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Abstract
Purpose – This paper aims to save time spent on manufacturing the data set and make the intelligent grasping system easy to deploy into a
practical industrial environment. Due to the accuracy and robustness of the convolutional neural network, the success rate of the gripping operation
reached a high level.
Design/Methodology/Approach – The proposed system comprises two diverse kinds of convolutional neuron network (CNN) algorithms used in
different stages and a binocular eye-in-hand system on the end effector, which detects the position and orientation of workpiece. Both algorithms
are trained by the data sets containing images and annotations, which are generated automatically by the proposed method.
Findings – The approach can be successfully applied to standard position-controlled robots common in the industry. The algorithm performs
excellently in terms of elapsed time. Procession of a 256� 256 image spends less than 0.1 s without relying on high-performance GPUs. The
approach is validated in a series of grasping experiments. This method frees workers from monotonous work and improves factory productivity.
Originality/Value – The authors propose a novel neural network whose performance is tested to be excellent. Moreover, experimental results
demonstrate that the proposed second level is extraordinary robust subject to environmental variations. The data sets are generated automatically
which saves time spent on manufacturing the data set and makes the intelligent grasping system easy to deploy into a practical industrial
environment. Due to the accuracy and robustness of the convolutional neural network, the success rate of the gripping operation reached a high
level.
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1. Introduction

With the development of digital manufacturing technology, the
component assembly production based on industrial robots
becomes increasingly efficient (Yang et al., 2016). For assembly
production, industrial robots free workers from monotonous,
duplication work. Nevertheless, for most industrial robots, if
there is a small-scale change, the industry must redesign work
process and programming, which will greatly affect the
economic benefits of the plant. Therefore, a smart system with
forceful adaptability is particularly essential (Qiao et al., 2014).
The object detection algorithm is the core of the intelligent

system (Hua et al., 2019). The traditional object detection
algorithms are designed to reduce the amount of calculation as
much as possible on the premise of manually extracting rich
feature points, thereby improving the calculation efficiency and
the recognition speed. However, although manual feature
extraction is easy to understand and straightforward and
intuitive, it cannot cope with the identification of a large
number of categories. When the target recognizer changes, it
needs to perform complex feature design and extraction again.
The target detection algorithm based on deep learning uses
neural networks to extract the bottom- and high-level features

of the image, which not only can extract more abundant and
expressive features but also do not require manual participation
in feature extraction and can also achieve end-to-end training
and prediction.
However, despite the promising advantages revealed above,

crucial issues might arise. Almost every deep learning
algorithms require a considerable number of training data sets
to achieve acceptable performance. This has become one of the
most important reasons holding up the deployment of deep
learning algorithms in industrial environments. Insufficient
training samples are a colossal challenge for the learning of
intelligent agents. This is due to the fact that the current deep
neural network has not yet reached the powerful knowledge
transfer and logical reasoning abilities as humans. This
problem is the famousMoravec paradox (Vadim, 2013), which
has received unprecedented attention in the new wave of
artificial intelligence.
Humans glance at an image and instantaneously remember

the characteristics of the objects in the image (Enrique et al.,
2018). For a long time, albeit the background environment
changed significantly, humans could still immediately identify
the object when similar objects appeared. This ability to quickly
identify surrounding objects allows humans to quickly
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understand their surroundings during childhood. Accurate
algorithms for object detection would allow robots system
convenient to recognize the specified object.
In this paper, these problems have been considered and a

novel intelligent system for grasping specific workpieces under
a new industrial environment is proposed. Specifically, a
system with two disparate types of visual equipment was
designed. In this system, the first-level visual equipment placed
in an uplifted position captures a global image including the
whole area where workpiecesmay appear. The collected images
are solely used to calculate the category and location
information and do not need to judge the size and contour.
After acquiring this information, the first-level visual
equipment will be kicked off. Based on the position
information, the robot arm will reach a specified height above
the workpiece with a relatively lower spatial precision and hold
on. Then the second-level vision system will start to work. The
vision system is a binocular eye-in-hand visual equipment on
the end effector that detects the multifarious information
ranging from the position, distance to contour of the workpiece.
The robotic arm will work out a reasonable trajectory and the
specific orientation of the grasping based on this information.
For these two sets of vision equipment, two diverse kinds of
convolutional neural network algorithms are used in different
stages. The former algorithm aims at object detection which
detects the category and location information. Inversely, the
later algorithm is based on semantic segmentation neural
network. In this paper, a binocular eye-in-hand visual
equipment on the end effector is adopted.
The deep learning algorithms reinforce the robustness of the

visual system, endowing the system a capability to adapt to
significantly various illumination or viewpoint (Wang, 2021).
The robustness was confirmed by the experiments where the
manipulator completed the mission of grasping workpiece with
extremely high success rates under various environmental
circumstances. Furthermore, the method does not need to
manufacture data sets. The data sets containing images
and annotations are generated automatically by the proposed
method. Hence, merely a few basic photos of the background
and workpiece are sufficient for mission completed, and the
rest of the procedure containing generating training data sets
and training convolutional neural network could all be
automatically executed. A test on the automobile component
assembly is implemented; the results denote that the intelligent
grasping system has high efficiency and excellent applicability.
In the remainder of this paper, Section 2 summarizes related

prior work. Section 3 presents the detailed descriptions of the
proposed method. Then, Section 4 presents the experimental
process and results. Finally, Section 5 concludes the paper.

2. Related work

In conventional image processing methods, manual feature
extraction is the dominating means. Nevertheless, although
manual feature extraction is easy to understand and simple and
intuitive, it cannot cope with the identification of a large
number of categories (Chen et al., 2019; Troniak et al., 2013;
Oron et al., 2018; Ouyang et al., 2012). In recent years, owing
to its excellent performance, deep learning has been favored by
major research institutions (Wang, 2021). The most widely

used deep learning model in the field of image processing is
convolutional neural networks. Convolutional neural networks
need to learn enormous parameters. Early on, there was not
enough training data, and sufficient computing power and
overfitting was frequent to occur. Nowadays, due to the
dynamically rapid development of high-performance GPUs
and the release of large-scale data sets such as ImageNet,
convolutional neural networks have produced far more
precision than conventional algorithms (Krizhevsky et al.,
2012).
In 2006, Hinton et al. proposed a layer-by-layer training

method to effectively alleviate the training complexity and
successfully solve the problem of difficult training of neural
networks (Hinton and Salakhutdinov, 2006). At the same time,
with the development of GPU technology, neural networks
regained the attention of the academic community and
industry. In 2012, AlexNet proposed by Alex Krizhevsky et al.
won the champion in the ImageNet image recognition
competition, and its error rate was reduced by about 10%
compared to the second place (Krizhevsky et al., 2012). The
AlexNet network uses the rectified linear unit (ReLU) (Glorot
et al., 2011) function to replace the traditional Sigmoid
function as a new activation function, alleviating the problem of
gradient dispersion and using the Dropout regularization
technology to improve the robustness of the algorithm and
prevent overfitting (Srivastava et al., 2014). In 2014, Simonyan
et al. proposed the VGG-Net structure which was plain and
effective (Simonyan and Zisserman, 2014). The first few layers
used 3�3 convolution kernels instead of large convolution
kernels, making the receptive fields of each layer the same and
increase the depth of the network to obtain more nonlinear
expressions and reduce the size of the feature map through
maximumpooling. The last three layers are two fully connected
layers and a softmax layer. In the then ImageNet competition,
VGG-Net achieved excellent results. In 2015, Ronneberger
et al. designed the U-Net, which is U-shaped neural network
architecture (Ronneberger et al., 2015). The U-Net uses skip
connections to calculate multiscale information. In 2017,
Huang et al. proposed a novel network structure, DenseNet
(dense convolutional network), that optimized the network
structure (Huang et al., 2017). The number of feature maps
output by each convolutional layer was very limited, ensuring
fewer parameters can converge apace. Group Normalization
proposed by Wu and He (2018) in 2018 replaced Batch
Normalization, making the normalization operation no longer
affected by the batch size, reducing the dependence on high-
performanceGPUs.

3. Proposed system description

The procedure of intelligent grasping system proposed in this
paper is illustrated in Figure 1. In this system, the first-level visual
equipment placed in uplifted position captures a global image
including the whole area where workpieces may appear. The
collected images are solely used to calculate the category and
location information based on the object detection convolutional
neural network.When it is detected that the position of the object
has moved less than 12mm in a continuous 1 s, the system
determines that the workpiece keeps motionless. This scheme is
to take into account environmental fluctuations and improve the
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robustness of the system. After determining that the object is
stationary, the robotic arm will work out a reasonable trajectory
and move to the specified height above the corresponding
position with a relatively lower spatial precision. Then the first-
level visual equipment will be kicked off and the second-level
visual system will come into operation. The second-level visual
system is a binocular eye-in-hand visual equipment on the end
effector whose assignment is to detect the multifarious
information ranging from the position, distance to contour of the
workpiece. Based on this information, the calculation unit will
calculate the relative position of the workpiece and the end
effector. The robotic arm will make fine adjustments accordingly
and recalculate the relative position. This process is repeated
until the center of workpiece is located directly below the center
of the two lenses within the allowable error band. The end
effector will execute grasping and move to a preset designated
location. Eventually, the end effector releases the object and then
comes back to the idle position.
The coordinate detection and semantic segmentation

convolutional neural network are respectively deployed on two
levels of visual equipment. On account of all task of the first-level
vision equipment is rough positioning, the size and contour
information of the workpiece and deployed a monocular camera is
ignored. The spatial tolerance of first-level system is within68mm.
The precision ensures that the mechanical arm can move to the
vicinity of the workpiece. The target of the second-level vision
system is to accurately detect the pose of the workpiece. Hence, a
binocular eye-in-hand vision system where each camera detects the
contour of workpiece in its own scene is deployed. The precise
position of the workpiece relative to the end effector is then
calculated based on the difference between the contours of the two
cameras.What follows in the paper is the detailed description of the
two diverse kinds of convolutional neural network algorithms and
the method of automatically generating data sets containing images
and annotations.
Image processing domain has distinguishing tasks including

image classification, object detection and scene understanding

(also called semantic segmentation). As shown in Figure 2,
convolutional neuron network (CNN) performs wonderfully
by designing multifarious network structures and output
formats in each task. The method presented in this paper is
based on object detection used in the first-level visual
equipment and semantic segmentation used in the binocular
eye-in-hand visual equipment.

3.1 Generation of training images data sets
As the two-level algorithms are respectively based on object
detection and semantic segmentation convolutional neural
network, the data sets contain two series. The annotations of the
first series are the position information of the workpiece.
Contrastively, the annotations of the second series are the
contour information.
In the first series of data sets, the pictures captured by the first-

level visual equipment are selected as the background images.
Then, take an image for every type of workpiece and extract the
region of interest that only includes workpiece and excludes
background parts. The region of interest is regarded as object
images. Next, resize the object images with a calculated
coefficient and use them to cover the specified position of
background images. The coefficient takes into account the effects
of background, object size and lens distortion. The effects of
background and object size can be estimated based on the size
ratio of the object to the background. The effects of lens
distortion can be calculated by the radial distortion formula.
Let g = [hx, h y] be the resizing coefficient where hx is the x-

axis scale and hy is y-axis. Let wobj, hobj be the width and height
of the workpiece. Similarly, let wback, hback be the width and
height of the background, respectively. The image resolutions
of the workpiece and the background aremobj� nobj andmback�
nback, respectively. g can be calculated by the following
equation:

h x ¼
wobj

wback
� hback
hobj

� mx (1)

Figure 1 Illustration of the proposed procedure of intelligent grasping system
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h y ¼
hobj
hback

� nback
nobj

� m y (2)

where mx and my are, respectively, influence coefficient due to
radial distortion in horizontal and vertical directions. The
calculation process of mx and my is derived as follows.
Let (x, y) be the normalized pixel image coordinates in image

without distortion and (ex;ey) the corresponding normalized
coordinates in real observed image.We have (Zhang, 2000):

~x ¼ x1 x k1 x2 1 y2
� �

1 k2 x2 1 y2
� �2h i

(3)

~y ¼ y1 y k1 x2 1 y2
� �

1 k2 x2 1 y2
� �2h i

(4)

where k1 and k2 are the radial distortion coefficients of the
lens. Print a black and white checkerboard pattern and paste
it on a planar board. Then, place it in front of the camera and
take ten images from different orientations by moving the
board. Each image contains 10� 8 corners on the board;
hence, there are 800 sets of corner coordinates in total. Each
set comprise distortion-free coordinates (x, y) and distorted
coordinates (ex;ey). Substitute these coordinates into the
formula, and put all equations together and acquire
altogether 1600 equations. Convert them into a matrix form,
which isDk = d, where k = [k1, k2]

T.We have the linear least-
squares solution:

k ¼ DTDð Þ�1
DTd (5)

After k1 and k2 is solved, the functional relationship between
distortion-free coordinates (x, y) and distorted coordinates
(ex;ey) is determined. Use ex ¼ f x; yð Þ and ey ¼ g x; yð Þ to denote
the functional relationship. To derive the expression of the
resizing coefficient g, assume that there are three points on the

plane: (x, y), (x 1 Dx, y), (x, y 1 Dy) where Dx and Dy are
negligible change.We have the following:

D~x ¼ f x1Dx; yð Þ � f x; yð Þ ¼
@f x; yð Þ

@x
� Dx1 o Dxð Þ (6)

D~y ¼ g x; y1Dyð Þ � g x; yð Þ ¼
@g x; yð Þ

@y
� Dy1 o Dyð Þ (7)

From the above equality and approximately regard hx and hy

as Dex
Dx and

Dey
Dy, we have the following:

h x ¼
wobj

wback
� hback
hobj

� 11 2k1x2 1 4k2x2r2 1 k1r2 1 k2r4
� �

(8)

h y ¼
hobj
hback

� nback
nobj

� 112k1y2 1 4k2y2r2 1 k1r2 1 k2r4
� �

(9)

where r equal
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 1 y2

p
is the distance from the specified point

to the center of the radial distortion. Use (xi, yj) to represent the
coordinate position where the object images cover the
background images. xi varies from 0 towback and yj varies from 0
to hback. The distribution of (xi, yj) follows the equations:

xi ¼ i
nx

wback (10)

yj ¼ j
ny

hback (11)

where integers nx and ny are the number of points in the
horizontal and vertical directions, respectively, and i and j are

Figure 2 Application of CNN in different image recognition task
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indices in the horizontal and vertical directions, respectively:i =
1, 2, 3, . . ., nxj= 1, 2, 3, . . ., ny.
Through the above process, we obtain m�n images that

simulated the workpiece placed in different positions, and then
the object image is rotated u k°, and the above process is
repeated. The distribution of u k follows the equations:

u k ¼ k
nu

� 360� (12)

where integer nu is the number of rotations per object image.
The distribution of k follows the equations:k= 1, 2, 3, . . ., nu
To reduce the computational cost spending in the training

process and prevent overfitting, a portion of the generated
images is randomly discarded and only images with a ratio of p
are reserved. Each image matches its corresponding
coordinates (xi, yj) as the label. Obviously, a data set with
nxnynup images is obtained.
For the second series of data sets, the pictures captured by

the second-level visual equipment are selected as the
background images. Obviously, the proportion of the object
image in the background image becomes larger. The previous
steps are akin. After extracting the region of interest, the object
images are resized and covered to the background image on a
specific point. The difference is the annotation method. As the
second-level algorithm is based on semantic segmentation
convolutional neural network, the annotation of each image is a
matrix in the same size as the image. Initially, the annotation
matrix is whole padded with 0. Next, replace the region where
the object exists with label value, such as 1, 2, 3, . . ., n. Since the
position of the object images is known, the process of
generating annotations is automatic without manual operation.
The schematic diagram of the data sets is shown in Figure 3.

3.2 First-level convolutional neuron network
configurations
Use the first series training image data sets generated by the
above method to train the first-level convolutional neural
network. Set nx = 20, ny = 20, nu = 12, p = 0.5 and obtain a
total of 2,400 images. Experimental evidence demonstrates
that the quantity is adequate for the convolutional neural

network to provide precise coordinate detection. Take 12
background images containing including a variety of
illumination effects and angles and generate several data sets for
experiment.
On account of the task of the first-level convolutional neural

network is detecting the position of the workpiece, a novel
neural network whose inputs are 256� 256 images resized
from the original images and outputs are coordinate position of
the workpiece is proposed. The neural network configuration is
inspired by the VGGNet (Simonyan and Zisserman, 2014),
using a very small convolution kernel and a 2� 2 pooling
window with stride 2. All inputs were scaled from unsigned
integers ranging from 0 to 255 to a float-32 varying from 0 to 1.
The architecture of the neural network is shown in Figure 4,
composed of an input layer, three convolution layers, each
followed by a maximum pooling layer, a flattened layer and
the output layer. As the network only contains convolutional
layers and flattened layers, without fully connected layers that
are frequently arranged after the convolutional layers, it was
named convolution-flattened neural (CFN) network. The
convolutional layers use a 3� 3 receptive field with stride 1. For
the first convolution layer, eight filters are used, 16 filters are
used for the second convolution layer, and 32 filters are used for
the third convolution layer. The pooling layers use the 4� 4
maximum-pooling window with stride 4 for downsampling.
The output layer uses a sigmoid activation function, and all
other layers use the following leaky rectified linear activation
(Redmon et al., 2016):

f xð Þ ¼ x; x > 0ð Þ
0:1x x � 0ð Þ

�
(13)

The output is a binary array (m, n) containing two float-32
ranging from 0 to 1. m and n are respectively multiplied by the
width and height of the background image wback, hback to obtain
the actual coordinates of the workpiece (x, y). Mean squared
error is chosen as the loss function:

Figure 3 Schematic diagram of the data sets

Figure 4 Structure of the first-level convolutional neural network
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L ¼ 1
N

XN

i¼1

Yi � fi Xð Þ� �2
(14)

where Yi is the true value in the label and fi(X) is the
predicted value. Update parameter approach is Adam.
Resize the generated imaged to 256�256 and then input
them into the neural network. The total number of trainable
parameters is 105,499. To train the training set of 2,400
images, the PC is equipped with 32.0 GB RAM, Core i7-
9700F CPU 3.0GHz and the NVIDIA GeForce RTX 2060.
A batch size of 32 and 3,000 epochs are specified. The total
time for generating the data sets and training the CFN
network is around 90min.

3.3 Second-level convolutional neuron network
configurations
The second series image data sets are used to train the second-
level convolutional neural network. In this case, set nx = 10,
ny = 10, nu = 12, p = 0.5 and obtain a total of 600 images. The
second-level neural network is mainly responsible for semantic
segmentation so that the size and contour information of the
workpiece can be detected. A superexcellent architecture that
merely comprises convolutional and upsampling layers is built
up. The neural network architecture is illustrated in Figure 5. It
is composed of the convolution part (left side) and the
upsampling part (right side). The convolution part consists of
four convolution layers whose receptive field is 3� 3 with stride
1. For the first convolution layer, eight filters are used each
followed by a 2� 2maximum-pooling window with stride 2. At
each convolution layer, the quantity of feature channels is
doubled. The upsampling part comprises an upsampling of
the feature map, which is followed by a 3�3 convolution that
the quantity of feature channels is halved, a concatenation with
the feature map from the corresponding convolution part and a

convolution layer whose receptive field is 3�3 with stride 1.
The final layer is a 1� 1 convolution layer which is used to map
16 feature channels and calculate the probability that the pixel
is a part of the workpieces. In total, the neural network has eight
convolutional layers. The output layer uses a softmax activation
function, and all other layers use the ReLU activation function.
The softmax function is defined as:

pn xð Þ ¼ ean xð ÞXN

k¼1
eak xð Þ

(15)

where an(x) is the activation value in the kth feature channel
at the pixel in position x. N denotes the number of classes.
pn(x) denotes the output value of the softmax function
inclined to select the maximum input. E.g. pn(x) tends to 1 for
the n corresponding to the maximum activation an(x), and
pn(x) tends to 0 for all other n. On the issue of the loss
function, due to the disparity between the background and
the object in the sample, selecting the cross-entropy function
directly as the loss function will make the prediction result
tend to be background which results in the end effector
unable to grasp the workpieces. To solve these disadvantages
disclosed above, a balanced cross-entropy loss function is
presented. In conventional cross-entropy function, the loss
function is defined as:

L ¼ �
XN

i¼1

ayðiÞlogŷðiÞ þ ð1� aÞ
�
1� yðiÞ

�
log

�
1� ŷðiÞ

�
(16)

where y(i) is the label of the sample whose value is 0 or 1. ŷ ið Þ is
the probability that the sample is predicted to be positive.
Import a weighting factor a[[0, 1] to balance the disparity (Lin
et al., 2017). In practice, we define the loss function as:

Figure 5 Architecture of the second-level convolutional neural network
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L ¼ �
XN

i¼1

ayðiÞlogŷðiÞ þ ð1� aÞ
�
1� yðiÞ

�
log

�
1� ŷðiÞ

�
(17)

where a denotes the weight coefficients for different classes.
This method is adopted in the experiments as it dramatically
improves accuracy over the conventional cross-entropy
function and finds the following value to work first-rate in the
experiments.

a ¼ wbackhback
wobjhobj 1wbackhback

(18)

The neural network is trained with Adam update parameter
approach. A batch size of 32 and 5000 epochs are specified.
The total time for generating the data sets and training the
CFN network is around 120min. The IOU index of the final
training result exceeds 0.95. The calculation method of IOU
will be detailed in the next section.

3.4 Binocular eye-in-hand vision system
In the second-level visual equipment, a binocular eye-in-hand
system is deployed to obtain precise depth and pose
information of the workpieces (Engel et al., 2015). Two
cameras are mounted in parallel on the end effector where the
suction cup and gripper are deployed. During the work of the
second-level vision system, the two cameras independently
detect the contour of the workpiece and obtain the relative
coordinates of the workpiece in different coordinate systems.
Obviously, the images acquired by the two cameras will be
slightly different, which is called disparity. By means of
disparity, the distance between the workpiece and the end
effector can be calculated. Meanwhile, via the contour of
the workpiece, the angles including yaw, pitch and roll can be
worked out. Through these parameters, the position of the end
effector can be continuously adjusted until the end effector is at
a specific height directly above theworkpiece.
For the general situation of a relative mounting position of

the left and right cameras with no special requirements, the
image-forming principle of the binocular camera is shown in

Figure 6. Note that the optical axes of the two cameras are not
parallel in this case and there is no special relationship between
the coordinate axes of the camera coordinates of the left and
right cameras. Let olxlylzl and orxryrzr be the left and right
camera coordinates, respectively, and oxyz the world
coordinate system. Assume that the coordinate system of the
left camera and the world coordinate system completely
coincide.We have the following:

sl
Xl

Yl

1

0
@

1
A ¼

fl 0 0
0 fl 0
0 0 1

0
@

1
A x

y
z

0
@

1
A (19)

sr
Xr

Yr

1

0
@

1
A ¼

fr 0 0
0 fr 0
0 0 1

0
@

1
A xr

yr
zr

0
@

1
A (20)

where Xl ;Yl and Xr;Yr are the coordinates in the left and right
image coordinate system, respectively; f is the focal length and s
is the scale factor. Mlr denotes the transformation relationship
between left and right camera coordinate systems. We have the
following:

xr
yr
zr

0
@

1
A ¼ Mlr

x
y
z
1

0
BB@

1
CCA ¼ R jt½ �

x
y
z
1

0
BB@

1
CCA ¼

r1 r2 r3 tx
r4 r5 r6 ty
r7 r8 r9 tz

0
@

1
A

x
y
z
1

0
BB@

1
CCA

(21)

whereMlr equals [R, t]. R and t are the rotation and translation
matrices from one coordinate system to another. From the
above equality, we have the following:

r s

Xr

Yr

Zr

0
@

1
A ¼

frr1 frr2 frr3 frtx
frr4 frr5 frr6 frty
r7 r8 r9 tz

0
@

1
A

zXl

fl
zYl

fl
z
1

0
BBBBBB@

1
CCCCCCA (22)

Solving this equation, we can obtain the following:

Figure 6 Image-forming principle of the binocular camera
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x ¼ zXl

fl

y ¼ zYl

fl

z ¼ fl frtx �Xrtzð Þ
Xr r7 1 r8Yl 1 frr9ð Þ � fr r1Xl 1 r2Yl 1 flr3ð Þ

¼ fl frtx �Xrtzð Þ
Yr r7Xl 1 r8Yl 1 fl r9ð Þ � fr r4Xl 1 r5Yl 1 flr3ð Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

(23)

In this paper, two identical cameras as binocular vision system
is deployed. Through calibration, the optical axis of the right
camera is parallel to the left camera. Assuming R is the unit
matrix, ty= tz= 0, then the above equation can be simplified to:

x ¼ B
X1

d

y ¼ B
Y1

d

z ¼ B
f
d

8>>>>><
>>>>>:

(24)

where B is the baseline width and d is the disparity. B = tx, fl =
fr = f, d = Xl � Xr. According to the above equation, the
distance between the object and the lens is proportional to the
disparity. As long as two projection points of a point in the ideal
binocular image are found, its coordinates in the world
coordinate system can be worked out.
In addition to the above, the centroid of the workpiece can be

calculated according to the contour. According to the centroid
position and distance of theworkpiece, plan the trajectory of the end
effector, and let the end effector be closer to the specified height
directly above the workpiece. Next, the binocular vision system
reacquires the contour information of theworkpiece and re-executes
the above process. After several iterations, when the centroid is
within a certain threshold in the center of the visual field, the end
effector is considered to have reached directly above the object and
then executes grasping.

4. Experiments and analysis

A series of experiments including static experiment of test algorithm
and experiment of grasping workpieces were conducted to test and
verify the effectiveness and precision of the proposed convolutional
neural networks and system. Considering that two levels of
convolutional neural networks are respectively responsible for
detecting the position and contour of the workpieces and the inputs
are disparate, different experiments are conducted to verify these
two levels of algorithms. The input of the first-level neural network
was taken from a higher fixed position; hence, the main factors
affecting the grasping performance are contaminations and
illumination. Contrastively, the images input to the second-level
neural network were taken from a lower dynamic position; thus, the

experiments verify the stability of the proposed system in various
viewing angles anddistances.

4.1 Effects of interferent and illumination
In the experiment probing into the influence of interferent and
illumination on the first-level neural network, a total of four
circumstances are set up, which conclude strong light, weak light,
stochastic light, stochastic light with contamination. Under four
circumstances, all the data sets are generated in the method in
subsection 3.1, and the neural network architectures are same as
shown in Figure 4. Yet, the four models are trained with diverse
training data sets. As shown in Figure 7, data set A is generated by a
sole background image with strong light, data set B by a single
background image with weak light, data set C by eight background
images in various illumination conditions and data set D by eight
background images in various illumination and interferent
conditions. Obviously, the amount of data in data sets C and D is
eight times that of data sets A andB; hence, the training timewill be
dramatically increased (from127s to 718s).
As shown in Figure 8, a Rethink Sawyer is deployed to conduct

the experiment. The workpiece is randomly placed, and the true
position is simultaneously recorded.Thefirst-level visual equipment
captures a global image including the whole area where workpieces
may appear. The neural network uses the forward propagation of
the trainedmodel to output the predicted position of the workpiece,
and the robotic arm will work out a reasonable trajectory and move
to the specified height above the corresponding position. After this
process is completed, on the condition that the workpiece appears
within the visual field of the eye-hand binocular cameras mounted
on the robotic arm, the second-level vision device can take over the
next workflow, and therefore, the first level algorithm is considered
competent. The differences among predicted and true positions and
success ratio are indicators to measure the performance of the first-
level neural network.

4.1.1 Result of success ratio
The experiments are conducted to demonstrate that the models
trained by the four data sets perform extremely differently. The
success ratios of models trained by four data sets under diverse
environments are shown in Table 1. Distinctly, it was found that
data set B generates the worst performance. It is due to the fact that

Figure 7 Four data sets for the illumination and contamination test

Figure 8 Photo of the robot arm deployed to conduct the experiment
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the images under weak illumination cannot provide enough
features. Data set D outperforms other data sets with a higher
success ratio than others under every condition. This is due to data
set D, which contains various interferent and illumination features.
Data set C performs superiorly under random light conditions and
yet performs inferiorly in the presence of interferent. That is why
data set C does not contain images of interferent; however, data set
D considers the effect of interferent. Data set A performswell under
strong light circumstance and conversely performs poorly under
weak light circumstance. Hence, while subjected to stochastic
illumination circumstance, the algorithm generates amoderate level
of success ratio.

4.1.2 Result of positioning accuracy
In the previous section, the performance of models trained by
four data sets is discussed in detail. Data set B generates the
worst performance. Therefore, in the next experiment, data set
B is excluded and the performance of models trained by the
other three data sets is compared. The workpiece is randomly
placed in a specific area, and the true position in the world
coordinate system is synchronously noted. The neural network
uses the forward propagation of the trained model to work out
the predicted position of the workpiece. The difference
between the true and predicted coordinates in the x and y
directions are taken as indicators to measure the performance
of the first-level neural network. As shown in Figure 9, the
performance of the models trained by the three data sets (data
set B excluded) is plotted in the statistical graph. It can be
found from the statistical chart that the average error of the
model corresponding to the data set A is minimal and the error
of the other two models is slightly larger than it. However, the
model trained by data set A performs poorly under weak light
or disturbing circumstances. From the above results, model
selection depends on the environment where the grasping
system is deployed. In addition, the errors in the x and y
directions are slightly different. It may be caused by the resizing
of the image before input to the neural network.

4.2 Effects of distance and visual angle
This part of the experiment mainly explores the effect of
distance and visual angle on the performance of the second-
level neural network. In the proposed system, the first-level
neural network works out the position of the workpiece, and the
robotic arm will work out a reasonable trajectory and move to
the specified height above the corresponding position.
However, in the actual manufacture process, due to the
positioning error and interference factors of the robot arm,
the angle of view and distance may alter, which requires the
algorithm to adapt to these variances. The degree of visual

angle can be described by three angles including yaw, pitch and
roll. A total of three groups are disposed. The first group of
images was taken with a rotation of610° and 620° in the yaw
direction. The second group of images was taken with a
rotation of 610° and 620° in the pitch direction. The third
group of images was taken with a rotation of630° and660° in
the roll direction. Each group of images is divided into long
distance, standard distance and short distance. The sample
images are shown in Figure 10. Input a total of 195 images into

Table 1 Success rates of four models

Condition
Model

1(%) 2(%) 3(%) 4(%)

Low light 0 0 100 100
Strong light 90 0 100 100
Mixed light 50 0 100 100
Mixed1 cntm 90 0 80 90
Average 57 0 95 98

Figure 9 Measurements of the positioning errors in the x and y
directions for the three data sets
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Figure 10 Sample images of various viewing angles
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the second-level neural network and analyze the performance
of their output.
To evaluate each output accurately, a pixel-wise evaluation

metrics for testing the performance of the output are adopted. In the
semantic segmentation task, based on predictions and true values,
each pixel can be divided into four categories containing TP, TN,
FP and FN, which are elaborated in Table 2. The evaluation
metrics cover recall, precision and F1 score (also called Dice
similarity coefficient).The evaluationmetrics are defined as follows:

Recall ¼ TP
TP1FN

(25)

Precision ¼ TP
TP1FP

(26)

F1 ¼ 2� Precision � Recall
Precision 1Recall

¼ 2� TP
2� TP1FP1FN

(27)

In this paper, the F1 score is adopted to evaluate the outputs.
The result is as shown in Figure 11. For the rolling effect, the
proposed system is hardly affected by the rotation of the rolling
direction. At 30° and 60° of rotation, the F1 score only drops by 2%
and4%, respectively,which is due to the fact that the generated data
sets contain target objects at multifarious angles. In terms of the
effect of yaw rotation, the F1 score decreases by 8% at 610° and
14% at620°. In terms of the pitch effect, the F1 score decreases by
7% at 610° and 13% at 620°. The distance between the camera
and the target object has little effect on the result. Without
considering rotation, theF1 score drops by 4%at longdistances and
5% at short distance. Experimental results demonstrate that the
proposed second level is extraordinarily robust subject to
environmental variations.

4.3 Grasping experiment
4.3.1 Experiment setting and procedures
As shown in Figure 6, a binocular hand-eye vision system is
mounted on the end effector and used as the second-level vision

system for detecting the pose of the workpieces. Two identical
cameras are mounted symmetrically at a distance of 15 cm. To
obtain the background image, move the end effector to the
grasping position and then move vertically upward by 30 cm to
obtain the left and right camera images as the background
image of the second-level neural network. The first-level visual
equipment is placed in an uplifted position and then captures a
global image including the whole area where workpieces may
appear. The image serves as the background image of the first-
level neural network. Using these background images, the
training set is generated with the method proposed in
subsection 3.1.
The workflow is as shown in Figure 2. First, the workpiece is

randomly placed, and the first-level visual equipment captures
a global image. Then, the neural network uses the forward
propagation of the trained model to output the predicted
position of the workpiece, and the robotic arm will work out a
reasonable trajectory and move to the specified height above
the corresponding position. After this process is completed, on
condition that the workpiece appears within the visual field of
the eye-hand binocular cameras, the first-level vision device will
be kicked off, and the second-level vision device will take over
the next workflow. Conversely, on condition that the workpiece
does not appear in the visual field, the manipulator will retract,
restart the first-level visual equipment and repeat the above
process until it succeeds. Next, the second-level vision
equipment obtains the contour of the workpiece and then
calculates the centroid position and distance of the workpiece.
The algorithm plans the trajectory of the end effector and lets
the end effector to execute grasping.
In the experiment, to test the robustness of the proposed

system to environmental undulation, the illumination changes
randomly, and the interferers are added at random. The
grasping success ratio, iterative times and elapsed time were
recorded and analyzed in the next section.

4.3.2 Results of experiment
The experiment results show that the success ratio of the
proposed system is extremely high. As long as the first-level
visual detection is successful, the success rate of subsequent
process is nearly 100%. Only when deliberately place
extremely disturbing analogues in the target area, the first-
level visual detection system may output incorrect
coordinates, resulting in increased elapsed time. The average
positioning error of first-level is visual detection 61.9mm in
the x direction and 61.5mm in y direction, which is never
greater than the radius of the visual field of the second-level
visual equipment. Hence, the second-level visual equipment
is always able to smoothly take over the next workflow. The

Table 2 Confusion matrix of segmented mask prediction

Ground truth Prediction Category

Positive Positive True positive(TP)
Positive Negative False negative(FN)
Negative Positive False positive(FP)
Negative Negative True negative(TN)

Figure 11 Performance under different circumstances measured by F1 scores
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average F1 score of semantic segmentation is 0.92, which
ensures the precision of the pose estimation and the success
ratio of grasping. In all 400 successful experiments, the
second level of visual detection medially takes 3.5 iterations
to complete the task with a maximum of eight iterations. The
first-level visual detection is averagely completed in 1.2 s. The
entire grasping workpiece task takes about 32 s. Attributed to
the abundance of the features of the generated data sets, the
effect of illumination on time and success rate is negligible.

5. Conclusion

In this paper, an industrial intelligent grasping system based
on convolutional neural network and binocular eye-in-hand
visual system is presented. This grasping system is able to
adapt to various positioning errors including angle and
distance under various environmental circumstances.
Notably, the neural network is trained automatically by the
proposed method without manual labeling, which saves time
spent on manufacturing the data set and makes the intelligent
grasping system easy to deploy into a practical industrial
environment. From the above experiments and analysis, the
system has two properties that help to achieve high grasping
effectiveness.
1 The proposed system uses a two-level vision device and

equips with different neural networks accordingly. The
main task of the first-level vision equipment is rough
positioning and determining whether the object is still.
Diversely, the second-level vision system aims to
accurately detect the pose of the workpiece. The two
systems coordinate to achieve preferable grasping
effectiveness.

2 The generated data set contains sundry images under
various illumination and interferent conditions.
Attributed to the abundance of the features of the
generated data sets, the effect of illumination on time and
success rate is negligible. Moreover, experimental results
demonstrate that the proposed second level is
extraordinarily robust to environmental variations.

In the future, the proposed system is expected to be deployed in
more factories and to improve the productivity as well as the
quality of the automatic manufactural lines.
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