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A B S T R A C T   

The increasing availability of health monitoring devices and smartphones has created an opportunity for re
searchers to access high-resolution (spatial and temporal) mobility data for understanding travel behavior in 
cities. Although information from GPS data has been used in several studies to detect transportation modes, there 
is a research gap in understanding the role of geographic context in transportation mode detection. Integrating 
the geography in which mobility occurs, provides context clues that may allow models predicting transportation 
modes to be more generalizable. Our goals are first, to develop a data-driven modeling framework for trans
portation mode detection using GPS mobility data along with geographic context, and second, to assess how 
model accuracy and generalizability varies upon adding geographic context. To this extent we extracted features 
from raw GPS mobility data (speed, altitude, turning angle and net displacement) and integrated context in the 
form of geographic features to classify active (i.e. walk/bike), public (i.e. bus/train), and private (i.e. car) 
transportation modes in three different Canadian cities - Montreal, St. Johns, and Vancouver. To assess the role of 
integrating geographic context in mode detection, we adopted two different modeling approaches – generalized 
and context-specific, and compared results using random forests, extreme gradient boost, and multilayer per
ceptron classifiers. Our results indicate that for context-specific models the highest classification accuracy 
improved by 64% for Montreal, by 74% for St. John's and by 77% for Vancouver compared to the generalized 
model. We also found that the multilayer perceptron (96%) achieved the highest classification accuracy upon 
adding contextual variables compared to random forests (94.6%) and extreme gradient boost (93.3%) classifier. 
Our study highlights that adding contextual information specific to a city's geography can improve the predictive 
accuracy of transportation mode detection models, however, in case of limited knowledge about the geographic 
setting of a study area, a generalized model combining GPS data from several cities may still be useful for 
predicting modes from trip data.   

1. Introduction 

Understanding the modes of transportation people use to travel 
within cities is key to planning safer, healthier, and more inclusive en
vironments (Boulange et al., 2017). Detailed information about mobility 
patterns and transportation mode usage can help planners and policy
makers when they make targeted decisions to invest in safe and equi
table infrastructure (Nelson et al., 2021; Roy et al., 2019). The growing 
availability of health monitoring devices and smartphones is now 
facilitating the collection of high-resolution (spatial and temporal) 
mobility data, which policymakers can potentially use to overcome 

methodological problems associated with traditional models (Forrest 
and Pearson, 2005; Murakami et al., 2004). Such ‘big' mobility data 
provides an opportunity to create a deeper understanding of the trans
portation mode choices of individuals (Feng and Timmermans, 2013) 
and to build an aggregate picture of a city's travel behavior (Bohte and 
Maat, 2009; Chen et al., 2016). Such information can then be used to 
improve urban infrastructure allocation and enhance accessibility (Ford 
et al., 2015; Cui et al., 2020) and comfort (Ferster et al., 2021) of a city's 
residents. 

Several studies have been conducted on transportation mode detec
tion either from just GPS data or combining some GIS attributes with the 
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GPS data. Xiao et al. (2015) used four algorithms namely -Support 
Vector Machines (SVM), Multinomial Logit (MLN), Artificial Neural 
Networks (ANN), and Bayesian Networks (BN) and found that the BN 
algorithm performed more accurately than other algorithms (92%). 
Feng and Timmermans (2013)also used external data and included at
tributes related to distance from transportation networks, satellite in
formation, and ownership of the vehicle in order to detect the transport 
mode. Stenneth et al. (2011) detected six transport modes (stationary, 
walk, bike, car, bus, and train) from raw GPS data by applying the al
gorithms Random Forests (RF), Naïve Bayes (NB), Multilayer Perceptron 
(MLP), Decision Trees (DT), and Bayesian Networks (BN). They com
bined GPS data collected by GPS devices for six individuals over 3 weeks 
with GIS information, such as transportation networks, bus stations, 
railway networks, and bus locations. The results showed that the RF 
algorithm improved accuracy by 17% when they also used GIS infor
mation in addition to the GPS data. However, the study by Stenneth 
et al. (2011) did not consider trip identification for trip segments, and 
the number of training datasets was very small and comprised only six 
users. Both Xiao et al. (2015) and Feng and Timmermans (2013) applied 
attributes, such as average speed, maximum speed, average accelera
tion, and trip distance. Information from mobility data has also been 
used in transportation research (Zheng et al., 2008; Auld et al., 2009; 
Schuessler and Axhausen, 2009; Stenneth et al., 2011; Hemminki et al., 
2013) for understanding travel behavior by predicting modes of trans
portation from GPS and accelerometers (Feng and Timmermans, 2013; 
Carlson et al., 2015) but without the addition of geographic context. 

However, further research is needed to quantify measures of 
geographic context across multiple cities based upon the city's urban 
structure and also in assessing how the inclusion of such measures af
fects the prediction accuracy in comparison to a generalized approach 
using just GPS features. Currently, it is unclear to what extent the in
clusion of contextual measures in the transportation mode detection 
process could change the classification accuracy. It is therefore essential 

to understand how geographic factors like the built and natural envi
ronment as well as land-use types of a city could influence travel mode 
choices people make (Wang et al., 2017; Ewing and Cervero, 2010). 

While the geographic context may provide clues on modes of travel, 
geographic data has been used less frequently as a feature for classifying 
GPS data into travel modes. Traditionally, context has been gathered 
using data from surveys and questionnaires (Van Vugt et al., 1996, 
Rodrıǵuez and Joo, 2004, Schwanen and Mokhtarian, 2005, Wener and 
Evans, 2007). In terms of existing methodologies for mode detection 
rule-based classifiers have been used in several studies based on a 
relatively small number of features (Bohte and Maat, 2009; Chen et al., 
2010; Gong et al., 2012; Sauerländer-Biebl et al., 2017; Schuessler and 
Axhausen, 2009; Stopher et al., 2008; Marra et al., 2019). Previous 
research (Wang et al., 2017; Cheng et al., 2019; Kim et al., 2021) has also 
shown tree-based approaches like Decision Trees (Shah et al., 2014; 
Feng and Timmermans, 2013), Random Forests (Wang et al., 2017; 
Cheng et al., 2019; Nguyen and Armoogum, 2020) and Gradient 
Boosting (Wang et al., 2018) have proven to be the more appropriate 
algorithmic approach for mode detection while using GIS information. 
Although a number of methods exist for classifying transportation 
modes from GPS data, most of the existing methods are limited in terms 
of assessing the role of geographic context on predictive accuracy and 
how they can translate into policies that improve urban life. The in
clusion of measures of geographic context in the mode detection process 
may lead to more accurate predictions needed for effective policy
making, but we have yet to test this hypothesis. However, there is little 
methodological knowledge on how leveraging varied geographic cova
riates from multiple sources specific to different cities affects the 
generalizability of such models. 

To address these gaps, we have identified our research goals to 
examine whether combining GPS and contextual features relevant to 
several different motorized and non-motorized transport modes from 
multiple cities can improve the prediction accuracy of mode detection 

Fig. 1. Maps showing the population density per square miles of three Canadian cities included in the study. (Source: StatCan Census 2016; https://www12.statcan. 
gc.ca/census-recensement/2021/dp-pd/dv-vd/cpdv-vdpr/index-eng.cfm) 
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and to assess how much the generalizability of the model varies upon 
adding geographic context to transportation mode detection. To this 
extent, we first extract meaningful features from the GPS traces and 
combine these features with contextual information from geographic 
features guided by existing literature. Then, we train different super
vised classification models to predict travel modes in three different 
Canadian cities and finally validate and assess the generalizability and 
accuracy of the trained models using just GPS features alone versus 
combining GPS and contextual features in each city. 

We aim to highlight the role of geographic context in improving the 
prediction accuracy of transportation modes and variation in model 
accuracy between generalized model and context-specific machine 
learning models in transportation mode detection. Our study develops 
methods which are open and reproducible and can be used by practi
tioners as a guideline to choose appropriate contextual variables for 
accurately predicting transportation modes as well as testing the 
generalizability of prediction by combining those variables with new 
unseen mobility datasets for other cities. 

2. Study area 

We performed the study across three Canadian cities: Montreal in 
Quebec, St. John's in Newfoundland and Labrador, and Vancouver in 
British Columbia (Fig. 1). Each of the cities has emphasized the role of 
equitable transportation infrastructure in their urban planning policies 
(City of Vancouver, 2021; St. John's, 2015; Olliere, 2018; Urban Plan
ning and Mobility Department, City of Montréal, 2017) and invested in 
GPS-based data collection programs aimed at understanding travel 
mode choice. The study cities also provide the opportunity to study 
mode choice under variations in population density (Fig. 1), but with 
comparable spatial and temporal data resolution. The study cities are 
similarly varied in their weather conditions, population size, and mode 
share of commuters for different sustainable and active transportation 
modes (Table 1). This variation in geographic context contributes to the 
generalizability of our mode detection models. 

Briefly, geographic variation in the three study cities can be sum
marized as follows: Montreal is the cultural and economic hub of the 
province, with the second largest population in Canada. It is a port city 
and is surrounded by St. Lawrence and Ottawa rivers. It is a walkable 
city and is interspersed with bike lanes and bike paths. The city is also 
well-connected by different public transit modes like subways, buses, 
and trains connecting the city to the entire province. St. John's is a 
harbor city with a downtown of steep hills and winding streets. The City 
of St. John's maintains a road network of over 1400 km, as well as a 
network of sidewalks for pedestrians and parking infrastructure 
throughout the city. The Metrobus transit is a popular public transit 
service in the city and alongside this, the city also maintains a road 
network of over 1400 km, as well as a network of sidewalks for pedes
trians and parking infrastructure throughout the city. Finally, Vancou
ver boasts an accessible and convenient public transit system with 
several modes including bus, SkyTrain, ferries as well as bicycles (City of 
Vancouver, 2018). As the city is surrounded by water on three sides, it 
has several bridges to the north and south. Although similar to most 
other cities in that the automobile serves as the primary mode of 

transportation, it has alternatives such as the SkyTrain system, which is 
the longest fully automated light metro system in the world, and an 
extensive network of bicycle paths. 

Vancouver being much warmer than the other two cities reflects 
higher use of active transportation modes including walking and cycling 
(nearly 10%) (Table 1). Montreal has a well-connected transit network 
with nearly 22.3% of its commuters using public transit modes as their 
mode of choice. However, only 7.2% of the population using active 
modes of transit for commute purposes. St. John's is much smaller in 
terms of total population and with much harsher climatic conditions 
which typically lead people to use private vehicles with only about 
25.8% people (Table 1) availing active, public or shared transit modes. 

3. Data 

We used GPS-enabled mobile applications to collect a total 
3,226,659 unique user-defined trips from Montreal, St John's, and 
Vancouver between August and December 2017. Data for St. Johns's and 
Vancouver were collected through a smartphone application Itinerum 
(Patterson et al., 2019) which collected GPS data at 1-min temporal 
resolution. The data for Montreal were collected using the MTL Trajet 
mobile application (MTL Trajet, 2017; https://donnees.montreal.ca/ 
ville-de-montreal/mtl-trajet) which collected GPS trajectories of user 
movements from the origin and destinations by truncating to the nearest 
intersection. The data collection mechanism was similar to that in St. 
John's and Vancouver as the MTL Trajet uses the same underlying 
technology as Itinerum devices. All trips were for both St. John's and 
Vancouver were labeled by participants and for Montreal were inferred 
by the mobile app using a trip detection algorithm (MTL Trajet, City of 
Montreal,2020). 

The transport modes for each trip were labeled by the respective GPS 

Table 1 
Description of the weather, population, and transportation mode share for each city.a  

City Annual monthly temperature ranges Population Mode share of commuters 

Min Max Walk Bike Public Transit (Bus/Train) Car 

Montreal − 22.3 ◦C 32.1 ◦C 4,247,446 5.2% 2.0% 22.3% 8.6% 
St. John's − 13.8 ◦C 27.2 ◦C 108,860 4.6% 0.2% 3.1% 17.8% 
Vancouver − 4.9 ◦C 26.2 ◦C 2,463,431 6.7% 2.3% 20.4% 11.2%  

a Source: Mode share was collected from data provided by Statistics Canada, Commuters using sustainable transportation, https://www12.statcan.gc.ca/census-rece 
nsement/2016/as-sa/98-200-x/2016029/98-200-x2016029-eng.cfm. The temperature data was provided by Environment Canada from highest and lowest temper
atures averaged from 2013 to 2020 https://climate.weather.gc.ca/climate_data/almanac_selection_e.html 

Fig. 2. Trip characteristics collected from GPS devices for multiple cities.  

A. Roy et al.                                                                                                                                                                                                                                     

https://donnees.montreal.ca/ville-de-montreal/mtl-trajet
https://donnees.montreal.ca/ville-de-montreal/mtl-trajet
https://www12.statcan.gc.ca/census-recensement/2016/as-sa/98-200-x/2016029/98-200-x2016029-eng.cfm
https://www12.statcan.gc.ca/census-recensement/2016/as-sa/98-200-x/2016029/98-200-x2016029-eng.cfm
https://climate.weather.gc.ca/climate_data/almanac_selection_e.html


Journal of Transport Geography 100 (2022) 103330

4

platforms which captured the trajectories all cities into five different 
travel from all three cities namely – Bicycle, Bus, Car, Train and Walk 
(Fig. 2). The percentage of trips falling into each transportation mode 
are highlighted in Fig. 2. The trips were mostly well distributed between 
active modes (bicycle, walk) for St. John's and Vancouver, but there 
were also a significant number (approx. 52%) of motorized vehicle trips 
recorded in Montreal. The least percentage of trips were available for 
public transit modes (bus, train) across all three cities. Based upon 
available data, Vancouver had the highest percentage of walking trips 
compared to other cities whereas Montreal had the highest percentage of 
motorized vehicle trips (car, trucks) and bicycle trips were highest for St. 
John's. 

4. Methods 

For the prediction of transportation modes we adopted two different 
modeling approaches – (a) ‘generalized’ approach using GPS data from 
all 3 cities to fit a single model and (b) ‘context-specific’ approach using 
separate feature sets combining contextual features with GPS data to fit 

individual models for each city (Fig. 3). We predict five different 
transportation modes for each approach – ‘Bicycle’, ‘Bus’, ‘Car’, ‘Train’ 
and ‘Walk’. 

We used three classification algorithms for training the generalized 
and context-specific models- Random Forests (RF), which have been 
found to have high precision and recall accuracy (Stenneth et al., 2011; 
Reddy et al., 2010; Ellis et al., 2014; Mäenpää et al., 2017) in classifying 
motorized and non-motorized transportation modes; Extreme Gradient 
Boost (XGB), which have also shown considerable success in a wide 
range of practical applications ((Friedman, 2001); and, Multilayer Per
ceptrons (MLP), also used in a some earlier studies (Stenneth et al., 
2011) to further distinguish between modes from GPS and GIS data. 

The feature sets from the GPS and contextual data were constructed 
using R and RStudio. The generalized and context-specific classification 
frameworks were modeled in Python using supervised classifiers from 
the 'scikit-learn' library (Pedregosa et al., 2011). The distance-based 
proximity metrics used as contextual features were derived using 
ArcGIS. 

Fig. 3. Overall workflow of transportation mode detection using generalized and city specific approaches.  
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4.1. Feature extraction from GPS data and geographic context 

The GPS records in all datasets were recorded as latitude and 
longitude and were converted to UTM (Universal Transverse Mercator) 
coordinates (easting, northing) using pyproj 1.9.5.1. Movement metrics 
like speed, altitude, net displacement and turning angle (Table 2) were 
calculated for all GPS records available throughout each city for each 
participant. The primary unit of analysis are the participants' GPS tra
jectories over the entire study period converted into trips. Every minute, 
the GPS device registered the position coordinates (i.e., latitude, longi
tude, and elevation) of a participant, which were converted into com
plete trajectories for a single trip using ‘R' packages.(‘adehabitatLT’, 
Calenge and Calenge, 2015). 

From the basic movement metrics listed in Table 2 we further applied 
aggregation functions - mean, sum, standard deviation, skewness, peak 
intensity, entropy and sum log energy of per trip to extract features 
combined into a single input matrix which is referred to as ‘GPS’ features 
in the following subsections. 

Similarly, we refer to the metrics derived from the contextual vari
ables shown in Table 3 as to derive mean, sum, standard deviation, 
skewness, entropy, peak intensity and sum log energy per user per trip as 
a separate feature set and call it ‘GIS’. To extract contextual information 

about the surrounding environment through which individuals move, 
we extracted proximity measures as hausdorff distances based on simi
larity of trajectories to the shortest path of the nearest points of interest 
around a GPS trajectory of each user. The points of interest were 
extracted using a data mining approach from Overpass API and com
bined with the GPS features using spatial joins. The POIs were then 
categorized into land-use types such as residential areas, commercial 
areas, green spaces, and transportation hubs like bus stops, subway 
stations, bike lanes, and topographic characteristics like distance to the 
shoreline and comfort level of streets. Attributes like speed (Stenneth 
et al., 2011; Zheng et al., 2010; Bohte and Maat, 2009; Reddy et al., 
2010; Shen and Stopher, 2014; Xiao et al., 2015), acceleration (Stenneth 
et al., 2011; Roy et al., 2020), proximity to bus stops (Gong et al., 2012; 
Nguyen and Armoogum, 2020) and rail lines (Stenneth et al., 2011) have 
been used several times in previous studies, however, proximity to 
different land-use types and infrastructure specific to active modes of 
transportation within the context of mode detection are newly intro
duced in this research. 

All features were normalized using a min-max function and used as 
inputs to supervised classification algorithms mentioned in Section 4.2. 
Finally, all feature sets were split into training and validation sets using a 
70:30 ratio. 

Table 2 
List of metrics extracted from raw mobility data captured by GPS platforms.  

Features Type Operationalization Relevance References 

Speed GPS Speed calculated from the 
consecutive points of the trajectory 

Variability in speed can highlight the difference between 
motorized and non-motorized transport modes. 

Stenneth et al. (2011), Zheng et al. (2010), Bohte 
and Maat (2009), Reddy et al. (2010), Shen and 
Stopher (2014), Xiao et al. (2015), Roy et al., 2020 

Altitude GPS The average altitude throughout the 
trip 

The height can indicate whether the user travels in 
underground subways versus on foot or larger vehicles like 
buses etc. 

Wang et al. (2017), Feng and Timmermans (2013), 
Roy et al., 2020 

Displacement GPS The net displacement between 
consecutive locations along the 
trajectory 

The net displacement can distinguish between motorized 
and non-motorized transport modes with longer trips taken 
on public or private modes versus shorter ones are made 
using active modes. 

Zheng et al. (2010), Xiao et al. (2015), Feng and 
Timmermans (2013), Roy et al., 2020 

Turning 
Angle 

GPS The relative and absolute turning 
angles of between consecutive points 
of a trajectory 

The orientation can help distinguish a motorized vehicle 
that can only drive on roads and may not usually turn or 
change to a new lane unless necessary 

Wang et al. (2017), Roy et al., 2020  

Table 3 
List of metrics extracted from geographic context using GIS.  

Features Type Source Operationalization Relevance References 

Distance to open 
space 

GIS OpenStreetMap Mean hausdorff distance to the nearest 
open space or green space from the 
points along the trip trajectory 

People using active modes tend to use less traffic- 
prone areas and closer to open green areas like parks 
etc. 

Roy et al. (2019),  
Semanjski et al. (2017),  
Böcker et al. (2015) 

Distance to 
residential 
areas 

GIS Overapass API Mean hausdorff distance to the nearest 
residential area from the points along 
the trip trajectory 

Roads that serve as access to residential areas are used 
more by bicyclists and pedestrians as they have legal 
priority over cars, owing to lower speed limits 
allowing children to play on the street. 

Roy et al. (2019),  
Semanjski et al. (2017), 

Distance to 
commercial 
centers 

GIS Overapass API Mean hausdorff distance to the nearest 
commercial area from the points along 
the trip trajectory 

Typically trips in and around commercial areas are 
made using public transit modes and cars for office 
locations, shopping centers. Longer distances may 
indicate motorized modes are used more compared t 
bicycling or walking. 

Roy et al. (2019),  
Semanjski et al. (2017) 

Distance to 
subway 
stations 

GIS OpenStreetMap ( 
OSM, 2017) 

Mean hausdorff distance to the nearest 
subway station from the points along 
the trip trajectory 

Trajectories that are closer to subway stations can be 
used to identify public transport modes 

Gong et al. (2012),  
Stenneth et al. (2011) 

Distance to bus 
stops 

GIS OpenStreetMap ( 
OSM, 2017) 

Mean hausdorff distance to the nearest 
bus stop from the points along the trip 
trajectory 

Trajectories that are closer to bus stops can be used to 
identify public transport modes 

Gong et al. (2012),  
Stenneth et al. (2011),  
Nguyen and Armoogum 
(2020) 

Distance to bike 
infrastructure 

GIS OpenStreetMap ( 
OSM, 2017) 

Mean hausdorff distance to the nearest 
bike lane/bikeway/bike path from the 
points along the trip trajectory 

Trajectories that are closer to bike infrastructure can 
be used to identify active transport modes 

Roy et al. (2019), Jestico 
et al. (2016), Semanjski 
et al. (2017) 

Distance to 
shoreline 

GIS Overpass API Mean hausdorff distance to the nearest 
shoreline from the points along the trip 
trajectory 

Trajectories that are closer to the shoreline and have 
lower speeds can be used to identify active transport 
modes like biking or walking with an additional 
aspect of scenic effect for the comfort of pedestrians/ 
bicyclists. It could also highlight the use of private 
modes if the trips tend to have higher speed. 

Nelson et al. (2021)  
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4.2. Training generalized and city-specific models to predict 
transportation modes 

The ‘generalized’ approach was used to fit a single generic model ‘G' 
using the GPS metrics extracted from GPS data irrespective of which city 
the data was collected from. The combined feature sets from ‘n’ cities - 
‘C1, ….Cn’ were then trained using the same model ‘G' to predict 
transportation modes in all cities. Three supervised classifiers namely - 
random forests (RF), extreme gradient boost (XGB) and multilayer 
perceptron (MLP) were trained for the ‘generalized’ approach using data 
from all cities. 

G ∼ f
(
C1, C2,…..Cn

)
(1) 

The ‘context-specific’ approach was used to fit one model ‘Mi’ per 
city ‘i’ using all three classifiers. This approach aimed at fitting the 
model more closely with the geographic characteristics of each city by 
adding contextual features specific to the city on top of the GPS features 
represented as ‘Ci’ for the specific city. 

Mi ∼ f (Ci) (2) 

A 10-fold cross-validation was applied for training and testing all the 
models from Eqs. (1) and (2) for predicting five transportation modes – 
‘Bicycle’, ‘Bus’, ‘Car’, ‘Train’ and ‘Walk’. To account for the imbalance in 
trip distribution across all modes a Synthetic Minority Sampling Tech
nique (Chawla et al., 2002) was applied during the training phase. 

4.3. Comparing classification accuracy and assessing generalizability 

We computed the F1-score of each model represented by Eqs. (1) and 
(2) to compare how the classification accuracy varied between the two 
approaches after adding contextual features. The F1-scores reported are 

Table 4 
Model Accuracy comparison between the generalized and city-specific 
approaches.  

Place Classifier Mean accuracy Overall increase 
in mean 
accuracy after 
adding 
geographic 
context 

Generalized 
(GPS features 
from all cities) 

City-Specific 
(Adding 
contextual 
features for 
individual cities 
with GPS 
features) 

Montreal RF 0.33 0.97 64% 
XGB 0.33 0.89 56% 
MLP 0.60 0.97 37% 

St. John's RF 0.55 0.99 44% 
XGB 0.51 0.98 47% 
MLP 0.25 0.99 74% 

Vancouver RF 0.20 0.88 68% 
XGB 0.20 0.93 73% 
MLP 0.15 0.92 77%  

Table 5 
Mean classification accuracy metrics for different classifiers using generalized 
and city specific approaches across all cities.  

Classifiers Generalized model Context-specific model Change in accuracy 

Mean S.D. Mean S.D. Mean S.D. 

RF 0.36 0.17 0.94 0.05 0.58 0.12 
XGB 0.34 0.15 0.93 0.04 0.59 0.13 
MLP 0.33 0.23 0.96 0.03 0.62 0.22  

Fig. 4. Confusion matrix for generalized model using GPS features of all cities combined.  
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calculated based on the precision (Eq. (3)), a measure of the relevance of 
the results, and recall (Eq. (4)), a measure of how many truly relevant 
results are returned by the models. A high precision score signifies low 
false-positive rates, and a high recall indicates low false-negative rates. 
The F1-score (Eq. (5)) is the harmonic mean of the precision and recall 
rates which measure the classification accuracy of the models based on 
true and predicted labels and varies between 0 and 1 with a higher value 
indicating greater accuracy. 

P =
Tp

Tp + Fp
(3)  

R =
Tp

Tp + Fn
(4)  

F1 = 2*
P*R

P + R
(5) 

The F1-scores were also compared between the generalized and city 
specific models to assess whether a single model or multiple different 
models would be suitable for prediction purposes when combining 
metrics from GPS data with surrounding geographic context. The 

generalized model ‘G' used GPS feature sets as input derived features 
from all cities and the city-specific models ‘Mi’ used a total of three 
different feature sets combining GPS and contextual data as inputs- one 
for each city. The generalized and city-specific models were rerun using 
the RF, XGB and MLP classifiers. 

5. Results 

We grouped the trips and mode from GPS variables listed in Table 2 
to extract a total of 40 features. The contextual variables were used to 
generate an additional 68 features for GIS data listed in Table 3. The 
generalized and city-specific model accuracies with and without 
geographic context are reported in Table 4. Overall, the results indicated 
that the accuracy of all three classifiers improved significantly upon 
adding contextual data. 

The overall increase in classification accuracy ranged from 37% up to 
77% after GIS features were added to the models along with the GPS 
features (Table 4). The highest improvement in accuracy was achieved 
by MLP in case of St. John's and Vancouver as the volume of data was 
much lower compared to that of Montreal. 

We also calculated the summary statistics for different classifiers to 

Fig. 5. Confusion matrices for context-specific models after adding geographic context for (a) Montreal, (b) St. John's and (c) Vancouver.  
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compare predictive accuracy using both approaches and found that the 
highest average accuracy improved by 62% while using MLP compared 
to RF which showed 58% improvement and XGB which showed a 59% 
improvement (Table 4). 

The highest average accuracy of 96% was obtained by the context- 
specific model using the MLP classifier (Table 4). The low standard 
deviations also indicate that the context-specific approach yielded much 
more stable models specific to each city, whereas the generalized model 
not only hurt the classification accuracy which ranged from 33%–36% 
but also varied greatly based on training data. Additionally, we 
compared the context-specific models with separate models for each city 
using just GPS features as shown in Supplementary Tables S1 and S2. 
The MLP classifier resulted in the most stable model with the lowest 
variance (Table S2) in prediction accuracy. The accuracy improved 
significantly upto 68% (Table S1) when just contextual features were 
added on top of just GPS features. However, the XGB model tends to 
overfit as the accuracy did not vary a lot. 

We used the MLP classifier, as it had resulted in the highest change in 
accuracy as shown in Table 5, to generate a confusion matrix for trips 
from all cities combined using the generalized model (Fig. 4). The most 
misclassification rate occurs in distinguishing between the motorized 
modes with 66% of car trips being classified as bus trips and 62% of train 
trips are misclassified as car trips. 

However, active modes of transportation have a higher classification 
accuracy using the generalized approach. Bicycling is classified correctly 
in 85% of the trips and walking modes are classified correctly in 51% of 
the trips. Similarly, the city-specific models were also used to generate 
one confusion matrix per city using the MLP classifier (Fig. 5). The 
context-specific models performed significantly better than the gener
alized one. For Montreal with ‘Bicycle’, ‘Train’ and ‘Walk’ were classi
fied with high accuracies of 99%, 88% and 89% respectively with only 
56% trips correctly classified as using the mode ‘Bus’. All five modes 
were correctly classified for St. John's with nearly 99% accuracy for 
‘Walk’ modes, whereas in Vancouver ‘Walk’ modes were most accu
rately classified with other modes ranging from 71% to 91% accuracy. 
The most misclassification occurred among ‘Bus’ and ‘Train’ trips which 
were incorrectly predicted as ‘Walk’ trips. 

6. Discussion 

We developed a data-driven modeling approach to classify trans
portation modes to assess the role of geographic context in classifying 
transportation modes across multiple cities. Our results highlight that 
adding contextual information specific to cities using variables like - 
distance to bike infrastructure, distance to subways, distance to shore
line and distance to open spaces significantly improves prediction ac
curacy of transportation modes labeled as ‘Bicycle’, ‘Bus’, ‘Car', ‘Train’ 
and ‘Walk’. We used distance-based measures to encode proximity to 
transportation infrastructure (e.g. subway stations, bus stops, and bike 
lanes) in Montreal, St. John's and Vancouver that were helpful in 
determining a particular transport mode choice for commuters (Lunke, 
2020) as they typically try to optimize their commute times by staying 
closer to areas with better availability of transportation infrastructure. 
The natural and built environment of a city (e.g. residential neighbor
hoods, open spaces etc.) was also an important factor in the transport 
mode choice as shown by earlier studies (Winters et al., 2010) and 
contributed to the high accuracy of context-specific models compared to 
using just GPS metrics using the generalized model (Table 4). 

Geographic context captured by variables like distance to commer
cial areas (Semanjski et al., 2017) and distance to green spaces or sea
shores (Semanjski et al., 2017; Böcker et al., 2015) are often important 
for leisure trips made on foot, bicycles or in private vehicles who can 
spare time to interact more with their spatial surroundings (Páez and 
Whalen, 2010) as well as feel safe and comfortable (Ferster et al., 2021). 
Aesthetics like the visibility of the sea-shore (Nelson et al., 2021) or 
proximity to open green spaces (Roy et al., 2019) that have lower traffic 

volumes and safer speed limits (Roy et al., 2019) could also be used as a 
distinguishing factor for active (bicycle/walk) and private (car) modes 
of transportation as people who ride bicycles tend to prefer more scenic 
routes versus people who use cars as they tend to prefer shorter routes 
with higher speed limits. Hence, including these factors considerably 
improved the accuracy of the classification algorithms for the context- 
specific approach (Table 5). 

The raw GPS data were converted into meaningful features that were 
combined with the contextual variables to fit supervised classification 
models and the accuracy of each model improved after adding contex
tual variables. Our results highlight how considering contextual vari
ables in determining transportation modes can improve overall 
accuracy. In terms of the generalizability of the models, the changes in 
accuracy indicate that context-specific models capture the geographic 
setting of the city quite well building upon how and when people tend to 
use certain modes of transportation compared to others based on the 
availability of transit stops, access to bike lanes or other geographic 
features it is trained with and therefore restricts its applicability in other 
cities to some extent. The accuracy for Montreal went up by nearly 64% 
using Random Forests, but it was lower than the other two cities – even 
though more trip data were available for Montreal. A possible expla
nation could be that -since trips were labeled using a trip generation 
algorithm, the uncertainty of the algorithm may have propagated into 
the classification approach as well leading to lower accuracies than in St. 
John's or Vancouver. 

However, an interesting thing to note is that the accuracy of the 
context-specific approach sharply increased the classification accuracy 
upto 99% for some trips in the city of St. John's. A possible explanation 
could be the data volume of the trips used for fitting the models was not 
too high and there may have been a chance overfitting of the model. 
Most of the trip imbalance was accounted for during the training phase, 
however, since our modeling depends to a large extent upon the avail
ability of real-world data, we were limited in terms of proportionate 
amount of data for each city. Even though we cross-validated the 
context-specific model using several combinations of validation data, it 
may have not been sufficient to overcome the overfitting issue for St. 
John's as more pre-labeled trips of matching spatial and temporal res
olution were not available from the city at the time of this study 
resulting in a much sparse input feature matrix available for prediction 
compared to Vancouver and Montreal. Hence, it is advised to consider 
issues of overfitting carefully while fitting context-specific models and 
reducing the number of independent attributes used to fit the model ot 
increasing the volume of groud truth data may help overcome this issue. 

Based on the ultimate purpose of classifying trips, practitioners may 
either choose a highly accurate model or a highly generalizable model. 
The highly accurate model may produce correct transportation mode 
labels but would depend on a greater number of available training data 
and would perform well in a single study area. The highly generalizable 
model compromises on very high accuracy but will ensure the model 
will perform optimally well in multiple study areas with varying 
geographic context and will not be entirely skewed towards any single 
city or a high amount of readily available correctly labeled trips. 

In the future we hope to extend our work to balance out trip distri
butions from all these cities for comparable amount of ground truth data 
to further validate our model accuracy for the context-specific approach 
and a coordinated effort among different local governmental agencies 
may be needed during the data generation/collection process itself to 
make the modeling process streamlined. Further context-specific attri
butes will also be tested beyond the ones currently used in the study 
(Table 3) to better evaluate the significance of the contextual features on 
classification accuracy of the context-specific models. Since GPS features 
are not tied to the local geographic setting (i.e information about the 
terrain or availability of transportation infrastructure etc.), using the 
generalized model might be a reasonable and or easier approach to 
classifying transportation modes as well when policymakers are un
aware of which contextual variables may be used for every city. The 
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predictive capacity of the generalized approach could potentially help in 
the generation of trip labels from raw GPS data at a large scale to 
overcome manual effort of labeling trips. 

7. Conclusion 

Overall our results can inform policymakers to quantify how context 
influences travel behavior in cities. Our modeling approach is open and 
reproducible and can be used to predict transportation modes from GPS 
data and contextual information in other cities depending upon the 
availability of data. The context-specific methods developed will be 
applicable in scenarios where the underlying urban structure of the city 
is to be closely studied and have a significant influence on mode choices. 
The results generated in this paper could provide a guideline to poli
cymakers on which additional factors to consider for predicting trans
portation modes beyond the traditional instrumental factors like 
distance, speed, time, and cost. With further research and refinement of 
our results policymakers can better understand how and why the travel 
demand for different transport modes fluctuates with the dynamics of 
space, time, and place. The results can be utilized in helping them design 
well-planned data collection efforts for travel behavior studies that 
could enable more equitable infrastructure investments for one and all. 
However, the results might vary by geographic settings of a study area 
and policymakers need to prioritize their goals of higher accuracy versus 
high generalizability to choose an optimal model that suits their needs. 
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déplacer... et y gagner. Retrieved April 05, 2021, from. https://ville.montreal.qc. 
ca/mtltrajet/. 

Vugt, Van, Mark, Paul A.M., Lange, Van, Meertens, Ree M., 1996. Commuting by car or 
public transportation? A social dilemma analysis of travel mode judgements. Eur. J. 
Soc. Psychol. 26 (3), 373–395. 

Wang, Bao, Gao, Linjie, Juan, Zhicai, 2017. Travel mode detection using GPS data and 
socioeconomic attributes based on a random forest classifier. IEEE Trans. Intell. 
Transp. Syst. 19 (5), 1547–1558. 

Wang, Bijun, Wang, Yulong, Qin, Kun, Xia, Qizhi, 2018. Detecting transportation modes 
based on LightGBM classifier from GPS trajectory data. In: 2018 26th International 
Conference on Geoinformatics. IEEE, pp. 1–7. 

Wener, Richard E., Evans, Gary W., 2007. A morning stroll: levels of physical activity in 
car and mass transit commuting. Environ. Behav. 39 (1), 62–74. 

Winters, Meghan, Brauer, Michael, Setton, Eleanor M., Teschke, Kay, 2010. Built 
environment influences on healthy transportation choices: bicycling versus driving. 
J. Urban Health 87 (6), 969–993. 

Xiao, G., Juan, Z., Zhang, C., 2015. Travel mode detection based on GPS track data and 
Bayesian networks. Comput. Environ. Urban. Syst. 54, 14–22, 14e22.  

Zheng, Yu, Li, Quannan, Chen, Yukun, Xie, Xing, Ma, Wei-Ying, 2008. Understanding 
mobility based on GPS data. In: Proceedings of the 10th International Conference on 
Ubiquitous Computing, pp. 312–321. 

Zheng, Yu, Chen, Yukun, Li, Quannan, Xie, Xing, Ma, Wei-Ying, 2010. Understanding 
transportation modes based on GPS data for web applications. ACM Trans. Web 
(TWEB) 4 (1), 1–36. 

A. Roy et al.                                                                                                                                                                                                                                     

http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0230
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0230
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0230
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0240
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0240
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0250
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0250
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0250
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0255
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0255
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0255
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0260
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0260
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0260
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0265
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0265
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0265
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0265
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0270
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0270
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0275
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0275
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0275
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0275
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0280
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0280
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0280
https://ville.montreal.qc.ca/mtltrajet/
https://ville.montreal.qc.ca/mtltrajet/
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0290
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0290
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0290
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0295
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0295
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0295
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0300
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0300
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0300
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0305
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0305
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0310
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0310
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0310
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0320
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0320
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0325
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0325
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0325
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0330
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0330
http://refhub.elsevier.com/S0966-6923(22)00053-9/rf0330

	Assessing the role of geographic context in transportation mode detection from GPS data
	1 Introduction
	2 Study area
	3 Data
	4 Methods
	4.1 Feature extraction from GPS data and geographic context
	4.2 Training generalized and city-specific models to predict transportation modes
	4.3 Comparing classification accuracy and assessing generalizability

	5 Results
	6 Discussion
	7 Conclusion
	Acknowledgments
	Appendix A Supplementary materials
	References


