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We consider the problem of execution timing in optimal execution. Specifically, we formulate the
optimal execution problem of an infinitesimal order as an optimal stopping problem. By using
a novel neural network architecture, we develop two versions of data-driven approaches for this
problem, one based on supervised learning, and the other based on reinforcement learning. Tem-
poral difference learning can be applied and extends these two methods to many variants. Through
numerical experiments on historical market data, we demonstrate significant cost reduction of these
methods. Insights from numerical experiments reveals various tradeoffs in the use of temporal
difference learning, including convergence rates, data efficiency, and a tradeoff between bias and
variance.
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1. Introduction

Optimal execution is a classic problem in finance that aims
to optimize trading while balancing various tradeoffs. When
trading a large order of stock, one of the most common
tradeoffs is between market impact and price uncertainty.
More specifically, if a large order is submitted as a single
execution, the market would typically move in the adverse
direction, worsening the average execution price. This phe-
nomenon is commonly referred to as the ‘market impact’.
In order to minimize the market impact, the trader has an
incentive to divide the large order into smaller child orders
and execute them gradually over time. However, this strat-
egy inevitably prolongs the execution horizon, exposing the
trader to a greater degree of price uncertainty. Optimal exe-
cution problems seek to obtain an optimal trading schedule
while balancing a specific tradeoff such as this.

We will refer to the execution problem mentioned above
as the parent-order problem, where an important issue is to
divide a large parent order into smaller child orders to mit-
igate market impact. In this paper, we focus on the optimal
execution of the child orders, that is, after the parent order is
divided, the problem of executing each one of the child orders.
The child orders are quite different in nature compared to
the parent order. The child orders are typically much smaller
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in size, and the prescribed execution horizons are typically
much shorter. In practice, a parent order is typically com-
pleted within hours or days, while a child orders are typically
completed within seconds or minutes. Because any further
dividing of an order can be viewed as another parent-order
problem, we will only consider the child-order problem at
the most atomic level. At this level, the child orders will not
be further divided. In other words, each child order will be
fulfilled in a single execution.

The execution of the child orders is an important problem
and warrants its own consideration, apart from the parent-
order problem. These two problems focus on different aspects
of execution at different time scales. In the parent order prob-
lem, the main tradeoff is between market impact and price
risk, and the solution to the problem aims to find the trad-
ing rate schedule that optimally balances between the two on
the time scale of hours to days. In the child-order problem, as
we consider it, the main consideration is simply getting the
best price on the time scale of seconds to minutes. the price
movement of the stock becomes the primary consideration.
Therefore, solution to the child-order problem focuses on pre-
dicting the price movement and finding the optimal time for
the execution.

More specifically, because the market impact is negligible
for a child order and the order must be fulfilled in a single
execution, the solution seeks to execute the child order at an
optimal time within the prescribed execution horizon. In this
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paper, we will develop data-driven approach based on price
prediction to solve the execution timing problem.

The main contributions of this paper are as follows.

• Execution Timing Problem. We formulate the
execution timing problem as an optimal stopping
problem, where prediction of the future prices is an
important ingredient.

• Data-Driven Approach. Unlike the majority of
work in this area, we make no model assumptions
on the price dynamics. Instead, we construct a novel
neural network architecture that forecasts future
price dynamics based on current market conditions.
Using the neural network predictions, the trader can
develop an execution policy.

In order to implement the data-driven approach,
we develop two specific methods, one based on
supervised learning (SL), and the other based on
reinforcement learning (RL). There are also dif-
ferent ways to train the neural network for these
two methods. Specifically, empirical Monte Carlo
(MC) and temporal difference (TD) learning can be
applied and provide different variants of the SL and
RL methods.

• Backtested Numerical Experiments. The data-
driven approach developed in this paper is tested
using historical market data and is shown to gen-
erate significant cost saving. More specifically, the
data-driven approach can recover a price gain of
20% of the half-spread of a stock for each execution
in average, significantly reduce transaction costs.

The RL method is also shown to be superior than
the SL method when the maximal achievable per-
formance is compared. There are a few other inter-
esting insights that are revealed in the numerical
experiments. Specifically, the choice of TD learning
and MC update method presents various tradeoffs
including convergence rates, data efficiency, and a
tradeoff between bias and variance.

Through numerical experiments, we also demon-
strate a certain universality among stocks in the
limit order book market. Specifically, a model
trained with experiences from trading one stock
can generate non-trivial performance on a different
stock.

1.1. Literature review

Earlier work in the area of optimal execution problem
includes Almgren and Chriss (2000) and Bertsimas and
Lo (1998). These two papers lay the theoretical foundations
for many further studies, including Coggins et al. (2003),
Obizhaeva and Wang (2013), and El-Yaniv et al. (2001).

The paper that is perhaps most closely related to our work
is Nevmyvaka et al. (2006). They also apply reinforcement
learning to the problem of optimal execution, but there are
also many differences. They consider the dividing problem of
the parent order and the goal is to obtain an optimal trading
schedule, whereas we apply RL to solve the child-order prob-
lem using a single execution. This allows us to simplify the
child problem into an optimal stopping problem rather than

an optimal scheduling problem. On a more technical level,
they use a tabular representation to present the state variables,
which force the state variables to be discretized. We allow
continuous state variables by utilizing neural networks. Other
differences include the action space, feature selections, and
numerical experiment as well.

Another area in finance where optimal stopping is an impor-
tant practical problem is pricing American options. Motivated
by this application, Longstaff and Schwartz (2001) and Tsit-
siklis and Van Roy (2001) have proposed using regression
to estimate the value of continuation and thus to solve opti-
mal stopping problems. Similarly to this work, at each time
instance, the value of continuation is compared to the value of
stopping, and the optimal action is the action with the higher
value. The regression-based approach is also different in a
number of ways. One difference is the choice of model. They
use regression with linear model to estimate continuation
values where as we use nonlinear neural networks. Another
difference is that they fit a separate model for each time hori-
zon using a backward induction process, which increases the
remaining horizon one step at a time. By contrast, we fit a
single neural network for all time horizons. Our approach can
learn and extrapolate features across time horizons. This also
leads to a straightforward formulation of temporal difference
learning, which we will discuss in Sections 3.4 and 4.3.

Deep learning has been applied to the study of optimal
stopping problems. Notably, Becker et al. (2019) and Becker
et al. (2020) use neural networks to learn an optimal stopping
rule by parameterizing the stopping policy directly. Becker
et al. (2021) employs a similar formulation but extends the
problem to higher dimensions. These approaches are typically
referred to as ‘policy-based approaches’ as they characterize
the stopping rule directly, typically as a sequence of (possibly
randomized) binary decisions. In contrast, our approach is an
example of a ‘value-based approach’ as it learns the expected
long-term future reward of taking each action and induces a
stopping policy accordingly. Other work in this area includes
that of Gaspar et al. (2020) and Herrera et al. (2021). Gas-
par et al. (2020) combine neural networks with Least-Squares
Monte Carlo (LSMC) method to price American options. Her-
rera et al. (2021) use randomized neural networks, where the
weights in hidden layers are randomly generated and only the
last layer is trained, to estimate continuation values. Our work
is different in a few ways. First, we consider optimal execu-
tion problem as the main application of our proposed methods,
and the numerical experiments reveal significant price gains.
Second, we propose execution policies induced from both
supervised learning and reinforcement learning approaches,
and we discuss various tradeoffs between them when tempo-
ral difference learning is applied. Lastly, we design a specific
neural network architecture, which captures the monotonic
nature of the continuation value.

This work also joins the growing community of studies
applying machine learning to tackle problems in financial
markets. Sirignano (2019) uses neural networks to predict the
direction of the next immediate price change and also reports
the similar universality among stocks. Kim et al. (2002) uti-
lize RL to learn profitable market-making strategies in a
dynamic model. Park and Van Roy (2015) propose a method
of simultaneous execution and learning for the purpose of
optimal execution.
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Figure 1. Limit orders are submitted at different price levels. The ask prices are higher than the bid prices. The difference between the lowest
ask price and the highest bid price is the bid-ask spread. Mid-price is the average of the best ask price and the best bid price.

1.2. Organization of the paper

The rest of the paper is organized as follows. Section 2
introduces the mechanics of limit order book markets and
outlines the optimal stopping formulation. Section 3 intro-
duces the supervised learning method and its induced
execution policy. TD learning is also introduced in this
section. Section 4 introduces the reinforcement learning
method and its induced execution policy. Section 5 out-
lines data source and the setup for the numerical exper-
iments. Section 6 presents the numerical results and the
various tradeoffs in training process introduced by TD learn-
ing. The aforementioned universality are also discussed in
Section 6.

2. Limit order book and optimal stopping formulation

2.1. Limit order book mechanics

In modern electronic stock exchanges, limit order books are
responsible for keeping track of resting limit orders at differ-
ent price levels. Because investors’ preferences and positions
change over time, limit order books also need to be dynamics
and changing over time. During trading hours, market orders
and limit orders are constantly being submitted and traded.
These events alter the amount of resting limit orders, conse-
quently, the shape of the limit order book. There are other
market events that alter the shape of the limit order book, such
as order cancellation (figure 1).

Limit order books are also paired with matching engines
that match incoming market orders with resting limit orders to
fulfill trades. The most common rule that the matching engine
operates under is ‘price-time priority’. When a new market
order is submitted to buy, sell limit orders at the lowest ask
price will be executed; when a new market order is submitted
to sell, buy limit orders at the highest bid price will be exe-
cuted. For limit orders at the same price, the matching engines

follow a time priority—whichever order was submitted first
gets executed first.

2.2. Price predictability

Some theoretical models in the classic optimal execution liter-
ature treat future prices as unpredictable. However, this does
not always reconcile with the reality. There is empirical evi-
dence that stock prices can be predicted to a certain extent—
Sirignano (2019) predicts the direction of price moves using
a neural network and detects significant predictabilities.

Clearly, the ability to predict future prices would have
major implications on stock executions. If a trader seeks to
sell and predicts that the future price will move up, then
the trader would have an incentive to wait. On the other
hand, if the trader predicts that the future price will drop,
then the trader would have an incentive to sell immediately.
In short, at least at a conceptual level, price predictability
improves execution quality. This motivates us to construct
a data-driven solution incorporating price predictability to
optimal execution problems.

2.3. Optimal stopping formulation

Our framework will be that of a discrete-time sequential deci-
sion problem over a finite execution horizon T. The set of
discrete time instances within the execution horizon is T �
{0, 1, . . . , T}. For a particular stock, its relevant market con-
ditions are represented by a discrete-time Markov chain with
state {xt}t∈T . We will assume that the transition kernel P for
the states is time-invariant† . One of the state variables in the

† This assumption is justifiable in our setting as the execution horizon
is typically quite short, and might be measured in seconds to min-
utes. Over such short time horizons, non-stationarity can be ignored.
Beyond this, note that the time of the day is also included as a state
variable so the price dynamics allow for time-of-day effects even
though they are stationary.
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state that is of particular interest is the price of the stock, and
we will denote this price process by {pt}t∈T .

Consider the problem of selling one share of the stock, or
equivalently, consider the order to be infinitesimal, that is, the
order cannot be further divided. This problem singles out the
timing aspect of the execution and assumes that any action of
the trader has no impact on the price process, the states, and
the transitional kernel.

For a trader, the set of available actions at time t is at ∈
A = {HOLD, SELL}. In other words, at any time instance, the
trader can either hold the stock or sell the stock. Because the
trader is endowed with only 1 share of the stock, once the
trader sells, no further action can be taken. In essence, this is
an optimal stopping problem—the trader holds the stock and
picks an optimal time to sell. To generalize the notation, we
will use {CONTINUE, STOP} to represent A for the rest of
this paper.

Let τ be a stopping time. Then, the sequence of states and
actions before stopping is as follows

{x0, a0, x1, a1, . . . , xτ , aτ }, (1)

where aτ = STOP by the definition of the stopping time. The
trader’s goal is to maximize the expected total price difference
between the execution price pτ and the initial price, namely,

max
τ

E[pτ − p0]. (2)

We will refer to this value as the total price gain and denote
it by �Pτ � pτ − p0. Maximizing the total price gain is
equivalent to minimizing the implementation shortfall in this
problem. Total price gain can be decomposed into the price
gain between each time instance while the trader holds the
stock. Let �pt � pt − pt−1. Then, the total price gain can be
decomposed into per-period rewards

�Pτ =
τ∑

t=1

�pt. (3)

From a sequential decision problem standpoint, this is not
the only way to decompose the total price gain across time.
One can also design a framework where the traders only
receive a terminal reward when they stops. This decompo-
sition approach benefits a learning agent by giving per-period
rewards as immediate feedback.

Define a σ -algebra Ft � σ(x0, a0, . . . , , xt−1, at−1, xt) for
each time t, and a filtration F � {Ft}t∈T . Let random variable
πt be a choice of action that is Ft-measurable and takes values
in A, and let a policy π be a sequence of such choices, i.e. π =
{πt}t∈T , and is F-adapted. As constrained by the execution
horizon, the last action must be STOP, i.e. πT � STOP.

Let � be the set of all such policies, and an optimal policy
π∗ is given by

π∗ � argmaxπ∈� Eπ

[
τπ∑

t=1

�pt

]
, (4)

where τπ is the first stopping time associated with policy π ,
and the expectation is taken assuming the policy π is used.
Learning an optimal policy from data is the main machine-
learning task that will be discussed in the next two sections.

3. Supervised learning approach

Future stock prices are inherently stochastic, and this makes
optimal execution a challenging problem. One way to sim-
plify this problem is to replace the random distribution of
future prices by a deterministic point estimates and thus
reduce the stochastic problem into a deterministic one. The
supervised learning approach, which will be introduced in this
section, replaces the future price distribution with its condi-
tional expectation. Assuming that prices will deterministically
follow the prediction of the expected future price trajectory, an
optimal execution policy can be readily derived. This is what
we call the supervised learning (SL) method.

However, the SL method does not lead to an optimal exe-
cution policy because ignoring stochasticity also ignores the
possibility that trader can take different sequence of actions on
different trajectories. Section 3.6 illustrates this insufficiency
further. This prompts us to develop the reinforcement learn-
ing (RL) method, which is the focus of Section 4. Section 4.5
provides more in-depth discussion regarding the differences
and the similarities between the SL and RL methods.

3.1. Price trajectory prediction

Future prices have important implications on execution poli-
cies. If a selling trader can predict that the future price is
higher than the current price, the trader would wait and exe-
cute at a later time. If the future price is predicted to be lower
than the current price, the selling agent should sell immedi-
ately. In this section, we will formulate this intuition more
formally and construct a price prediction approach to optimal
execution via supervised learning.

Given a fixed execution horizon T, it is insufficient to only
predict the immediate price change in the short term—even if
the price goes down, it could still move back up and rise even
higher before the end of the execution horizon. Therefore, to
obtain an optimal execution policy, it is imperative to obtain a
price prediction for the entire execution horizon. This can be
achieved by predicting price changes at each time instances.
More specifically, define a price change trajectory as follows,

Price Change Trajectory � [�p1, �p2, . . . , �pT ]. (5)

This gives rise to pt through

pt = p0 +
t∑

i=1

�pi.

In the rest of the section, we will construct supervised learning
models to predict the price change trajectory.

3.2. Supervised learning method

Define an observation episode as a vector of states and price
changes, ordered in time as (6). This is the data observation
upon which we will construct supervised learning models.

Observation Episode � {x0, �p1, x1, �p2, . . . , �pT , xT }. (6)
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In order to take an action at time 0, the trader needs a price
change trajectory prediction at time 0 when the only observ-
able state is x0. Given any current state x, in order to predict
the subsequent price change trajectory, we construct a neural
network as follows. The neural network takes a single state x
as input and outputs a vector of T elements, corresponding to
the price change at each of the subsequent time instance. This
neural network is represented as follows in (7).

Neural Network : NNφ(x) = [uφ

1 (x), uφ

2 (x), . . . , uφ
T (x)].

(7)
The neural network parameter is denoted by φ, and the output
neuron uφ

i (x) corresponds to the price change �pi for all 1 ≤
i ≤ T .

Given an observation episode such as (6), the mean squared
error (MSE) between predicted price changes and actual price
changes can be used as a loss function. That is

L(φ; x0) = 1

T

T∑
i=1

[�pi − uφ
i (x0)]

2. (8)

The neural network can be trained by minimizing (8) averaged
over many observation episodes. After the neural network is
trained, it can be applied to all states, giving a price change
trajectory prediction at each time instance.

3.3. Execution policy

Given a state x, the output of the neural network is a prediction
of the subsequent price change trajectory. Summing up the
price changes provides an estimate of the cumulative price
change. Let Wt:T (x) be the estimated maximum cumulative
price change over all remaining time when the current time is
t. For all t ∈ T \ {T}, Wt:T (x) can be expressed as

Wt:T (x) � max
1≤h≤T−t

h∑
i=1

uφ
i (x). (9)

Notice, because the transitional kernel P is assumed to be
time-invariant (see Section 2.3), only the difference in indices
T − t matters in the value of Wt:T (x), not the index t or T itself.
At any time before T, if the future price trajectory rises higher
than the current price, a selling trader would have an incen-
tive to wait. Otherwise the trader should sell right away. This
execution policy can be formally written as follows.

3.3.1. Supervised learning policy. When the current time is
t and the current state is x, define a choice of action πSL

t as
below.

πSL
t (x) �

{
CONTINUE if Wt:T (x) > 0
STOP otherwise.

The execution policy induced by the SL method is the
sequence of all such choices, given by

πSL(·) � {πSL
t (·)}t∈T . (10)

Note that this policy is a Markovian policy in that this deci-
sion at time t is a function of the current state xt. This policy is

dependent on the neural network through the value of Wt:T (·).
To apply this policy, a trader would apply each action func-
tion sequentially at each state until STOP is taken. More
specifically, given a sequence of states, the stopping time is
given by

τπSL � min{t | πSL
t (xt) = STOP}. (11)

The total price gain induced by this policy on the specific
observation episode is �Pτ SL

π
= pτ SL

π
− p0. Once the trader

stops, no further action can be taken.

3.4. Temporal difference learning

The method discussed in Section 3.2 is a straightforward
supervised learning method. However, it has a few drawbacks.
From a practical perspective, given any observation episode
such as (6), only {x0, �p1, �p2, . . . , �pT } is being used to
train the neural network and {x1, x2, . . . , xT } is not being uti-
lized at all during the training process. This prompts us to turn
to TD learning.

TD learning is one of the central ideas in RL (see Sutton
and Barto 1998) and it can be applied to supervised learning
as well. Supervised learning uses empirical observations to
train a prediction model, in this case, the price changes �pt.
The price changes �pt are used as target values in the loss
function (8). TD learning uses a different way to construct
the loss function. In a neural network as in (7), offsetting
outputs and state inputs correspondingly would result in the
same prediction, at least in expectations. In other words, if the
neural network is trained properly, the following is true for
0 ≤ k ≤ t − 1,

uφ
t (x0) = E[uφ

t−k(xk) | x0]. (12)

In (12), the output uφ
t (x0) estimates the price change t

time instances subsequent to the observation of the state
x0, namely, �pt. On the right side, the output uφ

t−k(xk) esti-
mates of the price change t− k time instances subsequent to
the observation of the state xk , and this also estimates �pt,
coinciding with the left side.

This equivalence of shifting in time allows us to use current
model estimates as target values to construct a loss function.
This leads to a major advantage of TD learning, that is, TD
learning updates a prediction model based in part on cur-
rent model estimates, without needing an entire observation
episode. To apply this more concretely in this case, the loss
function for SL method can be reformulated as below for a
specific observation episode.

L(φ; x0) = 1

T

[
(�p1 − uφ

1 (x0))
2+

T∑
i=2

(uφ

i−1(x1)− uφ
i (x0))

2

]
.

(13)
Notice that uφ

1 (x0) is still matched to the price change �p1.
For i ≥ 2, uφ

i (x0) is matched to the current model estimate
with a time shift uφ

i−1(x1). In effect, instead of using the
entire episode of price changes as the target values, TD uses
[�p1, uφ

1 (x1), uφ

2 (x1), . . . , uφ

T−1(x1)] as the target values, sub-
stituting all but the first element by current model estimates
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with x1 as input. The loss function in (13) effectively reaffirms
the equivalence in (12) using squared loss.

For every 1 ≤ t ≤ T , (12) defines a martingale

{uφ
t (x0), uφ

t−1(x1), . . . , uφ

t−k(xk), . . . , uφ

1 (xt−1)}. (14)

That is, conditioned on the current state, the expected value
of future prediction k time instances ahead is equal to the cur-
rent prediction of the same time instance. If the predictions
exhibits predictable variability, in principle, the prediction
model could be improved. TD learning with loss function
in (13) can be viewed as a way of regularizing the prediction
model to satisfy the martingale property in (12). This form of
regularization also has the benefit of preventing overfitting,
which will be discuss in Section 6.2.

The data required to compute (13) is (x0, �p1, x1), which
is a subset of the observation episode. Any other consecutive
3-tuple of the form (xt, �pt+1, xt+1) can be used to compute
(13) as well. Because TD learning requires only partial obser-
vations to compute the loss function, it allows us to update the
neural network on the go.

Compared to the conventional SL method in Section 3.2,
TD learning uses data more efficiently. Given the same
amount of data, it updates the neural network many more
times without using repeated data. In fact, given any obser-
vation episode such as (6), the loss function in (13) can be
computed T times using all 3-tuples within the observation
episode, updating the neural network T times. On the other
hand, the conventional SL uses the loss function in (8) and can
update the neural network only once. This advantage in data
efficiency resolves the aforementioned data-wasting issue—
TD utilizes all the state variables and price changes in an
observation episode during training.

3.4.1. TD(m-step) prediction. We will refer to the updat-
ing method used in the conventional SL method outlined in
Section 3.2 as the ‘empirical Monte Carlo (MC)’† update
method. The MC update method trains a prediction model
exclusively using samples from historical data observations.
It turns out that there is a full spectrum of algorithms between
TD and MC.

In (13), TD substitutes all but the first target value by cur-
rent model estimates. This can be generalized to a family of
TD methods by substituting fewer target values and keeping
more observations. Specifically, we can construct a TD(m-
step) method that uses m price changes and T −m model
estimates as target values. The loss function of TD(m-step)
for a specific observation episode is

L(φ; x0) = 1

T

[
m∑

i=1

(�pi − uφ
i (x0))

2

+
T∑

i=m+1

(uφ

i−1(xm)− uφ
i (x0))

2

]
; m = 1, . . . , T .

(15)

† In this paper, our Monte Carlo updates utilize empirical samples
and do not require a generative model as in typical Monte Carlo
simulations.

The data required to compute the above loss function is a (m+
2)-tuple, given by

(x0, �p1, �p2, . . . , �pm, xm), (16)

and this can also be generalized to any (m+ 2)-tuple within
the observation episode. TD(m-step) updates the neural net-
work T + 1−m times using one observation episode.

Notice, when m = T, (15) becomes the same as (8). In other
words, TD(T-step) is the same as the MC update method.
When m = 1, TD(1-step) has the loss function in (13). The
TD step size m is a hyper-parameter that controls the degree
of TD when training the neural network. We will discuss the
effect of the TD step size m in greater detail in Section 6.2.

3.4.2. Target network. Neural networks are typically
trained using stochastic gradient descent (SGD). However,
when SGD is applied to (13) and (15), the changes in the
parameter φ would causes changes in both the prediction
model and the target values. This links the model prediction
and the target values, introducing instabilities into the training
process. A popular way of this issues is by using a second ‘tar-
get’ network that provides the target values during the training
and is only updated periodically. This idea of using ‘double
Q-learning’ was first introduced by van Hasselt (2010) and
the usage of a target network is introduced by van Hasselt
et al. (2016). Adopting this idea, instead of a single neural
network, we maintain two neural networks. These two neural
networks need to have identical architectures and we denote
their parameters by φ and φ′, respectively,

Train− Net : NNφ(x) = [uφ

1 (x), uφ

2 (x), . . . , uφ
T (x)]

Target− Net : NNφ′(x) = [uφ′
1 (x), uφ′

2 (x), . . . , uφ′
T (x)].

The train-net’s parameter φ is the model that SGD changes
during each iteration and the target-net is used exclusively for
producing target values. The loss function can be written as

L(φ; x0) = 1

T

[
m∑

i=1

(�pi − uφ
i (x0))

2

+
T∑

i=m+1

(uφ′
i−1(xm)− uφ

i (x0))
2

]
; m = 1, . . . , T .

(17)

The target-net also needs to be updated during the training
so that it always provides accurate target values. Therefore,
the train-net needs to be copied to the target-net periodically
throughout the training procedure. The entire algorithm is
outlined below in Section 3.5.

3.5. Algorithm

To summarize, the complete algorithm using supervised learn-
ing with TD(m-step) is displayed below. This algorithm will
be referred to as the SL-TD(m-step) algorithm in the rest of
this paper.
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Algorithm 1: SL-TD(m-step)

Initialize φ and φ′ randomly and identically;
while not converged do

1. From a random episode, select a random starting
time t, sample a sub-episode
(xt, �pt+1, ..., �pt+m, xt+m) for 0 ≤ t ≤ T − m;
2. Repeat step 1 to collect a mini-batch of
sub-episodes;
3. Compute the average loss value over the
mini-batch using (17);
4. Take a gradient step on φ to minimize the average
loss value;
5. Copy target-net with train-net (φ′ ← φ)
periodically;
end

To monitor the training progression, in-sample and out-of-
sample MSE can be computed and monitored. Each iteration
of neural network parameter φ induces a corresponding exe-
cution policy. Applying this execution policy to observation
episodes either in sample or out of sample gives the price
gains on these episodes. This measure of average price gains
on observation episodes can also be used to monitor the
training progression.

3.6. Insufficiency

We will use a hypothetical example to illustrate the insuffi-
ciency of the SL method outlined above. Let there be two
possible future scenarios A and B for the price of a particu-
lar stock. Under these two scenarios, price change trajectories
over the next two time instances are

�PA = [�pA
1 , �pA

2 ] = [+1,−4];

�PB = [�pB
1 , �pB

2 ] = [−2,+3].

Assume that these two scenarios occur with equal probability
given all current information, namely,

P(A|x0) = P(B|x0) = 0.5.

Given this information, the ex-post optimal execution would
be to sell at t = 1 under scenario A and sell at t = 2 under sce-
nario B. This execution plan would yield an execution price of
+1 under either scenario.

Now consider applying the SL method when only the state
x0 is observable. The neural network is trained using MSE
and it is well known that the mean minimizes MSE. In other
words, the optimal prediction would be

NNφ(x0) = [u∗1(x0), u∗2(x0)]

= P(A|x0) ·�PA + P(B|x0) ·�PB

= [−0.5,−0.5].

This prediction indicates that future price changes will always
be negative and , therefore, the trader should sell at t = 0 and
induce an execution price of 0.

It is not a surprise that the ex-ante execution is inferior com-
pared to the ex-post execution. However, this example also
reveals a rather unsatisfactory aspect of the SL method—even
with ‘optimal prediction’, the SL method fails to capture the
optimal execution. The trader stops too early and misses out
on future opportunities.

4. Reinforcement learning approach

The SL method outlined above predicts the future price
change trajectory for each state using neural networks. The
predicted price change trajectory induces an execution pol-
icy, which can be applied sequentially to solve the optimal
execution problem. However, the SL method doesn’t lead to
an optimal policy, which prompts us to turn to reinforcement
learning (RL).

The insufficiency of the SL method discussed in Section 3.6
is mainly caused by the way SL averages predictions. SL pro-
duces an average prediction by simply averaging the price
change trajectories under all possible scenarios, disregarding
the fact that a trader might take different sequence of actions
under each scenario. If the trader predicts a future price down-
turn, then the trader would stop and sell early. However, this
price downturn, even though it can be predicted and avoided
by the trader, is still accounted for in the SL prediction. In
the example outlined in Section 3.6, �pA

2 is one such price
downturn. Including price downturns that can be predicted
and avoided in the model predictions lead to a suboptimal
policy.

RL averages trajectories from future scenarios differently.
Instead of averaging the trajectories directly, RL allows the
trader to take different sequence of actions under each sce-
nario, and averages the resulting rewards. This way, if a price
downturn can be predicted and avoided by the trader, it will
not be accounted for in the RL prediction. This leads to an
improved execution policy compared to the SL method.

However, RL adds more complexity to the algorithms,
especially during the training process. SL predicts price
change trajectories, which are exogenous to the trader’s pol-
icy. During training, as SL prediction becomes more accurate,
the induced policy improves. On the other hand, because RL
predicts future rewards, which are dependent on the execution
policy, the target values of the prediction are no longer exoge-
nous. While the RL model is being trained, the induced policy
changes accordingly, which in turns also affects the future
rewards. We will discuss how this difference complicates the
training procedure in the rest of this section.

The procedure of applying RL to the sequential decision
problem is not all that different compared to the SL method.
RL also uses neural networks to evaluate the ‘value’ or ‘qual-
ity’ of each state, which leads to an execution policy that can
be applied sequentially. The main difference is that instead of
predicting price change trajectories, RL predicts what is called
continuation value.

4.1. Continuation value

Continuation value is defined as the expected maximum
reward over all remaining time instances when the immediate
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action is CONTINUE. Specifically, we write Ct:T (x) to denote
the continuation value when the current time is t and the
current state is x. For all t ∈ T \ {T}, this is defined as

Ct:T (x) � sup
π∈�0

t:T

Eπ

[
τπ∑
i=t

�pi

∣∣∣∣∣ xt = x

]
. (18)

The set �0
t:T contains all policies starting from time t that don’t

immediately stop at time t, i.e.

�0
t:T = {(πt, πt+1, . . . , πT ) | πt = CONTINUE}. (19)

The stopping time τπ is the stopping time associated with
policy π and the expectation is taken assuming the policy
π is used. Notice that for any fixed x, the value of Ct:T (x)
depends on the pair (t, T) only through T − t. By convention,
Ct:t(x) � 0 for all states x and times t.

4.1.1. Optimal policy. Because the future price gain of
STOP is always 0, the definition of the continuation value
leads to a very simple execution policy—the trader should
continue if and only if the continuation value is strictly larger
than 0. At time t, if the current state is x, define an action
function as

πRL
t (x) �

{
CONTINUE if Ct:T (x) > 0
STOP otherwise.

The execution policy induced by the RL method is the
sequence of such action functions defined at all time instances,

πRL(·) = {πRL
t (·)}t∈T . (20)

When applying this policy sequentially to a sequence of
states, the associated stopping time and the total price gain
is given by

τπRL � min{t | πRL
t (xt) = STOP}; �PτRL

π
= pτRL

π
− p0.

(21)

4.1.2. Bellman equation. The above definition of the con-
tinuation value leads to the following properties.

1. If the current time is T −1, there is only one time
instance left and the continuation value is the expec-
tation of the next price change,

CT−1:T (x) = E[�pT |xT−1 = x]. (22)

2. If there is more than one time instance left, the contin-
uation value is the sum of the next price change and the
maximum rewards achievable over all remaining time.
This leads to a Bellman equation given by

Ct:T (x) = E[�pt+1 +max{0, Ct+1:T (xt+1)}|xt = x].
(23)

If the trader follows the optimal policy starting at time
t + 1, the total reward accumulated after t + 1 is pre-
cisely max{0, Ct+1(xt+1)}. This is how (23) implicitly
incorporated the execution policy.

4.1.3. Monotonicity. At any time, the continuation value
can be decomposed into a sum of increments of contin-
uation values of stopping problems of increasing horizon.
Because increasing time horizon allows more flexibility in
trader’s actions and can only increase the value of a stopping
problem, these increments are non-negative. In other words,
continuation values have a certain monotonicity.

At any time t, for any i ≥ 1, define the continuation value
increment as

δi(x) � Ct:t+i(x)− Ct:t+i−1(x). (24)

This is the difference in continuation values when the time
horizon is i− 1 time steps away and one time step is added.
Then, for i > 1,

δi(x) ≥ 0. (25)

When i = 1, the continuation value increment δi(x) =
Ct:t+1(x)− Ct:t(x) = E[�pt+1|xt = x] can be negative. Sum-
ming up these increments recovers the continuation value,
namely,

Ct:T (x) =
T−t∑
i=1

δi(x). (26)

4.2. Learning task

Unlike the price trajectory, the continuation value is not
directly observable from the data. Furthermore, the continua-
tion value is dependent on the induced policy and the induced
policy evolves as the continuation value changes. For these
reasons, learning the continuation value is not a conventional
supervised learning task.

In order for the induced policy to apply to each time
instance in the sequential decision problem, the continuation
value Ct:T (x) needs to be estimated for each t = 0, . . . , T − 1.
We design a neural network to learn the continuation value
from data. Because the parameter t is discrete and have a fixed
range, we incorporate this parameter directly into the neural
network architecture. More specifically, the neural network
takes a state x as an input and outputs a vector of T elements,
representing each of the continuation value increment δi. The
neural network can be represented as

Neural Network : NNφ(x) = [uφ

1 (x), uφ

2 (x), . . . , uφ
T (x)].

(27)
This neural network contains T neurons on the output layer,
and each neuron uφ

i (x) is meant to approximate δi(x). As a
result of this construction, the estimated continuation value is
the summation of the neuron outputs, given by

Ĉφ
t:T (x) =

T−t∑
i=1

uφ
i (x). (28)

There are two benefits of this neural network construction.
One is that by incorporating time t as part of the architecture, it
captures the commonality among continuation values for the
entire time horizon. Training neural networks with auxiliary
tasks, such as continuation values with different horizons, has
shown benefits in other applications. This idea is referred to
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as ‘multi-task learning ’. Secondly, due to the monotonicity of
the continuation values, the increments δi(x) should always be
non-negative for i > 1. This implies that the true value of uφ

i (x)
is non-negative for i > 1. Using this architecture, we can also
easily enforce this positivity on the output layer by applying
the softplus activation function. This way the neural network
output is consistent with the monotonicity property.

In order to train the neural network, we need to construct
target values from observation episodes as in (6). We can
compute the ‘empirical continuation value’ at time t when the
current state is xt, given by

C̃t:T (xt) = �pt+1 +
T−t∑
i=2

�pt+i ·�i−1
j=11{Ĉφ

t+j:T (xt+j) > 0},
(29)

where Ĉφ is the continuation value estimated from the current
neural network using (28). The right side of (29) includes the
immediate price change �pt+1 and other price changes con-
ditionally. The price change �pt+i is only accounted for if the
trader reaches time t + i. Because the trader follows the exe-
cution policy induced by the current model, this condition is
expressed as �i−1

j=11{Ĉφ
t+j:T (xt+j) > 0}.

The difference in the empirical continuation values is the
empirical increments, given by

δ̃i(x) = C̃t:t+i(x)− C̃t:t+i−1(x). (30)

This is the target value for uφ
i (x). Now that the target values

for the neural network outputs are in place, we can compute
the mean squared error (MSE) loss function according to (31)
and apply SGD to train the network parameters.

L(φ; x) = 1

T

T∑
i=1

[uφ
i (x)− δ̃i(x))]

2. (31)

4.3. TD learning

The empirical continuation values can be obtained through
TD learning as well. Instead of using empirical observations
of price changes as in (29), the current model estimates of
continuation values can be used to compute the empirical
continuation values.

As described in Section 3.4, two neural networks are used,
one for training and one for evaluating target values, given as
follows,

Train− Net : NNφ(x) = [uφ

1 (x), uφ

2 (x), . . . , uφ
T (x)]

Target− Net : NNφ′(x) = [uφ′
1 (x), uφ′

2 (x), . . . , uφ′
T (x)].

According to TD(1-step), the empirical continuation value
C̃t:T (xt) is the sum of the immediate price change �pt+1 and
the estimated continuation value at evaluated at state xt+1,
conditional on the trader reaching time t + 1. This is given by

C̃t:T (xt) = �pt+1 + Ĉφ′
t+1:T (xt+1) · 1{Ĉφ

t+1:T (xt+1) > 0};
∀ t ≤ T − 1. (32)

Notice that on the right side of (32), the policy is induced
using the train-net and the continuation value accumulated is

evaluated from the target-net. This idea is commonly referred
to as ‘Double Q-Learning’ which was introduced by van Has-
selt (2010) and applied in DQN by van Hasselt et al. (2016).
The use of separate policies for control and continuation
value estimation mitigates ‘error maximization’, or bias that
is introduced by the optimization over statistically estimated
quantities. In this context, estimating the continuation value
by maximizing over estimates of future continuation values
under the same policy results in estimates that are systemat-
ically overestimated. This effect is mitigated by using differ-
ent policies for the estimation of future continuation values
and the decision to stop in (32). The data used in (32) is
{xt, �pt+1, xt+1}, which naturally extends to any 3-tuple of
the same form. As discussed in Section 3.4, in the SL set-
ting, TD learning can be viewed as a form of regularization
to enforce that future price predictions satisfy the martingale
property. In the RL setting here, TD learning enforces the
Bellman equation, which can also be viewed as a form of
regularization to enforce the time consistency of continuation
value estimates.

The TD(m-step) can be applied as well, which expresses
the empirical continuation value as

C̃t:T (xt) = �pt+1 +
m∑

i=2

�pt+i ·�i−1
j=11{Ĉφ

t+j:T (xt+j) > 0}

+ Ĉφ′
t+m:T (xt+m)�m

j=11{Ĉφ
t+j:T (xt+j) > 0};

∀ t ≤ T − m. (33)

The data used in (33) is a (2m+ 1)−tuple

{xt, �pt+1, xt+1, . . . , �pt+m, xt+m}, (34)

which can be generalized to any (2m+ 1)−tuple of the same
form.

For TD(m-step), if the current time t is larger than T −m,
then the current model estimates are no longer used as an addi-
tive terms in the computation of the target value. The target
value of the continuation value is simply given by (29).

These TD methods computes the empirical continuation
values, which leads to empirical increments. These incre-
ments help train the network networks as target values through
the loss function in (31).

4.4. Algorithm

To summarize, the complete algorithm using reinforcement
learning with TD(m-step) is displayed below. This algorithm
will be referred to as the RL-TD(m-step) algorithm in the rest
of this paper.

When compared to the SL method, one critical difference
in the RL method is that the target values for training the neu-
ral network is dependent on the induced policy. Therefore, the
target value also changes during the training process. As a
result, it is more difficult and perhaps less meaningful to mon-
itor the MSE loss value during training. In order to monitor the
training progress, the induced policy can be applied to obser-
vation episodes either in sample or out of sample to produce
price gains.
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Algorithm 2: RL-TD(m-step)

Initialize φ and φ′ randomly and identically;
while not converged do

1. From a random episode, select a random starting
time t, and sample a sub-episode
(xt, �pt+1, xt+1.�pt+2, xt+2, ..., �pt+m, xt+m) for
0 ≤ t ≤ T − m;
2. Repeat step 1 to collect a mini-batch of
sub-episodes;
3. Compute empirical continuation value increments
and the average loss values using (31);
3. Take a gradient step on φ to minimize the average
loss value;
3. Copy target-net with train-net (φ′ ← φ)
periodically;
end

4.5. Discussion

The optimal stopping problem is challenging because the
future prices are stochastic. A simplification would be to make
the problem deterministic. The simplest deterministic model
consistent with the stochastic dynamics is to replace random
quantities with their expectations. In particular, at each time
t, we replace the stochastic future price trajectory with its
mean. The general idea of resolving a new, deterministic con-
trol problem at each instance of time falls under the rubric
of Model Predictive Control (MPC). See Akesson and Toivo-
nen (2006), for example, an application of neural networks in
MPC.

In this context, the continuation value becomes

CMPC
t:T (x) = max

1≤h≤T−t
E

[
h∑

i=1

�pt+i

∣∣∣∣∣ xt

]
. (35)

This motivates the SL method and the execution policy based
upon (9). Notice that CMPC

t:T (x) is an underestimate of the true
continuation value defined in (18), because it only optimizes
over deterministic stopping times, while the true continuation
value allows random stopping times. In other words,

CMPC
t:T (x) ≤ Ct:T (x).

Another simplification of the stochastic dynamics of the future
price would be to use information relaxation, i.e. giving the
trader the perfect knowledge of future price changes. There
is a literature of information relaxation applied to stopping
problems, which was pioneered by Rogers (2002) and Haugh
and Kogan (2004). In our context, one information relaxation
would be to reveal all future prices to the decision maker. This
would make the problem deterministic, and result in

CIR
t:T (x) = E

[
max

1≤h≤T−t

h∑
i=1

�pt+i

∣∣∣∣∣ xt

]
, (36)

as the value of continuation. This is clearly an overesti-
mation of the true continuation because it optimizes with
access to future information, while the true continuation value

expressed in (18) only optimizes with access to information
that is currently available.

Ct:T (x) ≤ CIR
t:T (x).

A regression approach can formulated to estimate this maxi-
mum value, and this is in the spirit of Desai et al. (2012). We
do not pursue this idea in this paper.

We can compare our method with the earlier work on opti-
mal stopping problems in Longstaff and Schwartz (2001)
and Tsitsiklis and Van Roy (2001). In these regression-
based methods, by using a backward induction process that
increases horizon one step at a time, a separate regression
model is fitted for each time horizon. In our method, we fit a
nonlinear neural network that predicts the continuation value
for all time horizons. By this neural network architecture,
the model is able to capture common features across time
horizons. Additionally, in the RL method, due to the mono-
tonicity, we know the incremental values δi are positive, as
in (25). We apply softplus activation function on the output
layer to enforce the positivity of the neural network outputs.
This way, the estimated continuation values produced by the
neural network also possess the desired monotonicity.

The idea of TD learning also manifest in the regression-
based methods as well. Longstaff and Schwartz (2001)
approximates the continuation value when the horizon is t
using continuation values when the horizon is t−1. This
is similar to the idea of RL-TD(1-step). Tsitsiklis and Van
Roy (2001) approximates the continuation value when the
horizon is t using future rewards under policies determined
when the horizon was t− 1. This is similar to the spirit of
Monte Carlo update or RL-TD(T-step).

5. Numerical experiment: setup

The following two sections discuss the numerical experiments
that test the SL and RL methods discussed above. The data
source from NASDAQ used in the experiments is outlined
in detail in appendix 1. This section will outline the setup of
these experiments including the features, and neural network
architectures.

5.1. Experiment setup

5.1.1. Stock selection. The dataset we use is over the entire
year of 2013, which contains 252 trading days. A set of 50
high-liquidity stocks are selected for this study. The summary
statistics for these 50 stocks can be seen in appendix 2 (see
table A4).

For each stock, 100 observation episodes are sampled
within each trading day, with the starting time uniformly sam-
pled between 10am and 3:30pm New York time. Each episode
consists of 60 one-second intervals. In other words, the time
horizon is one minute and T = 60.

5.1.2. Train-test split. Due to the complexity of the neural
network and the ease of overfitting, it is imperative to sep-
arate the data for training and testing so that the reported
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results are not overly optimistic. Specifically, the dataset of
observation episodes is randomized into three categories, a
training dataset (60%), a validation dataset (20%), and a test-
ing dataset (20%). The randomization occurs at the level of
a trading day. In other words, no two episodes sampled from
the same day would belong to two different categories. This is
to avoid using future episodes to predict past episodes within
the same day, as it introduces look-ahead bias and violates
causality.

This randomization setup allows the possibility of using
future days’ episodes to predict past days’ price trajecto-
ries. However, because the execution horizon is as short as
a minute and the features selected mostly capture market
microstructure, we deem the predictabilities between different
days as negligible.

5.1.3. Testing regimes. We consider two regimes under
which the models can be trained and tested. One is the ‘stock-
specific’ regime where a model is trained on a stock and tested
on the same stock. The other is the ‘universal’ regime where
all the data of 50 stocks is aggregated before training and test-
ing. This regime presumes that there is certain universality in
terms of the price formation process across stocks. Specifi-
cally, the experiences learned from trading one stock can be
generalized to another stock.

5.2. State variables and rewards

5.2.1. State variables. In a limit order book market, the
current condition of the market represents the collective pref-
erences of all the investors, and therefore can have predictive
power for the immediate future. In order to capture this pre-
dictability, we have extracted a set of features from the order
book to capture market conditions. This set of features can
be sampled at any given time during the trading hours. The
complete set of features and their descriptions can be found in
appendix 3 (see table A5).

In addition to the current market condition, the past dynam-
ics of the market can have strong indications of the future
evolution as well. To better capture this temporal predictabil-
ity, the same set of features is collected not only at the current
time but also at each second for the past 9 seconds. This
entire collection of 10 sets of features collectively represent
the market state variable. More specifically, let st be the set
of features collected at time t. Then the state variable defined
by xt = (st−9, st−8, . . . , st) is a time series of recent values of
1these features, available at time t.

5.2.2. Normalized price changes/rewards. We selected a
diverse range of stocks with an average spread ranging from
1 tick to more than 54 ticks. The magnitudes of the price
changes of these stocks also varied widely. As a result, it is
inappropriate to use price changes directly as rewards when
comparing different stocks. Instead, we normalized the price
changes by the average half-spread, and use these quantities
as rewards. In effect, the price gains are computed in units
of percentage of the half-spread. If the price gain is exactly
the half-spread, then the trade is executed at the mid-price.

Thus, if the normalized price gain achieves 100%, then the
trader is effectively trading frictionlessly. In the implementa-
tion, the average half-spread is taken to be the time-averaged
half-spread in the previous 5 trading days.

5.2.3. Recurrent neural network (RNN). RNN is specifi-
cally designed to process time series of inputs (see figure 2).
Sets of features are ordered temporally and RNN units con-
nect them them horizontally. The output layer is of dimension
60, matching the time horizon T. For the RL method, the
monotonicity of the continuation value implies that the out-
put neurons are non-negative except the uφ

1 (x). To enforce this
positivity, the softplus activation function is applied to the out-
put layer in the RL settings. A more detailed description of the
neural network architecture can be found in appendix 4.

6. Numerical experiment: results

This section presents the results of the numerical experiments
and discusses the interpretation of these results.

6.1. Best performances

TD learning is applied to both the SL and RL method,
with various update step m (see section 3.4.1). These algo-
rithms, SL-TD(m-step) and RL-TD(m-step), are trained using
the training data, tuned with the validation data, and perfor-
mances are reported using the testing data. Neural network
architecture, learning rate, update step m, and other hyper-
parameters are tuned to maximize the performance. The best
performances using SL and RL are reported in table 1. These
figures are price gains per episode averaged over all 50 stocks.
The price gain is reported in percentage of half-spread. The
detailed performance for each stock can be found in appendix
5 (see table A6).

Given sufficient data and time, the RL method outperforms
the SL method. This is true under both the stock-specific
regime and the universal regime. The models trained under
the universal regime generally outperform the models trained
under the stock-specific regime as well.

6.2. Comparative results

Both SL and RL method are specified by TD learning with
various update step m (see section 3.4.1). These TD specifica-
tions extend SL and RL method to two families of algorithms,
SL-TD(m-step) and RL-TD(m-step). The update step m con-
trols the target values of the neuron network during training.
Specifically, among T neurons in the output layer, m of them
are matched to the empirical observations and T −m are
matched to the current model estimates. Different values of
m and the difference between SL and RL presents various
tradeoff in algorithm performance, which we will discuss
shortly.

We will evaluate these algorithms using a few metrics,
including their rate of convergence with respect to gradient
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Figure 2. Recurrent neural network (RNN) architecture.

Figure 3. Price gain vs. gradient steps. The trajectories are averaged over 10 random starts, the shaded regions correspond to the standard
error of each trajectory.

Table 1. The universal model outperforms the stock-specific mod-
els with both SL and RL by 4.4% and 2.6%, respectively.

Price gain (% half-spread) SL (s.e.) RL (s.e.)

Stock-specific 21.40 (0.15) 24.82 (0.16)
Universal 22.34 (0.15) 25.47 (0.16)

Notes: RL outperforms SL under the stock-specific and universal
regime, by 16% and 14%, respectively. The figures reported are in
units of percentage of half-spread (% half-spread), and are computed
out of sample on the testing dataset.

steps, running time, their data efficiencies, and bias-variance
tradeoff.

6.2.1. Rate of convergence (gradient steps). figure 3 plots
the price gain progression with respect to the number of
gradient steps taken. As we can see from this figure, after
controlling for the learning rate, batch size, neural network
architecture, and other contributing factors, the RL method
requires more gradient steps in SGD to converge compared to
the SL method. It is also apparent that the convergence is slow
when the update step m is small.

6.2.2. Running time. Training neural networks can be
time-consuming. Perhaps the most time-consuming part is
iteratively taking gradient steps as part of the SGD procedure.

Figure 4. Average gradient step time (in log scale) over 50k gradi-
ents steps. The standard errors are negligible and thus not shown.

Because a neural network typically takes thousands of steps
to train, the time it takes to perform a single gradient step is
an important measurement to evaluate the running time of an
algorithm. We will refer to this time as the gradient step time.

We have measured the average gradient step time over
50,000 gradient steps in SL-TD(m-step) and RL-TD(m-step).
The result is plotted in figure 4.

There are many factors that contributes to the gradient
step time, such as the power of the CPU, the implementation
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choices and others. We have controlled all these factors so that
the differences displayed in figure 4 is solely due to the dif-
ferences in TD step size m † The actual values of the gradient
step time are not important, but it is clear that the gradient step
time increases as the step size m increases in RL method but
stays flat in SL method.

This difference between SL and RL method comes down
to the difference in the loss functions. In the SL method, in
order to compute the the loss function for a specific data obser-
vation, it requires two neural network evaluations, namely
uφ(x0) and uφ′(xm). This is true for all SL-TD(m-step), except
for SL-TD(60-step). In SL-TD(60-step), (8) only evaluates
the train-net once. This explains why gradient step time is
relatively constant for different values of m in SL-TD(m-step).

On the other hand, in RL-TD(m-step), computing the loss
function requires m neural network evaluations, which scales
linearly with m. This can be seen in (33). This explains why
gradient step time roughly scales proportionally with the m in
RL-TD(m-step).

figure 5 plots the price gains progression with respect
to elapsed running time. Among RL-TD(m-step), RL-TD(1-
step) converges slowest with respect to gradient steps (see
right figure in figure 3). However, because each gradient
step takes much less time, RL-TD(1-step) actually converges
fastest in term of running time among all RL methods. In other
words, given a fixed limited amount of time, RL-TD(1-step)
achieves the best performance within all RL methods.

6.2.3. Data efficiency. The central idea of TD learning is
to use current model estimates instead of actual data obser-
vations to train models. Naturally, with different step sizes,
TD method uses data differently. In the SL method, TD(m)
uses (xt, �pt+1, �pt+2 · · · , �pt+m, xt+m) to update the neu-
ral network once. This is counted as m time instances
worth of data. Similarly, in the RL method, TD(m) uses
(xt, �pt+1, xt+1.�pt+2, xt+2, . . . , �pt+m, xt+m) to update the
neural network once. We also regard this as m time instances
worth of data. Notice, however, for each intermediate time
instance t + k, RL method uses both the state variable xt+k

and the price change �pt+k , whereas the SL method only uses
the price change �pt+k .

For SL-TD(m-step) and RL-TD(m-step), it takes m time
instances worth of data observations to perform a gradient
step. In other words, for a larger m, each gradient step in
TD(m-step) is more informed as the data length is larger.
However, given the same amount of data, TD(m-step) with
a larger m can not perform as many gradient steps than
TD(m-step) of a smaller m without reusing data.

This has important implication to the choice of algorithms,
especially in finance. Because (over longer time horizons such
as months or years) financial market is time-varying and non-
stationary, only the recent historical data can be used to train
models to predict the future. In situations like this where the
duration of the usable historical data is relatively limited, a

† The results in figure 4 use the aforementioned RNN neural network
architecture described in appendix 4. But qualitatively, the results
hold for general neural network architectures as well, as the differ-
ences in running time is caused by the complexity in the loss function
evaluation.

more data-efficient algorithm can potentially produce a more
complex model with the same duration of historical data.

One way to evaluate the data efficiency of an algorithm
is to evaluate its performance based on how much data it
has accessed, measured in time instances. In our implemen-
tations, at any given time, the price pt and the state variable
xt can be used to train the models. Using either the price,
the state variable, or both all count as accessing one time
instance of data. figure 6 plots the price gain progression with
respect to quantity of data accessed. It shows that TD(1-step)
is the most data-efficient, in either SL or RL method. In other
words, when data is limited, TD(1), the method that uses the
least information to perform a gradient step, performs the best
because it can take more gradient steps with the same amount
of data.

6.2.4. Bias–variance tradeoff. The bias–variance tradeoff
has been a recurring theme in machine learning, and it is
especially relevant in a discussion of TD learning. Previous
studies have reported that TD update generally leads to higher
bias and lower variance compared to Monte Carlo update
when applied to the same prediction model (see Kearns and
Singh 2000 and Francois-Lavet et al. 2019). We observe a
similar pattern in our experiment.

As part of the SL method, the neural network is used to
predict price change trajectories given an observable state
variable. Consider a particular state x0, and let fi(x0) be the
true price change at the ith time instances ahead. Then the
price change trajectory can be represented as a vector of
price changes f (x0) = [f1(x0), f2(x0), . . . , f60(x0)]. Let yi be
the observable price change at the ith time instance. Then
yi = fi(x0)+ εi, and the observable price change trajectory is
y = [y1, y2, . . . , y60].

Consider a set of training datasets, D = {D1, D2, . . . , Dn}.
A neural network can be trained on each training dataset and
produce a predicted trajectory in the SL method, denoted
by f̂ (x0; D) = [û1(x0; D), û2(x0; D), . . . , û60(x0; D)]. Averag-
ing all these predictions from each dataset give the aver-

age ith price change prediction ūi(x0) = 1

n

∑n
i=1 ûi(x0; Di)

and the average price change trajectory prediction f̄ (x0) =
1

n

∑n
i=1 f̂ (x0; Di). We now arrive at the following bias vari-

ance decomposition for the prediction of the ith interval:

MSEi(x0) = ED∈D[(yi − ûi(x0; D))2] (37)

= ε2
i + [fi(x0)− ūi(x0)]

2

+ED∈D[(ūi(x0)− ûi(x0; D))2] (38)

= [yi − ūi(x0)]
2 +ED∈D[(ūi(x0)− ûi(x0; D))2].

(39)

Equation (38) is the common bias–variance decomposition,
where ε2

i is the irreducible noise variance, [f (x0)− ū(x0)]2

is the squared bias term, and ED∈D[(ū(x0)− û(x0; D))2] is
the prediction variance. This decomposition can be reformu-
lated as (39). Each term in (39) is observable and thus can be
measured empirically. We will refer to [yi − ūi(x0)]2 as noise
variance squared bias (NVSB).
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Figure 5. Price gain vs. running time. The trajectories are averaged over 10 random starts, the shaded regions correspond to the standard
error of each trajectory.

Figure 6. Price gain vs. data points accessed. The trajectories are averaged over 10 random starts, the shaded regions correspond to the
standard error of each trajectory.

A set of 100 training datasets are used, each producing
a unique neural network. Testing these neural networks on
the same testing dataset produces MSE, prediction variances,
and NVSB for each time instance. A square root is taken of
these values to obtain root mean squared error (RMSE), the

Figure 7. Bias–variance tradeoff vs. step size. Standard errors bars
are plotted.

prediction standard deviations (pred. std.), and the noise stan-
dard deviation bias (NSDB). These values are averaged across
all time instances and plotted in figure 7.

It is clear that there is a bias-variance tradeoff—TD with a
smaller step size reduces variance and increases bias, and TD
with a larger step size increases variance and reduces bias. A
large prediction variance typically leads to overfitting. Indeed,
this can also be observed empirically. When training the SL
method using a small training dataset, the in-sample RMSE of
TD(60-step) decreases quickly while its out-of-sample RMSE
increases (see figure 8). This is because TD(60-step) fits to the
noisy patterns in the training data that don’t generalize out of
sample. Using the same training and testing data, TD(1-step)
and TD(30-step) do not overfit nearly as much as TD(60-step).

6.3. Universality

In section 6.1, the universal models outperforms the stock-
specific models. This reveals certain universality across
stocks, that is, the experience learned from one stock can
be generalized to a different stock. To further reinforce the
evidence of this universality, we conduct another experiment
under the ‘take-one-out’ regime. Under the ‘take-one-out’
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Figure 8. Left: in-sample RMSE; Right: out-of-sample RMSE.

Table 2. Performance comparison among models trained
under all three regimes.

Price gain (% half-spread) SL (s.e.) RL (s.e.)

Stock-specific 21.40 (0.15) 24.82 (0.16)
Take-one-out 21.55 (0.15) 24.85 (0.16)
Universal 22.34 (0.15) 25.47 (0.16)

regime, a model is trained on 49 stocks and tested on the
stock that has been left out of the training. This way, the
reported testing performance is out of sample in the conven-
tional machine-learning sense and also on a stock that is not
part of the training data.

Table 2 displays the average performance of models trained
under all three regimes. The detailed performance for each
model can be found in appendix 5 (see table A6). The take-
one-out models performance comparable to the stock-specific
models, indicating evidence of universality across stocks.
However, the best performing model is still the universal
model. This implies that there are still values in specific
stocks.

6.4. Result summary

There is not a single algorithm that is the most superior in
all aspects. Rather, different algorithms might be preferable
under different situations. The following lists some of these
insights determined through the numerical results:

• Max performance:
− The RL method outperforms the SL method.
− Universal model outperforms stock-specific

model.
If data and time are not binding constraints and

the goal is to maximize the performance, the uni-
versal RL model performs the best and is recom-
mended for this situation.

• Time limitation:
− SL Method: Monte Carlo update method con-

verges fastest.
− RL Method: TD(1-step) update method con-

verges fastest.

If time is the binding constraint, then a fast
algorithm is preferable. For the SL method, Monte
Carlo update method (SL-TD(T-step)) is fastest
with respect to running time. For the RL method,
TD(1-step) provides the fastest convergence with
respect to running time.

• Data limitation:
− SL Method: TD(1-step) update method is most

data-efficient.
− RL Method: TD(1-step) update method is most

data-efficient.
If the amount of data is the binding constraint,

then a data-efficient algorithm is preferable. TD(1-
step) provides the most data-efficient algorithms,
for both SL method and the RL method.

• Prevent overfitting:
Monte Carlo update method leads to a high-

variance and low-bias prediction model, which is
prone to overfitting. TD learning leads to a low-
variance and high-bias prediction, which provides
the benefit of preventing overfitting.
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Appendices

Appendix 1. NASDAQ data source

The NASDAQ ITCH dataset provides level III market data from
the NASDAQ stock exchange (NASDAQ Stock Exchange 2010).
This dataset contains event messages for every event that has tran-
spired at the exchange. Common market events include ‘add order’,
‘order executed’, and ‘order cancelled’. These market events occur
throughout the trading hours and constantly change the limit order

Table A1. The event reads: a bid limit order of 2000 shares
of BAC stock is added to the LOB at price level $12.02 at

9:30:00.4704337.

Time Ticker Side Shares Price Event

9:30:00.4704337 BAC B 2000 12.02 ‘A’

book (LOB). An example of an ‘add order’ event message is shown
below in table A1.

From these event messages, a limit order book can be constructed
to display the prices and numbers of resting shares (depth) at each
price level. This system is dynamic and it changes every time a new
event occurs in the market.

The limit order book reflects the market condition at any given
moment and this provides the environment of the optimal execution
problem.

Appendix 2. Summary statistics of selected stocks

Appendix 3. Features used in state variables

The set of features that make up the state st at any given time t
is listed in table A5. These features are designed to be symmetric
between buying and selling. In order words, the side of the mar-
ket (bid or ask) is only distinguishable relative to the intended trade
direction as near-side and far-side. Near-side is the side at which the
execution seeks to fulfill an order, and the far-side is the opposite
side. Namely, for a buying order, the near-side is the bid-side and
the far-side is the ask-side. For a selling order, the near-side is the
ask-side and the far-side is the bid-side.

• For a sell order, the price pt of the stock is taken to be the
best bid price; for a buy order, the price pt of the stock
is taken to be the best ask price. The price is normalized
by average spread, which is taken to be the trailing 5 day
time-averaged spread.

• Return volatility and price volatility are computed using
the adjusted closing daily price for the previous 21 days.

• Near depths and far depths refer to the number of out-
standing shares at each of the top 5 price levels at respec-
tive sides. These values are normalized by the trailing
21-day average daily trading volumes in shares.

• Queue imbalance is defined as

QI = near depth− far depth

near depth+ far depth
.

This is a value between −1 and 1 and represents the
imbalance of the supply and demand of the stock at the
current price level. This can be calculated using depths
at the top price levels and aggregated depth at the top 5
price levels. We compute the QI for the each of the top 5
price levels to be used as features.

• Intensity measure of any event is modeled as an exponen-
tially decaying function with increments only at occur-
rences of such an event. Let St be the magnitude of the
event at any given time t, St = 0 if there is no occurrence
of such event at time t. The intensity measure X (t) can be
modeled as

X (t +�t) = X (t) · exp(−�t/T)+ St+�t.

At any time t and for any duration �t, if there is no event
occurrence between t and t +�t, then the intensity mea-
sure decays exponentially. The time constat T controls
the rate of the decay.

In our implementation, we measure the intensity mea-
sure for trades and price changes on the near-side and

https://ssrn.com/abstract=1171370
http://dx.doi.org/10.2139/ssrn.1171370
http://www.nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/nqtv-itch-v4_1.pdf
https://doi.org/10.1080/14697688.2018.1546053
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Table A2. The above table is a snapshot of the LOB displaying the prices of the top 5 price levels on both sides of the market before and
after the event from table A1.

Time b.prc 5 b.prc 4 b.prc 3 b.prc 2 b.prc 1 a.prc 1 a.prc 2 a.prc 3 a.prc 4 a.prc 5

9:30:00.4704337 12.01 12.02 12.03 12.04 12.05 12.06 12.07 12.08 12.09 12.10
9:30:00.8582938 12.01 12.02 12.03 12.04 12.05 12.06 12.07 12.08 12.09 12.10

Note: The event from table A1 does not change the prices at each level.

Table A3. The above table is a snapshot of the LOB displaying the number of shares on the top 5 price levels on both sides of the market
before and after the event from table A1.

Time b.prc 5 b.prc 4 b.prc 3 b.prc 2 b.prc 1 a.prc 1 a.prc 2 a.prc 3 a.prc 4 a.prc 5

9:30:00.4704337 10000 43700 13100 12100 7500 5200 15300 15900 17000 22200
9:30:00.8582938 10000 41700 13100 12100 7500 5200 15300 15900 17000 22200

Note: The event from table A1 reduces 2000 shares at price $12.02.

far-side. The magnitude of a trade is the size of the trade
in dollars, normalized by average daily volume. The mag-
nitude of a price change is normalized by the average
spread.

Appendix 4. Neural network architecture

The RNN architecture is designed to process the state variables
described in section 5.2 and appendix 3. The state variable consists of
10 sets of features, thus, the neural network has 10 RNN units, each
takes a set of feature as input, as illustrated by figure 2. The RNN
Units are implemented as LSTM units with dimension 64. The output

of the LSTM units go through another five layers of fully-connected
network, which is denoted as ‘Output Network’ in figure 2.

In our implementation, because the execution horizon is made of
60 time intervals, the output of the neural network also has dimension
of 60. In the SL method, the last layer of the output network is a linear
layer with dimension 60. In the RL method, due to the monotonicity
of the continuation value, all the continuation value increments are
non-negative with the exception of the first one. This is described by
equation (25). To enforce this, in the RL method, softplus activation
function is applied to all units in the last layer except the first one.
This is the enforce the positivity of the neural network output. The
Python Tensorflow implementation of the neural network in the RL
method is provided in table A6.

The Python tensorflow implementation of the RNN architecture.

i m p o r t t e n s o r f l o w as t f i m p o r t t e n s o r f l o w . c o n t r i b . l a y e r s a s l a y e r s
d e f rnn_model ( i n p t , r n n _ s t a t e s , rnn_seq , ou tpu t_d im , scope , phase ) :

# i n p t : an a r r a y t h a t c o n t a i n s t h e d a t a w i t h i n each b a t c h i n t h e SGD a l g o r i t h m
# i n p t . shape = [ b a t c h _ s i z e , rnn_seq , r n n _ s t a t e ]
# r n n _ s t a t e s : t h e number o f f e a t u r e s i n t h e s t a t e v a r i a b l e s
# r n n _ s e q : t h e l e n g t h o f t h e s e q u e n c e i n t h e i n p u t .
d e f d e n s e _ l i n e a r ( x , s i z e ) :

r e t u r n l a y e r s . f u l l y _ c o n n e c t e d ( x , s i z e , a c t i v a t i o n _ f n =None )
d e f d e n s e _ b a t c h _ r e l u ( x , s i z e ) :

h1 = l a y e r s . f u l l y _ c o n n e c t e d ( x , num_outpu ts = s i z e , a c t i v a t i o n _ f n =None )
h2 = l a y e r s . ba tch_norm ( h1 , c e n t e r =True , s c a l e =True , i s _ t r a i n i n g = phase )
r e t u r n t f . nn . r e l u ( h2 )

i n p t _ r n n = t f . r e s h a p e ( i n p t , [ t f . shape ( i n p t ) [ 0 ] , rnn_seq , r n n _ s t a t e s ] )
w i th t f . v a r i a b l e _ s c o p e ( scope ) :

i n p u t s _ s e r i e s = t f . s p l i t ( i n p t _ r n n , rnn_seq , 1 )
i n p u t s _ s e r i e s = [ t f . s q u e e z e ( t s , a x i s = 1) f o r t s i n i n p u t s _ s e r i e s ]
c e l l = t f . c o n t r i b . rnn . LSTMCell ( 6 4 )
s t a t e s _ s e r i e s , c u r r e n t _ s t a t e = t f . c o n t r i b . rnn \

. s t a t i c _ r n n ( c e l l , i n p u t s _ s e r i e s , d t y p e = t f . f l o a t 3 2 )
o u t = c u r r e n t _ s t a t e
f o r i i n r a n g e ( 5 ) :

o u t = d e n s e _ b a t c h _ r e l u ( out , 64)
o u t = d e n s e _ l i n e a r ( out , o u t p u t _ d i m )
# a p p l y s o f t p l u s t o a l l u n i t s e x c e p t t h e f i r s t one
o u t = t f . c o n c a t ( [ t f . expand_dims ( o u t [ : , 0 ] , a x i s = 1 ) ,

t f . nn . s o f t p l u s ( o u t [ : , 1 : ] ) ] , a x i s = 1)
r e t u r n o u t

A.0.1. Hyperparameter tuning

A few neural network architectures were been tried and the reported
architecture had the best performance on the validation datasets.
Hyperparameters are also tuned on the validation datasets. For each

of the following hyperparameters, a few values were tried and the
best values are reported as follows:

• Learning rate: 3× 10−5

• Batch size: 1024
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• Target network copy frequency: every 1000 gradient
steps

• TD step size m: 15 (both SL and RL)

Appendix 5. Algorithm performance

Table A4. Descriptive statistics for the selected 50 stocks over 2013. Average price and (annualized)
volatility are calculated using daily closing price. Volume ($M) is the average daily trading volume in
million dollars. One tick (%) is the percentage of time during trading hours that the spread is one tick.

Spread is the time-averaged difference between best bid price and best ask price, in ticks.

Stock Volume ($M) Avg. prices ($) Price vol. ($) Return vol. One tick (%) Spread

AAPL 94,768.13 472.28 44.56 29% 0% 13.60
ADBE 3999.91 46.73 5.98 25% 81% 1.39
ADI 2441.46 46.57 2.16 20% 72% 3.26
ADP 3572.48 69.66 6.01 14% 59% 4.53
ADSK 2754.37 39.11 3.53 27% 70% 3.00
AMAT 3664.65 15.25 1.76 28% 99% 1.14
AMD 535.55 3.38 0.60 52% 98% 1.02
AMGN 9096.26 103.89 10.12 27% 18% 4.61
AMZN 17,102.94 297.89 41.59 26% 0% 16.40
ATVI 2298.19 15.39 1.90 38% 98% 2.01
AVGO 2155.93 38.50 5.02 31% 61% 4.50
BAC 11,935.64 13.44 1.31 23% 99% 1.01
BRK.B 3578.57 110.20 7.20 15% 11% 6.71
CHTR 1985.65 113.96 19.16 28% 3% 17.75
CMCSA 10,030.18 43.23 3.40 20% 95% 1.27
COST 4996.78 111.86 7.00 14% 14% 4.58
CSCO 14,958.94 22.69 1.83 34% 99% 1.02
CSX 2049.05 24.78 1.84 19% 96% 1.47
DIS 5904.70 62.83 5.71 18% 76% 1.81
EBAY 11,696.10 53.45 1.88 25% 84% 1.46
F 4821.01 15.34 1.72 24% 98% 1.02
FB 32,453.19 34.59 10.56 48% 93% 0.99
FISV 1481.28 91.68 11.36 53% 7% 8.31
GE 7809.10 23.99 1.62 17% 98% 1.04
GILD 11,996.61 58.60 10.77 58% 66% 2.20
GS 7129.39 156.51 9.46 21% 2% 8.48
ILMN 1790.24 72.74 16.52 33% 7% 10.72
INTC 13,742.28 23.05 1.34 20% 98% 0.99
INTU 3664.81 65.12 4.79 20% 47% 5.28
ISRG 4161.03 450.20 69.49 35% 0% 54.36
JNJ 10,063.27 85.73 6.67 13% 75% 3.15
JPM 15,719.47 51.85 3.35 19% 93% 1.71
LRCX 2413.90 47.00 4.62 25% 48% 3.19
MDLZ 6152.37 30.67 2.14 20% 97% 1.89
MELI 1224.31 109.33 16.36 37% 1% 27.96
MRK 7717.00 46.40 2.31 17% 93% 2.09
MSFT 27,291.37 32.47 3.44 25% 98% 1.08
MU 9123.92 13.36 4.43 38% 98% 1.07
NFLX 15,554.60 246.42 73.44 65% 0% 21.53
NVDA 2325.16 14.18 1.25 21% 98% 1.27
PEP 6836.76 80.35 4.14 14% 73% 3.14
QCOM 15,814.58 66.36 3.38 18% 88% 2.37
SBUX 7015.92 67.38 9.18 19% 62% 1.46
T 8735.23 35.43 1.25 15% 97% 1.25
TXN 5857.73 37.61 3.27 18% 95% 1.42
UPS 4350.56 88.62 6.75 14% 42% 3.35
V 7143.93 180.35 16.65 21% 3% 15.47
VRTX 2983.46 68.01 13.45 70% 9% 10.04
VZ 7297.25 48.66 2.66 17% 92% 1.92
WFC 10,620.15 40.17 3.27 16% 97% 1.11
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Table A5. State variable features.

Category Features

General Information Time of day, Price normalized by average spread
Spread Spread, Spread normalized by return volatility, Spread normalized by price volatility
Depth (top 5 price levels) Queue imbalances, Near depths normalized by average daily volume, Far depths

normalized by average daily volume
Trading Flow Number of trades in near-side and in far-side within the last second, Number of price

changes towards near-side and far-side within the last second
Intensity Measures Intensity measure for trades at near-side and far-side, price changes at near-side and

far-side

Table A6. These price gains are out-of-sample performances reported on the testing dataset.

Stock SL (Specific) RL (Specific) SL (Out) RL (Out) SL (Universal) RL (Universal)

AAPL 37.36 (1.21) 44.8 (1.24) 38.57 (1.21) 43.23 (1.23) 38.9 (1.22) 44.4 (1.23)
ADBE 27.6 (0.80) 30.4 (0.81) 27.27 (0.81) 30.15 (0.81) 27.36 (0.80) 30.4 (0.81)
ADI 17.68 (1.09) 20.2 (1.10) 17.34 (1.08) 19.88 (1.09) 18.2 (1.08) 20 (1.09)
ADP 11.38 (1.07) 12.4 (1.08) 11.40 (1.07) 12.41 (1.09) 11.74 (1.08) 12.40 (1.10)
ADSK 30.58 (1.10) 34.20 (1.12) 29.57 (1.10) 33.67 (1.12) 29.48 (1.11) 33.40 (1.13)
AMAT 13.52 (0.71) 14.60 (0.72) 13.94 (0.71) 15.13 (0.72) 13.62 (0.72) 15.00 (0.73)
AMD 22.36 (0.72) 24.20 (0.73) 21.15 (0.72) 22.95 (0.73) 22.32 (0.73) 25.20 (0.74)
AMGN 37.98 (1.21) 44.60 (1.23) 38.89 (1.21) 45.67 (1.23) 41.96 (1.22) 46.80 (1.24)
AMZN 25.80 (1.32) 29.40 (1.35) 23.96 (1.32) 25.75 (1.35) 25.54 (1.33) 28.40 (1.35)
ATVI 18.58 (0.89) 20.60 (0.91) 21.35 (0.89) 22.68 (0.91) 22.58 (0.90) 22.60 (0.91)
AVGO 17.38 (1.05) 18.40 (1.07) 17.58 (1.05) 18.92 (1.07) 18.82 (1.06) 19.02 (1.08)
BAC 22.94 (0.71) 27.40 (0.72) 23.63 (0.71) 27.67 (0.72) 23.76 (0.72) 27.80 (0.73)
BRK.B 32.90 (1.25) 36.60 (1.28) 33.28 (1.25) 37.23 (1.28) 35.08 (1.26) 37.80 (1.28)
CHTR 12.74 (1.23) 16.20 (1.25) 12.72 (1.23) 16.16 (1.25) 13.82 (1.24) 17.40 (1.26)
CMCSA 17.16 (1.09) 21.00 (1.11) 16.64 (1.09) 20.17 (1.11) 17.70 (1.10) 21.00 (1.12)
COST 32.82 (1.31) 38.20 (1.34) 34.13 (1.31) 39.17 (1.34) 36.48 (1.32) 41.60 (1.34)
CSCO 15.16 (0.68) 17.60 (0.69) 14.99 (0.68) 16.93 (0.69) 15.60 (0.69) 17.40 (0.70)
CSX 14.74 (1.03) 16.20 (1.05) 15.09 (1.03) 16.49 (1.05) 15.22 (1.04) 17.40 (1.06)
DIS 18.44 (1.21) 21.40 (1.23) 19.54 (1.21) 22.89 (1.23) 20.62 (1.22) 23.40 (1.24)
EBAY 14.86 (1.19) 18.20 (1.22) 14.93 (1.19) 18.30 (1.22) 15.04 (1.20) 18.80 (1.22)
F 22.56 (0.89) 27.40 (0.91) 24.00 (0.89) 28.36 (0.91) 24.66 (0.90) 28.20 (0.91)
FB 15.68 (1.43) 16.20 (1.46) 15.91 (1.43) 16.46 (1.46) 16.04 (1.44) 16.60 (1.47)
FISV 21.36 (1.20) 24.20 (1.22) 21.76 (1.20) 24.65 (1.22) 22.96 (1.21) 24.40 (1.23)
GE 22.26 (0.68) 26.40 (0.69) 22.02 (0.68) 26.49 (0.69) 22.40 (0.69) 26.60 (0.70)
GILD 24.44 (0.90) 32.40 (0.92) 23.38 (0.90) 28.84 (0.92) 23.66 (0.91) 29.80 (0.92)
GS 28.38 (1.19) 34.40 (1.21) 26.80 (1.19) 31.82 (1.21) 27.24 (1.20) 32.20 (1.22)
ILMN 19.44 (1.22) 24.80 (1.24) 19.62 (1.22) 25.13 (1.24) 21.12 (1.23) 25.60 (1.25)
INTC 27.42 (0.75) 29.80 (0.77) 26.69 (0.75) 29.26 (0.77) 26.96 (0.76) 29.90 (0.77)
INTU 15.04 (1.11) 18.60 (1.13) 15.85 (1.11) 19.78 (1.13) 16.98 (1.12) 20.00 (1.14)
ISRG 15.92 (1.50) 19.00 (1.53) 17.39 (1.50) 21.05 (1.53) 19.50 (1.52) 21.80 (1.54)
JNJ 15.00 (1.09) 18.20 (1.11) 14.76 (1.09) 17.97 (1.11) 14.98 (1.10) 19.00 (1.12)
JPM 24.96 (0.80) 30.60 (0.82) 25.32 (0.80) 30.71 (0.82) 26.50 (0.81) 31.40 (0.82)
LRCX 17.04 (1.12) 20.20 (1.14) 16.81 (1.12) 21.08 (1.14) 17.36 (1.13) 21.80 (1.15)
MDLZ 11.92 (1.02) 14.20 (1.04) 12.66 (1.02) 14.97 (1.04) 12.74 (1.03) 14.40 (1.05)
MELI 13.90 (1.25) 15.20 (1.28) 14.42 (1.25) 15.72 (1.28) 15.14 (1.26) 17.00 (1.28)
MRK 27.74 (0.98) 34.20 (1.00) 28.33 (0.98) 34.96 (1.00) 29.38 (0.99) 36.40 (1.00)
MSFT 28.04 (0.81) 32.80 (0.83) 28.20 (0.81) 32.95 (0.83) 29.04 (0.82) 33.60 (0.83)
MU 36.30 (0.98) 36.60 (1.00) 34.86 (0.98) 35.87 (1.00) 35.06 (0.99) 36.40 (1.00)
NFLX 18.06 (1.39) 20.80 (1.42) 18.75 (1.39) 21.63 (1.42) 19.98 (1.40) 23.60 (1.42)
NVDA 16.64 (0.69) 18.00 (0.70) 16.96 (0.69) 18.48 (0.70) 16.82 (0.70) 19.00 (0.71)
PEP 13.78 (1.10) 18.40 (1.12) 13.52 (1.10) 18.12 (1.12) 14.42 (1.11) 18.80 (1.13)
QCOM 27.52 (0.77) 35.80 (0.78) 28.47 (0.77) 37.09 (0.78) 29.24 (0.77) 36.80 (0.79)
SBUX 38.26 (1.09) 41.40 (1.11) 37.05 (1.09) 39.84 (1.11) 37.94 (1.10) 39.60 (1.12)
T 18.06 (1.01) 20.40 (1.03) 17.10 (1.01) 19.65 (1.03) 17.92 (1.02) 20.60 (1.04)
TXN 11.22 (1.05) 12.40 (1.07) 11.66 (1.05) 12.72 (1.07) 12.16 (1.06) 13.40 (1.08)
UPS 15.54 (1.08) 16.20 (1.10) 16.38 (1.08) 17.37 (1.10) 18.84 (1.09) 19.20 (1.11)
V 24.46 (1.31) 29.60 (1.34) 25.15 (1.31) 29.47 (1.34) 25.90 (1.32) 29.80 (1.34)
VRTX 26.32 (1.19) 27.80 (1.21) 26.67 (1.19) 27.64 (1.21) 26.66 (1.20) 27.60 (1.22)
VZ 14.78 (0.93) 18.00 (0.95) 14.19 (0.93) 17.60 (0.95) 14.48 (0.94) 18.60 (0.96)
WFC 16.06 (1.05) 20.00 (1.07) 16.68 (1.05) 20.20 (1.07) 16.96 (1.06) 21.00 (1.08)
Avg. 21.40 (0.15) 24.82 (0.16) 21.55 (0.15) 24.85 (0.16) 22.34 (0.15) 25.47 (0.16)

Notes: The numbers displayed are in percentage of the half-spread (% Half-Spread). The numbers in parenthesis are standard errors.
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