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ABSTRACT
Remote sensing provides crucial support for building damage
assessment in the wake of hurricanes. This article proposes a
coupled deep learning-based model for damage assessment that
leverages a large very high-resolution satellite images dataset and
a flexibility of building footprint source. Convolutional Neural
Networks were used to generate building footprints from pre-hur-
ricane satellite imagery and conduct a classification of incurred
damage. We emphasize the advantages of multiclass classification
in comparison with traditional binary classification of damage and
propose resolving dataset imbalances due to unequal damage
impact distribution with a focal loss function. We also investigate
differences between relying on learned features using a deep
learning approach for damage classification versus a commonly
used shallow machine learning classifier, Support Vector
Machines, that requires manual feature engineering. The pro-
posed model leads to an 86.3% overall accuracy of damage classi-
fication for a case event of Hurricane Michael and an 11% overall
accuracy improvement from the Support Vector Machines classi-
fier, suggesting better applicability of such an open-source deep
learning-based workflow in disaster management and recovery.
Furthermore, the findings can be integrated into emergency
response frameworks for automated damage assessment and pri-
oritization of relief efforts.
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1. Introduction

Hurricanes have been the most expensive type of disaster in the USA (CRED 2019)
and historically deathliest, continuing to drive the importance of improving techni-
ques to assess post-hurricane urban damage. The process of such damage assessment
involves detection, classification, and evaluation of disaster damage to an economy
and society on local, county, state, or tribal levels (FEMA 2016). Remote sensing ana-
lysis has proved to be indispensable in aiding these assessment efforts (Adams et al.
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2009; Waharte and Trigoni 2010; Stow et al. 2015). In particular, the Federal
Emergency Management Agency (FEMA) relies on remote sensing analysis to rapidly
assess a large-scale impact and monitor areas that cannot be effectively accessed on
the ground. The timeliness, accuracy, and semantic information of such remote sens-
ing analysis results are of key interest (Stow et al. 2015).

This paper focuses on damage assessment to buildings, which are of particular
importance for distributing individual assistance to impacted households and busi-
nesses. In the past, assessment methods in remote sensing literature relied on pixel-
based scene analysis to compare pre- and post-disaster images pixel-by-pixel with
low-level, handcrafted visual features. For example, Yamazaki (2001) used color indi-
ces and edge intensity, variance, and direction uniformity to identify pixels within
ranges of pre-determined threshold values as damaged buildings. Another study by
Pesaresi et al. (2007) developed a method for rapid detection of built-up area damage
with multiple criteria and fuzzy logic using pre- and post-disaster imagery. Overall,
such pixel-based scene analysis is sensitive to small spurious changes (Chen et al.
2012) and produce inconsistent and lower accuracy change detection results (Gong
et al. 2008). With an increasing availability of very high-resolution imagery (VHR)
that allows for delineation of individual objects of interest, more recent damage
assessment studies have been utilizing object-based and deep learning segmentation
approaches (Li et al. 2018; Vetrivel et al. 2018; Gupta and Shah 2021; Liu et al. 2021).
The assessment workflow in these studies is typically conducted in two stages: delin-
eation of building footprints from pre-event scenes, and classification of post-event
damage on an individual building scale.

The first task of damage assessment is building detection. Authoritative building
footprint maps are not always readily available to emergency management agencies
across the world (Mwange et al. 2018; Putra et al. 2019) or need to be frequently
updated, necessitating the need for an automatic delineation of the building footprint.
Deep learning-based building segmentation techniques have been gaining popularity
over object-based analysis in remote sensing literature due to their ability to extract
representations from big volumes of training data (Goldberg et al. 2017; Van Etten
et al. 2018; Lu et al. 2019; Su et al. 2020; GFDRR Labs 2020), as well as increase
delineation accuracy through a transfer of knowledge from the natural images to a
medium to high resolution imagery (de Lima and Marfurt 2019). Compared to the
traditional remote sensing methods that rely on hand-crafted features, deep learning
has an architecture of many stacked modules with many parameters that are capable
of learning very complex functions describing the data. Therefore, predictability of
these deep models generally improves with an increase of training data sets volume
(Zhong et al. 2019).

The second task of damage assessment workflow involves binary or multi-label
classification of damage for individual building objects. Here, deep learning classifica-
tion techniques have also shown to be more effective (Vetrivel et al. 2018) In addition
to avoiding feature engineering, it provides flexibility of pattern exploration to derive
more meaning from images (Li et al. 2018). Classifying change due to disasters in
image time series is challenging due to the lack of their definitions and highly
dynamic nature of events (Karpatne et al. 2019), which the architecture of deep

GEOMATICS, NATURAL HAZARDS AND RISK 415



learning models can address better compared to the conventional shallow techniques
that are limited in learning vast semantic representations (Cheng et al. 2017). A com-
mon challenge for deep learning-based methods is an unbalanced class distribution
that leads to poor classification rates for underrepresented classes. This problem is
especially relevant in damage assessment studies due to an uneven hurricane damage
distribution. For example, a recent study by Liu et al. (2021) reported in the case of
unbalanced samples, their damage classification model achieved lower producer
accuracy by 57–62% for the most underrepresented class than the most common
classes. Other deep learning-based damage assessment studies reported similar find-
ings (Doshi et al. 2018; Endo et al. 2018) but did not explicitly address the problem
of class imbalance in the study design. Another challenge often cited for deep learn-
ing is the need for high-volume and variety datasets of labeled imagery (Ball et al.
2017), which has been recently addressed with an increasing number of publicly
available datasets specific to the task of hurricane building damage assessment (Choe
et al. 2018; Gupta et al. 2019). More case studies utilizing such large-scale datasets are
needed to be established, as it was observed that fine-tuning global models with
regional samples relevant to the studied geographic area improves accuracy (Vetrivel
et al. 2018; Hu and Tang 2021).

This study proposes a coupled disaster damage assessment workflow based on two
CNNs for building delineation and multi-degree damage classification. A coupled
nature of our models provides flexibility to emergency managers to supply an
authoritative building footprint map and forgo the first delineation model. The mod-
els are trained with a publicly available labeled dataset of VHR satellite imagery for
building damage assessment to examine a case study of Category 4 Hurricane
Michael in 2018 (Gupta et al. 2019). The architecture of a CNN for a second stage of
damage assessment, classification, provides for multi-label prediction output and
addresses a class imbalance problem with a focal loss function. Proposed methods
were implemented using Python programming language with TensorFlow, Keras,
Numpy and Sklearn as core libraries. We also investigate the performance of our
damage classification model in comparison with a traditionally deployed Support
Vector Machines (SVM) model that relies on a careful selection of low-level, hand-
crafted features. Section 2 in the remainder of this paper overviews the study event,
dataset and introduces the research methodology. Section 3 provides the results and
performance metrics, and Section 4 discusses the results, implications, limitations, as
well as potential future research directions of this study. The conclusions are pre-
sented in Section 5.

2. Methodology

2.1. Study area and data

The study area is located in the state of Florida, the United States of America, which
was struck by Hurricane Michael in 2018. Michael originated in the Gulf of Mexico
on October 6th, 2018, shifted in the path near the coast of Florida, and started dissi-
pating farther inland on October 16th, 2018 (National Weather Service 2019).
According to a report by (Beven et al. 2019), large storm surge heights were recorded
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along the Florida Panhandle coast, as well as hurricane-force winds and heavy rains.
The hurricane left major destruction across its path through Florida Panhandle and spe-
cifically, Bay County. The research study area includes heavily struck Bay County and
parts of neighboring Calhoun, Gulf, Washington, Leon, and Holmes counties. Overall,
NOAA National Centers for Environmental Information estimated the total damage to
the U.S.A. economy from Hurricane Michael to equal $25 billion, out of which $18.4 bil-
lion occurred in Florida and $3 billion on Tyndall Air Force Base near Panama City.

We obtained labeled satellite images for the study area from the xBD dataset
(Gupta et al. 2019). The xBD is a unique large-scale compilation of VHR RGB satel-
lite imagery for building damage assessment, consisting of pre-event building poly-
gons and their post-event damage levels for 19 varying types of disasters caused by
natural hazards across the world. For our study area and event, the imagery was
acquired by GeoEye-1 and WorldView-2 satellites on available cloud-free days in

Figure 1. Building footprint map for Hurricane Michael. Source: Esri, Maxar, GeoEye, Earthstar
Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, HERE, Garmin, FAO, NOAA , #
OpenStreetMap contributors, and the GIS User Community
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October or November 2017 for the pre-event dataset. The post-event imagery was
obtained on cloud-free days directly after the hurricane impact, predominantly on
October 13, 2018. All satellite images were calibrated and registered by the provider.

Within our study area, the dataset includes 22,686 delineated and labeled building
footprint polygons (Figure 1). The dataset does not include polygons for buildings under
construction and severely obstructed by vegetation or cloud cover. The xBD dataset relies
on a Joint Risk Scale as a simplified method of classifying damage to buildings across
many geographical regions and due to various natural hazards. This unified approach to
measure damage improves the ability to reproduce the analysis in a fast manner across
various datasets (Gupta et al. 2019). Table 1 describes a labeling classification scheme
adopted by the authors in the data annotation. Post-event imagery was used to provide
damage class labels. Majority of the buildings within our study area are labeled as
undamaged, making the distribution of labeling classes highly skewed. Minor and major
degrees of damage make the second and third most represented classes, respectively. A
small fraction of building polygons is labeled as destroyed, and 232 unclassified polygons,
or 1% of total, were not considered in our model training process.

2.2. Building footprint segmentation

We use CNNs as a basis for the building footprint segmentation and damage classifi-
cation steps. The first step leverages a U-Net deep learning architecture. U-Net is a
popular choice for a variety of semantic segmentation tasks that are based on natural
images, as well as VHR (Pasquali et al. 2019; Yi et al. 2019). A U-Net is also a base-
line model for the building segmentation challenge accompanying the xBD dataset
(Gupta et al. 2019).

Table 1. Damage degree classification scheme.

After-event sample image Building damage level Qualitative description
Total counts within

study area

Undamaged No visible change in the
rooftop; walls
are intact.

14,588

Minor damage Partial (<50%) damage to
the rooftop; missing
several tiles; some
debris around the
structure might
be present.

5207

Major damage Partial (>50%) damage to
the rooftop; some
debris around the
structure is present;
damage to walls (if
visible); some collapse.

1902

Destroyed Collapsed, no visible
walls standing.

757
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Figure 2 depicts architecture schematics of the U-Net model used in our study. It
is built upon a convolutional network and resembles a U-shape asymmetric architec-
ture to ensure the output image size is the same as an input. The downsampling path
on the left side encodes an image into feature representations at various levels and
decreases the grid size. The upsampling path on the right side is a decoder that
increases the grid size and semantically projects these learned discriminative features
into the actual pixel space of the output image, thereby recognizing each pixel as
belonging to one class with its neighboring pixels (Ronneberger et al. 2015).

The input of the model consists of pre-event image chips in the size of 400� 400
pixels and their building masks. We split the dataset into training, validation, and
testing sets in the ratio of 60%–20%–20% and monitored the accuracy of validation
to fine-tune the model parameters in the training process. Several data augmentation
techniques were applied to the dataset to increase representativeness and diversity of
data. In particular, these techniques included flipping, random cropping, and random
color distortion (brightness, contrast, saturation, hue). The model outputs a mask,
with pixels grouped into two categories: building and non-building categories.

2.3. Damage classification

The second step aims to conduct a change type classification due to a hurricane
impact. A modified version of a ResNet CNN architecture is proposed, as shown in
Figure 3 (He et al. 2016). A ResNet50 model consists of a fifty-layer CNN that learns
residual functions during each step of propagation with reference to the input layer.
The model is pre-trained on a large dataset of natural images, ImageNet (Deng et al.
2009) to improve the learning of low-level features. Previous research has also shown
that transfer learning from such pre-trained NNs for RGB high-resolution imagery

Figure 2. U-Net model architecture for the building footprint segmentation problem.
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leads to higher accuracies than training from the scratch (de Lima and Marfurt
2019). Our pre-trained ResNet-50 model is combined with a smaller-sized network
with random initial weights, consisting of three convolutional layers and three fully
connected layers. A dropout technique is introduced in the fully connected layers to
minimize overfitting and improve model generalization.

Data augmentation is another important step to enrich representativeness in the
case of limited dataset size. It artificially increases the dataset size to improve the abil-
ity of our model to generalize onto new, unseen, input images. There are various
techniques for augmentation, such as scaling, rotating, blurring, shifting, etc., as well
as combining simulated images of objects with satellite images to improve dataset
quality (Yan et al. 2019). We applied four main techniques to the training dataset:
width and height shifting, rescaling, vertical and horizontal flipping, zooming, and
brightness adjustment.

The model input to our ResNet model constitutes a damage label for each building
in the dataset and a corresponding post-event imagery. A challenge arising is how to
crop this imagery to an extent of individual buildings. The optimal crop size is an
important factor influenced by the physical size of buildings, sensor resolution, noise
and needs to consider background information. For example, Cao and Choe 2020)
considered window crop sizes of 128� 128, 64� 64, 400� 400, and 32� 32 for dam-
age detection using similar WorldView satellite images during Hurricane Harvey.
After visually examining the physical sizes of buildings in the study area, as well as a
wind-related nature of damage without flooding, we decided to choose an optimal
64� 64 crop size with several additions. Cropped input images, or image chips, are
centered at each post-event building, scaled to fit the 64� 64 crop window size, and
extended to include a surrounding area by 30%, thereby introducing an element of

Figure 3. Architecture of the damage classification model.
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spatial neighboring. The network learns the relationship between pixels of each image
chip in the input (layer 1 in Figure 3) through operations (layer 2–12) and assigns a
damage degree label d¼ 0,1,2,3 to an image chip as an output (layer 13).

Labeled post-event images are split into training, testing, and validation as
60%–20%–20%. Validation accuracy and loss are evaluated in the process of training
to fine-tune model parameters.

It is important to address an extreme class imbalance that are outlined in Table 1.
A class imbalance is typical in these damage classification problems. Johnson and
Khoshgoftaar (2019) overviewed several ways to address class imbalance problems in
deep learning, citing algorithm-level methods as standard approaches to modify the
loss function to assign higher weights based on the inverse class frequency to under-
represented classes. For instance, major damage and destroyed classes within our
study area are the least represented. We utilize one of such loss functions in training
our model whilst addressing a class imbalance problem called a focal loss (Lin et al.
2017). It is a modified cross-entropy loss function that reduces the influence of easily
classified examples on the loss and is defined as

FL ptð Þ ¼ �at 1� ptð ÞclogðptÞ (1)

pt ¼
p, if y ¼ 1

1�p, otherwise

(
(2)

where p is an estimated probability, y is a class label, a 2 [0, 1] is a weighting factor,
1� ptð Þ is a modulating factor, c is a focusing parameter. The focusing parameter
helps to downweigh easy, well-represented examples. The weighting factor balances
loss based on class distribution between most rare and common labels. The modulat-
ing factor decreases contribution from easy examples and makes it more important to
correct misclassifications. These hyperparameters for focal loss can be determined
experimentally or set to recommended. Lin et al. (2017) concluded that c¼ 2 and
a¼ 0.25 were most suitable for an object detection task. Nemoto et al. (2018) classi-
fied building change from VHR images using a CNN model architecture and a focal
loss function. The multi-class focal loss with c¼ 2 performed best, while c¼ 0 did
not address the class imbalance, and c¼ 5 stagnated the learning process. Based on
these findings, we set c¼ 2 as a default focusing parameter and the weighting factor,
a, to inverse class frequencies.

2.4. Comparison of deep vs. shallow learning-based damage classification

The deep learning-based CNN damage classification model is further compared in
performance to a shallow machine learning model. This allows comparing a trad-
itional method for object classification used in remote sensing with a more novel
deep learning-based technique. SVMs is a technique for supervised linear and non-
linear data classification that performs well with heterogeneous classes given a few
training samples. It is often implemented in remote sensing for damage assessment
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(Jiang and Friedland 2016; Tu et al. 2016; Wieland et al. 2016) to distinguish between
several damage degree levels.

Textural, structural, and spectral features derived for each building sample from
post-event images constitute an input to train a supervised SVM model that predicts
four damage degree classes according to the labeled building footprint, as previously
shown in Table 1. First, we derive structural features through a variogram. It is a
function that describes the covariance structure of a studied spatial process, given as

c hð Þ ¼ 1

2N hð Þ
Xn

i¼1
z xið Þ � zðxi þ h
� �� �2 (3)

Table 2. Structural, textural, and spectral indices input to SVM classifier.
Features Parameter Equation Description

Structural
(Balaguer
et al. 2010)

RSF RVF ¼ c2=c1 Ratio of semivariance values. Short
distance variability, where ci is a
variogram at lag i

FDO FDO ¼ c2�c1=h First derivative near origin. Short
distance variability change

SDT SDT ¼ c4�2c3þc2
h2 Second derivative at third lag.

Describes how concave or
convex the variogram will be at
short distances

FML FML ¼ cmax1 Value of first maximum lag. Image
granularity for monotone
variograms. It depends on the
relationship between structure
sizes and their separation

MFM MFM ¼ cmean
max1 ¼ 1

max1

Pmax1
i¼1 ci Means up to First Maximum.

Change in variability in the data.
It is influenced by the concave
or convex intervals in
the variogram

VFM VFM ¼ 1
max1

Pmax1
i¼1 ci � cmean

max1

� �2 Variance up to first maximum.
Variance between the first value
and the first maximum of
a variogram

DMF DMF ¼ MFM � ci Difference between MFM and the
semivariance at the first lag.

RMM RMM ¼ cmax1 =cmean
max1

Ratio between an MFM and a
variogram at the first
local maximum

AFM AFM ¼ h
2 c1 þ 2

Pmax1�1
i¼2 ci

� �
þ cmax1

� �
� c1 hmax1 � h1ð Þð Þ

Area between value at first lag and
up to first maximum. Describes
curvature of a variogram

Textural Energy
P

i

P
j pði, jÞ� 	2

Quantifies local uniformity
Entropy �P

i

P
j p i, jð Þlogðp i, jð ÞÞ Degree of a disorder. It is high

when all GLCM elements
are equal

Correlation

P
i

P
j
ijð Þp i, jð Þ�lxly
rxry

Measure of linear dependence
between grey levels in GLCM

Contrast
PNg�1

n¼0 n2
PNg

i¼1

PNg

j¼1 p i, jð Þ
n o

, i� jj j Variation from the i grey level to
the j grey level for (x,y)
neighboring pixels

Spectral Red band �X red
255

Mean of pixel values (p) for each
spectral band, normalized

Green band
�X green

255

Blue band
�X blue
255

422 P. BEREZINA AND D. LIU



where h is a lag distance, N is the number of observation pairs for a given lag, z(x)
and z(xiþh) are pixel values at respective locations. Since a variogram allows the
measurement of an autocorrelation degree and representative structural information,
it proved to be useful in satellite imagery analysis. Balaguer et al. (2010) suggested 14
parameters to characterize the variogram behavior at hand. Another study by (Wu et
al., 2015) further concluded that out of those parameters 11 are significant for urban
land cover classification via the principal component analysis. Therefore, the choice
of parameters in this project is guided by those findings as well as representativeness
due to some of the parameters being highly correlated. Nine parameters listed in
Table 2 were chosen to be implemented for feature extraction. Empirical variograms
and their indices were estimated for gray-scale images.

Textural features are further obtained based on a grey-level co-occurrence matrix
(GLCM). GLCM is defined over a grayscale image, measuring the joint probability of
occurrence of pixel pairs and representing a relationship between pairs separated by a
given distance in certain directions (Haralick et al. 1973). Probabilities to transition
from the i grey level to the j grey level for (x,y) neighboring pixels are defined by a
transition vector d(a, b) in the following equation:

Pd i, jð Þ ¼ PðI x, yð Þ ¼ i, I x þ a, yþ bð Þ ¼ j (4)

where I is the digital image, P is a probability matrix. GLCM-based texture analysis has
been traditionally used in remote sensing to construct handcrafted features (Huang et al.
2014). We derived mean and variance values of four foundational texture features using
the GLCM matrix: energy, entropy, correlation, and contrast (Table 2). Finally, in add-
ition to the structural and textural features as an input to the SVM model, we derived
spectral features using the signature means of each spectral band.

2.5. Accuracy assessment

We conducted an evaluation and comparison using the following metrics to measure
the performance of our coupled damage assessment models. The basis of calculations
is found in a confusion matrix in Table 3. Precision indicates how accurate the pre-
dictions are, while a recall represents a portion of correct predictions for a class to all
instances in that class (Eqs. 5 and 6, respectively). The overall accuracy, provided in
Eq. (7), indicates a proportion of all correct predictions to a total number of predic-
tions, or instances. The F1 score, formulated in Eq. 8, considers both recall and preci-
sion values, thereby providing a more useful evaluation of model performance. It

Table 3. Confusion matrix for binary classification.

Confusion matrix

Model prediction

Yes (1) No (0)

Actual label Yes (1) tp
True Positive

fn
False Negative

No (0) fp
False Positive

tn
True Negative
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describes how precise and robust the classifier is, with the best score of one meaning
perfect recall and precision values.

Additionally, we used the Intersection over Union (IoU) score to evaluate building
semantic segmentation results (Eq. 9). The IoU evaluates how similar is the bounding
box of prediction to the bounding box of ground truth, with values larger than 0.5
indicating an overall good score.

precision ¼ tp
tp þ fp

(5)

recall ¼ tp
tp þ fn

(6)

accuracy ¼ tp þ tn
tp þ tn þ fp þ fn

(7)

F1 ¼ 2 � precision � recall
precisionþ recall

(8)

IoU ¼ truth \ pred
truth [ pred

(9)

3. Results

3.1. Building footprint segmentation

The model was trained for 140 epochs on one Nvidia Tesla P100 graphics processing
unit (GPU) computing processor with 16GB memory. A batch size of 16 and a learn-
ing rate of 0.001 were used. Weights of the network were initialized with random
numbers and further updated using a first-order gradient descent-based optimization
algorithm Adam (Kingma and Ba 2015), where the error estimate is the basis to mod-
ify the weights. The learning rate, batch size, and a particular optimizer were adjusted
in the process of monitoring validation accuracy.

The model is converging over the epochs with small fluctuations, indicating an
overall good choice for the learning rate and batch size hyper-parameters. Table 4

Table 4. Performance metrics of the segmentation model on the test dataset.
Evaluation metrics Values

IoU Other 0.949
Building 0.561

Mean IoU 0.755
Pixel accuracy 0.952
Class accuracy Other 0.974

Building 0.718
Mean class accuracy 0.846
Confusion matrix tn¼78400713 fp¼2108100

fn¼2136868 tp¼5434703
Precision 0.720
Recall 0.718
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shows the testing results of a trained U-Net segmentation model. It achieved an
84.6% overall accuracy, with a building IoU score of 0.611, precision of 0.785, and
recall of 0.734.

3.2. Damage classification

The network was trained for 125 epochs on the same Nvidia Tesla P100 GPU with a
batch size of 32 and a learning rate of 0.0001. b1 of 0.9 and b2 of 0.999 were used as
recommended parameters for the Adam optimizer. These hyperparameters were
adjusted to the given optimal values in the process of monitoring validation accuracy
to improve the model’s performance.

Table 5 shows an excellent rate of prediction for the buildings in the undamaged
class. The model successfully identifies presence of no damage after hurricane with
an F1 score of 0.954. Minor damage has a lower F1 score of 0.742 and a good preci-
sion rate of 0.825, which indicates a lower rate of false positive predictions in this
class. Major damage and destroyed classes follow with relatively lower F1 scores and
precision rates in the model. Table 5 also reflects a comparison of our CNN damage
classification model to a shallow learning algorithm SVM with hand-crafted features.
The SVM overall performed inferior to our proposed model, with an overall accuracy
of 75.3% compared to the 86.3% of the CNN. In particular, structural features pro-
vided interesting insights into the nature of damage characterization, where damaged
and non-damaged objects had different empirical variograms. Non-damaged buildings
have homogeneous spatial patterns at close distances and a smooth decrease in vari-
ance at large distances, whereas damaged buildings are more heterogeneous and can
be characterized by two or more local maxima.

Figure 4 illustrates damage assessment for three different localities within the study
area. Pre- and post-event scenes acquired by the Worldview satellite are provided in
Figure 4(a,b). Figure 4(c) shows manually delineated buildings and their annotated
classes from the xBD training dataset. Figures 4(d,e) show segmented buildings using
our U-Net model with their predicted damage classes from the CNN and SVM mod-
els, respectively. Overall, the segmented buildings closely match in location to the
annotated examples and show smoothed object edges. The misclassification rate is
pronounced within minor and major damage classes, however, almost all annotated
undamaged buildings are correctly identified in the CNN model output as undam-
aged, showing a higher recall rate. The SVM predictions are overall less accurate and

Table 5. Overall performance of the proposed CNN and SVM damage classification models.

Model Damage class Precision Recall F1
Overall
Accuracy

Overall
Precision

Overall
Recall Overall F1

SVM Undamaged 0.932 0.804 0.863 0.753 0.603 0.696 0.635
Minor damage 0.615 0.661 0.637
Major damage 0.384 0.653 0.483
Destroyed 0.481 0.665 0.558

CNN Undamaged 0.943 0.965 0.954 0.863 0.737 0.762 0.744
Minor damage 0.825 0.675 0.742
Major damage 0.520 0.689 0.593
Destroyed 0.658 0.719 0.687
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show discrepancy from the annotated labels especially in areas of varying color
and debris.

4. Discussion

Responding to disasters requires prompt coordination of rescue efforts and damage
assessment. Recently, more attention is brought to studying how this task can be
achieved with a deep learning-based workflow and leveraging an increasing availabil-
ity of labeled big datasets of satellite imagery. However, a gap in understanding the
advantages and disadvantages of such workflows, particularly compared to conven-
tional shallow learning-based approaches, as well as deployment implications in real-
life emergency situations, requires further studying.

Here, we propose a damage assessment tool from a VHR imagery dataset, xBD,
consisting of two complimentary CNN models that delineate building footprints and
conduct multi-label classification. One promising application of this tool in emer-
gency management would be during the response stage by providing fine-scale nadir
damage degree proxies. During the recovery and relief stages, these quantitative dam-
age proxies can be utilized in conjunction with more qualitative approaches, such as
door-to-door assessments, to decide what is the overall damage and how it impacts
individuals and communities.

Our results show overall high accuracies for damage presence identification (Table
5) and lend support to previous findings in the literate that utilized deep learning

Figure 4. Visual evaluation of the coupled damage assessment model at three localities. (a) Pre-
event images, (b) post-event images, (c) annotated buildings and damage classes from the training
dataset, (d) segmented buildings with CNN output classes, (e) segmented buildings with SVM out-
put classes. Color legend: blue – undamaged, yellow – minor damage, orange – major damage,
red – destroyed buildings.
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models in methodology design (Xu et al. 2019; Cao and Choe 2020; Gupta and Shah
2021; Valentijn et al. 2020). Unlike other arhitectures that conducted a binary classifi-
cation of disaster damage (Cooner et al. 2016; Cao and Choe 2020), our approach
offers more insightful predictions of multi-class damage in first response situations
and is enabled by the availability of xBD big data. Whilst other research proposed a
streamlined modeling approach of damage, such as Gupta and Shah (2021), Xu et al.
(2019), ours stresses an advantage of a de-coupled approach to the concept of disaster
damage assessment. If the situation necessitates a usage of existing authoritative
building footprint map, OpenStreetMap or city parcel maps, emergency management
authorities can effectively separate the architecture into two separate workflows and
increase overall damage accuracy by only conducting the de-coupled damage classifi-
cation workflow.

The first model we developed aims to delineate pre-disaster building footprint and
belongs to the class of semantic segmentation models, which recognize objects of the
same category as one entity. There are several potential sources of error. First, seman-
tic segmentation can lead to some building masks contacting and merging into one
another. This can be aided through the implementation of instance segmentation,
which is more challenging as the output building masks must not contact (Su et al.
2020). An example of such an improved architecture can be an addition of two chan-
nels of building outline labels and contact points between buildings to the model
input, alongside ground truth building masks. Second, the segmentation model strug-
gles to distinguish buildings in close proximity to trees. This is a common disadvan-
tage of using optical remote sensing without fusion with other data sources, such as
radar data. Additionally, the model can struggle to distinguish entryways and roads
in close proximity to buildings due to similar reflectance of rooftop materials. It is
expected that introducing more input bands to the training process would enhance
the segmentation accuracy.

We then propose to use these segmentation results in lieu of an official building
footprint map as an input to the damage classification model. It is important to note
owing to a coupled model, if emergency responders and appropriate institutions
already possess an accurate georeferenced footprint of building within an impacted
area, they can utilize it in place of our segmentation model as the ground-truth data.
Our modified ResNet for damage classification has shown a significant overall accur-
acy of 86.3%. The model performance for minor and major damage classification was
slightly disappointing compared to the damage presence identification. Such results
can be explained by the semantical and visual similarity of these two classes and fur-
ther corroborated by similar multi-label classification experiments (Gupta and Shah
2021; Liu et al. 2021). Furthermore, per-class and overall classification accuracy are
expected to increase with an expansion of a training dataset to include other hurri-
cane events besides Michael and fine-tuning the model before deployment using a
small set of samples from a corresponding disaster event.

When comparing the CNN-based damage assessment approach to the shallow
SVM approach, it is clear that the latter underperforms across all performance met-
rics. This finding can be explained by a deep learning architecture that is capable of
learning very complex functions describing the data and increased predictability with
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larger training data sets. The process of designing input features to the SVM classifier
shows that varied styles of buildings and surrounding vegetation might make it diffi-
cult to establish a unified building category solely based on variograms, necessitating
the addition of Haralick texture and spectral features. The SVM struggles to distin-
guish between minor and major damage, suggesting again that the problem of cor-
rectly identifying these two classes is likely caused by their similarity and is common
across all studied algorithms.

Overall, our results for Hurricane Michael are promising, and future work will
concentrate on establishing the generalizability of the model on unseen events and
geographic areas. Another direction for future research will include evaluation of
model uncertainty and improvements in the segmentation model architecture, as sug-
gested earlier. An interesting area to investigate would be a hybrid approach to dam-
age classification that relies on both hand-crafted and learned features in deep
learning, such as proposed in this research textural and structural features (Hu and
Zheng 2019). Improvements to the building localization approach will be explored in
the future work, in particular, utilizing models based on a pyramid structure to
improve segmentation of multi-scale buildings in cities (Liu et al. 2021). Another
challenge is posed by data limitation due to cloud cover in optical imagery and can
be overcome by further addressing multi-source remote sensing specifically for large-
scale and VHR applications like urban damage assessment.

5. Conclusions

In this study, we proposed a damage assessment workflow from VHR big data
imagery, xBD, consisting of two CNNs that delineate building footprints and classify
hurricane-incurred damage into four categories: un-damaged, lightly damaged,
severely damaged, and destroyed buildings. The coupled model allows users to utilize
an existing building footprint, unlike unified models. Another key contribution of
this study was addressing a class imbalance problem in the xBD dataset with a focal
loss function. We examined a case study of Hurricane Michael in 2018 around the
Panama City metropolitan area, where our proposed models achieved an overall
accuracy of 84.6% for building footprint segmentation and 86.3% for damage classifi-
cation tasks. The model successfully identified undamaged buildings with an F1-score
of 95.4% and predicts three damage classes (minor, major damage, and destroyed)
with 59.3%, 68.7%, and 74.2% F1-score, respectively. An output of this model
presents a probability vector of each building belonging to damage classes, thus, cre-
ating an opportunity for emergency management and first responders to set a higher
or lower threshold for alerting about a hurricane damage presence. Considering the
importance of this topic for decision-making and funding distribution, further experi-
mental studies are needed to determine the transferability of this model to other geo-
graphic areas and the viability of introducing non-remote sensing geospatial data into
the assessment model, such as social media data, FEMA insurance payouts, human
mobility datasets, etc. While this work considered modeling of rapid hurricane dam-
age assessment of buildings, investigating the applicational requirements of such
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model deployment in specific emergency response agencies can form another import-
ant avenue for future research.
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