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ABSTRACT This work proposes a smart crop growth monitoring system that contains an adaptive
cryptography engine to ensure the security of sensor data and an edge artificial intelligence (AI) based
estimator to classify the pest and disease severity (PDS) of target crops. Based on the smart system
management mechanism, cryptographic functions can be adapted to varying and real-time requirements,
while the actuators can be controlled to interact with the physical world to ensure the healthy growth of
crops. Experiments show when all the four cryptographic hardware modules, including RTEA32, RTEA64,
XTEA32 and XTEA64, are supported, using the adaptive cryptography engine, 72.4% of slice LUTs and
68.4% of slice registers in terms of the Xilinx Zynq-7000 XC7Z020 chip can be saved. Through the smart
system management mechanism, a power consumption of 0.009 watts can be reduced. Furthermore, using
the binarized neural network (BNN) hardware module of the PDS estimator, the recognition accuracy of
target crops i.e. dragon fruits can achieve 76.57%. Compared to the microprocessor-based design and the
GPU accelerated one, the same BNN architecture on the FPGA can accelerate the frames per second by a
factor of 4,919.29 and a factor of 1.08, respectively.

INDEX TERMS Edge AI, binarized neural networks, adaptivity, crop growth monitoring, FPGA.

I. INTRODUCTION
Recently, the abnormal climate leads to the extreme weather,
while the occurrence of natural disasters such as typhoon,
rainstorm and severe drought gradually increases. This causes
great casualties and serious damages to our properties and
environment. For agriculture, the extremeweather alsomakes
the growth of crops unstable, and the problem of food short-
age thus becomes more and more serious. For all countries in
the world, the food crisis has also become a very important
issue.

Until now, most crops are still planted in the outdoor. This
means the growth of crops will be affected by the weather
easily. This also makes the yield and quality of farm crops
unstable. Compared to the opening planting environments,
recently, the greenhouse becomes a new alternative due to its
controllable advantage. With the incoming of agriculture 4.0,
new techniques such as cyber physical systems (CPS) [1] and
Internet-of-Things (IoT) [2] further enhance the efficiency of
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the agricultural management. Furthermore, with the popular-
ity of big data analytics [3], the trend of crop growth can
be predicted and analyzed. For example, by applying sensors
to the planting environment of crops, the collected data can
be further analyzed to improve the productivity and quality
of crops. Furthermore, the corresponding actuators such as
sprinklers can be also controlled to interact with the physical
world to ensure the healthy growth of crops.

For agriculture 4.0, there still exist some unsolved issues.
To efficiently predict the crop yield, machine learning has
been applied to the agricultural management [4]. Recently,
with the popularity of deep learning, the convolutional neu-
ral network (CNN) [5] has been widely used to recognize
the target crops and further evaluate their health statuses.
However, the CNNs are very computing-intensive so that
they are usually implemented on the powerful platforms such
as servers. Furthermore, transferring the captured images to
the server via the network also leads to high latencies on
the Internet easily. In order to directly evaluate the health
statuses of crops in the growth environment, integrating the
deep learning techniques such as CNNs is thus required.
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FIGURE 1. Proposed crop growth monitoring system.

Unfortunately, implementing the CNNs in the edge device
always incurs a large amount of power consumption [6] and
memory access [7]. For energy-constrained edge devices,
this also becomes a very big challenge. Besides collecting
the growth information about crops, the security of sensor
data gradually attracts people’s attention, especially when
the collected data are related to commercial activities. As a
result, the IoT security has recently become an important
issue [8]–[10]. However, the sensor network in the growth
environment of crops is usually unsupervised. Therefore, the
security of sensor data cannot be ensured.

The motivation of this work is to evaluate the health sta-
tuses of crops in the growth environment directly, and thus the
integration of the edgeAI is necessary. To implement the edge
AI design, system performance and power consumption are
both the very important issues. Furthermore, the security of
collected data is always neglected even though the collected
data are related to commercial activities. However, until now,
there is no design that can cover the smart, secure and scalable
issues at the same time. To satisfy the above requirements,
this work thus proposes a smart crop growth monitoring
system based on system adaptivity and edge AI as shown in
Figure 1.

The smart crop growth monitoring system is mainly
applied to the greenhouse, where the soil sensors, the micro
weather station, the RGB camera and the Time-of-Flight
(ToF) one are used to monitor the target crops and their
growth environment. Furthermore, this work is also to assist
agricultural experts in developing biological agents to pro-
tect the crops from pests and diseases. As a result, the
collected growth information of crops will be processed
and analyzed for evaluating the effectiveness of developed
biological agents. To ensure the security of sensor data,
the cryptographic functions are integrated into the system.
Furthermore, the cryptographic functions are implemented

as reconfigurable hardware modules so that the smart crop
growth monitoring system can not only support real-time
data decryption but also adapt its cryptographic functions to
varying requirements. To ensure the healthy growth of crops,
a smart system manager is also presented to control actuators
such sprinklers and biological agents to interact with the
physical world. Figure 1 gives an ideal blueprint to apply
the crop growth monitoring system to a real scene. However,
it must solve the following issues.

1) How to integrate the CNN into the system to support the
real-time estimation of the healthy statuses of crops?

2) How to make cryptographic hardware functions
adaptable?

3) How to make the system smarter to ensure the healthy
growth of crops?

For the above technical issues, in our smart crop growth
monitoring system, new techniques are thus proposed. The
novelty and contributions of this work are listed as follows.

• Efficient estimation of PDS with edge AI and
image fusion: A resource-efficient binarized neural net-
work (BNN) hardware module is presented to achieve
the real-time recognition of the target crops, i.e. dragon
fruits. Furthermore, based on the experience of agri-
cultural experts, an image fusion method that leverages
RGB and depth images is proposed to efficiently esti-
mate the PDS of crops.

• Adaptive protection of sensor data: An adap-
tive cryptography engine is proposed to support not
only real-time data decryption but also dynamically
functional adaptivity. Furthermore, a layered and virtu-
alizable architecture enables new user-designed crypto-
graphic functions to be easily integrated into the system.

• Agricultural cyber physical system: Based on the esti-
mation of PDS, a closed-loop control model is presented

VOLUME 10, 2022 64115



C.-H. Huang et al.: Smart Crop Growth Monitoring Based on System Adaptivity and Edge AI

to invoke the actuators to interact with the physical world
to ensure the healthy growth of crops. Furthermore,
based on the requirements of information protection in
the connected sensor platforms, the crop growth moni-
toring system contains a system adaptation mechanism
that can dynamically adapt its supported cryptographic
functionalities.

This work is not a conceptual result. The proposed system
is developed to provide the automation of the greenhouse and
has been applied to a real scene. Thus, the agricultural experts
can focus on the development of biological agents used for the
protection of crop growth. This article is organized as follows.
Section II describes the related work. Section III introduces
our proposed crop growth monitoring system, including the
edge AI based estimation of PDS, the adaptive cryptography
engine and the smart system management mechanism. Sys-
tem implementation and evaluation are given in Section IV.
Finally, Section V concludes this work.

II. RELATED WORK
For crop growth monitoring systems, besides the information
collection of crop growth environments by using soil or micro
weather sensors [11]–[16], the capture of crop images is
another important task for a crop growth monitoring system.
To estimate the PDS, calculating the size of a deformed
or discoloured area relative to the whole crop is a typical
method [17]. Furthermore, to recognize the target crops and
further evaluate their health statuses, themachine learning has
been widely applied to the system design. To identify plant
diseases at the early stages, Nagasubramanian et al. [16] pro-
posed an ensemble classification and pattern recognition
for crop monitoring system, where ensemble nonlinear sup-
port vector machine was used to detect leaf and crop dis-
eases. Zhang et al. [18] presented a method for monitoring
the growth of greenhouse lettuce, in which a CNNmodel was
used to learn the relationship between images and the cor-
responding growth-related traits, i.e., leaf fresh weight, leaf
dry weight, and leaf area. Thangadeepiga and Raja [19] pre-
sented a CNN-based approach for remote sensing-based crop
identification from Worldview-2 satellite data, and experi-
ments showed the presented model yielded 78% accuracy for
satellite image dataset and it provided 83% accuracy for field
data collected. Furthermore, CNNs were also applied to the
classification of paddy crops [20], the detection of fruits [21]
and the localization of the picking points for a ridge-planting
strawberry harvesting robot [22].

To apply the CNN to an edge device, by reducing the
network sizes, quantized neural networks (QNNs) [23] were
thus presented. The storage space and the bit-width of pro-
cessing elements could be reduced through lower precision
parameters, while system performance and throughput could
be increased through the refined computations. This makes
low-power deep learning applications possible [24]. Further-
more, for the hardware computing architecture to perform
the CNN computation, the FPGA has recently become a new

alternative because of the parallel architecture and energy
efficiency [25]. Compared to CPUs, GPUs and ASICs, the
FPGA-based designs [25]–[27] have been demonstrated that
theyweremore advantageous to implement resource-efficient
QNNs such as BNNs [24], [28], [29]. For agricultural appli-
cations, a low-power and high-speed deep FPGA inference
engine performing the BNN [30] was a typical design at the
edge for weed classification. The experiments also showed
performing inference on weed images was 2.86 times faster
than the best performing baseline full-precision GPU imple-
mentation. Besides the low-power and high-speed advan-
tages, the reconfigurable ability of the FPGA enables new
CNN architectures having different CNN parameters or
topologies to be easily evaluated.

Besides collecting sensor data or visual data for further
processing, in the most existing designs, the issue of IoT
security is always not taken into consideration. To ensure
the information security, adopting cryptographic functions
for data encryption is a common solution [31]–[33]. For a
crop growth monitoring system, when the amount of sensor
data becomes more and more, the decryption computation
also incurs a heavy burden. Fortunately, FPGAs have also
been demonstrated that they were suited to implement cryp-
tographic functions [34]–[36] due to the advantages such as
algorithm agility, resource efficiency, architecture efficiency
and throughput. However, different sensor platforms and net-
work environments usually use different cryptographic func-
tions. This variety of cryptographic functions supported also
affects the usability of the crop growth monitoring system
directly. As a result, besides high-performance cryptographic
computations, system scalability needs to be also taken into
consideration.

Based on the above discussions, making a crop growth
monitoring system smarter, securer and more scalable is
urgently required. In this work, we use the FPGA device as
the main computing architecture of the crop growth moni-
toring system. An edge AI based estimation method of PDS
using the BNN and an adaptive cryptography engine are
proposed to support smart system management. Details are
introduced in Section III, while Table 1 gives the comparisons
between our proposed crop growthmonitoring system and the
state-of-the-art designs.

III. PROPOSED CROP GROWTH MONITORING SYSTEM
To support high-performance CNN inference and crypto-
graphic computing, in this work, the FPGA device is used
to implement the proposed crop growth monitoring system.
Our FPGA-based system architecture is given in Figure 2.
An operating system (OS) runs on the microprocessor. The
USB controller is used to interface with cameras and a wire-
less card. Here, sensor data are received through the wireless
card, while the crop images are captured by the camera in
real-time. A BNN hardware module is integrated into the
FPGA-based system design to support the edge AI based
estimation of PDS. Furthermore, the processor configura-
tion access port (PCAP) and reconfigurable partitions (RPs),
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TABLE 1. Comparisons on different designs.

FIGURE 2. FPGA-based system architecture.

including RP1 and RP2, are used to realize the proposed
adaptive cryptography engine. The RP1 and RP2 can be con-
figured as the cryptographic hardware functions on-demand,
while the wrappers are used to connect them to the system
bus. Details are given in the following sections.

A. EFFICIENT ESTIMATION OF PDS WITH EDGE AI AND
IMAGE FUSION
To estimate the PDS of the target crops in real-time, based
on the discussions as described in Section II, a powerful
embedded platform and a refined CNN architecture are both
necessary. In this work, a resource-efficient BNN is presented
to detect the target object, while an image fusion method is
proposed to estimate the PDS.

1) DETECTION OF TARGET CROPS USING BNN
In this work, the VGG16 architecture [37] is adopted to
support the detection of target crops. Similar to the infer-
ence engine [30], the VGG16 architecture is further refined
through binary weight regularization [38] to support edge AI.
As depicted in Equation 1, the weights and the activations
of the BNN used in the crop growth monitoring system are
constrained to either +1 or −1, while the activation function
is applied to all BNN layers. Our BNN architecture is given
in Figure 3. The CIFAR-10 dataset [39] is used as its input

FIGURE 3. BNN architecture.

format, and the input of the BNN is a 32 × 32.8-bit RGB
image. The BNN architecture can classify ten categories
of objects, and it consists of six convolutional (cnv) oper-
ations, two maximum polling (maxpool) ones and three
fully-connected (fc) ones. The kernel size of the maximum
pooling operation and that of the convolutional operation are
2×2 and 3×3, respectively. The depths of the convolutional
layers and the fully-connected ones of the BNN architecture
are 64, 64, 128, 128, 256, 256, 64, 512 and 512 individually.
Furthermore, the amount of all the parameters is 1.55 Mbits.

Sign(x) = {+1 if x ≥ 0,−1 if x < 0} (1)

Our FPGA-based system design flow is given in Figure 4.
To quickly reflect the refinement of the BNN architecture and
to make the corresponding hardware module easily replace-
able without rewriting the corresponding hardware descrip-
tion language (HDL) codes, a framework called FINN [40] is
used in this work. By integrating the deep learning framework
with the FINN, after the training phase finishes, the BNN
parameters can be exported and then used to generate the cor-
responding BNN hardwaremodule. As a result, the high-level
synthesizer (HLS) is further used to translate the high-level
languages into the HDL codes. Finally, using the FPGA
design tool, the BNN hardware module can be generated and
integrated into our system design.

2) IMAGE FUSION METHOD FOR ESTIMATING THE PDS
Calculating the size of a discoloured area relative to the whole
target crop is a conventional method to estimate the PDS [17].
However, it is easily affected by background objects. In order
to enhance the estimation accuracy, besides RGB images,
deep images captured by the ToF camera are also used in this
work. Through the assistance of the agricultural expert, the
PDS is divided into five levels. The increase in the value of
level indicates the increase in the PDS. The proposed image
fusionmethod for estimating the PDS is given in Algorithm 1.
The function CONTOUR is responsible for extracting all the

positions of contours in a specific object (Lines 1-5), where
CTR represents the set of these positions. IMGRGB represents
the RGB image in which the target crop can be recognized
using the BNN, while IMGdeep represents the corresponding
deep image. By considering the distance from the target crop
to the ToF camera, the mask maskcrop is used to extract the
target crop from the deep image. Based on the characteristics
of color, another mask maskseverity is used to to extract the
area of pests and diseases from the whole target crop.
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FIGURE 4. FPGA-based design flow.

Algorithm 1 Image Fusion Method for Estimating the PDS
1: function Contour(IMG,mask)
2: IMGmasking← masking(IMG,mask)
3: CTR← findContours(IMGmasking)
4: return CTR
5: end function
6: CTRcrop← CONTOUR(IMGdeep,maskcrop)
7: CNTcrop← contourArea(CTRcrop)
8: IMGonlycrop← extract(IMGRGB,CTRcrop)
9: CTRseverity← CONTOUR(IMGonlycrop,maskseverity)
10: CNTseverity← contourArea(CTRseverity)

11: ratio←
CNTseverity
CNTcrop

12: if ratio ≥ 80% then
13: Level ← 4
14: else if ratio ≥ 60% then
15: Level ← 3
16: else if ratio ≥ 40% then
17: Level ← 2
18: else if ratio ≥ 20% then
19: Level ← 1
20: else
21: Level ← 0
22: end if

In this image fusion method, based on the mask maskcrop,
all the positions of contours in the target crop (CTRcrop) are
first extracted, and then the pixel counts of the target crop
(CNTcrop) are calculated (Lines 6-7). Next, all the positions
of contours in the target crop (CTRcrop) is used to extract
the area of the target crop from the RGB image (IMGRGB)
(Line 8). Using the predefined mask maskseverity and the
function CONTOUR, the area of pests and diseases is con-
toured (CTRseverity) from the image having only the target
crop without the background (IMGonlycrop). The pixel counts
of area of pests and diseases (CNTseverity) are then calculated
(Lines 9-10). Finally, similar to the estimation method [17],
the ratio of CNTseverity to CNTcrop is used to estimate which
PDS level the target crop belongs to (Level 0 ∼ Level 4).
Here, based on the experience of agricultural experts, the five

ratios of CNTseverity to CNTcrop as shown in Algorithm 1 are
used to represent the five levels of PDS. Then, according to
the PDS level, the smart crop growth monitoring system can
decide if the biological agents will be applied to the target
crops to protect them from pests and diseases.

B. ADAPTIVE PROTECTION OF SENSOR DATA
In the proposed crop growth monitoring system, we design an
adaptive cryptography engine as shown in Figure 1 to decrypt
sensor data. Besides the cryptographic software functions,
the corresponding hardware modules are also implemented
and attached to the system bus for supporting real-time data
decryption, as shown in Figure 2.

Different sensor platforms and network environments may
require different cryptographic functions. Based on the basic
service of secure socket layer (SSL), only one of the crypto-
graphic functions will be used when the negotiation between
the system and the sensor platform finishes. This means each
cryptographic function is not performed all the time. To not
only support real-time data decryption but also enhance
system adaptivity, our previously proposed hardware vir-
tualization technique [41] is integrated into the adaptive
cryptography engine to satisfy the requirement of different
cryptographic functions. As shown in Figure 2, two RPs,
namely RP1 and RP2, are implemented in the FPGA. The
cryptographic hardware functions are integrated with a partial
reconfigurable hardware task template (PR template) and
then implemented as reconfigurable hardware modules con-
figured in RP1 and RP2. When a reconfigurable hardware
module is being configured into RP1 or RP2, the hardware
designs in the other parts of the FPGA still run uninterrupted.
Furthermore, an SD card is used to store all the partial bit-
streams corresponding to the RPs, which are configured in
the FPGA through the PCAP.

According to the FPGA-based design as shown in Figure 2,
a layered and virtualizable system design is introduced in
this work, as shown in Figure 5. The hardware design is
divided into the logical hardware layer and the physical one.
According to different requirements, the adaptive cryptogra-
phy engine enables RP1 and RP2 to be configured as the
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FIGURE 5. Layered and virtualizable system design.

FIGURE 6. Closed-loop control model.

requested cryptographic function at runtime. As a result, the
RP can be virtualized as requested hardware devices in the
logical hardware layer on demand, even though the total logic
resource requirement of all hardware modules exceeds the
amount of resources available in an FPGA device. Therefore,
software applications can access these hardware devices in
the logical hardware layer through their corresponding device
drivers.

C. AGRICULTURAL CYBER PHYSICAL SYSTEM
To monitor the growth status of the target crops more effi-
ciently, a smart system management mechanism, including a
hardware/software adaptation mechanism and a crop growth
management mechanism, is also proposed in this work.
Details are given in the following sections.

1) CROP GROWTH MANAGEMENT
According to the PDS and the water need of crops, the crop
growth monitoring system can perform the corresponding
actions to interact with the physical world to ensure the
healthy growth of crops. As shown in Figure 6, a closed-loop
control model is further presented in this work.

• Actions based on the PDS: According to the experiences
of agricultural experts, the PDS level must be less than
Level 2. By using the physical values captured by the
RGB camera and the ToF one, the crop growth mon-
itoring system performs the image fusion method for
estimating the PDS as shown in Algorithm 1. When the
PDS level is estimated more than Level 2, a nozzle is
used to apply the biological agents to the target crops to
protect them from pests and diseases.

• Actions based on the water need: The root zone soil
moisture deficit (RZSMD) [42] is used in the crop
growth monitoring system. Its objective is to make
RZSMD close to zero, while the amount of irrigation
water use can be minimized. Given D as RZSMD at the
current time step, RZSMD at the next time step is D+ as
depicted in Equation 2.

D+ = D+ E∗ − Pe − I e (2)

Here, E∗ is the crop evapotranspiration, which is cal-
culated based on the RZSMD approach [42] by mea-
suring the soil moisture of the target crop. Pe is the
effective rainfall. Since our target crops are planted in
the greenhouse, the value of Pe is set as zero. I e is the
effective irrigation amount, which is controlled through
the sprinklers. Therefore, the crop growth monitor-
ing system will make RZSMD (D+) close to zero by
requesting the sprinklers to irrigate the target crops. Note
that the RZSMD approach [42] depends heavily on the
conditions of the soil. When another different type of
soil is used, the crop evapotranspiration needs to be
recalculated.

2) HARDWARE/SOFTWARE ADAPTATION
Based on the adaptive cryptography engine as introduced
in Section III-B, the proposed hardware/software adaptation
mechanism is as illustrated in Figure 7.When the crop growth
monitoring system receives a request for receiving sensor data
from a sensor platform, it then negotiates with the sensor
platform to use the same cryptographic function. Otherwise,
when no request is received for a constant time, the blank
modules will be configured in RP1 and RP2, as shown in
Figure 2, to reduce the power consumption.
When the crop growth monitoring system finishes the

negotiationwith the sensor platform, it checks if the requested
cryptographic function has been configured in the RPs. If the
requested cryptographic function has been configured in the
RPs and is not being used by a software application, the crop
growth monitoring system will start to receive and decrypt
the sensor data. Otherwise, if the requested cryptographic
function is not configured in the RPs or it has been configured
but is being used by a software application, the crop growth
monitoring system will check if there is still an idle RP to
configure the requested cryptographic function. When there
is an idle RP, the requested cryptographic function is thus
configured in the idle RP; otherwise, the corresponding soft-
ware version will be used.

IV. SYSTEM IMPLEMENTATION AND EVALUATION
To demonstrate the practicability of the proposed crop growth
monitoring system, this section will introduce our system
implementation and evaluation.

A. SYSTEM IMPLEMENTATION
To realize the smart crop growth monitoring in the real plant-
ing environment, edgeAI is integrated into our system design.
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FIGURE 7. Hardware/software adaptation.

Instead of adopting the GPU platform such as NVIDIA Jetson
TX2 [22] for AI inference, the FPGA device was used in
this work for the acceleration of the BNN, similar to the
design [30] that adopted the Intel DE1-SoC development
board. In our current implementation, the PYNQ-Z2 devel-
opment board with a Xilinx Zynq-7000 XC7Z020 chip was
used to implement the smart crop growth monitoring system.
Furthermore, dragon fruits were adopted as the target crops.

Figure 8 shows our system setup. Here, sensors were
attached to the Arduino WeMos D1 boards, where sensor
data were transferred to the smart crop growth monitoring
system (PYNQ-Z2) via WIFI. A Logitech C922 Pro stream
camera and an ADI ToF module were attached to the smart
crop growth monitoring system (PYNQ-Z2) for capturing
the RGB images and deep ones, respectively. Furthermore,
besides a manual mode and an automatic mode for the control
of greenhouse equipment, the greenhouse control system was
customized to provide an external control interface based on
an Arduino platform. For the control of the greenhouse equip-
ment such as sprinklers, the smart crop growth monitoring
system (PYNQ-Z2) can transfer the control command to the
external control interface of the greenhouse control system
via an UART interface. Therefore, applying the smart crop
growth monitoring system to agricultural automation can be
achieved. Note that as shown in Figure 8 the smart crop
growth monitoring system was mainly implemented using
the PYNQ-Z2 development board quipped with a Logitech

FIGURE 8. System setup for agricultural automation.

C922 Pro stream camera, an ADI ToF module and a wire-
less USB adapter. The system cost was around NT$12,000.
Furthermore, the soil sensors were used to measure the soil
parameters such as pH, moisture, salinity and temperature,
while the micro weather station was used to measure the envi-
ronment parameters such barometric pressure, temperature
and humidity. Here, all the sensors and the corresponding
platforms cost around NT$50,000.

B. BNN DATASET
Our environmental setup of data collection in the greenhouse
is shown in Figure 9. One hundred dragon fruits were planted
in a greenhouse. Similar to the estimation method [17] by
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TABLE 2. Required time for the estimation of PDS.

calculating the size of a deformed or discoloured area relative
to thewhole crop, the PDS for each dragon fruit was classified
through the assistance of the agricultural expert every day
as shown in Figure 10. Furthermore, for each level of PDS,
the corresponding dragon fruit on the display turntable was
also exchanged every day to ensure the data diversity. Based
on such a data collection design, five thousand images of
the target crops and forty-five thousand images having nine
categories of objects (five thousand images per category)
were used as our training data. Here, the nine categories
consisted of acorn, banana, bell pepper, cauliflower, spider,
ladybug, lemon, mushroom, and orange, while their corre-
sponding images were obtained the ImageNet dataset [43].
Furthermore, all the images used as training data were resized
as 32 × 32 images.

1) PDS ESTIMATOR
Based on the FPGA-based design flow as illustrated in
Figure 4, Theano [44] was adopted to train the BNN, and it
was executed on a server (Intel Core i7-8700 CPU, 64 GB
RAM and Nvidia GeForce RTX 2080 GPU). The number
of training epochs was set as 500, and the batch normaliza-
tion [45] was applied to the BNN training for acceleration.
The FINN [40] was adopted to generate the corresponding
BNN hardware module through the parameters obtained from
the BNN training. Since the generated BNN module was
based on a Xilinx Vivado HLS project, the compiled HDL
results were extracted and integrated into the crop growth
monitoring system. Furthermore, as shown in Figure 9, soil
sensors were used to measure the soil moisture for the esti-
mation of crop evapotranspiration.

2) ADAPTIVE CRYPTOGRAPHY ENGINE
In our current implementation, the crop growth monitoring
system can support four cryptographic functions, namely
repaired tiny encryption algorithm 32 (RTEA32), RTEA64,
eXtended TEA32 (XTEA32) andXTEA64, by implementing
two PRs, namelyRP1 andRP2. Note that the value embedded
in the name of each cryptographic function represents its
input data sizes in bits. The hardware intellectual proper-
ties (IPs) corresponding to the four cryptographic functions
were obtained from the OpenCores website. Each crypto-
graphic IP was integrated with the PR template [41] and then
implemented as two reconfigurable hardware modules con-
figured in RP1 and RP2, respectively. Note that the current
implementation is only a proof-of-concept. A different FPGA
chip having more gate counts can be also used to integrate
with newer and securer cryptographic functions to ensure the
security of sensor data.

C. EVALUATION OF PDS ESTIMATOR
In the following, we will evaluate the PDS estimator in terms
of performance and recognition accuracy.

1) PERFORMANCE
Based on Algorithm 1, the RGB camera and the ToF one are
used to estimate the PDS of the target crops i.e. dragon fruits.
A real case is shown in Figure 11. Given the time of tcap
milliseconds (ms) to capture the image data, the time of tBNN
ms to detect the target crop using the BNN, the time of tcla ms
to classify the PDS level of the target crop, the total time of
Total ms is as depicted in Equation 3. Here, nreg represents the
number of regions extracted from the captured image using
the selective search method [46], while ntar represents the
number of regions that the BNN can detect the target crop.

Total = tcap + nreg × tBNN + ntar × tcla (3)

The time required by each operation in our current imple-
mentation is given in Table 2. Here, the detection time using
BNN (tBNN ) includes both the processing time by using the
BNN hardware module and the time to deliver a region
to the BNN hardware module. Experimental results show
that estimating the PDS of the target crop (nreg = 1 and
ntar = 1) requires 16, 463.3 ms. However, the resolution
of the captured image is based on Full HD. Through the
selective search method [46], many regions in the captured
image will be extracted and resized for the detection of the
target crop using the BNN. This means the BNN detection
will be performed many times, and system performance will
be heavily affected by the time to perform the BNN. To fur-
ther evaluate the PDS estimator of the proposed crop growth
monitoring system, the same BNN architecture as shown in
Figure 3 was also implemented on the microprocessor-based
design, that is, ARM Cortex A9, and the GPU accelerated
one, that is, NVIDIA GeForce RTX 2080, for comparison.
The experimental results are given in Table 3.
Compared to the microprocessor-based design and the

GPU accelerated one, when the same BNN architecture was
performed on the FPGA, the frames per second (FPS) can
be accelerated by a factor of 4,919.29 and a factor of 1.08,
respectively. According to the experiments, the PDS esti-
mator has been showed it can provide better performance
to support the real-time detection of the target crops at
the edge. Such an advantage is very important especially
for the crop growth monitoring. Note that, to perform the
same BNN model on GPU, in this experiment, the NVIDIA
GeForce RTX 2080 GPU was adopted directly used for
comparison. Although the optimization method such as the
NIVIDIA TensorRT was not used, this comparison is also
unfair for our FPGA-based implementation. This is because
the NVIDIA GeForce RTX 2080 GPU is usually used in
a server due to the capability of powerful computation.
Furthermore, the crop growth monitoring system needs to
be applied to the real scene, but the NVIDIA GeForce
RTX 2080 GPU is not designed for the edge device. To per-
form the same BNN model, it can be easily expected our
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FIGURE 9. Data collection in the greenhouse.

TABLE 3. BNN implemented on different computing architectures.

proposed FPGA-based design can save much more energies
compared to the NVIDIA GeForce RTX 2080 GPU. Thus,
the experiments on energy were not given in this work. This
experiment is mainly used to demonstrate the performance
using our FPGA-based design on the PYNQ-Z2 platform to
perform the BNN inference can be close to or even higher
than that using theGPU acceleration on theNVIDIAGeForce
RTX 2080. This also indicates at the edge, compared to the
embedded GPU platform such as NVIDIA Jetson Nano, the
FPGA-based design could be a considerable choice. This
work can be also considered as a case study of FPGA infer-
ence at the edge.

2) RECOGNITION ACCURACY
To evaluate the recognition accuracy of the BNN hardware
module, ten thousand images containing one thousand images
of the target crops and the nine categories of objects (one
thousand images per category) as described in Section IV-A
were used for testing. Our experiment shows the recognition
accuracy of target crops by using the BNN hardware module
of the crop growth monitoring system can achieve 76.57%.
However, as introduced in Algorithm 1, in the real scene as
shown in Figure 9, besides the target crops i.e. dragon fruits,
most of the remaining objects will be filtered out through the
masksmaskcrop andmaskseverity based on deep characteristics
and colors, respectively. Therefore, the recognition accuracy
(76.57%) in our real scene can be accepted. Furthermore, the
classification method of the five PDS levels in Algorithm 1
was based on the experience of agricultural experts, which
mainly depended on the size of a discoloured area relative to
the whole crop. By using Algorithm 1, the target crop could
be extracted by removing the background objects. Thus, the
results of PDS classification using the proposed system could
be close to those classified by agricultural experts.

FIGURE 10. Five levels of PDS.

D. EVALUATION OF ADAPTIVE CRYPTOGRAPHY ENGINE
In the following, we will evaluate the adaptive cryptography
engine in terms of performance, resource usages and power
consumption.

1) PERFORMANCE
In this experiment, the RTEA32, RTEA64, XTEA32 and
XTEA64 functions were also implemented as software pro-
grams executed on the ARM cortex A9 processor (667MHz)
embedded in the PYNQ-Z2 development board for com-
parison. The same amount of operations (100 decryption
operations) were performed by using the RTEA32, RTEA64,
XTEA32 and XTEA64 hardware modules and their corre-
sponding software designs. Figure 4 gives the processing time
required by the four cryptographic functions. Experiments
show that the processing time using the hardware modules
can be reduced by 39.4% to 80.1%, compared to the corre-
sponding software designs. Therefore, as shown in Figure 7,
the hardware module of the requested cryptographic function
will be first considered so that the possibility of real-time data
decryption can be increased.

2) RESOURCE USAGES
Another system design without the adaptive cryptog-
raphy engine was also implemented for comparison.
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FIGURE 11. A real case using the image fusion method for estimating the PDS.

TABLE 4. Processing time (µs) required by the four cryptographic
functions.

FIGURE 12. Resource usages.

For a traditional system design, to support all the four cryp-
tographic functions, namely RTEA32, RTEA64, XTEA32
and XTEA64, the corresponding hardware modules need
to be first configured in the system at design-time. When
the negotiation between the system and the sensor platform
finishes, only one of the cryptographic hardwaremodules will
be used. This indicates that the four cryptographic hardware
modules are not always performed, which also results in a
waste of system resources. By using the adaptive cryptog-
raphy engine, each RP can be configured as the requested
cryptographic module on-demand. To support all the four
cryptographic functions, Figure 12 shows the resource usages
in terms of slice LUTs and slice registers when the adaptive
cryptography engine was used (our design) or not.

When the adaptive cryptography engine was used, the crop
growth monitoring system needed at most 540 slice LUTs
and 478 slice registers, considering theXilinxXC7Z020 chip.
This shows themaximal resource usage by the XTEA64 hard-
ware modules configured in both RR1 and RP2. Compared to
the system design without the adaptive cryptography engine,

FIGURE 13. Power consumption.

our design can reduce 72.4%of slice LUTs and 68.4%of slice
registers. Furthermore, our crop growth monitoring system
design is scalable due to its layered and virtualizable design.
New hardware functions can be also integrated into the sys-
tem. This means that the crop growth monitoring system
can support much more hardware modules than our current
implementation can.

3) POWER CONSUMPTION
As illustrated in Figure 7, when no request is received for a
constant time, the blank modules corresponding to the two
RPs can be configured in the system to adapt the power con-
sumption. In this experiment, the Xilinx Vivado 2018.2 tool
was used to measure the power consumption of the placed
and routed netlists. For different combinations of crypto-
graphic hardware modules, Figure 13 gives the measured
power consumptions in watt (W). Compared to the worst
case of using maximum power for each of the two RPs
(Configuration 1), that is, the RTEA64 function inRP1
and the RTEA128 function in RP2, the total power consump-
tion can be reduced by 0.009 watts when the corresponding
blank modules (Configuration 3) were configured in
RP1 and RP2. Therefore, the power consumption of the crop
growth monitoring system can be dynamically adapted at
runtime, according to varying cryptographic functions.

V. CONCLUSION
To monitor the crop growth efficiently, this work proposes a
crop growth monitoring system based on system adaptivity
and edge AI. The presented adaptive cryptography engine
can not only support varying requirements of cryptographic
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functions but also provide real-time decryption processing of
sensor data. Furthermore, the layered and virtualizable design
makes the crop growth monitoring system scalable. The edge
AI based PDS estimator provides real-time detection of the
target crops, while the image fusion method can assist in
classifying the level of PDS. Through the smart system man-
agement mechanism along with the adaptive cryptography
engine and the PDS estimator, the actuators can be controlled
to interact with the physical world to ensure the healthy
growth of crops. Our experiments also demonstrated the prac-
ticability and applicability of the proposed design.
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