedback controller simulation experiment results. Logistics cart size is 0.8 m and trajectory curvature is 0.6 m−1.
Red line is the given trajectory and green line is actual trajectory of the logistics cart.

Figure 9. Example of residual RL controller simulation experiment results. Logistics cart size is 0.8m and trajectory curvature is 0.6m−1.
Red line is the given trajectory and green line is actual trajectory of the logistics cart.
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Figure 10. History of the residual RL controller’s output for 10 s in the simulation experiment, where logistics cart size is 0.8 m and
trajectory curvature is 0.6 m−1. Dashed lines mean the output of the feedback controller and shaded regions mean the amount of the
compensation by residual RL.

Table 3. Results of real-world experiments: (the number of suc-
cesses) / (the number of experiments).

Curvature [/m]

Method Logistics cart size [m] 0 0.15 0.30 0.45 0.60

Feedback controller 0.6 2/2 2/2 2/2 2/2 0/2
0.795 2/2 2/2 2/2 1/2 0/2
0.8 2/2 2/2 2/2 1/2 0/2

Residual RL controller 0.6 2/2 2/2 2/2 2/2 2/2
0.795 2/2 2/2 2/2 2/2 2/2
0.8 2/2 2/2 2/2 2/2 2/2

small if the action scale is 0 reinforces this consideration.
Thus, the appropriate action scale has the potential for
accelerating learning speed. In ourwork, we consider that
robots basically do not need tomove backward, so we can
adopt a small action scale. As a result, the action scales 0.2
and 0.5 acquire the highest reward, with 0.5 obtaining a
slightly higher one.

5.2. Learning curve of residual RL and RL-only

Residual reinforcement learning has a better learning effi-
ciency than reinforcement learning. One reason for this
result is that utilizing the feedback controller as a base
controller prompts the gathering of more varied expe-
riences. Also, residual reinforcement learning has the
smaller standard deviation than reinforcement learning.
This means that residual reinforcement learning is sta-
ble learning method. The reason of this result is that
it is hard to stagnate on an unfavorable local optimum

because of base controller. These advantages of resid-
ual reinforcement learning are important because they
accelerate learning speed and reduce the number of trials.

From Figure 7, in the early period of learning, the
residual reinforcement learning controller’s reward is
lower than that of the feedback controller. This is presum-
ably because the Q-function does not acquire an accurate
model, so it cannot evaluate the controller precisely and
the controller cannot be improved. One idea for coping
with this problem is that initial output of residual is set to
0. However, the results in previous research [17] indicates
that this idea does not avoid the deterioration of the con-
troller. We tried this idea in our environment, although
it did not avoid this deterioration. The method to avoid
this deterioration is future work.

5.3. Simulation experiments

Table 2 shows that the residual reinforcement learning
controller has a better performance than both the rein-
forcement learning controller and the feedback controller
under many conditions. In particular, when the curva-
ture is large, the feedback controller cannot transport
the logistics cart, while the residual and reinforcement
learning controllers can.

The reason the learning-based controller is better than
the feedback controller is that it can utilize informa-
tion that is not used by the feedback controller and its
output is nonlinearized. The feedback controller utilizes
only each robot’s position and orientation, whereas the



418 R. MATSUO ET AL.

Figure 11. Example of real-world experiment results. (a) Feedback controller, where logistics cart size is 0.8 m and trajectory curvature
is 0.6 m−1. (b) Residual RL controller, where logistics cart size is 0.8 m and trajectory curvature is 0.6 m−1.

learning-based controller utilizes the additional informa-
tion shown in Table 1.

On the other hand, in some cases with a small curva-
ture’s trajectory, the feedback controller has a better per-
formance than the residual reinforcement learning con-
troller. This means that the residual reinforcement learn-
ing controller deteriorates the policy when it acquires
the control law for transporting the logistics cart with a
large curvature’s trajectory. Avoiding this deterioration

and creating a controller that has a better performance
than the feedback controller in all available states remain
issues for future work.

From Figure 8, the logistics cart cannot track the tra-
jectory and so orientation error is accumulated. Then,
when the robots try tomodify this error, they cannot keep
holding the logistics cart. This occurs because the feed-
back controller controls the robots’ state and does not
consider the logistics cart’s state. Another reason for this
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result is that the feedback controller makes only current
errors become 0. In contrast, the residual reinforcement
learning controller learns the policy for reducing the
errors of the logistics cart and considers the long-period
accumulated reward, so it can keep holding the logistics
cart, as shown in Figure 9.

Figure 10 shows that residual reinforcement learning
compensates the output of the feedback controller. The
reason the amount of compensation of angular velocity is
large is that the residual helps to change the orientation
of the logistics cart for making it track the trajectory.

5.4. Real-world experiments

The results of the real-world experiments show that
the residual reinforcement learning controller learned
in simulation environments can be transferred to real-
world control. However, the results of the real-world
experiments differ slightly from the results of the simula-
tion experiments. This difference presumably stems from
some gap between the simulation and the real world,
e.g. the friction of the wheels of the logistics cart, the
gap of the holding position of the robots, and/or obser-
vation noise. The results of the real-world experiments
suggest that the residual reinforcement learning con-
troller absorbs the gap between the simulation and the
real world. Randomization may be one cause of this, e.g.
exploration noise and the noise added to the load weight.
While reducing the gap between the simulation and the
real world was not considered in our work, it is important
to clarify how to transfer the reinforcement learning con-
troller learned in a simulation environment to real-world
tasks more robustly.

6. Conclusion

We proposed a system for logistics cart transporta-
tion with a residual reinforcement learning controller.
The proposed controller is more sample efficient than a
reinforcement learning controller trained from scratch
and has a higher performance than the feedback con-
troller. We showed that using simulation reduces the
cost of gathering experiences, and the results of real-
world experiments suggest that the residual reinforce-
ment learning controller learned in a simulation environ-
ment can be transferred to real-world control.

As future work, we will investigate how to make the
controller higher performance than the feedback con-
troller in all available states and reduce the difference
between simulation and real world.
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Appendix A. Details of formation-based
feedback controller formulation

The calculation process of the formation-based feedback con-
troller is written below. The positions defined in the below
equation are in local coordinates at time k.

θ srtgt(k) = π + tan−1
ysrtgt(k)− ysrtgt(k− 1)
xsrtgt(k)− xsrtgt(k− 1)

= π + tan−1
ysrtgt(k)− ysrtgt(k− 1)
xsrtgt(k)− xsrtgt(k− 1)

− tan−1
yVLtgt (k− 1)

xVLtgt (k− 1)
+ tan−1

yVLtgt (k− 1)

xVLtgt (k− 1)

= π + tan−1
−R(1− cosωVL

tgt ts)+ L sinωVL
tgt ts

R sinωVL
tgt ts + L(1− cosωVL

tgt ts)

+ tan−1
R
(
1− cosωVL

tgt ts
)

R sinωVL
tgt ts

− ωVL
tgt ts
2

= π + tan−1
(
− (1− cosωVL

tgt ts)+ ρL sinωVL
tgt ts

sinωVL
tgt ts + ρL(1− cosωVL

tgt ts)

)

+ tan−1
1− cosωVL

tgt ts
sinωVL

tgt ts
− ωVL

tgt ts
2

= π + ρL− ωVL
tgt ts
2

(A1)

The calculation from lines 4 to 5 utilizes the sum of angle
identities. L is defined as in Figure 3 and the positions are
defined as

xsrtgt(k) =
[
xsrtgt(k), y

sr
tgt(k)

]
= [L, 0]� ,

xsrtgt(k− 1) = xVLtgt (k− 1)+
[
L cosωVL

tgt ts,−L sinωVL
tgt ts

]�
=
[
−R sinωVL

tgt ts + L cosωVL
tgt ts,

R(1− cosωVL
tgt ts)− L sinωVL

tgt ts
]�

.
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