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a b s t r a c t

Sharing threat events and Indicators of Compromise (IoCs) enables quick and crucial decision making
relative to effective countermeasures against cyberattacks. However, the current threat information
sharing solutions do not allow easy communication and knowledge sharing among threat detection
systems (in particular Intrusion Detection Systems (IDS)) exploiting Machine Learning (ML) techniques.
Moreover, the interaction with the expert, which represents an important component to gather verified
and reliable input data for the ML algorithms, is weakly supported. To address all these issues,
ORISHA, a platform for ORchestrated Information SHaring and Awareness enabling the cooperation
among threat detection systems and other information awareness components, is proposed here.
ORISHA is backed by a distributed Threat Intelligence Platform based on a network of interconnected
Malware Information Sharing Platform instances, which enables the communication with several
Threat Detection layers belonging to different organizations. Within this ecosystem, Threat Detection
Systems mutually benefit by sharing knowledge that allows them to refine the underlying predictive
accuracy. Uncertain cases, i.e. examples with low anomaly scores, are proposed to the expert, who acts
with the role of oracle in an Active Learning scheme. By interfacing with a honeynet, ORISHA allows for
enriching the knowledge base with further positive attack instances and then yielding robust detection
models. An experimentation conducted on a well-known Intrusion Detection benchmark demonstrates
the validity of the proposed architecture.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nowadays, organizations and users face an enormous amount
f sophisticated, targeted and widespread cyberattacks. Malicious
ctors were proven able to compromise government computer
ystems as well user devices causing various types of damages.
hishing, identity theft, information leakage, DDOS and botnet
epresent some examples of popular threat occurred in 2020 [1].
he outbreak of COVID-19 has further exacerbated this situa-
ion. As the virus spread during the early part of the 2020, the
umber of cyberattacks against organizations grew exponentially,
eaching a peak in April [2,3]. The pandemic unveiled different
ulnerabilities of well-known platforms, applications and sys-
ems, and simultaneously stimulated the interest for promoting
he usage of information sharing technologies to increase the
egree of security for enterprises and organizations.
In this context, timely sharing threat events and Indicators of

ompromise (IoCs) among organizations can be crucial in order
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to make quick decisions and set up effective countermeasures.
In particular, coupling proactive threat information sharing and
defensive mitigation strategies allow for strengthening the re-
silience of the entities belonging to the trusted community by
yielding a herd immunity against new (possibly unknown) at-
tacks and malware. Hence, the need to design platforms, tools and
methodologies for accessing and sharing threat events in order
to react promptly and prevent further damages. Cyber Threat
Intelligence (CTI) platforms are considered valuable tools for eas-
ing the management of threat information [4]. These solutions
allow organizations to easily handle the whole process of gather-
ing, preprocessing, enriching, correlating, analyzing and sharing
threat events and associated data [5]. According to Dandurand
and Serrano [6], the main requirements for a Threat Intelligence
Platform (TIP) can be summarized into (i) providing services for
information sharing, (ii) automatizing the process, (iii) enabling
functionalities for collaborative threat data analysis. Although TIP
technologies can potentially bring important benefits to the orga-
nizations, developing a comprehensive Cyber Threat Intelligence
platform able to handle information from different sources is
difficult to achieve [7]. Standardization, privacy and reliability of
the shared information are just some examples of the open chal-

lenges in defining a fully operational platform. Some recent works
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roposed interesting solutions for easing threat data sharing but
hey only focused on addressing some of the above-mentioned
ssues [8,9]. Wagner et al. [10] provide an extensive overview
f the current state-of-the-art and highlight open technical and
on-technical challenges for the cyber threat intelligence.
When we consider also Machine Learning (ML) based threat

etection systems, the situation is further exacerbated by some
pecific challenges:

• The quality of threat feeds and events is not guaranteed
and there is a need for a reliable and automated threat
analysis and mitigation. This is particularly problematic for
Threat Detection Systems (TDS, such as Intrusion Detection
Systems) based on AI/ML techniques, which are typically
affected by high false positive rates thus nullifying both their
detection capabilities and the informative content of their
detection.

• Combining Threat Intelligence Platforms with AI based
Threat Intelligence solutions in a single comprehensive
framework is a challenging task since the former ones usu-
ally work in an event-based fashion while the latter are typ-
ically data-driven. In particular, there is no simple way for
two machine learning algorithms to share, analyze and com-
pare their findings within a standardized framework that
can boost their attack detection and mitigation capabilities.

ontribution and organization. In this work, we propose ORISHA,
platform for ORchestrated Information SHaring and Awareness
articularly focused on the two above mentioned issues. ORISHA
as the twofold objective of (i) improving the accuracy of TDS
n detecting incoming attacks, and (ii) enabling the sharing of
eliable and relevant threat information among organizations and
hreat detection algorithms. The guiding principle is that TDSs can
enefit each other mutually by sharing knowledge, since a threat
eed shared by a TDS can be exploited by another one to improve
ts threat modeling strategies. At the same time, the same feed
an be enriched by enabling communication with other layers,
hich can be exploited to further characterize the underlying
hreats and provide important insights about them.

The framework is based on an exchange protocol where in-
ormation concerning threats is published on a distributed TIP
implemented as a network of several Malware Information Shar-
ng Platform (MISP) instances) and made accessible to other ac-
ors, which can then exploit their capabilities in order to further
haracterize the feed and acquire it in their knowledge base.
his collaboration framework has several advantages. On one
ide, it allows for improving the performances of the threat
revention and detection systems, yielding more robust and ef-
ective machine/deep learning models, reducing the false alarm
ate and the average time required for identifying a successful
ntrusion. On the other side, it enables more robust threat in-
elligence by allowing to better contextualize threat data and
evise flexible strategies, methodologies and data formats for col-
aborative threat intelligence, also by improving the notification
echanisms to appropriately notify relevant stakeholders having
ifferent needs for a contextualized interpretation of threat data.
The rest of the paper is structured as follows. Section 2 pro-

ides an overview on the main platforms and solutions for threat
nformation sharing and awareness. We also review some rele-
ant works which focus on the exploitation of external sources to
mprove the performance of TDS and the role of Active Learning in
ybersecurity solutions. Section 3 describes the devised ORISHA
latform for threat event sharing. We detail the data exchange
ormat and discuss how it integrates data-driven intrusion de-
ection system. In particular, Section 3.3 exemplifies the whole
nformation flow and illustrates the benefits in adopting the pro-
osed protocol for the overall threat information sharing process
31
both, in terms of attack detection capability and quality of the
shared information. In Section 4 we describe a suite of experi-
ments which demonstrate the benefits of adopting ORISHA within
an intrusion detection scenario. Finally, Section 5 concludes the
paper and outlines future research directions.

2. Background and related works

Threat Intelligence refers to the task of gathering data concern-
ng attacks or breaches (e.g. context, methods, indicators, devices,
tc.) for enabling the organizations to set up countermeasures
n the basis of a wide range of information [11]. In order to
nhance prevention and detection of new threats, organizations
an collaborate by sharing information about recent discovered
hreats. This information is usually made available under the form
f Indicator of Compromises (IoCs). Basically, an IoC is a piece
f forensic data identifying potentially malicious activity on a
ystem or network. Typical examples of IoCs are the source ip
ddress of an attack, the hash of a malicious executable file or
he URL of a phishing web site.

Threat Intelligence represents an emerging and relatively new
esearch line in the field of cybersecurity and, as highlighted
n [12], there is a growing interest in this topic by both academic
nd industrial entities. Cooperation and data sharing allow for
mproving the security of the computer networks and reducing
he risk of compromising. The recent research has mainly focused
n devising tools for the threat information sharing, so that in
he last years we have observed a proliferation of threat intelli-
ence platforms [13]. The lack of standards and solid approaches
esulted in different combinations of products and methodologies
requently erroneously labeled as threat intelligence. Johnson
t al. [4] provided some tentative guidelines, by devising informa-
ion sharing goal for organizations, identifying threat information
ources and proposing rules for managing the publication and
istribution of the threat information of an organization. How-
ver, there is no consensus among researchers and practitioners
n the usage of a specific methodology or technology since there
s no comprehensive solution to the standardization, privacy and
eliability issues related to the sharing process.

In the following, we provide an overview of the main stan-
ards and technologies for the threat intelligence, we survey
ome relevant works exploiting the collaboration among different
etwork security tools and analyze some emerging approaches in
his research field.

tandards and solutions for threat information sharing. While in
he past, channels such as mail messages, phone calls, ticket
ystems, or face-to-face meetings were the main ways to quickly
hare threat information, with the exponential growth cyberat-
acks these channels have been replaced with advanced solutions
ble to automate the whole process. Different standards, such as
tructured Threat Information CybereXpression (STIX) [14], Cyber
bservable eXpression (CybOX) [15], Incident Object Description
xchange Format (IODEF) [16] and Trusted Automated eXchange
f Indicator Information (TAXII) [17], have been proposed to
implify the sharing of these indicators. As above mentioned, a
arge number of platforms based on these standards have been
roposed [5,12] and here we review some of those dedicated to
hreat information sharing [18]:

• MISP (Malware Information Sharing Platform)1 is an open
source software solution for collecting, storing, distributing
and sharing cybersecurity indicators and threat informa-
tion [19]. The platform encompasses several public MISP
communities, available and interconnected via MISP API,
sharing threats or cybersecurity indicators worldwide.

1 https://misp-project.org/.

https://misp-project.org/
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Table 1
Threat intelligence solution comparison.
Platform Supported standards Support for

cooperation
Extensibility and
support for custom
solutions

SIEM and IDS
integration

Documentation Licence

MISP STIX, CybOX, TAXII High ✓ ✓ Advanced Open source (GNU
General Public License)

MITRE CRITs STIX, TAXII, OpenIOC,
Send/receive information
through Facebook’s
ThreatExchange

High × × Medium Open source (GNU
General Public License)

CIF STIX, CybOX Medium × × Basic Open source (GNU
General Public License)

EclecticIQ platform STIX, TAXII Medium Partial × Medium Commercial

LookingGlass cyber STIX and TAXII via
scoutPRIME

High × × Basic Commercial
• MITRE CRITs (Collaborative Research Threats)2 is an open
source malware and threat repository that leverages differ-
ent open source software to create a unified tool for analysts
and security experts engaged in threat defense [20]. This
tool employs a hierarchy to structure cyber threat informa-
tion, thus enabling the analysts to perform complex queries
and discover previously unknown related content.

• CIF (Collective Intelligence Framework) is an open source
cyber threat intelligence platform that allows gathering data
from different sources and exploiting them for threat iden-
tification, detection, and mitigation. IP addresses, domains,
and URLs can be stored and preprocessed as threat data
within the platform. It permits to ingest many different
sources of data sets such as feeds of malicious domains.

• EclecticIQ Platform3 is a commercial platform gathering
and interpreting intelligence data from open sources, com-
mercial suppliers and industry partnerships. This platform
is based on STIX and TAXII standards and provides analyst-
friendly workflows.

• LookingGlass Cyber4 provides two commercial solutions,
scoutPRIME and scoutSHIELD. These tools provide utilities
for both collecting threat information and handling threat
responses, by making available collaboration and sharing
tools for the threat analysis.

Table 1 compares the TIP solutions illustrated above and high-
light the main features that characterize them. Among the di-
mensions of comparison, we mention support for cooperation,
extensibility and integration with advanced tools.

Honeypot technology. Honeypots are well-consolidated technolo-
gies in the cybersecurity domain and allow for logging precious
information on the behavior of attacks and malware. Basically,
a honeypot is a computer system devised as a bait for hackers,
with the purpose to gather information about prospective attacks.
The main idea consists in monitoring the actions performed by
a malicious user to probe, attack and compromise the decoy
system. From this simple concept, different implementations of
honeypots can be derived and when two or more honeypots are
deployed in a single environment they form a honeynet [21]. A
relevant and widely adopted classification of honeypots is based
on the level of interaction: low, medium and high.

Low interaction honeypots [22] allow for simulating one or
more services exposing simple functions without providing ac-
cess to the operating system. The main benefits in using these
solutions are low risk, cost and maintenance. However, they can

2 https://crits.github.io/.
3 https://www.eclecticiq.com/platform.
4 https://www.lookingglasscyber.com/.
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be easily identified by a human attacker therefore they are not
totally reliable and the gathered information can be limited.

High interaction honeypots can include high level functional-
ities such as, e.g., access to the operating system [22], usage of
real devices, etc. Moreover, there exist advanced implementation
based on complex virtual environments that allow for emulating
both services and devices.

By contrast, medium interaction honeypots represent an inter-
mediate solution, since they provide access to the (possibly em-
ulated) operating system and allow for emulating more services
and functionalities than low interaction honeypots.

Although the interaction level represents a key feature, there
exist other relevant aspects that characterize honeypots families,
such as purpose, role, resource level. A more detailed overview can
be found in [23].

Improving threat detection via information sharing and data en-
richment. The idea to support the collaboration among different
Threat Detection Systems is not new. In Intrusion Detection sce-
narios, Collaborative Intrusion Detection Systems were proposed
to improve the effectiveness of (local) IDSs. The idea is that
several monitors cooperate in either a hierarchical or peer-to-
peer way to discover malicious behaviors, playing both the role
of sensors and data collectors. Vasilomanolakis et al. [24] provide
a comprehensive survey of the main techniques and solutions
proposed in this setting. Although this collaboration allows for
improving the performances of singleton IDSs, data trust and
privacy represent two relevant issues. Moreover, the missing of
a standard data exchange format limits the capabilities of these
approaches.

A different approach to improve the accuracy of TDSs consists
in integrating information from honeypots. In [25], a hybrid and
adaptable honeypot-based approach is proposed that improves
the IDSs for protecting networks from intruders. The main idea
consists in recording and analyzing the intruder’s activities and
using the results to take administrative actions for protecting the
network. The authors provide an overview of the main compo-
nents of the systems and illustrate some performance and load
testing scenarios.

Baykara and Das [26] introduce a honeypot-based approach
aiming at reducing the false positive rate. A honeypot based IDS is
implemented able to monitor in real-time the network traffic on
specific servers. The system represents a hybrid honeypot com-
bining the capabilities of low and high interaction honeypots in
a single structure. The resulting log files are analyzed to identity
new zero-day attack and to increase IDS knowledge.

Khosravifar and Bentahar [27] propose a new architecture
combining distributed agents and honeypots. The approach aims
at reducing the false alarm rate in attack detection. Anomalous
connections, initially detected by the IDSs, will be re-routed to a

https://crits.github.io/
https://www.eclecticiq.com/platform
https://www.lookingglasscyber.com/
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oneypot network for a more accurate analysis. If, as a result of
his investigation, a misclassification of the IDS is discovered, the
onnection will be redirected to the original destination so that
he interaction can be completed.

Sibi Chakkaravarthy et al. [28] illustrate Intrusion Detection
oneypot, an approach combining Honeypots and IDS in a sin-
le system. It includes three main components: Honeyfolder,
udit Watch, and Complex Event Processing. The former is a de-
oy folder exploiting the Social Leopard Algorithm (SoLA), Audit
atch is a module in charge to verify the entropy of the files and

olders, and the last allows for aggregating data from different
ecurity systems to confirm the ransomware behavior.

ctive learning solutions for threat detection. Active Learning (AL)
efers to a family approaches and algorithms where new in-
tances to be labeled are interactively chosen by means of specific
ueries [29]. Basically, the idea consists in providing unknown
unlabeled) examples, which can be extracted by adopting differ-
nt strategies, to an oracle that will correctly label them. Active

Learning can be used in any scenario where there is a scarcity of
labeled data or the latter is highly skewed [30]. In cybersecurity
for example, gathering, labeling and sharing data to train any kind
of engine/classifier represents a hard and expensive task. As a
consequence, Active Learning strategies were recently explored,
aimed at improving the effectiveness of the underlying IDS. A
comprehensive overview on Active Learning based methods and
techniques for detecting anomalous behaviors (e.g., intrusion de-
tection, fault detection, etc.) can be found in [31]. Dang [32]
proposes the use of active learning in online configuration to
reduce the labeling cost but maintaining the classification perfor-
mance. Different from other existing active learning algorithms,
the author focuses on the labeling of rare events deemed more
important for the learning phase. The resulting sampling strategy
shows substantial improvements. The adoption of active learning
strategies for wireless intrusion detection is studied in [33]. The
authors survey the main sampling strategies for AL and then
evaluate the improvements due to the usage of the human in the
loop approach on an intrusion detection benchmark.

Active learning can be considered as a special case of Rein-
forcement Learning. Here, the oracle is replaced by the interaction
with the environment, where the model is rewarded subject to
its ability provide the best action to be performed. Lopez-Martin
et al. [34] propose a Deep Reinforcement Learning (DRL) frame-
work able to provide more accurate predictions in comparison
with standard machine learning techniques.

While AL is widely considered a consolidated approach, com-
bining AL strategies with DL architectures represents a new rele-
vant research line (i.e., Deep Active Learning). In [29] the authors
survey some relevant approaches proposed in this direction.

3. The ORISHA Platform

In this section, we provide an overview of the proposed OR-
ISHA architecture. Fig. 1 illustrates the idea behind the platform.
There are essentially three actors that cooperate: Distributed TIP,
DS Layer and Honeynet. The Threat Intelligence Platform rep-
esents the core component of the whole architecture. It plays
two-folds role: (i) storing data coming from heterogeneous

ources in an encrypted and distributed way; and (ii) delivering
he gathered information to the other components. In practice,
everal MISP instances can cooperate and share data about up-
oming threat events from different modules integrated in the
latform. The choice of MISP is due to different benefits and
apabilities provided by this platform [35,36], as illustrated in
able 1: (i) integration with SIEMs and IDSs capability; (ii) eas-

ily extensible and flexible architecture enabling the possibility

to define custom solutions; (iii) support for different standards
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(e.g., STIX, TAXI, etc.); (iv) availability of a rich and very detailed
documentation; (v) a number of active communities, and (vi)
distributed with open source license.

Different types of Threat Detection Systems (e.g., Intrusion
detection and prevention systems) can interface with the TIP
by providing information concerning incoming attacks and feed-
ing it with new intrusion events/statistics. In addition, they can
exploit information stored in the TIP to improve their mod-
els/rules/signatures. We consider a TDS layer here, which can
include several tools and techniques for real-time and off-line
detection. Honeypots are deployed with the aim to collect addi-
tional information concerning new attacks. The deployment can
be enabled by TIP, in order to enrich existing events coming either
from the IDS or other sources.

The general concept relies essentially on two main compo-
nents in order to actually enable information sharing: a data
exchange format and the layers that orchestrate the communi-
cation between TDSs and TIP. In the following, we instantiate
such components to work with ML-Based IDSs aimed at detecting
anomalous flow connections. We next illustrate how ORISHA
enables an Active Learning framework and finally we describe
the interaction between the honeynet and the other components.
We remark here that the platform can be extended to embed
other threat detection systems, provided that suitable adaptation
to both the data exchange format and the communication layers
is guaranteed.

Notably, in order to make the platform scalable with the
number of threats to process, ORISHA can exploit a distributed
approach in which several MISP instances (possibly belonging to
the same organization) are used together to handle high loads.
Moreover, the requests can be replicated on multiple nodes to
efficiently process them.

3.1. Sharing threat events: ORISHA data exchange format

The ORISHA components exploit a common interface imple-
mented as a custom MISP Object in JSON format. A MISP object
represents the data structure adopted by MISP to store shared
threat events. The general template can be easily extended to
include further relevant information on specific threat events. Our
objective is to devise a custom ORISHA MISP template, which can
embed the whole set of data of relevance for a TDS. These include:

• Access to reliable threats, that is, threats for which a general
consensus and interpretation can be achieved. The available
information can then be used to improve the detection
capabilities. For traditional IDS like Suricata or Snort this
is achieved by devising new security policy rules. However
data-aware IDS should be able to exploit such informa-
tion for extending their training sets and rebuilding the
underlying ML models with improved accuracy.

• Export of the discovered threats to the MISP network, for
further investigation and confirmation analysis. In partic-
ular, information concerning threats should allow further
labeling/categorization by other actors/TDS accessing it.

The components of the Custom MISP object are illustrated in
Table 2. Some of them are particularly relevant for collaborative
ML-based Network Intrusion Detection:

• pcap_file: This file contains the (anomalous) network
activity between two devices in ‘‘.pcap’’ Wireshark format. It
is essentially the information exploited by the IDS to detect
the threat and as such it is fundamental for the purposes of
the sharing philosophy of the platform. In fact, it is the main
piece of information to analyze for confirming the threat.

Also, in case a confirmation is available, it can be exploited
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Table 2
ORISHA MISP object.
Name Type Description Multiple

creation-date Datetime Threat event date ×

ip_dst ip-dst Destination IP ✓
ip_dst_port Port Destination port ✓
ip_src ip-src Source IP ✓
pcap_file Attachment PCAP file ×

verified Boolean True if the occurrence of the attack has been verified (e.g.,
operator check, consensus of a TDS committee, etc.)

×

signature_type Text Type of signature (e.g. md5, sha1, etc.) ×

signature Text Optional detected file signature ✓
attack_type Text A JSON containing information on IDS classification ×

anomaly_details Attachment Optional JSON file containing anomaly flow statistics ×
Fig. 1. ORISHA platform.
for enriching the knowledge-base of all the TDS accessing
to it. Since it can potentially contain sensitive information, it
can be encrypted for secure sharing with trusted-only peers.

• attack_type: This field stores, in JSON format, relevant in-
formation about the threat. It includes a list of classification
events relative to the pcap associated with the MISP object.
Each event can be relative to a specific IDS and Multiple
IDS can contribute with entries within attack_type. For
example, if algorithm X detected a DOS attack within the
pcap file, then attack_type includes an entry containing
the attack label (DOS), a confidence value/anomaly score,
and the signature of the detection algorithm.

• anomaly_details: An optional JSON fragment containing
aggregate statistics and further information exploited by the
IDS for characterizing the threat. For example, it can include
some summary statistics extracted from the pcap file, or the
signatures used to characterize it.

Fig. 2 shows an example instance. Here, attack_type con-
ains JSON instantiated with a specific entry, in lines 34–38. It
efers to a specific ML-Based IDS, which relatively to the attached
cap file (anomaly_pcap, as declared in the pcap_file at-
ribute on lines 39–43), detects an anomalous traffic flow (labeled
s ANOMALY) with a 98% confidence level.
The protocol only allows representing single events and does

ot model correlations of diverse events that are possibly related
o the same attack. Nevertheless, in Section 4, we show how these
ata can be used to capture different up-to-date types of attack
.g., DDOS, Bot, Infiltration, etc.

.2. Integrating TDSs with the TIP

As shown in Fig. 1, the distributed TIP interfaces with a pool
f Threat Detection Systems (grouped within the TDS Layer in
igure). The latter provide in-the-wild information (e.g. traffic
low anomalies, attack classification,malware signatures, etc.) about
nomalies and/or attacks on the monitored system, to be shared
34
Fig. 2. An example MISP security event object.
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Fig. 3. TDS Integration and honeypot interface.
hrough the distributed TIP. More in general, single TDSs or TDS
ayers distributed on several machines and belonging to different
rganization cooperate by exploiting the TIP to share relevant
ata on detected anomalies or attacks. Particularly relevant here
re the interactions among ML-based threat detection systems,
hich are detailed as follows.
For the purpose of illustration, we assume that the TDS layer

ncludes EBIDS (Ensemble Based IDS) [37], a ML-based Intrusion
etection technique adopting specialized ensembles of classifi-
ation models to identify undetected attacks by analyzing traffic
low statistics extracted from network logs. Here, we use pcap
ormat to share network flow information, but the proposed secu-
ity event object, described in the previous section, is flexible and
llows for supporting data shared in other formats. With respect
o the proposed architecture, EBIDS requires as input one or more
cap files to compute statistics concerning the network traffic
lows. In practice, following a widely adopted approach in the lit-
rature [38], EBIDS addresses the (binary) classification problem
f deciding whether a given network connection (or network flow)
s associated with an intrusion attack or not. The decision is based
n a fixed-length representation of the connection itself, which
ummarizes and aggregates its features. This representation is
xploited during the training phase of the classification ensemble.
he learned model allows for discovering anomalous behaviors
potentially related with different types of cyberattacks) that are
hared with the other software modules and organizations under
he form of MISP security events.

Each TDS can act both as a data provider and consumer. The
ey for enabling this behavior is the information stored within
he security events. As a consumer, a TDS can retrieve custom
ecurity events from the MISP, and exploit the enclosed infor-
ation to improve the detection capabilities of the underlying
lassification model. This is achieved by feeding it with new
abeled data concerning the attacks represented by the security
vents. As a producer, a TDS can identify/classify new attack
nstances from which to build and deliver the related security
vents. Such events can hence be consumed by other TDSs or
xploited to deploy specific honeypots tailored for the underlying
ttacks. Furthermore, it can analyze security events already stored
ithin the MISP, and enrich them with additional attack_type

abeling.
In Fig. 3, we explicit the interactions among the main compo-

ents. Basically, three macro-modules realize the import/export
acilities: (i) Log Extraction and Transformation (Honeypot Log
TL) module, (ii) Threat Importer and (iii) IDS Event Exporter.
he former is aimed at gathering data (e.g. pcap files) from the
oneynet and at delivering the associated security events to the
35
MISP. The Threat Importer collects data (pcap files) from the
security events and prepares them for the learning phase of
EBIDS. Finally, the IDS Event Exporter produces security events
discovered by EBIDS and shares them with the MISP. All commu-
nications within the platform occur via Rest Server. The values
included within the attribute ‘‘attack_type’’ are the responsi-
bility of the modules who deliver and/or enrich it, as illustrated
in Fig. 2. For example, EBIDS labels each flow (gathered from the
network traffic into pcap files via TCPDump and preprocessed)
as either normal or attack. Then, a sample of (probably) benign
flows (i.e., flows exhibiting an anomaly score less than a threshold
value) is used to update the local knowledge base, while abnor-
mal flows are shared with the Distributed TIP. This means that
for each abnormal flow (associated with a pcap file), a security
event is created with the ‘‘attack_type’’ attribute instantiated.
We model ‘‘attack_type’’ as a list, to ensure flexibility. Thus,
each event (and the associated pcap file) can be associated with
multiple labels (and the respective degree of confidence). In the
example shown in Fig. 2, EBIDS can classify the pcap flow as
‘‘ANOMALY’’. The event is shared with MISP and made available to
other IDSs which can enrich it with further information. Benign
flows do not trigger events, but events already labeled as attacks
can also be further labeled as normal by other TDSs: in such
cases, the label added to ‘‘attack_type’’ will be ‘‘NONE’’, with
the associated confidence value. This interaction is crucial for
ensuring feedback on false positives. A sophisticated example is
given by the fragment in Fig. 4. The same pcap file has been
analyzed by three different TDSs: two instances of EBIDS (trained
with proprietary data from organizations XXX and YYY), and a
different IDS (named OTHERIDS). The labels associated with the
event are: ‘‘ANOMALY’’ (with confidence 90%) by the first EBIDS
instance, ‘‘DDOS’’ (with confidence 70%) and ‘‘SMURF’’ (with con-
fidence 100%) by ‘‘OTHERIDS’’; and ‘‘NONE’’ (i.e., no anomaly, with
confidence 66%) by the second EBIDS instance. In the same vein,
intrusions (i.e., unauthorized accesses to the deployed services)
logged by honeypots trigger events describing the network flow
and the most suitable label (encoded with the ‘‘attack_type’’
attribute) triggered by the forensic analysis.

Since EBIDS will be used in Section 4 to demonstrate the
capabilities of ORISHA, it is worth looking at the details of its
detection model. We next describe the components used to in-
terface the TDSs with the TIP. EBIDS can be considered an overall
neural network integrating two components: a number of (weak)
deep models sharing the same neural architecture (but trained
against different data chunks), and a combiner sub-net employed
for yielding the overall anomaly score from the predictions of
the base classifiers. In more detail, the base model architecture
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Fig. 4. Cooperation example: the same pcap, shared with the TIP, is analyzed
y different TDSs.

onsists of a stack of different kinds of sub-nets: (i) an input layer
evoted to handling the input i.e. the relational representation of
he network flow obtained by extracting the features introduced
bove; (ii) a feature-engineering block, consisting in two layers
espectively providing an extended view of the initial features
including several non-linear functions) and a compressed rep-
esentation of the extended view; (iii) a number m > 1 of
esidual Block sub-net instances which is devoted to yielding a
lexible hierarchy of abstract data features; (iv) a final Decision
ayer, equipped with a sigmoid activation function which maps
ny given data instance to an anomaly score. The outputs of
hese models are combined by a further sub-net which can adopt
ifferent strategies based on trainable or non-trainable functions.
EBIDS works in a continuous stream within two phases: learn-

ng and deployment. In the former the classification model is
rained based on the data collected from the MISP. Fig. 5(a)
hows the logical flow of the learning phase: a set of classi-
iers are trained against Threat and Regular Traffic flows stored
n a local database (named PCAP DB in figure). The software
omponent, named DB Manager, is devoted to filling the PCAP
B with relevant threat events extracted from the TIP and nor-
al traffic flow examples gathered from the computer network.
oreover, it updates the DB by sampling and discarding out-of-
ate ‘‘normal traffic’’ and possibly also obsolete ‘‘threat’’ data. The
xamples stored in the PCAP DB are first processed through a
ata extraction tool (CICFlowMeter [39] in the figure) that extracts
tatistical summaries from the pcap network information. The re-
ulting relational representation then feeds a training set, which
s exploited to update EBIDS. The learning phase is periodically
erformed to keep the model up-to-date.
The deployment phase exploits the learned model to detect

nomalous behaviors and store them as MISP security events. We
onsider a classical Network Intrusion detection scenario: the IDS
nalyzes network traffic extracted from a network exploiting spe-
ific tools (e.g. packet capture) with the aim to monitor the devices
onnected to a network. Fig. 5(b) illustrates the components of
he underlying architecture and the typical process: the network
low is stored into a PCAP file and its preprocessed version is
rovided to EBIDS for the threat detection. If an anomaly (i.e. a
ossible new threat) is detected, then it is shared with the TIP
ia the IDS Event Exporter. Both the pcap and the preprocessed
ata are stored within the event, through the pcap_file and
nomaly_details attributes. Upon request, pcap files imported
rom MISP security events can be analyzed and an updated MISP
ecurity Event object is created and stored into the TIP with the
dditional labeling provided by EBIDS.
36
.3. Exploiting TDS cooperation and active learning

In this section, we illustrate how different TDSs interfacing
ith ORISHA can cooperate to improve their detection capa-
ilities and improve digital evidence on threats useful for the
ecision making process. Fig. 6 exemplifies the whole information
low.

The starting point is represented by the monitored system.
ere, traffic flow from the computer network is periodically
nalyzed by the components of the TDS Layer. In this scenario, a
pecific anomaly detector (TDS1 in figure), analyzes the pcap files
ncluding a specific logged traffic flow and detects an anomaly.
MISP security event is then produced and delivered. The event

s distributed in the TIP, where a different IDS (TDS2 in figure)
accesses the event, analyzes the embedded pcap files and pro-
vides an additional labeling (in agreement with the labeling from
TDS1) within the attack_type field. The updated MISP object,
now with two consensus labels, is analyzed by an expert who
validates the threat classification. The validated event can now be
retrieved from other IDS (e.g., TDSn in the figure) and included in
their training set for improving the robustness of the underlying
classification model.

Now let us consider the situation where the event released
by TDS1 is classified differently (non-anomalous) by TDS2. Again,
the domain expert inspects the event with dissimilar scores and
realizes that the event represents a false alarm. The event is then
returned to TDS1 which can then include the validated event in its
training set and refine the underlying model for better accuracy
and improve its false positive rate.

The above described approach resembles the well-known
Query-By-Committee (QbC) strategy [40], with the difference that
here, we foresee that the expert validates both the agreement
(in the first situation) and the disagreement (in the second one).
More sophisticated validation criteria can be adopted, to imple-
ment different optimization objectives. For example, in order
to reduce the human intervention, automatic validation can be
introduced, that confirms the agreements based on confidence
values and reduces human analysis to the most uncertain cases
based, e.g., on label entropy.

Honeypot-based data enrichment. In addition to the information
provided by the TDSs, the framework allows for gathering fur-
ther attack examples by means of a honeynet so to enrich the
knowledge base used for training of the ML-Based TDSs. In more
details, each deployed honeypot gathers data concerning new in-
trusions in a log file (in JSON or XML format). Notably, a honeypot
can be considered an environment where some vulnerabilities
are deliberately introduced in order to monitor and gather data
on attacks and intrusions. Specifically, they simulate legitimate
services which should be normally never called, therefore if a
connection with these services is established then it can be la-
beled as a positive example (i.e. an attack) in the knowledge
base.

Honeypot LOG ETL, introduced in Section 3.2, is the component
devoted to parsing and analyzing the honeypot log files. Basically,
it allows for extracting new threats and interfacing with a MISP
instance to make available these new attack data in the TIP. The
log files directory of each honeypot is synchronized by means
of rsync with another one available on the Gateway Router. A
TCP Dump Script periodically stores the gathered networks flows
as PCAP files. The honeypot’s PCAP shared with the distributed
TIP can hence be used to enrich the set of positive examples in
the learning phase of IDS, as shown in Fig. 3. In ORISHA medium
to high interaction honeypots are used to capture the blackhat
attack behavior.
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Fig. 5. TDS Integration example: Learning, deployment and usage of EBIDS.
Fig. 6. An example of execution flow.
Fig. 7. Evaluation methodology.
t

. Experimental analysis

This section illustrates a series of experiments that we con-
ucted to evaluate the effectiveness of our approach. The purpose
s to demonstrate that the sharing features of the collaborative
latform can be fruitfully exploited to improve the accuracy of
ach connected peer. ORISHA is a general platform, devised to
nsure flexibility and extensibility and address different types of
roblems. Notwithstanding, in our experimentation we consider a
pecific supervised intrusion detection scenario where a number
f binary classifiers are exploited for discovering intrusions in
 D

37
computer networks. Also, given this context, we do not experi-
ment with honeypots whose main role in the architecture is to
enrich the knowledge base with new (unknown) attacks.

4.1. Methodology

The main idea consists in simulating a cooperative environ-
ment where different entities share anomalies detected by their
own TDSs. This is illustrated in Fig. 7. Each TDS is trained on a
specific subset Di of a global dataset D. The subset Di relative
o entity i is further split in train Dtri , validation Dvai and test

. The train is the partition that the TDS uses for training and
tei
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Table 3
Distribution of the attacks for CICIDS dataset.
Day Attack families Number of

flows
Percentage
of attacks

Monday Only legitimate traffic 529,918 0.000%
Tuesday FTP-Patator, SSH-Patator 445,909 3.103%
Wednesday Dos attacks, Heartbleed 692,703 36.476%
Thursday Web attacks, Infiltration 458,968 0.483%
Friday Bot, DDos, Port Scan 704,245 41.025%

the test is the partition where the evaluation of the TDS takes
place. The validation set has a specific role here, representing the
‘‘operational data’’ that the TDS has to inspect and that can in
principle be shared through ORISHA. In practice, TDSi classifies
the whole Dvai .

In this scenario, Active Learning represents a natural strategy
to improve the overall accuracy of the underlying TDSs: the data
gathered from specific TDSs are made available to domain experts
via the MISP Network, and they are responsible for verifying
uncertain cases and can eventually resolve them. In fact, in Sec-
tion 3.3 we describe how the interaction takes place. Notice that
we are considering an operational scenario, where the incoming
flows are unlabeled and hence uncertainty in the response can
play a prominent role in deciding which flow to be analyzed by
the expert. In fact, as also described in Section 3.3, the approach
resembles a Query-By-Committee (QbC) strategy, with the only
difference that here we omit to describe the criteria to select and
submit the most uncertain tuples.

Models interact with the system in three ways: by submitting
events, by labeling events submitted by other models, and by
collecting validated events. The validation process is external and
delegated to a sovereign expert, and it can be accomplished either
automatically (when possible) or manually by human interven-
tion. Of course, human intervention can include forensic analysis
and it should be minimized, by devising specific policies based
on the degree of disagreement of the responses of the various
models.

Thus, for a subset of the malignant flows (i.e., those flows
classified as anomalous with confidence > .5) some MISP events
are created. These events are inspected by the oracle, with the
objective of revising their classification. Based on this revision,
the newly labeled sample can hence be shared to all the peers
and added to Dtr1 , . . . ,DtrN and the underlying ML models are
retrained.

We exploit ORISHA to implement a simple oracle strategy that
exploits a majority voting. In practice, each event shared through
the MISP is classified by all the remaining entities and a final class
label (stored within the attack_type SEO field) is obtained by
combining their scores. This approach departs from the standard
QbC strategy, but it allows us to evaluate the overall performance
even in a totally automated situation, where a certain degree
of uncertainty is still present. In our experiments we tested a
number of data sharing iterations equal to the number of entities,
which was set to 5 models instantiated.

4.2. Dataset and parameters

The tests were conducted on the CICIDS2017 dataset,5 [41]
a well-known IDS benchmark provided by Canadian Institute of
Cybersecurity, containing several up-to-date cyberattacks.

The dataset is partitioned into five samples (one for day),
from Monday to Friday and includes six attack profiles based on
the last updated list (up to 2017) of common attack families.

5 https://www.unb.ca/cic/datasets/ids-2017.html.
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Specifically, on Monday, only normal flows are recorded, while
the other days contain instances of different types of attacks [42],
summarized in Table 3. In our experiments we only consid-
ered samples containing attacks. Moreover, each data sample
is further split in training, validation and test set respectively
with 50%/25%/25% percentages. Each model is trained, validated
and evaluated against data samples respectively with size of
230k, 115k and 115k instances. For each iteration a data subset
(∼15%) of the validation set is sampled uniformly according to
he anomaly confidence, and shared through the MISP. The sam-
les thus include both events with a high degree of uncertainty
nd events which, according to the model, represent attacks with
igh probability. The automated verification, through a pool of
DSs in charge to make decisions, is particularly well-suited given
he large number of examples. However, this strategy can be
asily tuned in an operational scenario, by selecting an ad-hoc
umber of the most uncertain events for the human expert.
We provide an instance of EBIDS to each entity belonging to

he network. In the following we will refer these detectors as
DS0, . . . , TDSN . These instances are initialized by using the same

parameters described in [37]. For the architecture of the base
model, (i) the Extended Input layer produces the transformations
√
x, x2, log(x + 1) and sin(x) for every original data feature X;

(ii) the Embedding Layer maps its input onto a 96-dimensional
vector space; (iii) 3 Residual Blocks are used, for a total of 6
Building Blocks; (iv) in every Building Block, the Dense layer
consists of 32 neurons, and the dropout rate is set to 0.01. Finally,
a Mixture-Of-Expert (MOE) [43] is used to combine the different
scores provided by the base models. To assess the quality of
ORISHA approach (no matter what detection model adopted) we
conducted a suite of experiments by varying the ML-techniques
used by each TDS.

4.3. Evaluation metrics

Recall and Precision are typically used as metrics to estimate
he detection capability of Threat Detection Systems since they
rovide a measurement on their accuracy in identifying up-
oming attacks and to avoiding false alarms. Specifically, the
ormer one represents the percentage of real attacks classified
s such whereas the second one is the fraction of real attacks
orrectly discovered by the model among the number of is-
ued alarms. These metrics are frequently combined into the
-Measure, computed as their harmonic mean and summariz-
ng the overall performances of the model. Although F-Measure
epresents a state-of-the-art measure for classification tasks, it
s not well suited when the classes are strongly unbalanced.
herefore, we reported two further metrics, respectively named
UC and AUC-PR, are widely used to estimate the performances
f a classification model in presence of skewness on the data
e.g., NIDSs logs).

The AUC measures the area under the ROC curve, computed
omparing the False Positive Rate (i.e., the percentage of risen
alse alarms) and the True Positive Rate (i.e., the Recall). The AUC-
R (i.e. the area under the Precision–Recall curve) is computed by
lotting precision and recall for different class probability values.
UC-PR is typically used in each case where the classification of
he positive class is more relevant than the negative one, since
UC could overestimate the quality of the model.

.4. Experimental results

A first suite of experiments aims at comparing the behavior
f different TDSs when they are feed with further information
hared by other entities. After an initialization phase where each
DS has available only a limited sample of data (locally stored),

https://www.unb.ca/cic/datasets/ids-2017.html
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Table 4
Cooperative learning performances (by choosing the better model at each
iteration). The values in bold represent an improvement of the model at the
correspondent iteration. EBIDS is used as TDS.
Iteration Model AUC AUC-PR F-Measure

Initialization

TDS0 0.999 0.997 0.982
TDS1 0.832 0.740 0.689
TDS2 0.884 0.821 0.784
TDS3 1.000 1.000 0.996
TDS4 0.932 0.928 0.901

Average 0.929 0.897 0.870

0

TDS0 0.999 0.997 0.982
TDS1 0.990 0.973 0.910
TDS2 0.884 0.821 0.784
TDS3 1.000 1.000 0.996
TDS4 0.932 0.928 0.901

Average 0.961 0.944 0.915

1

TDS0 0.999 0.997 0.982
TDS1 0.990 0.973 0.910
TDS2 0.884 0.821 0.784
TDS3 1.000 1.000 0.996
TDS4 0.932 0.928 0.901

Average 0.961 0.944 0.915

2

TDS0 0.999 0.997 0.982
TDS1 0.990 0.973 0.910
TDS2 0.977 0.940 0.936
TDS3 1.000 1.000 0.996
TDS4 0.932 0.928 0.901

Average 0.980 0.968 0.945

3

TDS0 0.999 0.997 0.982
TDS1 0.999 0.998 0.990
TDS2 0.999 0.998 0.988
TDS3 1.000 1.000 0.996
TDS4 0.932 0.928 0.901

Average 0.986 0.984 0.971

4

TDS0 0.999 0.997 0.982
TDS1 0.999 0.998 0.990
TDS2 0.999 0.998 0.988
TDS3 1.000 1.000 0.996
TDS4 0.932 0.928 0.901

Average 0.986 0.984 0.971

the first entity E0 begins to share data sampled from the valida-
tion set on the basis of strategy described in Section 4.1. Then,
this process is iteratively performed by each entity Ei belonging
to the MISP network.

In Table 4, the results of this analysis are reported. First, we
can see that after 5 iterations the averaged performances of the
TDSs belonging to the network are considerably increased in
terms of all evaluation metrics, in particular the initial value of
the averaged F-Measure 0.870 increases to 0.971. Notably, some
underperforming TDSs (TDS1 and TDS2, which exhibit poor predic-
tive performances in the initialization step) benefit substantially
from the data sharing and enrichment. In fact, the collaborative
framework allows for a substantial improvement of their detec-
tion capabilities, enabling the achievement of results comparable
to the ones of the other TDSs.

As mentioned above, the same analysis has been conducted
by changing the underlying TDS instances. In particular, the ad-
ditional experiments consider two further ML-based IDSs relying
respectively on bagging and boosting ensembles. In both mod-
els, a decision tree is used as a weak learner classifier and all
the models are set up with default parameters. The results are
summarized in Tables 5 and 6. Once again, we can observe an
overall improvement of the TDS belonging to the network after 5
iterations and, in particular, the weaker models (i.e., the models
with poor performances in the initialization stage) benefit more

from threat sharing.
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Table 5
Cooperative learning performances (by choosing the better model at each
iteration). The values in bold represent an improvement of the model at the
correspondent iteration. A Bagging-based detector is used as TDS.
Iteration Model AUC AUC-PR F-Measure

Initialization

TDS0 0.540 0.469 0.520
TDS1 0.879 0.894 0.910
TDS2 0.568 0.616 0.560
TDS3 0.640 0.723 0.670
TDS4 0.703 0.773 0.750

Average 0.666 0.695 0.679

0

TDS0 0.728 0.778 0.772
TDS1 0.879 0.894 0.910
TDS2 0.568 0.616 0.560
TDS3 0.694 0.768 0.740
TDS4 0.703 0.773 0.750

Average 0.715 0.766 0.744

1

TDS0 0.728 0.778 0.772
TDS1 0.879 0.894 0.910
TDS2 0.573 0.640 0.567
TDS3 0.694 0.768 0.740
TDS4 0.703 0.773 0.750

Average 0.715 0.771 0.745

2

TDS0 0.792 0.808 0.829
TDS1 0.879 0.894 0.910
TDS2 0.648 0.721 0.677
TDS3 0.712 0.781 0.756
TDS4 0.703 0.773 0.750

Average 0.747 0.795 0.783

3

TDS0 0.792 0.808 0.829
TDS1 0.879 0.894 0.910
TDS2 0.651 0.733 0.682
TDS3 0.712 0.781 0.756
TDS4 0.703 0.773 0.750

Average 0.748 0.798 0.784

4

TDS0 0.792 0.808 0.829
TDS1 0.879 0.894 0.910
TDS2 0.694 0.770 0.735
TDS3 0.714 0.782 0.758
TDS4 0.703 0.773 0.750

Average 0.757 0.805 0.795

In a further set of experiments, we modify the underlying
active learning strategy with a twofold aim. First, we aim at
measuring whether a minimal amount of manual labeling can still
provide benefits. Second, we would like to compare such benefits
to those of the automated approach based on majority voting. In
these experiments, a QbC protocol is actually implemented for
each iteration, as follows. First of all, we compute the entropy
score for each of the events submitted to the MISP and classified
by the pool of IDS. Then, we select the 100 events with the
highest entropy and add them (with the actual label) to all IDS.
This simulates the response by an external expert. The Table 7
summarizes the results of the evaluation. As we can see, the QbC
approach still guarantees substantial performance gain for each
TDS. Once again, we can see the benefits in terms of predictive
accuracy due to the adoption of the ORISHA approach, although
the improvements are lesser than the ones obtained with the fully
automated solution shown in Table 4.

In the experiments showed so far, each TDS is only aware
of the local training set. During the iterations, the newly added
examples are labeled according to the majority vote (and hence
no new labeled dataset is disclosed). We compared this situation
with a flat situation where, for each model, the training set is ex-
tended with all the tuples from the local validation set. The results
are shown in Fig. 8 . We can see that the accuracy is comparable,
even though the models trained through ORISHA only exploit the

training set and (unlabeled) portions of the validations sets.
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Fig. 8. Comparison between the model performances trained by using ORISHA
L-Based approach and the performance of the ones trained on the union of the
raining and validation sets (full view).

Fig. 9. Average learning time for each iteration.

As regards the computation times of ORISHA for each iteration,
they mainly depends on the learning times of the single models
and the threat sharing process. The training times computed
for Table 4 are essentially constant, as shown in Fig. 9. The
overhead for storing or retrieving a single event depends on
the specific network latency and thus it does not influence the
overall performance, which instead depends on the number of
entities and the maximum number of events shared by each
entity. As mentioned above, a distributed architecture based on
connected MISP instances can scale up the overall process by
enabling parallel processing.

5. Conclusions

Security intelligence and data analytics techniques can be used
to strengthen the capabilities of cybersecurity applications in
various vertical domains and use cases. These techniques can
largely benefit frommechanisms to share digital evidence and en-
sure interoperability. The current Threat Intelligence platforms do
not provide native mechanisms to incorporate such mechanisms,
especially when data-driven and AI powered threat detection
systems are involved. ORISHA is a first attempt to enable a shar-
ing and interoperability protocol among such components, based
solely on a data-oriented approach. This simple, flexible strategy
and data formats for collaborative threat intelligence can trigger
specific advantages: Improving the alert effectiveness by reduc-
ing the amount of false positive alerts; better contextualizing
threat data with the contribution of multiple actors; boosting
trust among producers and consumers of threat intelligence in-
formation; and strengthening the robustness of machine learning
and deep learning models adopted by security applications.
40
Table 6
Cooperative learning performances (by choosing the better model at each
iteration). The values in bold represent an improvement of the model at the
correspondent iteration. A Boosting-based detector is used as TDS.
Iteration Model AUC AUC-PR F-Measure

Initialization

TDS0 0.690 0.742 0.734
TDS1 0.797 0.850 0.842
TDS2 0.730 0.791 0.800
TDS3 0.680 0.756 0.718
TDS4 0.702 0.768 0.744

Average 0.721 0.781 0.763

0

TDS0 0.690 0.742 0.734
TDS1 0.843 0.880 0.883
TDS2 0.730 0.791 0.800
TDS3 0.731 0.795 0.776
TDS4 0.702 0.768 0.744

Average 0.740 0.795 0.782

1

TDS0 0.776 0.829 0.822
TDS1 0.843 0.880 0.883
TDS2 0.730 0.791 0.800
TDS3 0.736 0.799 0.782
TDS4 0.702 0.768 0.744

Average 0.758 0.814 0.801

2

TDS0 0.849 0.885 0.888
TDS1 0.843 0.880 0.883
TDS2 0.730 0.791 0.800
TDS3 0.737 0.801 0.783
TDS4 0.702 0.768 0.744

Average 0.772 0.825 0.815

3

TDS0 0.849 0.885 0.888
TDS1 0.843 0.880 0.883
TDS2 0.730 0.791 0.800
TDS3 0.737 0.801 0.783
TDS4 0.702 0.768 0.744

Average 0.772 0.825 0.815

4

TDS0 0.852 0.887 0.890
TDS1 0.843 0.880 0.883
TDS2 0.730 0.791 0.800
TDS3 0.737 0.801 0.783
TDS4 0.702 0.768 0.744

Average 0.773 0.826 0.816

An experimental evaluation, conducted on a well-known IDS
benchmark, demonstrates how merging data sharing and active
learning strategies can improve the detection capabilities of the
MISP network allowing to discover undetected attacks.

Novelty and limitations. Although the design principles of ORISHA
are general, the current implementation focuses on sharing digital
evidence among Intrusion Detection Systems. Moreover, the idea
of sharing data to fit different models in a decentralized fashion
is adopted by other emerging frameworks. As an example, Fed-
erated Learning [44] (FL) is a family of methods and techniques
enabling the learning of ML models in decentralized way, usually
performed on edge devices or servers storing data. By fostering
the cooperation of different actors, FL allows for learning robust
and effective predictive models without the need to share data in
a centralized way. However, many FL frameworks employ mul-
tiple rounds of communication between devices and the central
server, which increases the communication overheads. In partic-
ular, while FL is mainly devised to distribute the computation on
more devices so to make scalable and feasible the learning even
when the computational resources are not sufficient to handle the
massive amount of yielded data, the main objective of ORISHA
is to share IoCs that can be used by domain experts to take
aware decisions and enable effective countermeasures, and also
by automatized ML-Based systems to improve their predictive
performances.
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Table 7
Full active learning approach. A Query By Committee approach exploiting
entropy-based criterion is used to select (∼100) uncertain tuples for the expert
erification. EBIDS is used as TDS.
Iteration Model AUC AUC-PR F-Measure

Initialization

TDS0 0.999 0.997 0.982
TDS1 0.832 0.740 0.689
TDS2 0.884 0.821 0.784
TDS3 1.000 1.000 0.996
TDS4 0.932 0.928 0.901

Average 0.929 0.897 0.870

0

TDS0 0.999 0.997 0.988
TDS1 0.883 0.782 0.719
TDS2 0.972 0.944 0.911
TDS3 1.000 1.000 0.996
TDS4 0.934 0.921 0.902
Average 0.958 0.929 0.902

1

TDS0 0.999 0.997 0.988
TDS1 0.883 0.782 0.719
TDS2 0.972 0.944 0.911
TDS3 1.000 1.000 0.996
TDS4 0.934 0.921 0.902

Average 0.958 0.929 0.902

2

TDS0 0.999 0.997 0.988
TDS1 0.856 0.769 0.765
TDS2 0.972 0.944 0.911
TDS3 1.000 1.000 0.996
TDS4 0.934 0.921 0.902

Average 0.952 0.926 0.912

3

TDS0 0.999 0.997 0.988
TDS1 0.944 0.908 0.847
TDS2 0.972 0.944 0.911
TDS3 1.000 1.000 0.996
TDS4 0.934 0.921 0.902

Average 0.970 0.954 0.928

4

TDS0 0.999 0.997 0.988
TDS1 0.944 0.908 0.847
TDS2 0.972 0.944 0.911
TDS3 1.000 1.000 0.996
TDS4 0.934 0.921 0.902

Average 0.970 0.954 0.929

A different approach to exploit gathered knowledge is adopted
y Transfer Learning (TL). In this case the idea consists in re-

using deep models, learned on a different domain or for tackling
a different task, by fine-tuning them for addressing the own
learning problem. This approach perfectly marries the ORISHA
philosophy since the models learned by the organizations be-
longing to the MISP network are themselves relevant IoCs. As an
example, in [45], an interesting study illustrates a solution based
on the integration of MISP, TheHIVE and Cortex devised to enable
the sharing of ML Models in a MISP network.

Privacy aspects. Trust and privacy are two major issues in Threat
Information Sharing. Due to the sensitive nature of the involved
data, targets of cyberthreats are not always inclined to share this
information unless they are obliged to be compliant with manda-
tory incident reporting regulations. Although these aspects are
not the main focus of the work, these issues can be addressed by
adopting recent approaches proposed in literature, which can be
easily integrated with MISP (and hence be exploited by ORISHA).
For example, in [46,47] the authors illustrate TATIS (Trustworthy
APIs for Threat Intelligence Sharing with User Managed Access
(UMA) and CP-ABE), a solution for fine-grained access control to
protect threat intelligence APIs using UMA and Ciphertext-Policy
Attribute-Based Encryption (CP-ABE). TATIS services are made
available under the form of REST API and can be invoked by each
organization belonging to the sharing network to strengthen the
41
sharing process of ORISHA in terms of privacy, trust and relia-
bility. All these complementary services (e.g., privacy preserving,
isk assessment, etc.), which can be included and make ORISHA
ully operational, are already represented in Fig. 1 with the name
‘Security Service Providers/Consumers’’.

uture works. We plan to investigate the integration of additional
ata-aware threat analysis tools (e.g., Malware detection systems
hich do not necessarily rely on the analysis of network flow).
lso, mechanisms for incorporating and sharing higher-level in-
ormation, such as machine learning models, can further boost
ecurity intelligence capabilities. Some initial attempts have been
roposed [45]. However, the lack of a common representation
ormat, make this task challenging and worth further studies.

Finally, the adoption of Deep Active and Deep Reinforcement
earning requires further investigation since can improve the per-
ormances by simultaneously reducing the expensive interaction
ith the domain expert.
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