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Abstract
Quantum-inspired artificial neural network is an interesting research area, which combines quantum computing and deep
learning. Several models of quantum-inspired neuron with real-valued weights have been proposed, and they were mainly used
to build the three-layer feedforward neural networks. In this work, we improve the convolutional neural networks (CNNs) by
utilizing the quantum-inspired way of data representation and convolutional operation. Specifically, we first improve the
quantum-inspired neuron by exploiting the complex-valued weights, which have richer representational capacity and better
non-linearity. Moreover, we extend the method implementing the quantum-inspired neurons to perform convolutional opera-
tions, and naturally draw the models of quantum-inspired convolutional neural networks (QICNNs) capable of processing high-
dimensional data. Here five specific types of QICNNs are proposed, which are different in the way of implementing the
convolutional layers and fully connected layers. We establish the detail mathematical framework to implement the QICNNs.
The performances of accuracy, convergence and robustness of the five QICNNs against the classical counterpart are tested using
the MNIST and CIFAR-10 datasets. The results show that (1) the QICNN can achieve higher classification accuracy (up to
99.65%) than the classical CNNwhen using the MNIST dataset; (2) the QICNN has faster convergence speed, which means that
QICNN can be trained easily than classical CNN when they have a similar number of parameters; (3) the QICNN has better
robustness in the case of employing different way of weight initialization or rotating the input data. It is expected that our
QICNNs can outperform the classical counterparts in more practical learning tasks.
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1 Introduction

In the past few years, the field of quantum computing has
witnessed many breakthroughs in both quantum processors
[1, 2] and quantum algorithms [3–5]. Quantum computing
performs information processing in a quantum mechanical
way, that is, encoding the data into an exponentially large
Hilbert space and manipulating this data space in a parallel
way, which result into the exponential improvements of data
representation power and computational power. On the other

hand, deep learning is the art of making computers learn how
to solve problems based on huge amounts of data, and now
faces challenges of storage and computational resources. It is
therefore only natural to ask if and how they could be com-
bined to add something new to how machines recognize pat-
terns in data.

At present, algorithm researches at the junction of quantum
computing and deep learning focus on two active directions.
One is to search for the real quantum algorithms [3]; such
algorithms harness the unique properties of quantum mechan-
ics, including the quantum superposition and entanglement, to
encode and process data. The other direction is to develop the
so-called quantum-inspired algorithms [6–19]; such algo-
rithms borrow the basic ideas and formalism of quantum com-
puting, such as the way of data representation and complex
operations, to improve the existing classical algorithms or
even find new algorithms. The salient difference between
the two realms of algorithms is that the first kind of algorithms
run on the quantum computers, while the second one run on
the conventional computers.
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Quantum-inspired techniques have been applied in various
disciplines to improve the classical algorithms, such as artifi-
cial intelligence, signal processing and image processing
[6–19]. Among them, quantum-inspired neural networks
(QINNs) have received increasing amount of attentions
[13–19]. Starting from the first model of QINN proposed by
Kak in 1995 [13], a long series of QINN models and relative
learning methods have been developed [14–23], including the
recently proposed quantum probability-inspired graph neural
network [20], quantum behaved particle swarm optimization
method [21] and multiple kernel k-means algorithm [22].
More remarkably, quantum-inspired techniques have been
employed in the neuromorphic computing giving rise to the
quantum superposition inspired spiking neural network (QS-
SNN) [23]. The QS-SNN encodes the classical input data by
harnessing the basic idea of quantum superposition, which can
express richer data information. In more general terms, it is
intriguing to combine the quantum computing and
neuromorphic computing because they are deemed two prom-
ising avenues to build the future of AI. The neuromorphic
computing is biologically inspired [24, 25], and the quantum
computing is quantum-mechanically inspired. The combina-
tion between them necessarily leave us much to exploit in
future, for example, to combine the spiking neural networks
(SNNs) [26–28] with the quantum convolutional neural net-
works (QCNNs) [29].

Here we focus on the topic of quantum-inspired
convolutional neural networks. For now, the existing
quantum-inspired neural networks are mainly simple three-
layer feedforward networks, and they all use the quantum-
inspired neurons with real-valued weights. However, on the
one hand, quantum computing intrinsically manipulates com-
plex weights, namely the complex probability amplitude. That
is, the computing process in quantum computing can be rep-
resented by U(∑iαi| i〉) = ∑jβj ∣ j〉, where U is a complex
unitary matrix, and αi and βj are the complex column vectors.
Therefore, it is a natural idea to use complex-valued weights
in the quantum-inspired neurons. On the other hand, the ben-
efits of using the complex weights in deep learning have been
argued recently and the complex-valued deep neural networks
were proposed [30]. Complex parameters have richer repre-
sentational capacity; complex networks have the potential to
enable easier optimization, better generalization characteris-
tics, faster learning and to allow for noise-robust memory
mechanisms [30]. Here we, in fact, propose an instantiation
of complex neural networks by exploiting the quantum-
inspired techniques.

In the present work, we first develop the quantum-inspired
neurons with complex-valued weights. Then we find that the
method of implementing the quantum-inspired neurons can be
extended straightforwardly to implement convolutional oper-
ations with complex-valued weights. Indeed, implementing

one neuron is in fact to calculate the inner product between
the data vector and parameter vector, while the convolutional
operation can also be seen as the inner product between the
data vector (adapted from the data matrix) and kernel vector
(adapted from the convolution kernel matrix). Having the
quantum-inspired neurons and convolutional operations, we
can naturally build the quantum-inspired convolutional neural
networks (QICNNs). In general, the quantum-inspired neu-
rons are employed in the fully connected layers and the
quantum-inspired convolutional operations in the
convolutional layers.

Conventional CNNs has been widely used in deep learning
[31–34], while as far as we know the present QICNNs are the
first complex-valued CNN models utilizing the quantum-
inspired way of data representation and convolutional opera-
tion. Specifically, in QICNNs, the real input space is first
mapped to the complex feature space, and then the parameters
are searched in the feature space using the operations adapted
from the quantum computing. The present QICNNs are ex-
pected to be powerful in learning the complex pattern existed
in the high-dimensional raw data.

This paper is organized as follows. In Section 2, we de-
scribe the improved quantum-inspired neuron with complex-
valued weights, and the approach to extend it to the
convolutional operations. Section 3 presents five types of
QICNNs with different structures in the convolutional and
fully connected layers. In Section 4, the performances of our
QICNNs, including the classification accuracy, convergence
and robustness, are tested using the MNIST and CIFAR-10
dataset. Finally, conclusions are given in Section 5.

2 Quantum-inspired neuron
and convolutional operation

2.1 An improved quantum-inspired neuron

In quantum computing, a qubit is implemented using a two-
level quantum system. Its state can be described mathemati-
cally by a two-dimensional complex Hilbert space. From the
quantum principle of state superposition, an arbitrary one-
qubit state can be written as |φ > =α|0 > +β|1 > with α
and β being the probability amplitude of the computational
basis |0 > and |1>, respectively. The amplitudes α and β are
complex numbers and satisfy the normalization condition, i.e.
|α|2 + |β|2 = 1. Considering the normalization constraint, the
state can be rewritten as

jφ〉 ¼ eiγ cosθj0〉þ eiφsinθj1〉
� �

; ð1Þ

where γ, θ and φ are real numbers, and the factor eiγ and eiφ is
the global and relative phase, respectively. Now we ignore the
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phase information in Eq. (1) and combine the magnitude in-
formation as a complex number, and then we obtain a qubit-
inspired representation of input data,

f θð Þ ¼ eiθ ¼ cosθþ isinθ: ð2Þ

Next, we discuss how to operate the data represented as Eq.
(2). As it is well known, a single-qubit state corresponds to a
point on the surface of Bloch sphere with the coordinate (θ,
φ); and the evolution of single-qubit state can be taken as a
rotation of the vector on the Bloch sphere [35]. Here, Eq. (2)
corresponds to a ring on the surface of Bloch sphere, and
operating the data of Eq. (2) corresponds to the rotation along
latitude direction. Thus, the data of Eq. (2) can be operated
using a similar way as quantum state evolution,

U � f θ0ð Þ ¼ U � cos θ0ð Þ þ isin θ0ð Þð Þ
¼ cos θþ θ0ð Þ þ isin θþ θ0ð Þ: ð3Þ

Note that, here the operation U can be itself expressed as a
complex number, that is U = f(θ) = eiθ, so

U � f θ0ð Þ ¼ eiθ � eiθ0 ¼ ei θþθ0ð Þ. P a r t i c u l a r l y , u s i n g

θ
0 ¼ π

2 δ−θ, we can define an operation similar to CNOT gate
as follows,

f
π
2
δ−θ

� �
¼ cosθ−isinθ δ ¼ 0ð Þ

sinθþ icosθ δ ¼ 1ð Þ
�

ð4Þ

When δ = 0, the data remains unchanged if we ignore the
change of the phase information, while when δ = 1, the real
and imaginary part interchange (corresponding to the bit flip
in Eq. (1)).

So far we have defined the quantum inspired data represen-
tations and operations. Based on these we can obtain a typical
model of quantum-inspired neuron as shown in Fig. 1a. In the
previous works, the weights ui are taken as real numbers be-
cause it is convenient to be implemented in the commonly
used framework of machine learning. Now we improve the

quantum-inspired neuron by directly using complex weights
as shown Fig. 1b. The output of the improved quantum-
inspired neuron is

S2 ¼ f θð Þ; ð5Þ
with

θ ¼ π
2
−arg Σð Þ; ð6Þ

Σ ¼ ∑
N

n¼1
f unð Þ f π

2
xn

� �
− f bð Þ: ð7Þ

In the equations, f(·) represents the function as defined in
Eq.(2); arg(·) is to calculate the argument of a complex num-
ber; {x1,…xN}are the inputs which are real numbers.We have
performed several numerical experiments and find that the
fully connected network with complex-valued weights indeed
performs better than that with real weights. So below we will
employ the improved quantum-inspired neuron to construct
the convolutional neural networks.

2.2 Quantum-inspired convolutional operation

In general, the convolutional neural network (CNN) is com-
prised of two main parts, namely the convolutional layers and
the fully connected layers. The quantum-inspired neurons can
be employed to build the fully connected layers. Moreover, a
similar way can be used to perform the complex convolutional
operation as depicted in Fig. 2. The input pixel and the
convolutional kernel are first transformed into complex space
(using Eq. (2)), and then the multiplication between them is
just like the process of weighted summation as shown in Fig.
1b. After the convolutional operation (namely a rotation op-
eration as shown in Eq. (3), a NOT operation is added as it is
done in the quantum-inspired neurons.

Fig. 1 The structure of the common quantum-inspired neuron with real valued weights (a), and the improved quantum-inspired neuron with complex
weights (b). The weights{u1, u2…uN}are real numbers. The module Σ represents weighted summation operation
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Now that we have developed the models of quantum-
inspired neutron and quantum-inspired convolutional op-
eration, we can naturally construct the quantum-inspired
convolutional neural networks (QICNNs) by combining
them. However, since most present machine learning
frameworks are based on real-valued representations and
operations, we first need to adapt the complex-valued
neutron and convolutional operations to be implemented
conveniently on the common frameworks. The approach
is as follows.

As shown in Eq. (2) and (3), both the data and operation
can be expressed as a complex number. A complex number z
= a + ib has a real component a and an imaginary component
b. The basic idea is that the real part and imaginary part are
represented as logically distinct two real-valued entities and
perform complex arithmetic using real-valued arithmetic in-
ternally [30]. For example, given a typical real-valued input
data with m channels, we transform them to complex-valued
channels as shown in Fig. 1. After separating the real and
imaginary part of the complex features, the original m chan-
nels are expanded to 2 m, of which the first m ones are allo-
cated to represent the real components and the remaining m
the imaginary ones.

Next, the convolutional operations on the complex values
are performed based on the multiplication principle of com-
plex numbers. Specifically, the data can be expressed as x =
xreal + iximagwith xreal and ximag being the real matrices of two
channels, and the complex filter matrix is W = wreal + iwimag

with wreal and wimag being the real matrices to be learned.
Then the convolutional operation is implemented as follows,

W*x ¼ wreal*xreal−wimag*ximag
� �
þ i wimag*xreal þ wreal*ximag

� �
: ð8Þ

According to the computational procedure in Fig. 2, the
quantum-inspired convolutional operation is realized in the
way as shown in Fig. 3.

In summary, the quantum-inspired convolutional operation
is implemented through the following five steps:

(I) Transform the input data and filter parameters to com-
plex ones using Eq. (2), i.e. x0↦ f(x0) x0↦ f(w0). Then we have
x = xreal + iximag and w = wreal + iwimag.

(II) Perform the complex-valued convolutional operation
using the formula x ∗ w = (xreal ∗ wreal − ximag ∗ wimag) + i(x-
real ∗ wimag + ximag ∗ wreal).

(III) Calculate the phase using arg υð Þ ¼ arctan xreal*wimagþximag*wreal

xreal*wreal−ximag*wimag

� �
.

(IV) Perform an NOT operation, namely θ ¼ π
2 −arg υð Þ.

(V) Compute the output using y = f(θ) and output = |Im(y)|2.
Note that the convolutional operation in (II) represents a

rotation operation on each input data, while step (IV) is a
global NOT operation on the sum of all the input data.

3 The architecture of quantum-inspired
convolutional neural networks

In order to have a reference to benchmark the QICNNs, we
take a classical CNN [31–34] as the template to build the
QICNNs. The classical template CNN is adapted from the

Fig. 2 The quantum-inspired method of implementing the convolutional operations used to construct convolutional neural networks
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LeNet-5 model, which is widely used for image recognition of
handwritten digit and English letter. In general, the template
CNN consists of three convolution blocks and two fully con-
nected layers, where each convolution block includes a
convolutional layer, a ReLu layer and a pooling layer.
Figure 4a shows the implementing details of the template
CNN.

The straightforward way to build the QICNNs is that em-
ploy the quantum-inspired neuron in the fully connected
layers and employ the quantum-inspired convolutional opera-
tion in the convolutional layer. Moreover, we find that
employing the two quantum-inspired techniques as shown in
Fig. 4b in different stages of the template CNN will have a
great influence on the performance of the resulted QICNNs.

Fig. 3 The mathematical details of implementing the quantum-inspired convolution operations with complex-valued weights
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Here, we exploit five types of QICNNs obtained by embed-
ding the quantum-inspired techniques in the template CNN in
the way as shown in Fig. 4c.

More specifically, the first QICNN is called I1_QICNN for
its first convolutional layer uses the quantum-inspired
convolutional operation and the others are the classical ones.
Accordingly, it is easy to understand the structures of
I2_QICNN and I3_QICNN. The first three models are also
called I_QICNN because they use only the quantum-inspired
convolutional operation. The fourth one is called II_QICNN
because it uses the quantum-inspired neuron in the fully con-
nected layers. The last one called F_QICNN is the full quan-
tum case where both the quantum-inspired convolutional op-
eration and neuron are used. Below we present the mathemat-
ical details of implementing the QICNNs.

3.1 Mathematical details of implementing I_QICNN

We take the model of I3_QICNN as an example to describe
the mathematical details of the I_QICNN algorithms. It goes
through the following computational steps.

(1) Input layer. In this layer, the input matrix is rescaled
into the range [0, 1], and then multiplied by π/2 to get the
phase values into the range [0, π/2]. The output of the input
layer is as follows,

xinput1 ¼ π
2
xdata ð9Þ

xreal ¼ cos xinput1
� �

; ximag ¼ sin xinput1
� � ð10Þ

(2) Convolutional layer 1. This is the first convolutional
layer in which a quantum-inspired convolutional operation is
used. The real and imaginary part of the convolutional kernel
matrix are obtained by wreal1 = cos(w0), wimag1 = sin(w0). It is
the same for the bias term, i.e. breal1 = cos(b0), bimag1 = sin(b0).
Then the convolutional operation is performed as follows,

yc1 real ¼ conv xreal;wreal1ð Þ−conv ximag;wimag1
� �

−breal1
yc1 imag ¼ conv ximag;wreal1

� �þ conv xreal;wimag1
� �

−bimag1
ð11Þ

In order to perform the controlled NOT operation as shown

in Fig. 3, we calculate the angle using arg1 υð Þ ¼ arctan
yc1 imag

yc1 real

� �
.

The output is yc 1 ¼ f π
2 −arg1 υð Þ� �

.
(3) ReLu layer 1. The ReLu function is used as the activa-

tion function, i.e. yrelu1 _ real = Re LU(yc _ 1 _ real), yrelu1 _ imag =
Re LU(yc _ 1 _ imag).

(4) Pooling layer 1. The pooling is the down-sampling
(sub-sampling) process. It can reduce the amount of data to
be processed without loss of useful information. Maximum
pooling is used here, namely ypool1 _ real = max pool(y-
relu1 _ real) and ypool1 _ imag = max pool(yrelu1 _ imag).

(5 ~ 7) The second convolutional layer. The above steps of
(2), (3) and (4) are repeated for Convolutional layer 2, ReLu
layer 2 and Pooling layer 2.

(8 ~ 10) The third convolutional layer. Since the following
fully connected layer after this third convolutional layer is
based on real values, the imaginary part of the output of
Convolutional layer 3 is remained as the input of ReLu layer
3. That is, after the complex-valued convolutional operation

(namely Eqs. (5) (7)), the angle is arg3 υð Þ ¼ arctan
yc3 imag

yc3 real

� �
,

then the output is yc 3 ¼ Im f π
2 −arg3 υð Þ� �� ��� ��2. The opera-

tions for ReLu layer 3 and Pooling layer 3 are the same as
above.

(11) Fully connected layer 1. The role of the fully connect-
ed layer is mainly to achieve classification. This layer uses the
real-valued classical neuron. First, the weighted summation is
done, that is yf1 = ypool3 ∗ wf1 + bf1, where ypool3 is the output
of the Pooling layer 3; wf1 the connection weights between
convolutional layer 3 and fully connected layer 1; bf1 the
threshold of the fully connected layer 1. Then the ReLu func-
tion is performed, i.e. yf1 _ relu = relu(yf1).

(12) Output layer. The output of the network is youtput = yf1
_ relu ∗w0 + b0 withw0 being the weight of the output layer and
b0 being the threshold of the output layer.

3.2 Mathematical details of implementing II_QICNN

The type of II_QICNN is the network that uses classical
convolutional operation in the convolutional layers and uses
the improved quantum-inspired neurons in the fully connected
layers. For the II_QICNN, the first three convolutional-ReLu-
pooling operations are the same as the classical ones. The
computational procedures of the fully connected layers is im-
plemented as follows.

(1) Input layer. The input data is transformed into complex
space with phase values in the range [0, π/2]. That is
xinput ¼ π

2 ypool3 and yinput = f(xinput) with ypool3 being the output
of the third Pooling operation.

(2) Fully connected layer 1. According to Eqs. (5)–(7), the
output of this layer is calculated as υ1 = f(w1)yinput − f(b1), θ1
¼ π

2 −arg υ1ð Þ and youtput1 = f(θ1). The parameter w1 is the
connection weight matrix between the Pooling layer and the
fully connected layer 1, and b1 is the threshold vector of the
fully connected layer 1.

(4) Fully connected layer 2. This layer is the output layer.
The output is slightly different from that of fully connected
layer 1. The output is calculated by υ2 = f(w2)youtput1 −
f (b2) ,θ2 ¼ π

2 −arg υ2ð Þ, you tpu t2 = f (θ2) and you tpu t =
|Im(youtput2)|

2. The parameter w2 is the connection weight ma-
trix between fully connected layer 1 and fully connected layer
2; b1 is the threshold vector of the fully connected layer 2; y-
output is the final output of II_QICNN.
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4 Experimental results

In order to test the performance of the present QICNNs against
the template CNN, we evaluate all the networks using the
MNIST and CIFAR-10 classification dataset. MNIST is a
dataset used for recognition of handwritten digits with figures
from 0 to 9 [36]. CIFAR-10 is a dataset used for object detec-
tion, which is labeled a subset of 800 million tiny images [37].
Both MNIST and CIFAR-10 datasets contain 50,000 training
images and 10,000 testing images. Below we first show the
performances of convergence rate and classification accuracy
of the QICNNs, and then discuss the robustness of the
networks.

4.1 Convergence and accuracy

The training process of the five QICNNs as well as the tem-
plate CNN are shown in Fig. 5. In general, the convergence
performance of the QICNNs depends on both the structure of
QICNNs and the dataset processed. For the MINIST dataset,
the type of II_QICNN has the fastest rate of convergence,
which is remarkably better than the template CNN.
However, for the CIFAR-10 dataset, the performance of tem-
plate CNN is slightly better than II_QICNN. That is, the
QICNNs can achieve better performance for specific prob-
lems. In addition, it can be seen that employing the
quantum-inspired neurons in the fully connected layers can
produce better performance than employing the quantum-
inspired convolutional operations in the convolutional layers.

The performance of classification accuracy of the five
QICNNs are shown in Fig. 6. Similarly, the accuracy perfor-
mance of the QICNNs depends on both the specific structure
of QICNNs and the dataset processed. For the MINIST
dataset, the model of II_QICNN has the maximum classifica-
tion accuracy (achieving 0.9965), which is remarkably better
than the template CNN (namely 0.9950). For the CIFAR-10
dataset, the accuracy of the template CNN is slightly better
than II_QICNN. As before, employing the quantum-inspired

neurons in the fully connected layers results into better perfor-
mance than employing the quantum-inspired convolutional
operations in the convolutional layers. Moreover, by compar-
ing the accuracy of the three I_QICNN networks, it seems that
the more quantum-inspired convolutional operations are used,
the lower the accuracy is. This may due to the fact that more
quantum-inspired operations result into a larger feature space
which is harder to train. We leave the detail explorations of
this phenomena for the future work.

4.2 Robustness

We further explore the robustness of the QICNNs. Here we
focus on the II_QICNN networks because it has the best per-
formance both in the convergent rate and classification accu-
racy. The robustness of the networks is verified using the
MNIST dataset from two aspects, that is, (1) employing dif-
ferent weight initializations and (2) rotating the input data to
different degrees. Three ways of weight initialization are used,

which are (1) MSRA as wMSRA∼G 0;
ffiffiffiffiffiffiffiffiffiffiffiffi
2=Fin

ph i
(namely the

He initialization), (2) truncated normal distribution as wTND ∼
N ( 0 , 0 . 1 ) , ( 3 ) r andom un i f o rm d i s t r i bu t i on a s

wRUD∼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
6=Fin

p
;

ffiffiffiffiffiffiffiffiffiffiffiffi
6=Fin

ph i
with Fin being the number of

input neurons. As can be seen from Tables 1 and 2, the
II_QICNN network is generally more robust than the template
CNN. It is expected that the QICNNs can maintain better
performance characteristics even when it is disturbed.

According to the above numerical experiment results, we
can see that the QICNN can indeed perform better than the
classical CNN with respect to classification accuracy, conver-
gent rate and robustness. Here we remark that the presented
improvements of QICNN depend on the specific structure of
the networks and the dataset it processes. Particularly, the
more usages of quantum-inspired convolutional operations
in the network do not always result into better performance,
or even make it worse. Therefore, in principle, the complex-
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Fig. 5 The loss curves of training
the five QICNNs as well as the
classical template CNN using the
dataset of MNIST (a) and
CIFAR-10 (b)
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valued data representation and convolutional operations
borrowed from quantum computing can bring about larger
data encoding space and faster search of data space; but, in
practice, in order to pick out an efficient QICNN model much
numerical experiments should be performed based on the spe-
cific dataset of the learning task. In addition, it is worth men-
tioning that the quantum-inspired method of data representa-
tion and convolutional operation proposed in this work (i.e.
Eq. (2) and Eqs. (5 ~ 7) respectively) can also be applied as
subroutines in other image processing algorithms, such as
image segmentation [38] and target extraction [39]. This is
possible because data encoding and convolutional operations
are the basic components of these algorithms. The broader
combination would give rise to more efficient algorithms.

5 Conclusions

In the present work, we improve the quantum-inspired neu-
rons by exploiting the complex-valued weights to have richer
representational capacity and better non-linearity. Then the
basic idea of quantum-inspired neuron is extended naturally
to perform the complex-valued convolutional operations. By
employing the quantum-inspired neurons in the fully connect-
ed layers and/or the convolutional operations in the

convolutional layers, we develop five types of quantum-
inspired convolutional neuron networks (QICNNs). The detail
mathematical framework to implement the QICNNs are de-
veloped, which can be executed based on the common real-
valued framework of machine learning. The performances of
the five QICNNs are studied using theMNIST and CIFAR-10
dataset. The results show that the QICNN using the quantum-
inspired neuron in the fully connected layers has the best per-
formance. The performance of classification accuracy, con-
vergent rate and robustness is remarkably higher than the clas-
sical template CNN.

In the future, we will first optimize the QICNNs by improv-
ing the mathematical methods of implementing the complex-
valued deep neural networks. We deem that more advantages
of QICNNs can be revealed if we use a specialized learning
framework that supports complex-valued parameters and op-
erations. Secondly, we will find more learning tasks that
QICNNs can outperform the classical CNNs, which are essen-
tial for the further applications of QICNNs. Finally, it is ap-
parent, in principle, the quantum-inspired technologies pro-
posed in this work can be used to implement other kinds of
neural network, such as the SNN. We will study the way of
applying the quantum-inspired technologies in the digital
neuromorphic computing [24–28] to produce more inspiring
algorithms.
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Fig. 6 The classification accuracy of the five QICNNs as well as the classical template CNN using the dataset of MNIST (a) and CIFAR-10 (b)

Table 1 Classification accuracy on MNIST with different weight
initializations

II_QICNN template CNN

MSRA 99.61% 99.46%

Truncated normal distribution 99.65% 99.50%

Random uniform distribution 99.33% 99.38%

Table 2 Classification
accuracy on MNIST
when rotating the input
data with different angles

II_QICNN template CNN

0o 99.38% 99.30%

-15o~15o 99.65% 99.50%

-30o~30o 99.24% 99.30%
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