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A B S T R A C T

Hydrogel is a nature scaffold that can degraded in animal body and can be used as a drug delivery system, we
hypothesized that patch made of three layers of hydrogel with different PLGA nanoparticle drugs (bio-patch) can
be used to decrease venous neointimal hyperplasia. Rat inferior vena cava (IVC) patch venoplasty model was
used. Samples from rat IVC direct suture (DS), decellularized thoracic artery patch (TA) venoplasty and bovine
pericardial patch (BPP) venoplasty were examined at day 14 after implantation. Sodium alginate and hyaluronic
acid (SA/HA) hydrogel was used, three layers hydrogel patch (control) and three layers hydrogel patch with PLGA
nanoparticle drugs (bio-patch) were used in rat IVC venoplasty. Patches were harvested at day 14 and analyzed. In
rats, TA and BPP patch showed a thicker neointima and adventitia compared to the DS, there were larger numbers
of CD68 and PCNA positive cells in both groups. The control hydrogel patch showed much thinner neointima and
adventitia compared to TA and BPP patches. In both of the neointima and peri-patch area, bio-patch showed
significantly fewer smooth muscle cells, fewer CD68, fewer PCNA positive cells, fewer collagen-1 positive cells,
fewer p-smad2 positive cells, fewer TNF-α positive cells compared to control hydrogel patch. Bio-patch made of
hydrogel and PLGA nanoparticle drugs showed a thinner neointimal thickness, and is biocompatible to the animal
body. These results showed the potential application of hydrogel patch in vascular surgery.
1. Introduction

Prosthetic vascular grafts like Dacron and expanded poly tetra fluo-
roethylene (ePTFE) have a lower patency rate in peripheral bypass sur-
geries [1,2]. Both grafts showed poor long-term patency rate when the
diameter is smaller than 6 mm [3]. In addition, biological graft like
cryopreserved allografts, bovine or porcine pericardium, are also
commonly developed as vascular grafts [4–6]. However, these materials
have a risk of infection, foreign body reaction as non-autologous mate-
rials, meanwhile they cannot be absorbed by the body, which limit their
application [7]. Along with the advancement of material science and
technologies, various of novel materials are emerging and under
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investigation in vascular surgery [8–10]. Decellularized fish swim
bladder also showed potential application as tube and patch grafts [3],
plant leaf can also be used a patch to repair rat inferior vena cava (IVC)
[11,12]. Great progress has been made in the field of vascular patches
recently, however, the big challenge of neointima formation still not be
solved [13,14].

In clinical and basic researches, various modifications of these ma-
terials have beenmade to enhance the performance of the grafts. Heparin
coated grafts and stents have been used in patients to prohibit acute
thrombosis formation [15,16], paclitaxel-or rapamycin-coated balloons
and stents have been widely used to decrease neointimal hyperplasia by
inhibiting neointimal smooth muscle cell proliferation [17]. We
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Fig. 1. Illustration showing the study design. (This illustration was designed by Professor. Hualong Bai).
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previously showed heparin coated human great saphenous vein patch
was with a decreased neointima thickness in rats [5], poly (lactic-co--
glycolic acid) (PLGA) nanoparticle rapamycin conjugated pericardial
patch can decrease neointimal thickness in a rat venoplasty model [13].
Cluster of differentiation 34 (CD34) antibody and heparin conjugated
alloy can promote reendothelialization and inhibiting platelet and
macrophage adhesion [18]. Beyond the modification of the grafts, novel
biomaterials were also developed and showed excellent results in clinical
trials [8,10,19]. Recently, wang et al. develop a self-adaptive liquid
gating membrane-based catheter with anticoagulation and positionally
drug release properties, they showed the multifunctional liquid gating
membrane-based catheter significantly attenuates blood clot formation
and can be used as a general catheter design strategy to offer various
drugs positionally releasing applications [20].

The healing process of vascular graft after implantation is a complex
event. After the implantation of artificial blood vessels or patches,
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inflammation is first induced, and since artificial blood vessels are not
covered by endothelial cell layer, platelet adhesion, aggregation and
thrombosis will be triggered, and some cytokines will be released due to
activated platelets. Moreover, the activation of inflammatory cells and
platelet leads to the release of cytokines, such as TNF-a and PDGF-BB,
which further activate the surrounding smooth muscle cells to promote
their proliferation and migration. Meanwhile, the activation of fibro-
blasts in the adventitia participates in the process of intimal hyperplasia
[21]. But traditional and current modifications of the grafts, treatment
protocols are only focused on one step in the process of neointimal hy-
perplasia, and there is still no experiment on vascular graft that can
release different drugs hierarchically; so a hierarchy treatment protocol is
needed to effectively inhibit neointimal hyperplasia.

Sodium alginate and hyaluronic acid (SA/HA) hydrogel has good
hydrophilicity and biocompatibility, it is a nature scaffold that can
degenerated in animal body and can be used as a drug delivery system



Table 1
Antibodies used in this experiment.

antibody vendor Lot number concentration

Primary antibody

α-actin abcam ab5694 IF/IHC:1:100
CD68 abcam ab31360 IF/IHC:1:100
CD3 Santa Cruz Sc-20047 IHC:1:200
COUP-TFII Abconal A10251 IHC:1:200
Eph-B4 Abconal A3293 IHC:1:200
PCNA Abcam ab29 IF/IHC:1:100
Cleaved caspase-3 Cell Signaling 9,661 IHC:1:100
dll-4 Abclone A12943 IHC:1:100
Ephrin-B2 Abclone A12961 IHC:1:100
CD34 abcam ab81289 IF:1:100
nestin abcam ab 11306 IF:1:100
vWF abcam ab11713 IF:1:100
Collagen-1 Abclonal A5786 IHC:1:200
p-smad2 Cell Signaling CS18338 IHC:1:200
TNFα Abcam Ab6671 IHC:1:200

Secondary antibody

HRP Goat anti-Rabbit Beyotime A0208 1:100
HRP Goat anti-Mouse Beyotime A0216 1:100
488 Goat anti-Mouse ABclonal AS073 1:200
CY3 Goat anti-Rabbit ABclonal AS007 1:200
488 Donkey anti-Rabbit ABclonal AS035 1:200
Rhodamine Donkey anti-goat ABclonal AS069 1:200
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[22]. Injectable hydrogel can be loaded with mesenchymal stem cells for
the treatment of traumatic brain injury [23], this hydrogel also showed
potential application in the repairing of cardiovascular diseases [24]. We
previously showed the hydrogel can deliver therapeutic agent to the
needle puncture site in rat artery and vein [25,26]. PLGA nanoparticles is
better than direct drug delivery due to cell response to nano effect, PLGA
rapamycin nanoparticle can release the drugs gradually and inhibit
neointimal hyperplasia more effectively than rapamycin alone [27];
hydrogel can also be used to deliver PLGA nanoparticle rapamycin in
plant derived patches [11].

Inspired by these previously researches, we hypothesized that patch
made of three layers of hydrogel with different PLGA nanoparticle drugs
Fig. 2. Fabrication and structure of control patch and bio-patch. A) Hydrogel with gr
compared with cover slide. B) Scanning electro-microscope (SEM) photograph showin
C) SEM photograph showing the poly (lactic-co-glycolic acid) (PLGA) nanoparticles.
lower row, high power; note the zoomed in photographs showing particles on the s

141
(bio-patch) can hierarchically release drugs to decrease venous neo-
intimal hyperplasia in a rat inferior vena cava patch venoplasty model.
The inner hydrogel layer with nanoparticle heparin and CD34 can pre-
vent acute thrombosis and attract endothelial progenitor cell (EPC), the
middle hydrogel layer with PLGA rapamycin and SB431542 can effec-
tively reduce proliferation and collagenization, and the outer hydrogel
layer with PLGA necrostain-1 can inhibit the effect of TNF-α.

2. Experimental section

2.1. Animal care

The study was approved by the First Affiliated Hospital of Zhengzhou
University, Animal Care and Use Committee. All animal care complied
with the Guide for the Care and Use of Laboratory Animals. NIH guide-
lines for the care and use of laboratory animals (NIH Publication #85-23
Rev. 1985) were observed. Male Sprague Dawley (SD) rats (6 to 8 weeks
old) were used for all the animal experiments, rats were anesthetized
with 10% chloral hydrate (intraperitoneal injection), and adequate
anesthesia was confirmed through a lack of reaction to a toe and tail
pinch; ointment on the eyes was placed to prevent dryness while the
animals were under anesthesia, and the ventral abdomen hair was
removed using a hair remover while wearing sterile gloves. For post-
operative analgesia, buprenorphine was given at 0.1 mg/kg intramus-
cularly no less than every 12 h for 24 h following the surgical procedures.
The status of the animal was checked every day in the animal room,
ensuring proper recovery from the peri-operative period as well as
adequate treatment of post-surgical pain.
2.2. Three layers of hydrogel patch with PLGA nanoparticle drugs (bio-
patch) fabrication

The PLGA nanoparticle was made as previously described [11,28].
Briefly, 100 mg PLGA were added into 1 ml ethyl acetate (EtAc), and let
the polymer dissolve overnight, 2 ml of 0.3% w/v D-α-Tocopherol
polyethylene glycol 1000 succinate (Vitamin E-TPGS) and 1 ml polymer
solution was mixed. Then the hardened nanoparticles were collected and
een, blue, and red color. Three layers of hydrogel with green, blue, and red color
g the cross section of the three layers of hydrogel patch, scale bar, 50 μm; n ¼ 3.
D) SEM photographs showing the control and bio-patch, upper row, low power;
urface of the bio-patch.



Fig. 3. Bio-patch decreases neointimal thickness compared to control three layers hydrogel patch. A) Photographs of three layers of hydrogel patch in IVC after
completion of the anastomoses; ruler marks 1 mm, yellow arrow showing the patch, black dotted line separating the control and bio-patch sample. Photographs of
control patch and bio-patch harvested at day 14, yellow arrow showing the patch, note the dark red color of the control patch compared to the transparent nano-patch,
ruler marks 1 mm. B) Hematoxylin & eosin (H&E) staining of the control patch and nano-patch at day 14, scale bar, 1 mm; n ¼ 3. C) High power photographs showing
the neointima (N), patch (P) and adventitia (A); L, lumen; arrows showing the hydrogel; arrow head showing the adventitial new formed capillaries; scale bar, 100 μm;
n ¼ 3. D) Bar graphs showing the neointimal thickness (*, p ¼ 0.0065, t-test), adventitia thickness (*, p ¼ 0.0205, t-test), cells infiltrated into the patch (*, p ¼ 0.0058,
t-test), adventitial new formed capillaries (*, p ¼ 0.0058, t-test); n ¼ 3.
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lyophilized for 72 h. Scanning electronic microscopy (SEM) was taken as
previously described [29]. CD34 antibody, heparin, rapamycin,
SB431542, Necrostation-1 were added in the process to make different
PLGA nanoparticles. The final concentrations of different drugs are:
rapamycin, 45 ug/mg PLGA; heparin, 45 ug/mg PLGA; CD34, 60 ug/mg
PLGA; SB431542, 60 ug/mg PLGA; Necrostation-1 60 ug/mg PLGA.

The hydrogel was made as we previously described [23,25]. Briefly,
sodium alginate and hyaluronic acid (SA/HA) were used to make a 1.5 wt
% SA/HA composite solution, and CaCl2 (10 wt%) was added to the
above solution to make hydrogel. The gel as trimmed into 3 mmx3 mm
patches, three layers of hydrogel was piled up together to make control
patch. For the bio-patch, the inner layer of hydrogel was mixed with
PLGA nanoparticle heparin (1 mg) and CD34 antibody (1mg), the middle
layer hydrogel was mixed with PLGA nanoparticle rapamycin (1 mg) and
SB431542 (1 mg); the outer layer was mixed with PLGA nanoparticle
Necrostation-1 (1 mg)(Fig. 1); scanning electronic microscopy (SEM) was
carried out as previously described [29]. For the hydrogel with colors,
green, blue and red color was added to the hydrogel.
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2.3. Rat IVC direct suture and patch venoplasty model

The rat IVC was exposed and a 3-mm venotomy was made [30], then
the IVC was closed directly using running 11-0 nylon sutures; the
abdomen was closed. The IVC was explanted at day 14 for analysis as
described below.

Rat IVC venoplasty model was used as previously described [13].
Briefly, the rat IVC was exposed and a 3-mm venotomy was made,
patches (3 mm x 3 mm) were sewn to the IVC using running 11-0 nylon
sutures; the patches include pericardial patch (BPP), decellularized
thoracic artery (d-TA) patch, three layers hydrogel patch (control),
bio-patch. Then the clamps were removed and the abdomen was closed
[13]. The patch was explanted at day 14 for analysis as described below.

2.4. Histology analysis

The rats were anesthetized, and tissues were fixed by transcardial
perfusion of PBS followed by 10% formalin. The samples were fixed,



Fig. 4. Bio-patch decreases neointimal thickness through the functions of the PLGA nanoparticle CD34 antibody, heparin, and rapamycin. A) Immunofluorescence
photograph stained for CD34 (red), nestin (green) and DAPI (blue) in the neointima and in the peri-patch area harvested at day 14; white arrowhead showing the
CD34 and nestin positive cells around the hydrogel in the bio-patch group, yellow arrowhead showing the CD34 and nestin positive neointimal endothelial cells in the
bio-patch group; N, neointima; L, luman; P, patch; scale bar, 100 μm; n ¼ 3. B) Bar graph showing the CD34 positive cells in the peri-patch area (*, t-test, p ¼ 0.0009)
and in the neointima (*, t-test, p ¼ 0.0278); bar graph showing the nestin positive cells in the peri-patch area (*, t-test, p ¼ 0.0001) and in the neointima (*, t-test, p ¼
0.0201). n ¼ 3. C) Immunohistochemistry photographs showing the neointimal stained for α-actin, CD68, PCNA and cleaved caspase-3; N, neointima; L, lumen; P,
patch; scale bar, 100 μm, n ¼ 3; black arrowhead showing the positive cells. D) Bar graphs showing the α-actin positive cells (*, p ¼ 0.0010, t-test), CD68 positive cells
(*, p ¼ 0.0019, t-test), PCNA positive cells (*, p ¼ 0.0066, t-test) and cleaved caspase-3 positive cells (*, p ¼ 0.0080, t-test) in the control patch and bio-patch; n ¼ 3.
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embedded in paraffin, sectioned (4-μm thickness). The tissue sections
were deparaffinized and stained with hematoxylin and eosin (H&E; Baso,
Zhuhai, China) according to the manufacturer’s recommendations.
2.5. Immunohistochemistry

The sections were heated in citric acid buffer (pH 6.0, Beyotime,
Shanghai, China) at 100 �C for 10 min for antigen retrieval and then
treated with 0.3% hydrogen peroxide for 30 min. Sections were incu-
bated overnight at 4 �C with primary antibodies (Table 1). After over-
night incubation, the sections were incubated with appropriate
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secondary antibodies (Table 1) for 1 h at room temperature and then
treated with a 3,3N-diaminobenzidine tetrahydrochloride (DAB) horse-
radish peroxidase color development kit (Beyotime, Shanghai, China) to
detect the reaction products. Finally, the sections were counterstained
with hematoxylin (Baso, Zhuhai, China). Positive cell numbers were
counted and blindly reviewed by three professional pathologists.
2.6. Immunofluorescence analysis

The sections were incubated overnight at 4 �C with primary anti-
bodies (Table 1) diluted in dilution buffer (Beyotime, Shanghai, China).



Fig. 5. Bio-patch decreases neointimal thickness through the functions of the PLGA nanoparticle SB431542 and necrostatin-1. A) Immunohistochemistry photographs
showing the neointimal stained for collagen-1, p-smad2, TNF α and CD3; N, neointima; L, lumen; P, patch; scale bar, 100 μm, n ¼ 3; black arrowhead showing the
positive cells. B) Bar graphs showing the collagen-1 positive cells (*, p ¼ 0.0029, t-test), p-smad2 positive cells (*, p ¼ 0.0057, t-test), TNF α positive cells (*, p ¼
0.0040, t-test) and CD3 positive cells (*, p ¼ 0.0060, t-test) in the control patch and bio-patch; n ¼ 3.
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The sections were incubated with secondary antibodies (Table 1) for 1 h
at room temperature, after which the sections were stained with the
fluorescent dye DAPI (Solarbio, Beijing, China) to mark cellular nuclei.
Positive cell numbers were counted and blindly reviewed by three pro-
fessional pathologists.

2.7. Statistical analysis

The data are expressed as the mean � SEM. Statistical significance
was determined by ANOVA and t-tests. P-values less than 0.05 were
considered significant. The data were analyzed using Prism 6.0 software
(GraphPad Software; La Jolla, CA, USA).

3. Result

We firstly compared the difference of the healing process of direct
suture (DS) of rat IVC, decellularized thoracic aorta (TA) patch veno-
plasty and bovine pericardial (BPP) patch venoplasty in rat, there was a
very thin neointima and adventitia in the DS group (Supplementary
Figs. 1A and 1B); in the TA and BPP patch venoplasty groups, there were
a thick neointima and adventitia compared to the DS (Supplementary
Figs. 1A and 1B); there were also more α-actin positive cell, CD68 posi-
tive cells, PCNA positive cells in the neointima, inside the patch and in
the adventitia compared to DS group (Supplementary Fig. 1C). There
were few cells were cleaved caspase-3 positive in the neointima, inside
the patch and in the new formed adventitia in these three groups (Sup-
plementary Fig. 1C). These results showed that patch material can in-
fluence the neointimal thickness after patch venoplasty.

Hydrogel has multifunctional roles in biomedical research, when
combined with other materials, they have been used as vascular graft
[31,32]; we also showed a biomimetic elastin fiber hydrogel patch can
be used to repair rat aorta [33]. But there was still no research on
whether the pure SA/HA hydrogel can be used as a vascular patch. So
we constructed three layers hydrogel patches to see if they can be
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loaded with PLGA nanoparticle drugs in different layers and implanted
as a patch (Fig. 1). Firstly, we stained the hydrogel with green, blue,
and red colors, there was no mix of colors between two layers
(Fig. 2A). The size of the patch was 3x3mm, the thickness of three
layers patch was 150 μm (Fig. 2A). SEM photograph showed that the
three layers hydrogel patch was smooth with interspace between layers
(Fig. 2B). The PLGA nanoparticles were with similar diameters
(Fig. 2C). We then fabricated bio-patch with PLGA nanoparticle hep-
arin and CD34 antibodies in the inner layer, PLGA nanoparticle rapa-
mycin and SB431542 in the middle layer, PLGA nanoparticle
necrostation-1 in the outer layer (Fig. 1). SEM photographs showed
the smooth surface of the control patches, but there were particles on
the surface of the bio-patch surface (Fig. 2D).

Then we implanted the patches to the rat IVC, both control patch and
bio-patch were transparent after implantation. The bio-patch showed
much more transparent with fewer mural thrombus than the control
hydrogel patch at day 14 (Fig. 3A). In the control patch, H&E staining
showed almost half of hydrogel was absorbed (Fig. 3B, 3C). There was a
significantly thinner neointima and adventitia in the bio-patch group
compared to the control group (Fig. 3C, 3D). There were fewer cells
migrated into the interspaces (Fig. 3C, 3D), and fewer newly formed
capillaries in the bio-patch compared to the control patch in the adven-
titia (Fig. 3C, 3D). The newly formed tissue kept the original shape and
did not collapse even after the hydrogel degraded (Fig. 3).

In both the control and bio-patch groups, there were CD34 and nestin
positive cells in the peri-patch area and neointima, but there were more
CD34 and nestin positive cells in the bio-patch group compared to the
control group (Fig. 4A, 4B). In the neointima, there were fewer α-actin
positive cells, fewer CD68 positive cells, fewer PCNA positive cells, fewer
cleaved caspase-3 positive cells in the bio-patch group compared to the
control group (Fig. 4C, 4D). There were fewer collagen-1 positive cells,
fewer p-smad2 positive cells, fewer TNF α positive cells, fewer CD3
positive cells in the bio-patch group compared to the control patch group
(Fig. 5A, 5B). Immunohistochemistry showed the neointimal endothelial



Fig. 6. Bio-patch functions on the peri-patch area. A) Immunohistochemistry photographs showing the neointimal stained for α-actin, CD68, PCNA and cleaved
caspase-3; P, patch; scale bar, 100 μm, n ¼ 3; black arrowhead showing the positive cells. B) Immunohistochemistry photographs showing the neointimal stained for
collagen-1, p-smad2, TNF α and CD3; P, patch; scale bar, 100 μm, n ¼ 3; black arrowhead showing the positive cells.
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cells expressed venous identity markers Eph-B4 and COUP-TF II in both
groups (Supplementary Fig. 2).

In the peri-patch area, there were also fewer α-actin positive cells and
CD68 positive cells, fewer PCNA positive cells and cleaved caspase-3
positive cells, fewer collagen-1 positive cells and p-smad2 positive
cells, fewer TNF α positive cells and CD3 positive cells in the bio-patch
group compared to the control patch group (Fig. 6A, 6B). In the newly
formed adventitia, there were also fewer α-actin positive cells and CD68
positive cells, fewer PCNA positive cells and cleaved caspase-3 positive
cells, fewer collagen-1 positive cells and p-smad2 positive cells, fewer
TNF α positive cells and CD3 positive cells in the bio-patch group
compared to the control patch group (Supplementary Fig. 3).

4. Discussion

In this research, we showed that SA/HA hydrogel can be used as a
patch in a rat inferior vena cava (IVC) venoplasty model, three layers of
hydrogel patch with PLGA nanoparticle drugs (bio-patch) can release
drugs in a hierarchy fashion and inhibit venous neointima hyperplasia,
this research showed the potential clinical application of bio-patch in
vascular surgery in the future.

Because of the slow blood flow in the venous system, acute throm-
bosis and lumen occlusion occur from 45% to 100% in 24 to 72 h after
venous interventions in clinic [34,35], there is still no perfect solution to
solve these complications. We previously showed mural thrombus,
discontinuous of neointimal endothelial cells, disorganized smooth
muscle cells, macrophage cells in the neointima of human spiral saphe-
nous vein graft implanted into popliteal vein [36]; together with our
145
experience of healing process of rat IVC patch venoplasty [5,13,37]; we
found that acute mural thrombus formation, incomplete of neointimal
endothelial progenitor cell accumulation, proliferation of neointimal
cells, macrophages migration all contributed to the venous neointimal
formation and hyperplasia. However, current commonly used treatment
methods are always focusing on anticoagulation and antiproliferation,
although these techniques contributed a better clinical outcome, but
long-term results are still not satisfactory [38]. Therefore, a compre-
hensive method to decrease venous neointimal hyperplasia is needed.

The healing process after patch venoplasty is similar to other vein
interventions [13,39]. Neointimal rapid reendothelialization is critical to
prohibit further thrombus formation and decrease neointimal hyperpla-
sia, so to decrease the acute thrombus formation and promote early
reendothelialization are the first step to enhance graft patency rate. We
showed PLGA nanoparticle heparin in the inner layer of the patch can
decrease acute thrombus accumulation like we showed before [5], the
CD34 antibody nanoparticles in the inner layer can also attract more
endothelial progenitor cells to the luminal neointimal surface and
peri-patch area; similar results have been showed in other researches [40,
41]. Smooth muscle cells and macrophages play important roles in
neointimal hyperplasia, our group found one third smooth muscle cells
(SMC) and half macrophages were proliferating cell nuclear antigen
(PCNA) or Ki67 positive at day 7 after rat IVC patch venoplasty [13].
which means SMCs and macrophages were in a proliferation state and
should be the target of treatment [13,37]. We also found collagens
deposited in the neointima and adventitia at day 30, this collagen
deposition also contributed to the thick neointima and adventitia [13]; so
inhibiting neointimal collagen deposition is also a target to decrease the
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neointimal hyperplasia [42,43]. The finding of macrophages in the
hydrogel patch is like other patches [44,45]. Macrophages play an
important role in the foreign body reaction [46], depletion of macro-
phages can decrease neointimal thickness [47,48]. TNF-α excreted from
macrophages is an important factor to induce foreign body reaction [49,
50], we used TNF α inhibitor necrostatin-1 to alleviate the effect of TNF α
and showed a much thinner adventitia and weaker foreign body reaction.
Macrophages may also play a role in the hydrogel absorption and
degradation.

To find better vascular grafts is the dream of both the vascular sur-
geons and scientists. Nature vessels have three layers of structures, in-
tima, medium and adventitia; so fabrication of different layers vascular
graft has attracted more and more attention [51–53]. Hu et al. designed
and fabricated a triple-layered vascular scaffold, the results demonstrated
that human umbilical vein endothelial cells can successfully attach to the
surface of the graft and maintain high viability [54]. We previously
showed hydrogel can be used to deliver cells, antibody and drugs [11,24,
25]. This bio-patch not only has three layers, but also has different PLGA
nanoparticle drugs in each layer to inhibit neointimal hyperplasia, the
different drugs can release in a hierarchy fashion along with the degra-
dation process, and the PLGA nanoparticle can also make the drug de-
livery more effective. There are still no well-defined sequential phases in
the neointimal formation and hyperplasia, different phases are always
overlapped, the hierarchy release of different drugs in the bio-patch is
also not in a strictly sequential fashion; future researches on the different
sequential phases in the neointimal hyperplasia is needed. Recent re-
searches on drug release have developed rapidly, gold nanoparticles
(AuNPs) have been widely applied in the biomedical field due to their
tunable localized surface plasmon resonance (LSPR) properties, versatile
surface modifiability, and favorable biocompatibility [55]. Future
research using other drug carriers should also be tested in this bio-patch.

5. Conclusion

In conclusion, we showed a novel idea to fabricate a three layers
vascular patch with different PLGA nanoparticle drugs (bio-patch), this
bio-patch can effectively decrease neointimal hyperplasia in a rat IVC
venoplasty model; this research showed that the bio-patch may be a
potential substitute of other prosthetic patches in vascular surgery.
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