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a b s t r a c t

Resource-constrained Internet of Things (IoT) devices are executing increasingly sophisticated applica-
tions that may require computational or memory intensive tasks to be executed. Due to their resource
constraints, IoT devices may be unable to compute these tasks and will offload them to more powerful
resource-rich edge nodes. However, as edge nodes may not necessarily behave as expected, an IoT
device needs to be able to select which edge node should execute its tasks. This selection problem can
be addressed by using a measure of behavioural trust of the edge nodes delivering a correct response,
based on historical information about past interactions with edge nodes that are stored in memory.
However, due to their constrained memory capacity, IoT devices will only be able to store a limited
amount of trust information, thereby requiring an eviction strategy when its memory is full of which
there has been limited investigation in the literature. To address this, we develop the concept of the
memory profile of an agent and that profile’s utility. We formalise the profile eviction problem in a
unified profile memory model and show it is NP-complete. To circumvent the inherent complexity, we
study the performance of eviction algorithms in a partitioned profile memory model using our utility
metric. Our results show that localised eviction strategies which only consider one specific type of
information do not perform well. Thus we propose a novel eviction strategy that globally considers
all types of trust information stored and we show that it outperforms local eviction strategies for the
majority of memory sizes and agent behaviours. In this paper, we develop a concept of information
utility to a trust model and formalise the problem of information eviction, which we prove to be NP-
complete. We then investigate the usefulness of different eviction strategies to maximise the utility of
information stored to enable trust-based task offloading.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Resource-constrained Internet of Things (IoT) devices (hence-
orth called IoT devices) have previously been used to perform
ensing and actuation after receiving commands from a server.
owever, there is increasing interest in having those resource-
onstrained devices autonomously performing actions. With the
imited resources these devices have, they will not be able to
erform expensive computation on their own and will need to
nteract with other devices to complete some computation, such
s by offloading tasks to resource-rich edge nodes (henceforth
alled edge nodes) [1].
For redundancy multiple edge nodes should be provisioned in

he network, which means that there is a need for IoT devices
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to select which edge node should be interacted with. However,
there is a risk that interactions may not be correct or successful,
e.g., due to network attacks, edge nodes being overloaded with
tasks, or edge nodes intentionally misbehaving. One approach
to mitigate this threat is to use a measure of behavioural trust
to select which edge node to offload a task to. This measure of
behavioural trust can be formed by recording opinions of past
interactions with other nodes such that trust models (such as the
Beta Reputation System [2]) can use these records to quantita-
tively assess whether nodes will provide services correctly in the
future.

An issue with IoT devices is that they have limited memory,
so there exists a trade-off when storing historical interaction
information. Will IoT devices obtain a higher utility by storing lots
of information about a few select nodes or a little information
about many nodes? For small systems and trust models with
small memory footprints, all information can be stored, but, in
larger systems it will not be possible to store information about

all agents in the system. This problem is further complicated by

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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pplications for IoT devices avoiding dynamic memory allocation
o prevent memory fragmentation [3]. Instead, memory is divided
p into pools of one type and given a static size decided at
ompile time. These issues mean that the management of interac-
ion information used for future interaction success prediction is
mportant. Specifically, there are two key research questions that
e investigate in this work:

1. When a new item needs to be stored and memory is full,
which existing item should be evicted?

2. How should a small amount of memory be divided up to
store different types of information used to evaluate trust?

A wrong eviction may reduce the ability of a device to perform
successful interaction, because unlike evictions in database,
isk or network buffers, records of interactions used to build
trust model cannot be recreated. This means that a wrong

viction can lead to necessary information not being present in
emory when required. In addition, because dynamic memory
llocation is avoided, eviction of arbitrary data from memory for
ew information is not possible, instead a specific item with the
atching type needs to be chosen for eviction.
Therefore, in this paper we investigate the two problems

dentified by making these five contributions:

1. we introduce the notion of an agent’s memory profile and
its utility, we define and formalise the memory-constrained
profile selection (MyCoPS) problem, and show that it is
NP-complete in a unified profile memory model,

2. to circumvent the inherent exponential complexity, we
implement a partitioned profile memory model to which
several existing eviction algorithms (such as Least Recently
Used (LRU) and others) can be applied,

3. we propose new eviction strategies that consider infor-
mation in single memory regions (i.e., local algorithms)
and also information across multiple memory regions (i.e.,
global algorithms),

4. we perform a simulation of agents with limited resources
interacting with other agent’s services and investigate the
performance of multiple commonly used eviction strate-
gies plus our proposed eviction strategies on maintaining
information used to evaluate if future interactions may be
successful, and

5. we use IBM’s ILOG CPLEX to solve the optimisation prob-
lem of how to size statically allocated memory regions
containing information used for trust evaluation.

The rest of this paper is structured as follows: related work
n trust models and cache replacement is presented in Section 2.
ection 3 describes the system, fault and trust models. How
gent’s profiles are managed is described in Section 4, the prob-
em’s complexity is proved in Section 5, and how memory can
e partitioned to better manage profiles on agents is described in
ection 6. Example memory contents, the eviction strategies ex-
lored and our proposed metric to evaluate the utility of memory
ontents are described in Section 7. Section 8 describes the ex-
erimental setup used to generate the results in Section 9 which
valuate the performance of the eviction strategies via the utility
etric. Optimal ways to size memory regions are presented in
ection 10. A discussion of these results is presented in Section 11
nd we conclude in Section 12.

. Related work

Trust has a variety of different meanings and those which are
elevant depend on the context in which trust is being used. One
xample, is identity trust, where an agent is capable of verifying
he authenticity of a message’s sender. Identity trust can be
349
provided via mechanisms such as digital certificates [4]. However,
in this work we are concerned with behavioural trust where past
interactions with a trustee are used to build a subjective belief of
the likely outcomes of future interactions from the perspective of
a trustor [2,5].

2.1. Trust representation

The Beta Reputation System (BRS) [2] models how a trustee
is expected to behave based on past interactions that are classi-
fied as either good or bad using the Beta distribution. The Beta
distribution is composed of the number of good interactions α

and the number of bad interactions β . The expected value of the
Beta distribution (α/α + β) predicts the likelihood of a good future
interaction. BRS can be extended to multiple dimensions using
the Dirichlet distribution [6]. Other distributions such as Gaussian
are also used [6].

BRS either supports or has been extended to have additional
features such as forgetting [7], discounting unreliable feedback
(TRAVOS [8]), and combining feedback. However, a limitation is
the assumption that agents will tend to perform the same over
time. Using a finite state Hidden Markov Model (HMM) allows
more dynamic system behaviour to be captured [9].

Both BRS and HMM-based trust models are relatively simple
and their advantage is in their small size. There are a number of
other trust models that use more information sources to improve
their decision making. Bayesian networks [6,10] allow handling
and combining multiple aspects of trust via a probability relation.
A downside is that they can be large if there are many elements
being considered. They can also be expensive to compute, espe-
cially on hardware without support for floating point operations.
There are many other ways of structuring trust models, including
decision trees [11], support vector machines [12], Q-learning
models [13] and managing the information in structures such as
a blockchain [14].

In order to form an opinion, an interaction does not need to
be performed with a trustee. Instead interactions between other
agents can be overheard and used to form an opinion [15], or
alternatively, agents can form initial opinions based on stereo-
types [16] in order to bootstrap trust evaluation when there has
been little initial interaction. Another option is to use a proactive
assessment of trust [17] which requires little memory, but comes
with a trade-off in terms of accuracy and higher computational
costs. Other approaches may not even involve assessing a mea-
sure of trust. For example, a reward-based scheme [18] instead
incentives good behaviour by rewarding agents that perform
interactions correctly.

2.2. Information management

Information management has been extensively studied in
terms of cache replacement policies on the web [19], wireless
dissemination [20], databases [21], and page replacement al-
gorithms [22]. This was an issue explored by Chen et al. [23]
in Section 4.4 for trust models, where the authors assume that
agents with the highest trust values (top 50%) and recent inter-
actions are the most important to keep. If the memory is full,
the record with a trust value lower than the median and was
the earliest interaction, is evicted. This work considers a data
structure that only manages trust information calculated from
interactions.

In order to avoid querying all agents in a system for their trust
data, PeerTrust [24] maintained a cache of the ‘‘most recent trust
values of other peers [the peer] has interacted with in the past’’.
If a peer’s trust value is not present in the cache ‘‘a default value’’
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s used instead. This means that a least recently used (LRU) cache
eplacement policy is used to evict items when the cache is full.

Alternate mechanisms involve using a distributed data store,
uch as a blockchain [25] to record transactions. This record could
e used to decide where a task should be offloaded to. However,
here exists a trade-off in terms of how much of the blockchain
hould be stored locally in limited memory and how much energy
hould be spent (in terms of communication) keeping up-to-date
ith transactions.
There has been little evaluation in the literature of managing

he contents of memory used to evaluate trust. This is problem-
tic because in the event of incorrect information used to evaluate
rust being held in memory means there is not just the potential
or reduced performance in terms of receiving a slower or less
ccurate result from an interaction with another agent, but for
utonomous systems to make worse decisions than if good trust
nformation on historical actions was retained.

. Models

In this section, we present the models we assume in this
ystem. This includes (i) the assumptions we make about the
ystem, (ii) how agents interact, (iii) how interactions between
gents can fail, and (iv) how agents will assess which other agents
o interact with based on historical observations.

.1. System model

We assume a network of IoT agents represented as the graph
= (V , E), where each agent n ∈ V has a set of computation

resources to execute tasks and the ability to perform interactions
with other agents. An edge (n,m) ∈ E exists if agent n can
directly communicate with agent m. We assume the network
is connected, i.e., any pair of agents can communicate over a
single-hop or multi-hop route. Resource-constrained agents are
not assumed to be equipped with any stable storage due to
the energy cost [26]. We assume the network is synchronous,
i.e., there are known bounds on network latency and processor
speed.

Resource-constrained devices may wish to offload to resource-
rich edge nodes those expensive tasks they lack the ability to
execute. We model this by having each agent n in the network
have a set Sn of services that it provides. Resource-constrained
devices may need to perform multiple types of interactions, so
resource-rich nodes need to provide multiple services that can
process these interactions.

There is a large variety of relevant IoT hardware with lim-
ited resources. Representative hardware includes the Zolertia RE-
Mote [27] with a 32MHz CPU, 32KiB of RAM, 512KiB of pro-
grammable flash, a 800mAh battery, and optionally an SD card.
Or the nRF52840 [28] SoC which has a 64MHz CPU, 256KiB
of RAM and 1MiB of programmable flash. These devices are
equipped with hardware acceleration for public key cryptography
operations, making the of public key cryptography operating such
as shared secret derivation from public keys suitable.

3.2. Agent interactions

Every agent has three types of actions that it can execute: (i)
Dissemination (D), which allows an agent to send data to other
agent(s) in the network, (ii) Request (R), which allows an agent
to ask another agent for information, and (iii) Execution (E), which
llows an agent n to require another agent m to execute one of
ts services and then deliver the output to n. Information gathered
uring an interaction with another agent is stored in a relevant
egion of memory in order to evaluate trust.
 t
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Definition 3.1 (Interaction). When an agent n performs an action
a ∈ {D,R,E} intended towards an agent m, where n ̸= m, we
say that n interacted with m.

3.3. Fault model

We assume that an agent can fail arbitrarily when performing
the execution action. This failure may be spatially and/or tempo-
rally during execution [29]. For example, an agent may execute a
service incorrectly by returning the wrong result or returning a
correct result at the wrong time. We assume that an agent will
perform the dissemination and request actions correctly.

3.4. Trust model

The agents in the system each maintain a trust model that con-
tains information such as historical interactions, peer-provided
reputation and stereotypes to assess trust in other agents. Each
agent maintains its own trust model and uses it to decide which
agent an interaction should be performed with. We expect that
agents will use a combination of the following to evaluate trust
based on historical interactions: (i) whether a service request is
accepted, (ii) whether a result is returned within some deadline,
and (iii) whether the result is correct [30]. It may not always
be possible to evaluate if a result is correct (due to resource-
constraints) so we assume there to be a lightweight check (i.e., a
simple predicate) to validate the answer.

We assume that each agent collects the same kind of informa-
tion about other agents. However, agents may not know the same
information. For example, an agent may not have any direct trust
information on another agent due to a lack of interaction between
them. Agents may not have public keys for other agents, and so
may be unable to interact with them unless those public keys are
first obtained.

4. Agent profiles management for trust model

As agents interact they will store information about these
interactions. For example, a trust model running on such resource-
constrained devices will use the allocated memory to store trust-
relevant information that are subsequently to be used for trust
computation, such as: agents in the network, services offered
by other agents, digital certificates, and other information. These
pieces of information are represented as individual items.

Definition 4.1 (Item). An item is a piece of information of a
specific type. Each item comes from a specific set of values. The
item I has size SizeI(I). All items from the same set of values have
the same size.

Example items may include: a service that agent n provides,
trust information that agent n holds about another agent m,
tereotypes about agent n’s expected behaviour, a digital cer-
ificate for an agent n, or other information relevant to secure
ommunication or trust evaluation.
The information an item contains may refer to one or more

gents. There exists a function called Subjectswhich takes a given
tem and returns the set of agents to which that item refers to.
or example, an item I that contains reputation values that agent
holds for multiple other agents, Subjects(I) will return those
ultiple other agents.
When an agent n interacts with another agent m, one of those

nteractions can involve n sending a dissemination message to m

hat contains multiple information items.



M. Bradbury, A. Jhumka and T. Watson Future Generation Computer Systems 135 (2022) 348–363

D
T
D
i

a
a
t

D
o
b

s
S

D
n
m

n
m
i

w
o
a
i
i
a
p
e
o

u
T
h
D
u
a
M
u

t
d
a

o
n
p

m
m
m
w
i
t
d

D
p
s

P

e
a
M

D
a
a
p

D

f
b
p
c
a
o
M
d

a
o
w
b
t
i
t

Fig. 1. Example profile memory labelled with the item type of the information
held in a partitioned memory model. Item 2 can hold information on each of
the services provided — C1 and C2. Item 3 indicates which agents provided this
information on the agent who is the subject of the profile.

Definition 4.2 (Dissemination Message). A dissemination message
n→m sent from agent n to agent m is a message with k items.
he ith item of the dissemination message is denoted Dn→m[i].
n→m[i] = ⊥ denotes that the ith item is null and contains no
nformation.

When an agent m receives a message Dn→m from another
gent n, m needs to extract the relevant information from Dn→m
nd update the information it has about other agents referenced
o in Dn→m. As such, we define the concept of a profile of an agent
o stored in agent m’s memory.

efinition 4.3 (Profile). A profile is an l-tuple, which holds l items
n a single agent. The set of all possible agent profiles is denoted
y P.

The size of a profile pn of agent n is denoted by SizeP(pn). This
ize can be found by summing the sizes of items in the profile
izeP(pn) =

∑
I∈pn SizeI(I).

efinition 4.4 (Profile Memory). The profile memory of an agent
, denoted by Mn, is a set of profiles that agent n has about 0 or
ore agents, i.e., Mn

= {m ↦→ pm | ∀m ∈ V ,m ̸= n }.

To highlight that each agent has a set in Mn we use the
otation m ↦→ pm to represent that pm is the profile for agent
. We will use this notion for other definitions to specify that an

tem in a set is an item for a particular agent or item type.
So in summary, an agent n maintains a profile memory Mn

hich contains a set of profiles. Each profile in the profile mem-
ry holds a tuple of items, where each item in a single profile has
single subject that is the same for all items in this profile. Each

tem has a specific type, which specifies what kind of information
t contains. An example profile memory is shown in Fig. 1 where
gent A10 stores information on 5 agents where each of the
rofiles are made up of three items. Some of these items are
mpty. Dissemination messages are used to transmit items from
ne agent to another agent.
On reception of a dissemination message, a function Extract is

sed to extract profiles from the items contained in the message.
his means that given a dissemination message Dn→m which
olds multiple items on potentially different agents, Extract uses
n→m to obtain a set of profiles. These agent profiles are then
sed to update the profile memory on agent m. The updating of
gent m’s profile memory with profile po of agent o is denoted by
m

:= Mm
⊕ { o ↦→ po }. The agent m’s profile memory can be

pdated with multiple profiles simultaneously.
Similar to a dissemination message, a profile may not con-

ain every possible item. Therefore, there exists an important
ifference between a partial profile and a complete profile. We
ssume that some items within a profile are crucial, i.e., the lack
 m
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f these items will mean interaction between agents m and n is
ot possible. Therefore, the absence of these crucial items in a
artial profile will render that profile useless.
When further messages are received by m, then the profile

ay be updated, e.g., through aggregation. However, due to the
emory constraints of an agent, it may be impossible for an agent
to keep profiles of all other agents in the network. Therefore,
hen an agent m receives a message from a new agent n when

ts profile memory is already full, m needs to decide which profile
o remove from memory to be replaced by that new profile (or to
iscard the new profile).
We thus define the notion of a constrained profile memory.1

efinition 4.5 (Constrained Profile Memory). Given a value ∆, the
rofile memory Mn of an agent n is said to be constrained if the
ize of Mn can never exceed ∆. We say that profile memory Mn

is full if there is no profile that can be combined with the profile
memory such that it is within the size constraints, i.e., ∀pm ∈

, pm ̸∈ Mn
H⇒ SizeP(Mn

⊕ {m ↦→ pm}) > ∆.

We now provide the definitions of insertion, removal and
viction. For these definitions, the state of the dedicated memory
rea at agent n before the execution of an action is denoted by
n and the state after the execution of the action by ⃝Mn.

efinition 4.6 (Insertion). Given an agent n with memory Mn and
new profile pm of agent m, we say that profile pm is inserted into
memory region Mn if (({m ↦→ pm} ̸∈ Mn

∧ (⃝Mn
= Mn

∪ {m ↦→

m}).

efinition 4.7 (Removal). Given an agent n with memory Mn, we
say that profile pm of agent m is removed from Mn if (({m ↦→

pm} ∈ Mn) ∧ (⃝Mn
= Mn

\ {m ↦→ pm})).

Definition 4.8 (Eviction). Given an agent n with memory Mn, we
say that profile pm of agent m is evicted for profile po of agent o
in a full profile memory Mn if pm is removed from Mn and profile
po is inserted into Mn, i.e., (({m ↦→ pm} ∈ Mn) ∧ ({o ↦→ po} ̸∈

Mn) ∧ (⃝Mn
= (Mn

\ {m ↦→ pm}) ∪ {o ↦→ po})). When such a
profile pm for agent m exists, we will only say that profile po for
agent o is evicted.

At any point in time, an agent n may be receiving messages
rom multiple agents. We assume that there exists a finite-sized
uffer at n that stores all received messages before they are
rocessed. The order in which the messages in the buffer are pro-
essed may vary according to the application. For example, some
pplications may process the messages in first-in first-out (FIFO)
rder, others may be based on priority, or other suitable schemes.
essages may be processed in groups to enable potentially better
ecision making.
When these messages are processed to update individual

gent profiles, if profile memory area is not full then the addition
f a new profile is trivial as space exists for it. A challenge exists
hen the profile memory is full as one or more evictions will
e required to happen. As such, an objective can be to keep only
hose profiles with the highest utility values which we quantify
n Section 7. But first, we study the complexity of this problem
o understand potential ways to solve this problem.

1 Henceforth, we mean constrained profile memory whenever we say profile
emory.
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. Profile management complexity

We now provide a formalisation of the problem we pose
n this paper, which we call as the Memory-constrained Profile
election Problem (MyCoPS). Firstly, we need to gauge the utility
hat a profile provides. We assume that the more items contained
n agent n’s profile of another agent m, the greater the utility of
hat profile.

efinition 5.1 (Memory-constrained Profile Selection (MyCoPS)).
iven an agent n with:

• a full profile memory Mn of size ∆,
• a set of new messages P ,
• a minimum threshold for profile memory utility V , and
• a function SizeP(p) that returns the size of a profile p and a

function Utility(p) that returns the utility of a profile p,

elect a set P ′
⊆ (Mn

⊕
⋃

p∈P Extract(p)) such that

p∈P ′

Utility(p) ≥ V ∧

∑
p∈P ′

SizeP(p) ≤ ∆ .

In this section, we show that the MyCoPS problem is NP-
complete by showing a reduction of 0–1 Knapsack [31, p. 134–
139] to MyCoPS. The intuition is to only keep profiles that in-
crease the utility of the memory content.

Definition 5.2 (0-1 Knapsack). Given a set I of n items labelled
I1, . . . , In, with each item Ij having a weight wj and value zj, a
aximum weight value W and minimum value Z , is there a set

′
⊆ I such that

Ij∈I ′

zj ≥ Z ∧

∑
Ij∈I ′

wj ≤ W .

Lemma 1 (MyCoPS and Class of NP). MyCoPS is in NP.

Proof. To prove this, we need to verify the correctness of a
possible solution set P ′ in polynomial-time. So, given an instance
of MyCoPS and a solution set P ′, we verify the correctness of P ′

as follows:

1. Computing the total utility of profiles in P ′ is done in linear
time.

2. Computing the total size of profiles in P ′ is done in linear
time.

3. The two conditions can be trivially verified.

The complexity of this verification procedure is O(|P ′
|). □

Lemma 2 (MyCoPS and NP Hardness). MyCoPS is NP-hard.

Proof. To prove this, we first map and then reduce 01KP decision
problem to the MyCoPS problem.

• (Mn
⊕

⋃
p∈P Extract(p)) ↦→ I

• P ′
↦→ I ′

• ∆ ↦→ W
• V ↦→ Z
• pi ↦→ i
• SizeP(pi) ↦→ wi
• Utility(pi) ↦→ zi

Reduction: We now have to show that a solution to 01KP exists if
and only if a solution of MyCoPS exists.

⇒ Let I ′ be a solution to the 01KP problem. Let J ′ be a solution
to the instance of MyCoPS as defined under the mapping
352
such that I ′ = J ′. We show that J ′ is a valid solution for
MyCoPS.
In set J ′, we include all profiles pi such that SizeP(pi) ↦→ wi,
with i ∈ I ′. Thus,∑
pi∈P ′

SizeP(pi) ≤ W H⇒

∑
pi∈P ′

SizeP(pi) ≤ ∆ ,

under the identified mapping. Also, since pi ∈ P ′, it means
that∑
pi∈P ′

Utility(pi) ≥ Z H⇒

∑
pi∈P ′

Utility(pi) ≥ V .

Hence, J ′ is valid.
⇐ Let I ′ be a solution to the MyCoPS problem. Let I ′ be a

solution to the instance of 01KP as defined under the defined
mapping and J ′ be the solution to the instance of MyCoPS
under the defined mapping. The proof follows the previous
one in structure.∑
pi∈P ′

SizeP(pi) ≤ ∆ H⇒

∑
i∈I ′

wi ≤ W ,

under the identified mapping. Also,∑
pi∈P ′

Utility(pi) ≥ V H⇒

∑
i∈I ′

zi ≥ Z .

Hence I ′ is a valid set. □

heorem 3 (MyCoPS and NP Completeness). MyCoPS is
P-complete.

roof. This follows trivially from Lemmas 1 and 2. □

. Partitioned memory model for profile management

Since profile management has been shown to be an intractable
roblem in general, one possibility of conquering the complexity
s to find special cases where the complexity of profile man-
gement is polynomial. Another is to use heuristics that can
rovide good enough solutions. We will investigate both in the
emainder of this paper, where this section focuses on a special
ase and Sections 7–9 describe and evaluate heuristics that solve
his problem.

As previously mentioned, when agents interact they will store
nformation about these interactions. This information is con-
ained in a profile which may have empty items even after multi-
le interactions. Missing information will lead to a lower utility as
emory is consumed but contains no useful information. How-
ver, the profile may still need to be kept in memory. One way to
ncrease the utility of the contents of information in memory is to
nsure that empty items are not held in memory. Therefore, we
artition (hence the partitioned memory model) the profiles and
eep items of one specific type in a dedicated memory segment
or that type of information. This aligns with techniques that
emory-constrained agents use to statically allocate fixed-sized
emory regions that contain items of the same type and size

n a given memory region. In summary, rather than allocating
complete profile on one specific agent, we instead split the
rofiles into the individual items that make up the profile and
tore items of the same type in their own separate memory
egion.

A trust model running on such resource-constrained devices
ill use each of these regions to store one type of information
elevant to the trust model, e.g., agents in the network, services
ffered by other agents, digital certificates, and others. Each re-
ion is assigned a fixed size at compile time to avoid memory
ragmentation and so they all fit within the RAM of the agent.
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Fig. 2. Example agent memory labelled with the target(s) of the information
eld in a partitioned memory model. Information on different agents is repre-
ented as Ax, information on multiple agents is represented as a list (e.g., Aa,
b, Ac), and information on the services provided by Ax is represented as Ax
y.

Fig. 3. Example complete profile describing agent A1, with information on A1’s
two services C1 and C2. Information on different agents is represented as Ax,
information on multiple agents is represented as a list (e.g., Aa, Ab, Ac), and
information on the services provided by Ax is represented as Ax Cy.

Fig. 4. Example profile describing agent A5. Information on different agents
s represented as Ax, information on multiple agents is represented as a list
e.g., Aa, Ab, Ac), and information on the services provided by Ax is represented
s Ax Cy.

We divide an agent n’s memory Mn into R memory regions
Mn

1 , . . . ,M
n
R }. Each region Mn

k contains a set of homogeneous
tems that represents data about one type of information that
ontributes to trust evaluation. Each region Mn

k has a size in
ytes denoted by SizeR(Mn

k ). Each region Mn
k can contain zero or

ore items of the same type, where the jth item of this memory
egion is denoted In,kj . Each item in Mn

k has the same size in bytes
iven by SizeI(Mn

k ) due to them being homogeneous. Thus, the
aximum number of items that a region Mn

k can contain is given
y:
SizeR(Mn

k )
SizeI(Mn

k )

⌋
. (1)

All the information that agent n knows about agent m, is
called a profile. It comprises all the unique types of information
relating to m. As mentioned before, we assume a function called
Subjects(In,kj ), which returns the set of identities of the agents
that a given item In,kj provides information on.

Definition 6.1 (Memory Slice). Given an agent n and its memory
Mn

= {Mn
1 , . . . ,M

n
R }, a memory slice (also called a slice) of agent

n is a set of sets of items, one from each memory region, i.e.,

Mn =
{
k ↦→ s | ∀k, 1 ≤ k ≤ R ∧ s ⊆ Mn }

(2)
k i
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Since the profile memory is now partitioned, we now define a
partitioned profile.

Definition 6.2 (Partitioned Profile). A partitioned profile of agent
m stored in Mn is a set of R item sets where each item set is a
subset of a unique memory region and each item in each item
set is about agent m.

pnm =

{
k ↦→

{
In,kj | ∀j · m ∈ Subjects(In,kj )

}
| ∀k, 1 ≤ k ≤ R

}
(3)

A partitioned profile about agent m is a slice of agent n’s mem-
ory that is predicated on m being a subject of items contained in a
memory region. We denote by pnm[k], the set of items of type k of
that agent n holds about agent m. The number of sets contained
with a partitioned profile (denoted R) is the same as the length
of a profile (denoted l) as defined in Definition 4.3.

As before, an agent n may not have all information about
another agent m (i.e., an incomplete profile). We say that agent n
has a profile for agent m if ∃k, 1 ≤ k ≤ R, pnm[k] ̸= ∅. Likewise,
an agent n has a complete profile of agent m if n has all required
information about m, i.e., ∀k, 1 ≤ k ≤ R, pnm[k] ̸= ∅.

Similarly, we still assume that some items held by agent n
about m are vital for interactions to occur (e.g., cryptographic
information) and are called crucial items. In this paper, we assume
that there always exists a memory region that holds the vital
items and without loss of generality we assume that these vital
items are held in the first region in memory, i.e., in Mn

1 .
An example agent memory is shown in Fig. 2 with multiple

memory regions each divided into items of different sizes. Items
coloured in light grey are empty and contain no information.
Example memory regions are included to cover the different
kinds of subjects memory items contain. Either, (i) an item about
a single agent, (ii) an item about a single agent and a single service
it provides, and (iii) an item containing a set of information about
multiple agents. A complete profile for the agent A1 is shown in
Fig. 3 where items exist in all the memory regions. An incomplete
profile for A5 is shown in Fig. 4 as memory region 2 contains no
items that A5 is the subject of.

6.1. Updating trust model storage

As in the unified memory model, the execution of an action
by an agent can cause an update of the memory state at one
or more agents. For example, an agent may disseminate the
services it provides and this information is updated on all agents
that subscribe to announcements about that service. For these
definitions, the state of a memory region before the execution of
an action is denoted by Mn

i and the state after the execution of
the action by ⃝Mn

i . We revisit the previous definitions and define
them for the partitioned memory model.

Definition 6.3 (Insertion). Given an agent n with memory Mn
=

{Mn
1 , . . . ,M

n
R }. We say that item e is inserted into a memory

region Mn
i ∈ Mn if e ̸∈ Mn

i ∧ ⃝Mn
i = (Mn

i ∪ {e}), and the type
of e is the same as Mn

i .

Definition 6.4 (Removal). Given an agent n with memory Mn
=

Mn
1 , . . . ,M

n
R }. We say that item e is removed from a memory

region Mn
i if e ∈ Mn

i ∧ ⃝Mn
i = (Mn

i \ {e}).

Definition 6.5 (Eviction). Given an agent n with memory Mn
=

Mn
1 , . . . ,M

n
R }. We say that r is evicted for item e in a full memory

region Mn
i if r is removed from Mn

i and e is inserted into Mn
i ,

.e., r ∈ Mn
∧ e ̸∈ Mn

∧ ⃝Mn
= ((Mn

\ {r}) ∪ {e}).
i i i i
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When such an item e exists, we will only say that item r is
victed. We also make the assumption that an eviction is always
erformed when new information becomes available and the
elevant memory region is full.

In the partitioned memory model, eviction performs differ-
ntly to the original memory model. In the original memory
odel an eviction of information on one agent, will cause all

nformation on that agent to be evicted. However, in the parti-
ioned model, eviction of one item will only lead to that item
eing removed and all other items who share the subject with
he item will remain in memory.

. Memory and eviction strategies

In this section we describe an example instantiation of mem-
ry regions that are used to store information used by a trust
odel and the eviction strategies investigated. We also propose a
ethod to evaluate the utility of information in memory to gauge

he performance of the eviction strategies.

.1. Example memory usage

In this system, trust models are built from past interactions to
nable agents to make decisions about whom to perform future
nteractions with. The relevant information held in four memory
egions, each containing different types of information that are
irectly relevant to assessing trust. The set of memory regions
hat exists on an agent n is Mn

= {Mn
C,Mn

T ,Mn
R,Mn

S}. Each of
hese regions exists as a set of items, however, as these items
ill refer either to an agent or a service an agent provides, we
epresent them as functions to simplify their use.

Mn
C A database of cryptographic information (such as shared

secrets) used to securely send information between a
trustor and trustee. We assume that this information also
contains the details on the services supported by the agent.
This is represented as Mn

C : V → B, indicating if an agent
has cryptographic information for a specific agent.

Mn
T A database about directly observed interactions with the

trustees. This is represented as Mn
T : V × S → (Γ ∪

{⊥}), where Γ is the representation of the trust model. For
example, Γ would be N0 × N0 for the BRS which counts
the number of correct and incorrect interactions via a pair
of integers. A trust model may equal ⊥, which indicates the
trust model contains no information or is missing.

Mn
R A database of peer-provided reputation information on the

trustees. This is represented as Mn
R : V → (V × S → (Γ ∪

{⊥})) which is the state of the direct trust disseminated by
another agent.

Mn
S A database of stereotype information used to bootstrap

trustworthiness evaluation early in the system lifetime or
when new agents join the system. This is represented as
Mn

S : V × S → Γ .

.2. Eviction strategies

The following eviction strategies are explored in this paper.
e divide these strategies into those that focus on a single
emory region, those that focus on a single memory region and
se output from trust evaluation, and those that consider the

ontents of multiple memory regions.
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7.2.1. Single memory region eviction strategies
These eviction strategies evaluate which item to evict in a

single memory region for an item of the same type as is stored in
the memory region.

• None — No items are ever evicted.
• Random — A random item is evicted.
• FIFO — The oldest item is evicted in a first-in first-out order.
• LRU — The least recently used item is evicted.
• LRU-2 — The item whose penultimate use time is the small-

est is evicted.
• MRU — The most recently used item is evicted.

The age of an item for FIFO is determined by the time at which
the item was added to the memory region. The use time of an
item for LRU, LRU-2 and MRU is set to the time at which a task
is offloaded to the agent an item is the subject of. The use time is
also updated when cryptographic information is used to receive
a message.

7.2.2. Single memory region with trust eviction strategies
There are two eviction strategies that need trust models to

evaluate a measure of trust. Both of these strategies only consider
an eviction for the contents of Mn

T . All other memory regions use
LRU to decide which item to evict.

• Chen2016 [23] — The paper describes this as ‘‘pop out the
trust value towards the earliest interacting node among
those with trust values below the median’’ which we in-
terpret as using LRU on trust values less than the median.
However, the paper makes no mention of what action to
take if there are no values lower than the median. In this
case we perform LRU on all items.

• FiveBand — Partition the items of the trust memory region
into 5 quantiles of equal size. Use LRU on items with a
trust values between 20%–40% and 60%–80%. If there are
no values within these bands, use LRU on all items. The
intuition is that it is preferable to keep information on new
agents (40%–60%), good agents (80%–100%), and bad agents
(0%–20%).

7.2.3. Priority-based eviction strategies
We propose one eviction strategy that considers that different

services may have different priorities. These service priorities can
be provided by the designer of a system, when multiple services
are present and some are critical and others are non-critical.
Prioritising which information to keep aims to ensure critical
services have a higher chance of success.

• CapPri — Perform LRU on items that contain information
about a service with the same lowest priority.

7.2.4. Multiple memory region eviction strategies
We propose two eviction strategies that consider the contents

of multiple memory regions. The intuition is that better decisions
can be made about what to keep if eviction is not considered
locally to a single memory region, but also takes into account
what relevant information is stored in other memory regions.

• NotInOther — Find all items in a memory region with no
corresponding entry in other regions (i.e., not the same sub-
ject), use LRU for eviction. If no item matches this criteria,
use LRU on all items.

• MinNotInOther — Find all items in a memory region with the
smallest number of regions with a corresponding entry, use
LRU to choose which to evict. If no items match this criteria,

use LRU on all items.
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For NotInOther, an example would be if a stereotype is known
or one agent but no other information is kept on that agent in
ny other memory regions, it provides low utility and should be
victed. MinNotInOther takes this further and instead find items
hat have the smallest number of related items in other buffers.
o, if a stereotype and cryptographic information is known for
ne agent and another agent has information in each buffer, then
n item belonging to the first agent would be evicted. This aims
o keep a broad amount of information on selected agents in
emory.

.3. Interaction selection strategy

The behaviour of eviction strategies can depend on the se-
ection strategy of a trust model. For example, when an eviction
trategy requires a trust value (e.g., evicting information on the
east trusted agents), or is based on the time that information
as last used (a higher trust value implies more frequent use).
his means that it is necessary to use a trust model as part of
hese experiments. We employ the BRS to evaluate trust in this
ase as it is a very small model which can be effectively used on
he resource-constrained devices with limited RAM that this work
s concerned with. The agent with which an interaction will be
erformed is selected randomly from the agents who have a trust
alue within 0.1 of the maximum trust value (with trust being
easured between 0 and 1).

.4. Utility of data in memory

In order to quantify the usefulness of the data held we propose
trust model agnostic utility function. It quantifies if information
s present in memory for agents that behave well for an interac-
ion between two agent’s services. This occurs irrespective of the
rust model in use. The intuition is that if a trust model held by an
gent has more information on agents who perform interactions
orrectly, then that agent is more likely to select a good agent to
nteract with.

If an agent n is unaware of another agent m’s cryptographic
nformation they will be unable to communicate, so n will not
elect m for an interaction. This has been reflected in the utility
unction by n not deriving any utility for information about m if
’s cryptographic information is not known.
The utility of the data in the memory held on agent n for a

ask t generated by service s is calculated by Eq. (4). A utility for
ach memory region is calculated and then weighted based on
he expected importance to the trust model.

(s, n, t) =

∑
n′∈V ′

s,n,t
UC(n, n′, s)

∑
r∈Mn wr Ur (n, n′, s)

|V ′
s,n,t |

(4)

here:

• V ′
s,n,t is the set of agents except agent n with the matching

service s that will perform well (identified by an oracle
function Good(s, v, t) for the task t). These are agents that
it would be good to interact with.

V ′

s,n,t = { v | v ∈ V \ {n} ∧ s ∈ Sv ∧ Good(s, v, t) } (5)

• wr is a per-region weight that specifies the relative impor-
tance of different types of information. The weights must
sum to one, 1 =

∑
r∈Mn wr .

• UC(n, n′, s) determines if agent n has the cryptographic in-
formation to communicate with agent n′.

UC(n, n′, s) =

{
1 if Mn

C(n
′)

(6)

0 otherwise
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Table 1
Simulation parameters.
Name Value Description

Trust dissem. period Pdissem = 1 s The average time between an
agent disseminating its trust
values.

Interaction period Pinteract = 1 s The average time between an
agent’s service performing an
interaction.

Duration 300 s The time before the simulation
halts.

Start delay 1 s The maximum random start
delay.

Interaction strategy BRS/Banded How agents choose who to
perform an interaction with.

Table 2
Simulation memory sizes.
Name |Mn

C | |Mn
T | |Mn

R| |Mn
S | Capacity (%)

Complete 10 20 10 20 100
Large 10 10 10 10 78
Medium 10 5 5 5 53
Medium2 5 10 5 5 49
Medium3 5 5 10 5 53
Medium4 5 5 5 10 49
Small 5 5 5 5 42

• UT (n, n′, s) determines if agent n has previously recorded
an interaction with service s provided by agent n′. It is
important that this is not an empty trust model.

UT (n, n′, s) =

{
1 if Mn

T (n′, s) ̸= ⊥

0 otherwise
(7)

• UR(n, n′, s) determines if agent n has knowledge of peer-
provided reputation information about service s provided by
agent n′. This looks for an agent n′′ that has disseminated
reputation information about agent n′.

UR(n, n′, s) =

{
1 if ∃n′′

∈ V ,Mn
R(n′′)(n′, s) ̸= ⊥

0 otherwise
(8)

• US(n, n′, s) determines if agent n knows stereotype informa-
tion for service s provided by agent n′.

US(n, n′, s) =

{
1 if (n′, s) ∈ Mn

S
0 otherwise

(9)

In these experiments each of the data types are weighted
qually. However, for trust model specific evaluations, different
eights could be provided based on an understanding of the
elative importance of different information to the trust model.

. Experimental setup

As selecting which items to keep is NP-complete, there is a
eed to investigate suitable eviction heuristics. We now describe
he experimental setup used to perform simulations which in-
estigate the effectiveness of different eviction strategies. These
imulations were performed with a custom discrete event simula-
or.2 The implementation of the eviction strategies can be found
n this source code. There are 10 agents (|V | = 10) each with
services (|S| = 2), the utility weights are set to be equal for
ach type of information (wb = 1/|Mn

|), and other parameters of
imulation are shown in Table 1. Over 60 repeats were performed
or each parameter combination.

Each agent in the system instantiates their memory with re-
ions described in Section 7.1 and the sizes shown in Table 2.

2 Available at https://github.com/MBradbury/trust-buffer-simulation.

https://github.com/MBradbury/trust-buffer-simulation
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Fig. 5. Legend showing elements of Figs. 6–8. The top row shows items in memory regions that do (grey background) or do not (white background) contain
information. The bottom row shows example relations between items in the crypto and trust memory regions. The number after the name of memory region is
the index into that memory region at which that item is stored. The information after the name and index is the subject of the item. For example ‘‘A1’’ means the
subject is agent A1 and ‘‘A1 C0’’ means the subject is agent A1’s service C0.
Table 3
Agent service profiles.

Name π A B

Always Good

[
1.0
0.0

] G B[ ]
G 1.0 0.0
B 0.0 1.0

✓ ✗[ ]
G 1.0 0.0
B 0.0 1.0

Always Bad

[
0.0
1.0

] G B[ ]
G 1.0 0.0
B 0.0 1.0

✓ ✗[ ]
G 1.0 0.0
B 0.0 1.0

Very Good

[
0.99
0.01

] G B[ ]
G 0.99 0.01
B 0.80 0.20

✓ ✗[ ]
G 0.99 0.01
B 0.0 1.0

Unstable

[
0.5
0.5

] G B[ ]
G 0.5 0.5
B 0.5 0.5

✓ ✗[ ]
G 0.9 0.1
B 0.0 1.0

The capacity shows how much of the total amount of information
could possibly be stored. For the 10 agents simulated there are a
maximum of 9 Mn

C entries, 18 Mn
T entries, 9 Mn

R entries and 18
Mn

S entries.
In these experiments the memory sizes and eviction strategies

are varied in order to focus on investigating the relation between
the memory allocated to different types of data, the management
of that information, and other factors such as the size of the
network. This reflects the resource-constraints which informa-
tion management needs to be performed under due to the low
memory (32 to 256 KiB) available in the target devices.

8.1. Actions

There are three actions that agents perform:

1. Service Dissemination: Agents in the system announce
their services to the rest of the network. This can be via
a publish–subscribe protocol such as MQTT [32].

2. Cryptographic Information Dissemination: When agents
encounter another agent that they do not have the neces-
sary cryptographic information to communicate with, they
can request it from a certificate authority.

3. Stereotype Request: Agents may request stereotypes about
other agents and their services. Stereotypes are used to
bootstrap trust evaluation when the system is new, or there
is little information about another agent.

There are a two periodic actions that agents perform:

1. Trust Dissemination: Agents will periodically disseminate
their trust values to all other agents which then consider
356
storing this as reputation information. This dissemination
occurs on average every Pdissem seconds, which is modelled
using the exponential distribution Exp(Pdissem).

2. Task Interaction: Agents will periodically generate a task
which requires an interaction with another agent who
provides the same service the task was generated by. This
occurs on average every Pinteract, which is modelled using
the exponential distribution Exp(Pinteract).

8.2. Services profiles

We model the behaviour of each service s of each agent
n as a hidden Markov model (HMM) λn,s = (Q ,O, π, A, B),
where Q is a finite set of states, π : Q → [0, 1] is an initial
probability distribution over the states in Q , A : Q × Q →

[0, 1] is the state transition matrix, O is a finite set of poten-
tial observations, and B : Q × O → [0, 1] is the observa-
tion probability matrix. We define every λn,s to have two hid-
den states Q = {good behaviour (G), bad behaviour (B)} and
two observations that can arise from interactions with n, O =

{correct (✓), incorrect (✗)}. Four service profiles are defined in
Table 3. When a simulation uses one of these profiles, it always
includes 2 agents where both services are always bad and the
remaining 8 agents are the specified service behaviour.

9. Results

To highlight the state of memory regions when calculating the
utility, we first show three visualisations of memory contents
when an agent’s service needs to perform an interaction. Fig. 6
shows the state of memory early in execution when there has
been little opportunity to gather evidence. Figs. 7 and 8 both show
memory state late into information gathering when all agents
behave correctly and some agent services behave incorrectly re-
spectively.

In these graphs each box represents an item in a memory
region. A line between boxes represents that those item store
information about the same agent and potentially the service
that the agent provides. Each graph shows the memory state
for the agent that needs to perform an interaction. Grey lines
between boxes indicates relations for the service that is not being
executed, green lines indicate that information is held on an agent
and service that will perform correctly and red lines indicate that
information is held on an agent and service that will perform
incorrectly. This information is shown in Fig. 5.

The low utility in Fig. 6 is due to the under-use of storage,
whereas the lower utility in Fig. 8 compared to Fig. 7 occurs
due to the memory space allocated to agents and services that
perform poorly or for different services other than the one per-
forming an interaction. This demonstrates (i) the importance
of making use of available memory and (ii) the importance of
ensuring useful information is stored in memory.
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Fig. 6. Memory contents for agent 9 early in the simulation when needing to interact with another agent’s service 0. Nodes are items stored in memory, different
item types have different coloured bordered and when the background is grey it indicates that a value is held in that item. Edges between nodes indicate that they
refer to the same agent. Green edges are for agent services that behave correctly and red edges are for agent services that behave incorrectly. Grey edges are for
information that is about the same agent, but a different service that is provided.
Fig. 7. Memory contents for agent 2 late in the simulation when needing to interact with another agent’s service 0 and all agents would perform correctly. Nodes
are items stored in memory, different item types have different coloured bordered and when the background is grey it indicates that a value is held in that item.
Edges between nodes indicate that they refer to the same agent. Green edges are for agent services that behave correctly and red edges are for agent services that
behave incorrectly. Grey edges are for information that is about the same agent, but a different service that is provided.
9.1. Always good behaviour

The evolution of the normalised utility (utility divided by
maximum utility) for a single run when 8 agents are always
good and 2 are always bad is shown in Fig. 9. There is an initial
period where the utility starts low and then rapidly increases.
This is because initially no information is known, and as agents
begin interacting information is recorded in memory. The utility
357
does not decrease as the memory regions are large enough for
information on all agents and their services to be stored, so there
are never any evictions.

9.2. Varying behaviour and memory region sizes

The graphs in Figs. 10–13 show the normalised utility of
eviction strategies when varying agent behaviour and memory
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Fig. 8. Memory contents for agent 3 late in the simulation when needing to interact with another agent’s service 0 and agents 0, 4, and 7 would perform incorrectly.
Nodes are items stored in memory, different item types have different coloured bordered and when the background is grey it indicates that a value is held in that
item. Edges between nodes indicate that they refer to the same agent. Green edges are for agent services that behave correctly and red edges are for agent services
that behave incorrectly. Grey edges are for information that is about the same agent, but a different service that is provided.
Fig. 9. Utility over time for Always Good with no evictions.

region sizes. These graphs show boxplots where the central bar is
the median, the dot is the mean, the box starts at the first quartile
and ends at the third quartile, and the upper and lower whiskers
extend to the first item less than and greater than 1.5 times
the inter-quartile range respectively. Outliers are not shown as
there are a large number due to the initial period of information
gathering. Results been sorted by the median.

9.2.1. No eviction
Fig. 10 shows that when memory regions are large enough to

tore all information, every eviction strategy performs exactly the
ame because no eviction is required. However, the normalised
tility is lower for agents whose behaviour is worse, even though
here is space to store all data. The interaction selection algorithm
as an effect on information utility because some agents may not
e chosen to perform an interaction with. This means no records
f direct trust for agents not selected for interaction and it then
mpacts other agents who would not learn of those interactions
ia reputation.
358
9.2.2. Evictions
Most eviction strategies have similar normalised utility, except

MRU, None and CapPri which tend to be the three worst perform-
ing strategies. The worst-case difference between the best and
worse performing eviction strategy is 25 percentage points and
the average distance is 13 percentage points, indicating similar
normalised utility between eviction strategies.

MRU tends to perform poorly as it prioritises evicting the most
recently used information. This means when an agent’s service is
selected for an interaction because it is believed to be good, that
information will be removed next.

CapPri tends to perform poorly because it optimises for keep-
ing information on high priority services, which is different to the
utility function. This causes CapPri to have the largest interquar-
tile range because service C1 has a higher priority than service C0
as demonstrated in Fig. 14.

The eviction strategy to never evict (None) performs poorly
except when the memory size is small. When items are stored,
due to the ordering of events, items related to the same agent
and service will be added to different memory regions at similar
times. Without eviction, any badly behaving agent services cannot
be removed. No eviction performs fairly well when the buffers are
small because when agents perform well (Very Good and Good)
and poorly when agent’s services are less reliable (Unstable). This
is because there is a higher chance that information on well
behaved agents will be stored for Very Good and Good, but lower
for Unstable. This occurs even though the simulation randomises
the start times of agents.

FIFO, LRU, LRU2, Random, Chen2016 and FiveBand and
NotInOther all have similar normalised utility. For Chen2016,
FiveBand and NotInOther this can be attributed to them using
LRU on a subset of the information stored. Why strategies that
use LRU perform similar to FIFO and Random relates to the
data access pattern, which is linked to performing an interaction
with an agent where the it is most likely to succeed. There will
be different access patterns depending on a variety of factors
(e.g., multiple memory regions, memory sizes, agent behaviour,
trust model). Future work will be needed to understand the

performance in this different scenario (e.g., [33]).
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Fig. 10. Memory size: Complete.
Fig. 11. Memory size: Large.

9.3. Comparing different allocations with the same capacity

MinNotInOther tends to perform best when an eviction of
cryptographic data Mn

C would have a large impact on the utility
(large and small buffer sizes in Figs. 11 and 13), but does not
perform as well when evictions of other data would have a
large impact (medium memory size in Fig. 12). This can also be
observed with the different sized medium memory in Fig. 15.
Only when there is an excess of space allocated to Mn

C does
MinNotInOther perform worse than techniques other than MRU,
None and CapPri. By having an excess of space in Mn , it means
C
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Fig. 12. Memory size: Medium.

that no item in the other three buffers will have their utility
discounted, so a local optimisation on each buffer will work
well by keeping the most frequently used without eliminating
any options. Whereas, when there is not an excess of space,
MinNotInOther is able to use knowledge of what is in each buffer
to prioritise keeping it.

9.4. Eviction strategy memory overhead

As there is limited amount of memory, an eviction strategy
needs to avoid imposing a high memory overhead. Selecting an
eviction strategy needs to consider its performance and also the
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Fig. 13. Memory size: Small.

Fig. 14. Divergence in utility for two services when behaviour is Good, buffers
are large and CapPri is used to evict.

trade-off that needs to be made between the information needed
by the eviction strategy and the trust model.

The memory overheads for the investigated eviction strategies
re relatively low. For no eviction and FIFO there is no memory
ost, for Random there is a fixed cost for the PRNG state, for LRU-k
here is a cost to store k counters, and for all others one counter
eeds to be stored. While the memory cost may be low, when
nformation has a small representation, e.g., 8 B, adding a single
B counter will lead to a 50% increase in size. So when choosing
ow large to make each memory region, the eviction strategy
emory cost needs to be considered.
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9.5. Eviction strategy summary

So the conclusions to drawn from these results are that it
is important to understand how memory will be allocated be-
tween different memory regions with respect to the expected
number of agents and services in the network. Different com-
binations of agent behaviours and memory capacity will require
different eviction strategies. Overall, MinNotInother, NotInOther,
Chen2016, FiveBand, FIFO, LRU, LRU2 and Random performed
well with a maximum of 10 percentage points between their
medians in these simulations. MRU and None should be avoided
due to their worse ability to provide a high utility. In the worst
case an agent will need to process much more information than
it can store, in which case MinNotInOther would be the best
eviction strategy according to this utility function.

10. Sizing memory regions

We now address the problem of how to divide up the avail-
able finite memory into different memory regions that will be
statically allocated at compile time. This can be mapped to the
Bounded Knapsack Problem [34] where the weight of the items
to store corresponds to their size in memory (wr ) and the max-
imum number of items (x̂r ) corresponds to the point where no
more utility is gained by having more of that type of item. This
modelling is performed to obtain results for the variable xr which
is the size of the memory region r . Bounds on the maximum
number of items from which value can be obtained is specified
using ur . In this scenario, ur specifies either the number of agents
or the total number of agent-provided services depending on the
memory region r . In this section we focus on the optimisation
problem as opposed to the decision problem presented earlier.

We assume that an upper bound on the expected number
of agents is known so the model remains linear. The size of a
reputation item wR could be specified in terms of the number
of agents in the system xC , but as this would make the model
quadratic, the size is a function of the upper bound of the number
of agents. We also assume the number of services is known at
compile time as an agent will only store information on services
that it uses and/or provides.

This problem can be formulated as the following objective
optimisation problem for agent n to find values for xr :

maximise
∑
r∈Mn

vr ur

subject to
∑
r∈Mn

wr xr ≤ W

∀r ∈ Mn, xr ∈ N0 ∧ 0 ≤ xr ≤ x̂r

(10)

For the four buffers we are focusing on in this work we set the
following upper bounds and per-buffer region functions:

x̂C = |V | − 1 uC = min{ xC, |V | − 1 }

x̂T = |S| (|V | − 1) uT = min{ xT , |S| uC }

x̂R = |V | − 1 uR = min{ xR, uC }

x̂S = |S| (|V | − 1) uS = min{ xS, |S| uC }

These constants are set such that:

• An additional item in a buffer provides no utility if there is
already enough space for all possible items.

• The size of the Mn
C buffer impacts the maximum size where

other buffers still provide utility.
• The item’s weight wX is its size in bytes.
• W is the maximum amount of memory that can be used.
• The value vX is an indication from a trust model on the

relative importance of different information.
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Fig. 15. Agent behaviour: Very Good.
Table 4
Solutions to buffer sizes (x). Where input v represents the importance weighting
or each region, input W represents the total amount of memory available,
umber of agents |V | = 10, and number of services |S| = 2. Output Ŵ is

the amount of memory used.

v W x Ŵ W − Ŵ Cap[
C T R S

]
(B)

[
C T R S

]
(B) (B) (%)[

1 1 1 1
]

383
[
2 4 0 3

]
376 7 15[

1 1 1 1
]

399
[
2 4 0 4

]
384 15 17[

1 1 1 1
]

512
[
2 5 0 5

]
400 112 19[

1 1 1 1
]

959
[
5 10 0 9

]
952 7 40[

1 1 1 1
]

1 024
[
5 10 0 10

]
960 64 42[

1 1 1 1
]

2 015
[
9 18 1 18

]
1 872 143 78[

1 1 1 1
]

2 048
[
9 18 2 18

]
2 016 32 81[

1 1 1 1
]

3 023
[
9 18 8 18

]
2 880 143 97[

1 1 1 1
]

4 096
[
9 18 9 18

]
3 024 1 072 100[

9 1 1 1
]

512
[
3 0 0 4

]
512 0 14[

1 9 1 1
]

512
[
2 5 0 5

]
400 112 19[

1 1 9 1
]

512
[
2 3 1 3

]
512 0 17[

1 1 1 9
]

512
[
2 5 0 5

]
400 112 19[

9 9 1 1
]

512
[
3 4 0 0

]
512 0 14

This optimisation problem is implemented using IBM ILOG
PLEX version 12.8. Results of the model are shown in Table 4
here Ŵ is the total amount of memory used and Cap is the
ercentage of items that the combination of buffer sizes x is
apable of holding. The number of agents |V | is set to 10 and
ach agent has their number of services |S| set to 2. We chose
he following sizes of buffer items (in bytes):
• wC = 160 based on secp256r1 keys and signatures [35].
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• wT = wS = 8 based on BRS (two 4B integer counters).
• wR = |S| (|V | − 1)wT to store reputation information

provided by peers. wR = 144 when |V | = 10 and |S| = 2.

In general, optimal solutions produced in Table 4 allocate
memory to small items first before large items. This is different
for Mn

C items, where memory needs to be allocated to these vital
items first before space can be allocated to smaller items.

Depending on the trust model in use, different entries in
different buffers may have unequal importance in evaluating a
measure of trust. The last four rows of Table 4 show results
when each buffer is valued higher than the others. A higher value
for Mn

T and Mn
S leads to no changes, as these are the smallest

items. Whereas increasing the value of Mn
C and Mn

R reduce the
percentage of items that can be stored in order to allocate a
greater amount of space to larger items.

When performing a deployment a user can specify these pa-
rameters in order to obtain an optimal set of buffer sizes. A
downside is that this requires the user to know the number of
agents in the system a priori and to value the relative importance
of different information used by the trust model.

11. Discussion

11.1. Deciding to evict

In this work an eviction is always performed when a memory
region is full and an item needs to be added. Ideally, an agent
would only evict and replace an item if doing so would increase
the utility of the items in memory. However, an agent cannot
necessarily implement this utility function because it requires an
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racle that knows how all agent’s services would behave for an
nteraction. We conjecture that the dual of the MyCoPS problem,
electing which nodes to evict, will be NP-complete.

1.2. Alternate utility functions

In this work we have assumed that trust-based interaction
election algorithms will be most effective if different types of
nformation is stored about the same agents and their services
hat behave well. However, not all selection algorithms will pro-
uce optimal outputs with this set of information; some selection
lgorithms may perform better if information is kept on the
est and worst performing agents. Alternate approaches might
alculate utility according to aspects such as age [36], usefulness
f information, or other metrics.

1.3. Assumption of correctly performed actions

We assume that both the dissemination and request actions
re performed correctly. There is little utility that could be gained
y performing request incorrectly, as it prevents an agent from
eing able to request an interaction. However, performing dis-
eminate incorrectly would allow agents to supply incorrect in-
ormation to their peers. Specifically it could be beneficial for
eers to lie about the contents of their trust memory region which
ther agents would store in the reputation memory region. We
ave chosen to not focus on this threat, due to the large amount
f related work in this area [5,37,38]. Our approach is also flexible,
o if a trust model needs to be deployed without reputation
and this threat) then the reputation memory region Mn

R can be
mitted from the analysis.

2. Conclusions and future work

In this work we have investigated how to manage information
tored on resource constrained agents that is used to assess
ehavioural trust in other agents. Work in cache replacement
olicies are not directly applicable, as deleted information used
o evaluate trust cannot be recreated or re-obtained.

We showed that selecting which information to keep and/or
o evict is NP-complete, so simulations of 11 different eviction
trategies were performed to gauge their performance. Results
or our proposed trust model-agnostic utility function, showed
hat MinNotInother, NotInOther, Chen2016, FiveBand, FIFO, LRU,
RU2 and Random performed well. However, having the Min-
otInOther eviction strategy that considers relevant items in
ther buffers can improve trust information utility when the
emory size is small. Finally, we investigated how to size these
emory regions under memory constraints via obtaining a solu-

ion to the Bounded Knapsack Problem.
Future work will need to consider heuristics to decide if an

tem should be evicted, taking into account both utility and the
ost of re-adding items (e.g., verifying digital signatures [30]),
lus other considerations such as data freshness in highly mobile
etworks. Another area for future work is considering how to spe-
ialise the utility function. In this work we have focused on evalu-
ting utility per agent. Instead the utility function could consider
he global balance between the information stored on agents,
his may involve focusing on storing information on the best and
orst performing agents, or by trading-off detail on some agents

n order to store cryptographic information on more agents. Fi-
ally, distributed storage of trust information could be consid-
red. However, this will incur additional storage costs to ensure
he integrity, confidentiality and authenticity of behavioural trust
nformation.
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