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ABSTRACT At present, intelligent computing applications are widely used in different domains, including
retail stores. The analysis of customer behaviour has become crucial for the benefit of both customers and
retailers. In this regard, the concept of remote gaze estimation using deep learning has shown promising
results in analyzing customer behaviour in retail due to its scalability, robustness, low cost, and uninterrupted
nature. This study presents a three-stage, three-attention-based deep convolutional neural network for remote
gaze estimation in retail using image data. In the first stage, we design a mechanism to estimate the
3D gaze of the subject using image data and monocular depth estimation. The second stage presents a
novel three-attention mechanism to estimate the gaze in the wild from field-of-view, depth range, and object
channel attentions. The third stage generates the gaze saliency heatmap from the output attention map of the
second stage. We train and evaluate the proposed model using benchmark GOO-Real dataset and compare
results with baseline models. Further, we adapt our model to real-retail environments by introducing a novel
Retail Gaze dataset. Extensive experiments demonstrate that our approach significantly improves remote
gaze target estimation performance on GOO-Real and Retail Gaze datasets.

INDEX TERMS Computer vision, deep learning, gaze estimation, retail customer behaviour.

I. INTRODUCTION
In today’s world, retail stores are becoming smarter with
the availability of numerous data and the power to analyze
them autonomously. Even with the rise of online shopping,
most of the physical retail stores use smart applications for
the purchasing process [1]. Several techniques and devices
have been introduced to automate the shopping process and
analyze shoppers’ behaviour inside stores. At the same time,
the shopping experience is a key consideration towards the
success of a retail business, which affects the performance
of customer satisfaction, customer purchase probability, and
customer loyalty [2]–[4].

In order to improve the shopping experience and maximize
business profits, it is essential to capture and and analyze
the customer’s behaviours without interfering their natural
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shopping journey [5], [6]. Various solutions have introduced
for customer behaviour analyzis in retail using developments
in computer vision technology. For instance, counting the
number of people and detecting the hot spots in retail [6]
and public [7], and tracking shoppers’ emotion [5] are such
applications. However, the existing solutions only capture
coarse touch-points of a shopper’s journey and vulnerable to
unconstrained environment settings. With the adaptation of
computer vision technologies in gaze estimation, there has
been eye tracking-based solutions for customer behaviour
analysis in retail as well [1], [8]. Moreover, there are solutions
based on virtual reality devices and head-mounted displays,
wearable eye tracker based solutions [9], and non-intrusive
3D eye tracking solutions [10]. However, these solutions
do not completely satisfy the retailers due to high cost of
3D eye tracking solutions, unscalability of wearable, and
head-mounted display-based solutions, and manual calibra-
tion of eye tracking systems.
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The concept of Gaze Following, which was introduced by
Recasense et al. [11], refers to the identification of the object
being looked at by a person, given the scene image. This
concept has been extended by Tomas et al. [8] and presented
the idea of Gaze Object Prediction in retail, refers to the task
of predicting the bounding box for a human’s gazed-at object.
Both these concepts only require gaze estimation from the
scene image, and it avoids the need to wear special types of
devices to capture the eye gaze and remove the restrictions
of manual calibration. Thus, they are economically feasible
solutions for retailers. This concept is known as the remote
human gaze estimation in retail.

Remote gaze estimation in retail is a problem in the wild
that requires further gaze estimation from back-head images
with partial and total eye occlusion. Estimating customer gaze
in retail is a novel concept that has not been given enough
focus in the research literature. However, the concept holds
much promise in retail to effortlessly and securely analyze
the shopper behaviour in stores.

This paper presents deep learning-based remote gaze esti-
mation models for the retail environment. We propose a
three-stage deep CNN based on attention mechanisms and
hand-designed features for retail, remote back-head gaze
saliency estimation. We present a comprehensive methodol-
ogy of our model design process starting from an end-to-end
solution to the proposed three-stage architecture. We develop
four design solutions and introduce the novel object channel
and depth channel features to improve the accuracy of gaze
saliency estimation in retail. The object channel, which is a
hypothetical gaze distribution of gaze generated from retail
product item boundaries, helps the models to narrow down
their gaze estimation point search space. Subsequently, the
depth channel encodes the scene depth and helps the models
to overcome the issue of estimating correct retail shelf depth.

Based on the hypothesized design solutions, we develop
two model architectures to encode the object and depth
channels separately. First, the hypothetical gaze distribution
model, as defined in our previous work [12], represents the
concept of the object channel. The model has surpassed
the existing benchmark Area Under the Curve (AUC) and
Angular error baselines on the GOO dataset [8], showing the
importance of the object channel. Second, the Face3D model
represents the depth channel and the novel concept of remote
gaze estimation in 3D vector space. In this model, we present
the idea of monocular depth estimation for encoding depth
information in remote gaze estimation in retail. The model
significantly improves AUC, L2-distance, and Angular error
criteria on the GOO dataset.

With the success of the two models, we combine the
two concepts and design the three-stage, depth-based dual
attention model to estimate the gaze saliency accurately and
robustly. The three stages of the proposed model are named
as, gaze and depth estimation, dual attention module, and
heatmap generator. In the first stage, the network generates
a 3D gaze vector, given the head image of the subject. Then
it decomposes the 3D information into a 2D gaze target and

a depth channel. Motivated by the stufy of Fang et al. [13],
we design and modify the dual attention module to capture
the specific parameters in a retail environment. Specifically,
we incorporate third attention, the object channel presented
in the hypothetical gaze distribution model, for the dual
attention module. The results of this model on the GOO-Real
dataset shows superiority over the other models. Hence,
we transfer learn this model’s knowledge to the Retail Gaze
dataset to test its applicability in a real retail environment.
The proposed depth-based dual attention model can estimate
the gaze saliency in retail environments with a high accuracy,
using only, in-the-wild image data.

Our contributions are summarized as follows:
• We implement a novel mechanism for remote human
gaze estimation in retail, that does not require manual
user calibration and does not interfere the natural shop-
per journey.

• We design and develop a novel deep convolutional neu-
ral network (CNN) for accurate, remote gaze saliency
estimation in retail using back head images.

• We present the novel depth channel and object channel
to improve the accuracy of gaze saliency estimation in
retail.

The paper is structured as follows. Section II explores
the related work on gaze target estimation, gaze follow-
ing, gaze object prediction, and gaze estimation in retail.
Section III presents a comprehensive elaboration of the pro-
posed approach for remote gaze saliency estimation in retail.
Following this, Section IV discusses the experiments carried
out and the datasets and evaluation criteria used. Section V
presents the obtained results and Section VI compares the
existing studies and possible future research directions.
Finally, Section VII concludes the paper.

II. RELATED WORK
We explore the appearance-based gaze estimation approaches
with deep learning (DL), focusing on gaze estimation in
retail. Appearance-based gaze estimation solutions with
DL have been studied extensively in the past decade [10],
[14]–[16]. These solutions have been proven to perform
well under extreme unconstrained environmental conditions
in remote gaze estimation like partial and total eye occlu-
sion, lighting condition variations, camera to subject dis-
tance variations, subject diversity, and camera capture angle
variations [10], [13], [17]. With the adaptation of deep-
learning-based solutions, there is a high promise to robustly
estimate gaze in unconstrained environments with the above-
mentioned considerations. This section presents the related
work on gaze target estimation, gaze following, 3D gaze
estimation, and gaze object prediction as shown in Fig. 1.
A summary of the related studies is presented in Table 1.

A. GAZE TARGET ESTIMATION
Gaze target estimation is a well-established area in the lit-
erature. It is defined as locating the point being gazed at by
the subject in either 2D image coordinates or 3D real-world

VOLUME 10, 2022 64905



S. Senarath et al.: Customer Gaze Estimation in Retail Using Deep Learning

FIGURE 1. Gaze estimation tasks: (a) Gaze target estimation, (b) Gaze following, (c) Gaze object prediction, (d) Gaze estimation in retail.

coordinates [11], [17]–[21]. Moreover, this can be catego-
rized as gaze target estimation in controlled environments and
in-the-wild, based on the nature of the application environ-
ment. Researchers have explored gaze target estimation in the
wild in multiple application domains such as sports training,
gaze target identification of the public for targeted advertising
in digital signage [1], gaze target localization of a crowd [22],
shoppers gaze estimation [1].

Among several related studies, Kellnhofer et al. [17] have
presented Gaze360, which is a large-scale gaze-tracking
dataset and a deep CNN based method for 3D gaze estima-
tion in the wild. This dataset includes a range of gaze and
head poses, diverse capture environments that enhance the
wild nature of the dataset environments, and a large sub-
ject diversity. Gaze360 dataset consists of 172,000 images,
which includes 238 subjects captured in 7 different locations.
Moreover, the dataset is annotated with 3D gaze vectors in
real-world coordinates. The gaze estimation problem in retail
requires back-head image data annotated with gaze targets to
train and evaluate gaze models. The authors of this dataset
have considered the partial eye occlusion scenario when col-
lecting the dataset, which makes Gaze360 a suitable dataset
for gaze estimation model training in retail.

Recent work in gaze target estimation has been presented
by Fang et al. [13], to simulate the gaze estimation behaviour
of humans in 3D space. The authors have introduced a three-
stage solution, a first stage to estimate the 3D gaze orientation
from the head of the subject, a second stage introducing a
novel dual attention module to select the correct field of
view mask based on depth information, and a third stage to
estimate the gaze target in 2D image coordinates. Their work
has shown better results for estimating gaze targets in general
scenes compared to related literature. It closely resembled
the nature of how humans follow gaze and have achieved an
angular error of 11.1% for front-head remote gaze estimation.
Our introduced model architecture is highly inspired by their
work to generate dual attention-based features in retail gaze
estimation.

B. GAZE FOLLOWING
The concept of gaze following has been first introduced by
Recasense et al. [11]. They have defined gaze following as

the task of identifying the object being looked at by the
subject, given the scene image data. This study generalized
the gaze target estimation in the wild by introducing Gaze-
Follow [11], which is a large-scale, benchmark dataset. It is
annotated with the 2D image coordinates of the looking point
of humans’ in images. The dataset includes a large subject
and scene diversity of people performing daily activities.
In addition, they have introduced the human-inspired gaze
saliency estimation model architecture, which has substan-
tially improved the accuracy of saliency estimation even with
eye occluded images. The proposed deep CNN architecture
consists of two pathways: the gaze pathway and the saliency
pathway to mimic the human nature of gaze following. More-
over, they have introduced a new method called the shifted
grids to robustly estimate the gaze target by carrying out
multiple classification problems instead of directly regressing
it in 2D coordinates.

Following the work of Recasense et al. [11], several stud-
ies have extended the concept of gaze following to predict
the gaze targets in videos and handle the gaze target predic-
tions when the subjects are looking at objects outside of the
captured scene [23], [24], [26]. Lian et al. [24], have encoded
the gaze direction into multi-scale gaze direction regions to
mimic the behaviour of a human in gaze following.Moreover,
they have used a feature pyramid network [27], to regress
the gaze saliency heatmap due to their success in object
detection. In a similar work, Chong et al. [23], have pre-
sented a novel attention-based deep CNN approach to detect
gaze targets in videos. Their study has extended the Gaze
Follow dataset with out-of-frame gaze target annotations
and further introduced VideoAttentionTarget dataset to esti-
mate gaze saliency in videos. The introduced spatio-temporal
CNN uses an attention layer to bridge the gap between the
scene and head pathways and allows to control the scene
pathway via the head pathway. Our attention mechanisms
are mostly inspired by this study. Most of the gaze fol-
lowing domain work is complementary to ours; however,
they are not specific to the retail environment. They have
not considered gaze saliency prediction from back-head
images. Directly applying these models in retail leads to
several new issues, which we have solved by introducing
hand-designed features specifically designed towards retail
environments.
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TABLE 1. Summary of Related Work: GTE - Gaze target estimation, GF - Gaze following, GOP - Gaze object prediction, GE - Gaze estimation.

C. GAZE OBJECT PREDICTION
Gaze object prediction is a novel concept in gaze estima-
tion, and a more applicable approach in retail. The concept
was recently introduced by Tomas et al. [8], and defined as
the task of predicting the bounding box of the gazed at
the object by the subject. Mainly they have introduced a
dataset named Gaze On Objects. It is a large dataset for
gaze object prediction in retail, consisting of 2D gaze point
annotations, gazed at object bounding boxes and gazed at
object segmentation masks. This includes a large synthetic
dataset consists of 192,000 images of 20 different synthetic
human subjects collected from 50 virtual camera angles and
a small real dataset with 9,552 images of 100 human sub-
jects collected from two different camera angles. Their work
has further presented benchmark results on state-of-the-art
gaze estimation models provided by Recasense et al. [11],
Lian et al. [24], and Chong et al. [23] in their gaze following
work. This study has served as a starting point for our study
in gaze saliency estimation in retail. Further, we added com-
plex hand-designed features specifically designed for retail
and incorporated attention-based mechanisms for accuracy
enhancements of gaze saliency estimation from back-head
images in retail.

D. GAZE ESTIMATION IN RETAIL
The concept of gaze estimation in retail has not been explored
in-depth in the literature. Bermejo et al. [1] have introduced
EyeShopper, which is a system to track the gaze of shop-
pers in retail using 3D gaze estimation. The proposed deep
CNN estimates the shopper gaze when facing away from
the camera in real-world 3D coordinates. Authors have used
a simple model architecture with ResNet-18 [28] backbone
and by incorporating a coarse-to-fine approach in machine
learning to estimate gaze pitch and yaw directly from head
images. Even though the presented study has achieved better
results for back-head gaze estimations, their work requires
personal calibration of shoppers to map the 3D gaze targets
into 2D image coordinates. In retail, it is not practical to carry
out personal calibration of shoppers, which will interrupt the
natural viewing experiences.

In another study, Kellnhoffer et al. [17], have applied the
Gaze360 model to estimate the attention in a supermarket.
They have presented the Gaze360model as a Spatio-temporal
deep neural network based on bidirectional long short-term

FIGURE 2. Overview of proposed framework.

memory (LSTM) architecture to predict the gaze target in
real-world 3D coordinates. However, they have only carried
out their experiment on a mock retail shelf with objects
placed wide apart, which cannot be considered a real retail
environment. Furthermore, as their work depends on 3D gaze
estimation, it would require personal calibration of subjects to
map the gaze targets into 2D image coordinates.

III. METHODOLOGY
A. GAZE ESTIMATION FRAMEWORK
The proposed gaze estimation framework consists of three
stages as shown in Fig. 2. In the first stage, we use a head
detection and tracking module to extract head image of the
person in a given scene image. Here, the trajectories and seg-
mentation masks are provided as input to the gaze estimation
model. The output head bounding box from this module is
cropped from the raw image and fed into the gaze model as
the head image. Since traditional face detection algorithms
fail to detect total or half-face occlusions, we build a custom
head detection and tracking system for detecting and tracking
customer heads in a sequence of frames. In the second stage
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we perform the pixel-wise OR operation between either the
product item bounding box annotations or product area seg-
mentation mask annotations to manually generate the object
channel. The object channel is a mask, which represents the
object locations using 1s and the background using 0s. In the
third stage, the head tracker module output and the object
channel are provided as input to the gaze estimation model.

Our approach to the gaze estimation problem in retail
is an appearance-based solution. Moreover, we use an
appearance-based approach with DL due to their ability to
overcome challenges in an unconstrained environment such
as eye and head occlusions, illumination condition variations,
subject differences, and significant head motion. The CNN is
the main DL architecture to extract low-level automatically
and high-level features from retail gaze images. We name our
attention-based deep CNN architecture as the depth-based
dual attention (DDA) model.

Our DDA model combines two sub-model architectures:
the hypothetical gaze distribution model and the depth-based
Face3D model. The hypothetical gaze distribution model
aims to predict the gaze heatmap of the scene given the
scene image, the hypothetical gaze distribution, the head
channel, and the head crop image. The depth-based Face3D
model is designed to output a 3D gaze direction vector in
image coordinates given the scene and head crop images. The
hypothetical gaze distribution feature allowed the model to
narrow down its gaze estimation point search space, allowing
it to get more accurate gaze fixations from the scene. The
depth-based face3D model introduces the monocular depth
estimation feature to enhance gaze point estimation accuracy.
The proposed depth-based dual attention model is a complex
hybrid approach of the two models.

B. HEAD DETECTOR AND TRACKER
1) HEAD DETECTION
Most DL-based gaze following networks use head or face
image as an input. Therefore, detecting the head or face
is essential in gaze following tasks. Most of the existing
gaze following studies have used traditional face detec-
tion algorithms to detect face bounding boxes, which is
a well-established area of research. However, some gaze
estimation domains such as in retail, total or half head,
or eye occlusions, may happen, which makes it challenging
to detect the face or head. In order to address this face or
head detection issue, we used DL-based object detection
algorithms. We explored several object detection models
such as single-shot detector (SSD), recent major You only
look once (YOLO) versions with one stage object detection
algorithms and Fast R-CNN, Mask R-CNN two-stage object
detection algorithms. Considering the accuracy and Speed
(frames per second (FPS)), we have selected the YOLOv5
small model (YOLOv5s6), as an object detection model.
We have trained a head detector using the YOLOv5 detector
from the scratch with the real datasets Retail gaze [29] and
Gaze on Object [8]. These datasets contain head bounding

boxes of the customers, and have challenging total and half
occlusion head bounding boxes to detect. These datasets
consist of head box annotations for 13,474 frames. We train
themodel with Stochastic Gradient Descent (SGD) optimizer,
initial learning rate 1*10−2 and SGDmomentum 0.937. First,
we trained the detector using the Gaze on Object dataset with
the training set of 2,450 images validation set of 1633 images
for five epochs. Then, we pre-trained the model using the
Retail Gaze dataset with the training set of 2,745 images
validation set of 589 images for five epochs.

2) HEAD TRACKING
Object detection models identifies objects bounding box over
the frame. However, they do not address the concept of object
permanence between frames. In gaze estimation, there is a
need to track the subject to get a sequence of gaze estima-
tion in the entire video, and head detection is not sufficient.
We track the person’s head in the entire video or sequence of
frames. There are traditional object tracking methods such as
meanshift, optical flow andDL-basedmethods such as Recur-
rent YOLO (ROLO), DeepSORT for object tracking. Consid-
ering the popularity and wide usage in multi-object tracking,
we have selected the object tracking framework DeepSORT,
which is an extension of the SORT algorithm. It integrates
the appearance data of objects to improve associations. Data
association combines an extra appearance measure based on
the pre-trained CNNs, and re-identifies the tracks after a
duration of a long occlusion. Since we do not have the frame-
by-frame head bounding boxes in both Retail Gaze and Gaze
on Object datasets, we have used the pre-trained DeepSORT.
In this Deep-SORT algorithm, the CNN is trained on a large
dataset with human re-identification, implemented by deep
cosine metric learning.

C. GAZE ESTIMATION
The development process of the attention-based deep CNN is
discussed in this section qualitatively. In the gaze estimation
literature, there exist several approaches to estimate the gaze
in the wild using DL like multi-task CNN, LSTM-based
CNNs, static CNNs, capsule networks, CNNs with shifted
grids [11], [13], [16], [23], [24], [30]. As our problem is
less researched in the previous literature, we designed and
developed the gaze estimationmodel specifically for the retail
environment from the scratch by incorporating concepts from
the literature. For this purpose, we designed four abstract
design solutions, improving one by one to accurately estimate
gaze saliency heatmaps.We initially developed an end-to-end
learning design solution as shown in Fig. 3 (a), to the problem
by giving the input as the scene image and directly outputting
a saliency heatmap of the gaze. Due to the complex nature
of the gaze estimation problem in retail and with dataset
limitations, an end-to-end model was insufficient to capture
the required accuracy for gaze estimation.

Our second design solution was inspired by how humans
used to follow the gaze of other people and the work
of Chong et al. [23]. When a person predicts the looking
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FIGURE 3. Gaze Estimation Solutions for retail: (a) End-to-end solution,
(b) Human inspired two-pathway solution, (c) Hypothetical Gaze
Distribution solution, (d) Depth-based solution.

direction of another human, they first look at the head or eyes
to predict the region of view. Then, reason about saliency
objects in their perspective to estimate the looking point. This
model contains two different CNN pathways, the saliency
pathway for the scene image and the gaze pathway for the
head image cropped from the scene image, as depicted in
Fig. 3 (b). We incorporated the head location channel into the
gaze pathway to improve the learning of the gaze direction in
the gaze pathway. Moreover, the attention mechanism intro-
duced by Chong et al. [23], was added to regulate the scene
pathway by the gaze pathway. This allowed the model to
focus on the scene frame, where the head is oriented and con-
nected the two pathways through the attention layer. Finally,
the features from the two pathways were combined and fed
into the decoder to generate the gaze saliency heatmap. The
human-inspired two pathway solution improved the accu-
racy of saliency estimation. However, as the model archi-
tecture was specifically designed for gaze estimation with

front-head images in daily activity scenes, the model was
under-performing in estimating out-of-scene gaze targets and
the correct retail shelf depth.

We developed a third design solution to improve the accu-
racy of out-of-scene gaze target estimations. Themodel archi-
tecture is depicted in Fig. 3 (c), which is an extension to the
second design solution by adding a new hand-designed fea-
ture called the object channel. The object channel is a hypo-
thetical distribution of the gaze generated from retail product
item boundaries. This feature helped the model to narrow
down its gaze estimation point search space and increased the
accuracy of out-of-scene gaze targets. Hypothetical gaze dis-
tribution model, the complete model architecture developed
based on this solution, is discussed in Section III-D.

A fourth design solution was developed to overcome the
issue of estimating the correct retail shelf depth. All the previ-
ous solutions explored the gaze direction in 2D representation
and hardly encoded the gaze depth-channel. Hence, it is diffi-
cult to capture the exact spatial data due to the limited aware-
ness of the scene depth. The introduced depth-based solution
uses a depth pathway and a 3D gaze pathway as shown in
Fig. 3 (d). Due to the unavailability of depth image data in
gaze estimation datasets, we used monocular depth estima-
tion to incur the scene depth. This model uses multi-task
learning, learns 3D gaze estimation with different datasets,
and uses a pre-trained monocular depth estimation network.
This depth feature and 3D gaze were combined to predict the
gaze heatmap. This design solution estimated the scene depth
and improved the accuracy of gaze saliency estimation. The
implemented model architecture for this solution is discussed
in Section III-E.

Combining all the hand-designed features introduced in
the previous solution, we developed a final design solution
which is the depth-based dual attention (DDA) model, shown
in Fig. 6. In this approach, we used more hand design compo-
nents such as field of view (FOV) generator, monocular depth
estimation, 3D gaze directions, depth selector, and object
channel to help the model improve gaze saliency estimation.
We aggregated two parallel attention components, namely a
FOV generator for FOV attention and a depth rebasing com-
ponent for depth attention. This solution also used multi-task
learning on different datasets to train different model com-
ponents. The combined final solution further improved the
accuracy of gaze saliency estimation.

D. HYPOTHETICAL GAZE DISTRIBUTION MODEL
We have developed the object channel in the hypotheti-
cal gaze distribution model prior to the final Depth-based
dual attention model. Hypothetical Gaze Distribution archi-
tecture consists of three main components: scene pathway,
head pathway, and a shifted grids classification. The model
design is given in Fig. 4. The head pathway, which is
a CNN feature extractor, computes the head feature map
from the head image. Scene pathway computes the scene
feature map by taking input, as the concatenation of the
scene image, head position channel, and hypothetical gaze
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distribution (object channel). Based on the features of the
head, we applied an attention mechanism similar to the study
by Chong et al. [23], to pay greater attention to scene charac-
teristics that are more likely to be looked at. A fully connected
layer, which models the attention mechanism, is used to
compute the attention map using concatenated head feature
map and head position channel. Thus, we performed the
concatenation of three 2D feature maps to produce a stacked
feature map. Few existing models [11], [23], have provided
head position as a spatial reference, allowing the model to
learn quicker, and we followed that method in this model.

In addition, we found that the hypothetical gaze distribu-
tion assists the model to learn faster and get accurate gaze
fixation from the scene. The hypothetical gaze distribution
is a binary image of product items boundaries, with white
pixels representing object boundary boxes and black pixels
representing the other area of the image. We used multi-
model predictions to predict the fixation point that is intro-
duced in [11]. Their proposed shifted grids, which predict
overlapping outputs from the model improved the confidence
of the classification. Finally, we calculated the average of the
shifted outputs to get the final prediction. Inputs of this model
are (224× 224) size scene image, head image, head position
channel and hypothetical gaze distribution. Input to the scene
pathway is a (3×224×224) size feature map, a concatenation
of the scene image, head position channel, and hypothetical
gaze distribution. We used pre-trained VGG-16 [31] as the
feature extractor for both head and scene pathways.

FIGURE 4. Hypothetical gaze distribution model architecture.

E. DEPTH BASED Face3D MODEL
As shown in Fig. 5, the depth based Face3D Model is a
depth-based approach that uses monocular depth estimation
and 3D gaze estimation for gaze estimation. It consists of 3D
gaze estimation pathway and a monocular depth estimation
network. The 3D gaze estimation pathway consists of a CNN
feature extractor that computes the head feature map and
three fully connected layers to compute the 3D gaze vector
g (gx , gy, gz). Computed 3D gaze vector then mapped into 2D
gaze point on the image plane using the depth information
from the monocular depth estimation network and the head
location. Inputs of this model were (224× 224) scene image
and head image. We used pre-trained ResNet-50 [32], as the

FIGURE 5. Depth based Face3D model architecture.

feature extractor and MiDaS [33], as the monocular depth
estimation network.

F. DEPTH BASED DUAL ATTENTION MODEL
We developed the DDA model by combining the concepts of
hypothetical gaze distribution model and depth-based face3D
model. The architecture of the model is depicted in Fig. 6.
There are several main components in this model, such as 3D
gaze estimator from the Face3D model, object channel from
the hypothetical gaze distribution model, monocular depth
estimator, scene image feature extractor and dual attention
module. This model consists of four stages. In the first stage,
the 3D gaze estimator estimates the 3D gaze direction using
the head of the image, and the monocular depth estimator
estimates the depth of the scene. The second stage is the field
of view mask generator that generates a field of view mask
of the person. In the third stage, the depth range selector
divides the depth into ranges. In the final stage, we get the
scene features using CNN feature extractor and feeds these
dual attentions features, hypothetical gaze distribution and
the scene feature into CNN heatmap generator to generate the
heatmap. We generate the pixel-level gaze location and target
gaze object using this heatmap.

1) 3D GAZE ESTIMATION
The 3D gaze estimation component is similar to the depth-
based Face3D model. This 3D gaze estimator outputs a nor-
malized 3D gaze vector g (gx , gy, gz), where gx and gy are
in the image plane and gz is for depth direction. As shown
in Fig 6, We feed this gaze vector to the rectification layer
denoted by L, a fully connected layer which learns the right
adjustment to the FoV mask generator. In addition, the recti-
fication layer overcome catastrophic forgetting in multi-task
learning by mapping different domains of the 3D gaze into
the same domain. The depth range selector and FoV mask
generator, and depth range selector use these 3D gaze vector
values as their inputs.

2) DEPTH ESTIMATION
Face3D model gets the advantages of depth information to
improve the gaze estimation. In this architecture, the depth
range selection component use scene depth as an input.
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FIGURE 6. Depth-based dual attention model architecture.

We used a state-of-the-art monocular depth estimation net-
work to extract the depth map of the scene. This component
takes the normalized RGB scene image as input and output
the normalised depth map (d).

3) DEPTH RANGE SELECTOR
We introduced the depth range selector component to
improve the scene depth understanding of our model. First,
we infer the depth map (d) from the depth estimation compo-
nent and compute the depth of person head location (dh) as
in (1), where (i, j) is a pixel index of the head bounding box
and N is the number of indexes.

dh =
1
N

∑
(i.j)

d (i,j) (1)

Then, we calculated the gaze depth level (µ) as given in (2),
where (gz) is the gaze vector in for depth direction.

µ = dh + gz (2)

Next, We divided the depth to similar size of depth section
to get a depth range δ as in (3), where α decide the depth
sections.

δ = (max(d)− min(d))/α (3)

Then, we selected three different depth sections from the
gaze depth level as in (4). Therefore, the considered three
depth sections cover multiples of two(M1

d ), four(M
2
d ), and

FIGURE 7. Three depth sections selected by depth range selector.

six(M3
d ) of the depth range(δ), respectively as shown in 7.

Md =


(µ− δ, µ+ δ)
(µ− 2δ, µ+ 2δ)
(µ− 3δ, µ+ 3δ)

(4)

4) FIELD-OF-VIEW MASK GENERATOR
Field-of-view (FoV) mask generator component generates
the person’s image level field-of-view region. This generated
plane-polarized region is an infinitely extended solid cone
shape starting from the head location of the person. Image
plane level gaze direction from the 3D gaze estimator (gx , gy)
and the head location (hx , hy) are the input of the FoV mask
generator and output is the FoV attention map (Mf ). First,
we computed the angular difference θ between gaze direction
and the vector from one point to head location, as given in (5),
where (i, j) is the coordinate of each point in the (Mf ).

θ (i,j) = arccos (
(i− hx , j− hy) · (gx , gy)

||(i− hx , j− hy)||2 · ||(gx , gy)||2
) (5)
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Since, fixation points are more likely to have smaller θ
values, we assigned more weights to the data points closer
to the estimated sight line and less to further. Therefore, the
FoV mask can be generated as in (6), where α is the field of
view angle. We set α to 12 and achieve a viewing angle of 60.

M (i,j)
f = max

(
1−

αθ (i,j)

π
, 0
)

(6)

Then, in order to create the dual attention map, we aggre-
gated the FoV attention map and depth attention map as given
in (7). After that, to enhanced the saliency estimation we
aggregated this dual attention map with hypothetical gaze
distribution G (object channel) to create hypo dual attention
map as in (8), where ⊗ denotes the element wise product.

Mdual = Mf ⊗Md (7)

Mhypo = Mdual ⊗ G (8)

5) SALIENCY ESTIMATION
In this stage, we concatenated the scene image and hypo
dual attention map and fed into a feature extractor, which
is a pre-trained CNN feature extractor. The output feature
map from the feature extractor is then fed into the heatmap
generator. Heatmap generator consists of two convolution
layers followed by three de-convolutional layers to generate
the gaze heatmap. The maximum value point in this heatmap
is the estimated gaze point. We use mean square error (MSE)
for heatmap regression loss.

Inputs for this model are (224 × 224) size scene image,
head image, head location point in the image plane. We used
the pre-trained Face3D model as our 3D gaze estimation net-
work,MiDaS [33] as themonocular depth estimation network
and pre-trained ResNet-50 [32] as the feature extractor.

The presented models are implemented on PyTorch frame-
work using python language. We used two pre-trained feature
extractors, ResNet-50 [32] and VGG-16 [31] in model
implementations. All these feature extractors are pre-trained
on ImageNet [34].

All the models are trained with Adam optimizer, a learning
rate of 1 ∗ 10−5 and batch size of 32 on Colab pro and used
data augmentation such as random crops and colour profiles.
In order to prevent overfitting, we used specific patient values
for early stopping.

IV. EXPERIMENTS
A. DATASETS
This study used multiple gaze estimation datasets to train
and evaluate different components in the DL models. For the
task of gaze estimation in 2D image coordinates, we used
the GazeFollow dataset [11] and the GOO dataset [8]. Sub-
sequently, for gaze estimation in 3D real-world coordinates,
the Gaze360 dataset was used. Moreover, due to the lim-
itations in retail gaze estimation datasets, we introduced a
new real-world retail gaze estimation dataset with annotation
novelties that are specifically designed to retail. Each dataset

is discussed in depth under this section. Further, Fig. 8 shows
sample images from each dataset.

Gaze360: Gaze360 [17], is a large-scale gaze tracking
dataset, annotated with 3D gaze in real-world coordinates.
The authors have collected the dataset primarily for gaze
target estimation in the wild with a wide range of head poses,
significant variation of indoor and outdoor settings, lighting
variations, and large subject diversity. The dataset contains
172,000 images collected with 238 different subjects in five
indoor and two outdoor locations. An essential feature of the
dataset is the significant amount of back-head images. The
authors have captured a gaze yaw variation of approximately
+/−140◦, including partially occluded eye images.

Gaze Follow: Gaze Follow is another important dataset
used in our study. Recasense et al. [11], have introduced the
Gaze Follow dataset along with the human gaze following
concept. Gaze Follow is another large-scale dataset consisting
of images with people performing daily activities, annotated
with their gaze targets in 2D image coordinates within the
image itself. The dataset was collected using several primary
datasets that contain people as a source of images; hence it
is an image set of humans doing different daily activities.
This multi-user gaze dataset consists of 122,143 images of
130,339 people.

Gaze On Objects (GOO): The GOO dataset [8] is the
most suitable dataset in the literature for 2D remote gaze
estimation in retail environments, currently. This has two
parts, a large synthetic dataset (GOO-Synth) consisting of
192,00 images and a small real dataset (GOO-Real) con-
sisting of 9,552 images. The GOO-Real dataset has been
collected in a mock-up retail environment by placing grocery
items belonging to 24 different classes on shelves. They have
used 100 different subjects to capture a large subject diversity.
However, authors have only used two camera capture angles
which is a significant limitation considering the real-world
applicability of the dataset in retail. Furthermore, this dataset
is a single-user gaze dataset annotated with gaze targets in
2D image coordinates, gazed at object bounding box, and
gazed at object segmentation mask. The GOO-Synth dataset
has been created with a natural looking duplicated scenes
used in GOO-Real in a synthetic environment. It consists
of images captured from 50 different virtual camera angles
of 20 synthetic person models interacting with the scene.
Authors have included significant subject diversity in the
dataset by varying the humanmodel’s skin tone, gender, body
form, and outfit parameters. Furthermore, the dataset contains
a vast scene diversity of 38,400 different synthetic scenes.

Retail Gaze: Retail Gaze is a dataset for remote gaze
estimation in real-world retail environments that includes
retail product category area segmentation annotations. This
dataset is collected and processed by the authors of this
study. We introduced the novel area segmentations, as they
make more practical sense for gaze object prediction in retail.
This dataset consists of images in a local supermarket envi-
ronment, where each image contains a human gazing upon
an object or an area on a shelf. The images capture the
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FIGURE 8. Datasets: (a) Gaze360, (b) Gaze Follow, (c) GOO-Real, (d) Retail Gaze.

third-person view of the scene. Each image is annotated with
the gaze target in 2D image coordinates, the bounding box of
the person’s head, and segmentation masks of product areas
being gazed at. It consists of 3,922 images of two subjects,
captured from twelve different camera capture angles, with
each image consisting of a shelf completely packed with
different retail product items.

Moreover, we have used shelves that consisted of products
belonging to the same categories in the same area to repli-
cate the real nature of retail shelves. The dataset consists of
2,745 images in the train set, 589 in the test set, and 588 in
the validation set with 70%, 15%, and 15% as split ratios.
In the collection process, we have focused on capturing the
real-world retail environment conditions by collecting the
images under controlled light conditions in the supermarket
without any external light sources and collecting images from
diverse camera capture angels. Furthermore, each participant
was instructed on which area to look at on the shelf using
a predetermined pattern. The annotation process used these
predetermined patterns when annotating the ground-truth
gaze target. The head box and the product category areas
were manually annotated. A comprehensive overview of the
dataset is presented in our previous paper [29]. We have made
the dataset available to the public for research use [35].

B. EVALUATION METRICS
We use three main performance metrics namely Area Under
ROC curve (AUC), L2-distance, and Angular error to assess

the presented gaze estimation models. The AUC criteria
presented by Judd et al. [36] to predict the performance of
saliency maps using gaze fixations is used as the first evalua-
tion metric. L2 distance and Angular error are two primary
metrics that are widely used to evaluate the performance
of gaze estimation in 2D image coordinates. L2 distance is
defined as the mean Euclidean distance between the gaze
predictions and their respective ground-truth gaze target in
2D image coordinates. As given in (9), where gt_xi, gt_yi
denote the ground truth gaze annotations and xi, yi refer to
gaze predictions in 2D image coordinates. Unlike the L2
distance, the angular error is used to evaluate 2D and 3D
gaze estimation performance. The angular difference between
the predicted gaze direction vector and the ground-truth gaze
direction vector is defined as the angular error in the litera-
ture.

L2distance =
1
n

n∑
i=1

√
(gt_xi − xi)2 + (gt_yi − yi)2 (9)

C. TRANSFER LEARNING APPROACHES
Transfer learning approaches are used to train models with
limited resources and high efficiency. We have incorporated
transfer learning approaches for the model training processes
to overcome the gaze estimation dataset limitations in retail.
Gaze Follow dataset provided a better starting point to train
some of the models due to its generic nature of diverse scene
images and wide range of head pose variations, including
back-head images. Furthermore, an early stopping technique
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TABLE 2. Dataset summary.

TABLE 3. Transfer learning approach.

was used to avoid overfitting during model training using
Gaze Follow and GOO validation sets.

Our threemodels are separately trained on theGOOdataset
with or without pre-training on the Gaze Follow dataset. The
obtained results are shown in Table 3, with the parameters
and associated values used for the model experiments. Also,
it shows the performance test results evaluated on the com-
bined datasets. The models which received transfer learning
are shown in the trained dataset columnwith the used datasets
in the corresponding trained order. The number of epochs
trained for each dataset is shown in the epochs columns
in the same order as the dataset. Thereafter, the models
were tested on the GOO dataset test set for model validity.
We observed that the transfer learning approach improved the
results of the hypothetical gaze distribution model. However,
the model performance degraded when transfer learned with
the GOO-synthetic dataset due to overfitting to the synthetic
environment. The Face3D and the proposed DDA models
were not transferred learned, because they achieved better
results on the GOO-Real dataset. Transfer learning on these
models remains as potential future work.

Since the main focus of this study is to apply remote
gaze estimation in real-retail environments, we apply trans-
fer learning on the Retail Gaze dataset. Depth-based dual
attention model, the best performing model on the GOO-Real
dataset, was selected as the model architecture. We plot the
learning curves of this model for train loss and validation loss
as shown in Fig. 9 and Fig. 10, respectively.
We plot the train and validation loss of the model on the

GOO-Real dataset in green colour and transfer learning train
and validation loss on the Retail Gaze dataset in red colour.
The model loss was calculated using the standard MSE loss
function. We observed that the training loss and validation
loss on the GOO-Real dataset significantly reduce with the
number of epochs. However, the transfer learning losses only
reduce in a small quantity. A potential reason is amodel learn-
ing most features from learning on the GOO-Real dataset
itself, which eventually reduces the number of epochs to be
transferred learned on, causing minimal losses. Furthermore,

FIGURE 9. Depth-based dual attention (dda) model train loss.

FIGURE 10. Depth-based dual attention (DDA) model validation loss.

the transfer learning was stopped at 15 epochs with a patience
value of 10, because it’s validation loss started to increase
after 5 epochs.

D. GAZE OBJECT PREDICTION
The task of gaze object prediction is highly applicable
in the retail industry. This task was first introduced by
Tomas et al. [8] in his GOO paper, and it is complex due to
the unconstrained environmental parameters in retail. With
accurate gaze heatmap data generated from our DDA model,
we implemented a rule-based algorithm for gaze object pre-
diction. The inputs to our algorithm are the predicted gaze
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heatmap and the corresponding segmentations masks. The
element wise matrix multiplication between the heatmap and
each segmentation mask is then computed to calculate the
product sum. The mask with the highest sum was taken
as the gazed objects bounding box. The pseudocode of the
algorithm is shown in the Algorithm 1.

Algorithm 1 Gaze Object Prediction Algorithm
h← predicted heatmap
layers← list of segmentation masks
seg←
max_product ←−∞
for layer in layers do

product ← sum(h ∗ layer) F element wise product
sum

if max_product < product then
max_product ← product
seg← layer

end if
end for

Even though this approach was straightforward, the result-
ing gaze object prediction accuracy was low, around 30%.
The noisy pixels included in the heatmap could produce a
higher product sum when multiplied with a larger mask,
leading to false predictions. To overcome this issue, first
we clipped the heatmap using a threshold value and set the
low intensity pixels to zero. The threshold was selected as
150 by conducting extensive experiments. The introduced
clipping mechanism improved the accuracy of the algorithm.
We obtained a better accuracy of 75% on the Retail Gaze test
set. The accuracy was calculated using the Equation 10.

Accuracy =
PositiveObjectPredictions

TotalPredictions
(10)

V. RESULTS ANALYSIS
A. HEAD DETECTOR EVALUATION
The presented head detector model is trained on both GOO
and Retail gaze datasets using transfer learning approach.
Fig. 11 shows the obtained evaluation matrices recall, pre-
cision and mean average precision (mAP). Here, mAP@p,
where p ∈ (0, 1) denotes the increase of Intersection over
Union (IoU) for object detection from 0.5 to a 1. Considering
the model trained on GOO dataset, the metrics recall, preci-
sion and mAP@.5 quickly get closer to the value 1 with a
small number of epochs. Here, mAP@[.5,0.95] get near to
0.8, indicating that the mAP over different IoU thresholds
increase from 0.5 to 0.95, in steps of 0.05.

B. RESULTS ANALYSIS USING GOO DATASET
GOO is the current benchmark dataset available for gaze
saliency estimation in retail. We evaluated the performance
of the proposed DL models on the GOO dataset. We have
done an in-depth analysis of the model results by using the
standard evaluation metrics in 2D gaze estimation, AUC,

TABLE 4. Model results comparison on GOO-real dataset.

L2-distance, and Angular error (AE) to quantitatively eval-
uate the models.

Table 4 summarizes the experimental results of the pre-
sented three models on the GOO dataset. We compared the
results of our models with the state-of-the-art gaze saliency
estimation model results on the GOO dataset [11], [23], [24].

Accordingly, the proposed models in this study surpass the
state-of-the-art gaze saliency estimation model results on all
evaluation metrics. Moreover, we observed the best perfor-
mance of the proposed DDA model, which combines the two
concepts implemented in the hypothetical gaze distribution
and Face3Dmodel, in all three evaluation criteria. This model
achieved an angular error of 19.3◦, which is an improvement
of 33% compared to the work of Chong et al. [23]. Further-
more, the model achieves a relative improvement of 7% for
AUC and 12.5% for L2-distance, showing the superiority and
applicability of the model for remote gaze estimation from
back-head images. A potential reason is the integration of
hand-designed features specifically designed to capture the
features in a retail environment like the object channel and
scene depth understanding.

Moreover, several examples of failure cases from the base-
line Chong et al. [23] model and the corresponding success
cases from our proposed Depth-based Dual Attention model
are shown in Fig. 12. These examples depict how the pro-
posed model learned to predict out-of-shelf gaze targets cor-
rectly and, accurately estimate the target depth. The first-row
in the left side images illustrate a test case where the base-
line model incorrectly predicted the gaze target outside the
retail shelf. The first-row in the right-side images show the
result for the test case from our proposed model. The first
image represents the designed object channel, which helped
the model to narrow down its gaze estimation point search
space to avoid predicting targets outside of the shelf. The
second-row in the left side images illustrate a test case where
the baseline model fails to predict the correct depth of the
gaze target. The proposed model accurately estimates the
target depth using monocular depth estimation, shown in the
second-row in the right-hand side. Despite the extreme eye
occlusion conditions in back-head scenarios, our proposed
model correctly estimates the gaze target within the retail
shelf with the guidance of object channel and depth features.

C. EVALUATION OF THE PROPOSED DDA MODEL
The proposed depth-based dual attention model is evaluated
using the novel Retail Gaze dataset. In order to assess the task
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FIGURE 11. Evaluation of head detector model with GOO and Retail gaze datasets using transfer learning.

FIGURE 12. Sample results: Left: failure cases from the baseline Chong et al. [23] model, Right: corresponding success cases from the
proposed DDA model. Red Arrow: Ground truth gaze direction, Blue Arrow: Predicted gaze direction.

of remote gaze saliency estimation on this dataset, we com-
pared the results against the state-of-the-art baselines [11],
[23], [24]. We trained all the models using the same trans-
fer learning approach and same early stopping approach to
ensure the fairness of the results. The models received GOO-
Real pre-training and then transfer learning with the Retail
Gaze dataset until convergence using early stopping to avoid
overfitting. The obtained results are summarized in Table 5.
We observed that our proposed model surpasses state-of-
the-art baseline models on all three performance metrics.
Our model achieves an angular error of 15.3◦, which is an
improvement of 57.9% compared to the model proposed by
Chong et al. [23]. The obtained results clearly show the supe-
riority of the proposed solution and applicability in real-retail
environments. This significant improvement is the introduced
object channel, which reduced the gaze estimation point
search space and incorporated gaze target depth information
into the model.

D. GAZE OBJECT PREDICTION RESULTS ANALYSIS
We introduced gaze object prediction, the main experimental
task performed on the output heatmap data from the DDA
model. Fig. 13 shows few success and failure cases of gaze
object prediction. Since the gaze object prediction algo-
rithm is an optimized, simple rule based approach, we can

TABLE 5. Model results comparison on retail Gaze dataset.

assume that the accuracy of gaze heatmap estimation directly
resemble with the accuracy of gaze object prediction. Hence,
the two success cases show how the proposed DDA model
robustly estimates gaze saliency heatmap and correctly pre-
dicts the gazed-at segmentation mask. The two failure cases
show incorrect gazed-object segmentation mask prediction
due to the inaccuracy of the generated saliency heatmap.
Here, the reason for the left failure case can be hypothesized
as, lack of temporal gaze point data in the model. Rather, the
right failure case shows a general failure scenario due to a
large angular error in the predicted gaze point.

VI. DISCUSSION
A. STUDY CONTRIBUTIONS
In this study, we explored the problem of remote gaze esti-
mation in retail environments. With the rapid adaptation
of computer vision and DL technique in gaze estimation
literature, we identified the potential of applying this to
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FIGURE 13. Gaze Object Prediction Results: (a) Success, (b) Failure.

accurately estimate the customer gaze saliency in uncon-
strained retail environment settings like eye and head occlu-
sion, large subject variations, diverse lighting conditions. Our
main contribution of the study is the introduced Depth-based
dual attention (DDA)model, a novel deep CNN for accurately
estimating gaze saliency maps in real-world retail environ-
ments. In the methodology section, we showed a comprehen-
sive overview of the model design using four design solutions
inspired by the related studies. In order to adapt the proposed
gaze estimation model to a retail environment, we proposed
two novel features, object channel and the monocular depth
channel, which were implemented in the presented Hypo-
thetical gaze distribution and Face3D models, respectively.
These two concepts were combined in the final model. Impor-
tantly, the introduced Retail Gaze dataset [35], for bench-
marking gaze saliency estimation in real-retail environment is
another main contribution of our study. The dataset contains
3922 labelled images, captured from 12 different camera
angles and 2 different subjects. Also, the images contain
images with varied retail-product diversity.

Moreover, the camera angle is a contributing factor to the
performance of the model. For instance, a camera angle that
captures totally occluded eyes of the user, can hinder the
performance of the model. In order to address this issue,
we captured majority of the images from camera angles that
captured a side view of the user. The scope of this study
is mainly based on eye gaze estimation. Since the camera
angle tracking is not the main scope of this research, the
experiments related to the impact of camera angle on the
performance of the eye gaze estimation are not considered
in this study. In addition, our research scope has not focused
on the time complexity of the model and up to the authors’
knowledge, the current state-of-the-art models for gaze esti-
mation have not stated time consumption metrics.

B. COMPARISON WITH EXISTING STUDIES
To the best of our knowledge, there are no existing state-of-
the-art models that are directly related to eye gaze estimation

in retail environment. Therefore, in this section, we con-
ducted multiple experiments to improve the performance of
our models, and presented thorough quantitative and qual-
itative analysis on the obtained results. First, we evaluated
the obtained results on the benchmark GOO-Real dataset to
validate the model implementations. The obtained results in
Table 4 shows the superiority of our models compared to
the state-of-the-art models, by surpassing them in all three
performance metrics. Next the results of the proposed final
model was compared against the sate-of-the-art models on
the Retail Gaze dataset. In additon, the results shown in
Table 5, confirmed the superiority of the model compared
to the related work. The model achieved an improvement of
57.9% for angular error criteria, compared to the baseline
Chong et al. [23] model.

C. FUTURE POSSIBLE EXTENSIONS
With the promising results obtained in the experiments,
we observe the significant potential that yields in our
approach for retail. However, in real-retail environments,
often multiple subjects are present in the same scene. This
could lead to complex scenarios like subject occlusion, which
was not considered in our research. The concept of multi-user
gaze estimation holds a high promise in gaze saliency estima-
tion in retail for accurate and robust predictions. The intro-
duced retail gaze datasets could be extended as multi-user
gaze estimation datasets, and DL architectures can be fur-
ther improved to handle multi-user gaze estimation. Further-
more, incorporating the temporal aspect of gaze estimation is
another possible future extension to our work.

VII. CONCLUSION
Remote gaze saliency estimation in retail is a novel concept
that has a significant potential towards building innovative
retail stores. In this study, we researched the application of
remote gaze saliency estimation for non-interruptive, low-
cost, and scalable customer behaviour analysis in retail.
We proposed a Depth-based Dual Attention model, a three-
stage, three-attention-based deep CNN for gaze saliency
estimation from back-head images in the wild. We devel-
oped four design solutions to comprehensively represent the
parameters of gaze saliency estimation problem in retail
and introduced the novel object channel and depth-rebasing
components as hand-designed features, designed in our two
preceding model architectures and then combined in the final
model.

Extensive quantitative and qualitative analysis on the
benchmark GOO-Real dataset demonstrates the superiority
of the proposed models and the importance of our introduced
hand-designed components. Our proposed solution improved
33% for angular error compared to the current best work
in the literature. Furthermore, we introduced Retail Gaze,
a real-world retail gaze saliency estimation dataset, to ensure
the validity and applicability of our proposed solution in
real retail environments. The proposed solution achieved an
angular error of 15.3◦ on the Retail Gaze dataset, which
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demonstrates that it performs favourably in real retail envi-
ronments.

As future work the depth-based dual attention model can
be extended to handle temporal information which could
improve the performance of remote gaze estimation. Further-
more, we suggest to tackle the complex task of multi-user
gaze estimation in a retail environment. Unavailability of
multi-user retail gaze datasets and handling subject occlu-
sions are current barriers to this task.

REFERENCES
[1] C. Bermejo, D. Chatzopoulos, and P. Hui, ‘‘EyeShopper: Estimating shop-

pers’ gaze using CCTV cameras,’’ in Proc. 28th ACM Int. Conf. Multime-
dia, Oct. 2020, pp. 2765–2774, doi: 10.1145/3394171.3413683.

[2] D. Grewal, M. Levy, and V. Kumar, ‘‘Customer experience management in
retailing: An organizing framework,’’ J. Retailing, vol. 85, no. 1, pp. 1–14,
Mar. 2009, doi: 10.1016/j.jretai.2009.01.001.

[3] C. Ofir and I. Simonson, ‘‘The effect of stating expectations on cus-
tomer satisfaction and shopping experience,’’ J. Marketing Res., vol. 44,
no. 1, pp. 164–174, Feb. 2007. [Online]. Available: https://www.jstor.
org/stable/30162462

[4] D. W. Wallace, J. L. Giese, and J. L. Johnson, ‘‘Customer retailer loyalty
in the context of multiple channel strategies,’’ J. Retailing, vol. 80, no. 4,
pp. 249–263, Jan. 2004, doi: 10.1016/j.jretai.2004.10.002.

[5] A. Generosi, S. Ceccacci, andM.Mengoni, ‘‘A deep learning-based system
to track and analyze customer behavior in retail store,’’ in Proc. IEEE 8th
Int. Conf. Consum. Electron. Berlin (ICCE-Berlin), Sep. 2018, pp. 1–6,
doi: 10.1109/ICCE-Berlin.2018.8576169.

[6] V. Nogueira, H. Oliveira, J. A. Silva, T. Vieira, and K. Oliveira, ‘‘Retail-
Net: A deep learning approach for people counting and hot spots detec-
tion in retail stores,’’ in Proc. 32nd Conf. Graph., Patterns Images
(SIBGRAPI), Rio de Janeiro, Brazil, 2019, pp. 155–162, doi: 10.1109/SIB-
GRAPI.2019.00029.

[7] D. Lian, X. Chen, J. Li, W. Luo, and S. Gao, ‘‘Locating and count-
ing heads in crowds with a depth prior,’’ IEEE Trans. Pattern Anal.
Mach. Intell., early access, Nov. 4, 2021, doi: 10.1109/TPAMI.2021.
3124956s.

[8] H. Tomas, M. Reyes, R. Dionido, M. Ty, J. Mirando, J. Casimiro,
R. Atienza, and R. Guinto, ‘‘GOO: A dataset for gaze object predic-
tion in retail environments,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. Workshops (CVPRW), Jun. 2021, pp. 3119–3127, doi:
10.1109/CVPRW53098.2021.00349.

[9] Y. Li, M. Liu, and J. Rehg, ‘‘In the eye of the beholder: Gaze and actions in
first person video,’’ IEEE Trans. Pattern Anal. Mach. Intell., early access,
Jan. 15, 2021, doi: 10.1109/TPAMI.2021.3051319.

[10] P. Pathirana, S. Senarath, D. Meedeniya, and S. Jayarathna, ‘‘Eye gaze
estimation: A survey on deep learning-based approaches,’’ Expert Syst.
Appl., vol. 199, Aug. 2022, Art. no. 116894, doi: 10.1016/j.eswa.2022.
116894.

[11] T. Recasens, A. Aditya, K. Carl, and V. Antonio, ‘‘Where are they
looking?’’ in Proc. 28th Int. Conf. Neural Inf. Process. Syst. (NIPS),
Montreal, QC, Canada, 2015, pp. 199–207, doi: 10.5555/2969239.
2969262.

[12] P. Pathirana, S. Senarath, D. Meedeniya, and S. Jayarathna, ‘‘Single-user
2D gaze estimation in retail environment using deep learning,’’ in Proc.
2nd Int. Conf. Adv. Res. Comput. (ICARC), Feb. 2022, pp. 206–211, doi:
10.1109/ICARC54489.2022.9754167.

[13] Y. Fang, J. Tang, W. Shen, W. Shen, X. Gu, L. Song, and G. Zhai,
‘‘Dual attention guided gaze target detection in the wild,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 11385–11394, doi: 10.1109/CVPR46437.2021.01123.

[14] A. A. Akinyelu and P. Blignaut, ‘‘Convolutional neural network-
based methods for eye gaze estimation: A survey,’’ IEEE Access,
vol. 8, pp. 142581–142605, 2020, doi: 10.1109/ACCESS.2020.
3013540.

[15] A. Kar and P. Corcoran, ‘‘A review and analysis of eye-gaze estima-
tion systems, algorithms and performance evaluation methods in con-
sumer platforms,’’ IEEE Access, vol. 5, pp. 16495–16519, 2017, doi:
10.1109/ACCESS.2017.2735633.

[16] P. L. Mazzeo, D. D’Amico, P. Spagnolo, and C. Distante, ‘‘Deep
learning based eye gaze estimation and prediction,’’ in Proc. 6th Int.
Conf. Smart Sustain. Technol. (SpliTech), Sep. 2021, pp. 1–6, doi:
10.23919/SpliTech52315.2021.9566413.

[17] P. Kellnhofer, A. Recasens, S. Stent, W. Matusik, and A. Torralba,
‘‘Gaze360: Physically unconstrained gaze estimation in the wild,’’ in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 6911–6920, doi:
10.1109/ICCV.2019.00701.

[18] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling, ‘‘MPIIGaze: Real-world
dataset and deep appearance-based gaze estimation,’’ IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 41, no. 1, pp. 162–175, Jan. 2019, doi:
10.1109/TPAMI.2017.2778103.

[19] B. A. Smith, Q. Yin, S. K. Feiner, and S. K. Nayar, ‘‘Gaze locking: Passive
eye contact detection for human-object interaction,’’ in Proc. 26th Annu.
ACM Symp. User Interface Softw. Technol., Oct. 2013, pp. 271–280, doi:
10.1145/2501988.2501994.

[20] T. Fischer, H. J. Chang, and Y. Demiris, ‘‘RT-GENE: Real-time eye gaze
estimation in natural environments,’’ in Proc. Eur. Conf. Comput. Vis.
(ECCV), Munich, Germany, Sep. 2018, pp. 334–352, doi: 10.1007/978-3-
030-01249-6_21.

[21] X. Zhang, S. Park, T. Beeler, D. Bradley, S. Tang, and O. Hilliges, ‘‘ETH-
XGaze: A large scale dataset for gaze estimation under extreme head pose
and gaze variation,’’ inProc. Eur. Conf. Comput. Vis., Glasgow, U.K., 2020,
pp. 365–381, doi: 10.1007/978-3-030-58558-7_22.

[22] Y. Kodama, Y. Kawanishi, T. Hirayama, D. Deguchi, I. Ide, H. Murase,
H. Nagano, and K. Kashino, ‘‘Localizing the gaze target of a crowd of
people,’’ in Proc. 14th Asian Conf. Comput. Vis. (ACCV), Perth, WA,
Australia, 2018, pp. 15–30, doi: 10.1007/978-3-030-21074-8_2.

[23] E. Chong, Y. Wang, N. Ruiz, and J. M. Rehg, ‘‘Detecting attended
visual targets in video,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2020, pp. 5395–5405, doi: 10.1109/CVPR42600.
2020.00544.

[24] D. Lian, Z. Yu, and S. Gao, ‘‘Believe it or not, we know what you are
looking at,’’ in Proc. Asian Conf. Comput. Vis., Perth, WA, Australia, 2019,
pp. 35–50, doi: 10.1007/978-3-030-20893-6_3.

[25] M. Khamis, A. Hoesl, A. Klimczak, M. Reiss, F. Alt, and A. Bulling,
‘‘EyeScout: Active eye tracking for position and movement indepen-
dent gaze interaction with large public displays,’’ in Proc. 30th Annu.
ACM Symp. User Interface Softw. Technol., Oct. 2017, pp. 155–166, doi:
10.1145/3126594.3126630.

[26] E. Chong, N. Ruiz, Y. Wang, Y. Zhang, A. Rozga, and J. M. Rehg,
‘‘Connecting gaze, scene, and attention: Generalized attention estima-
tion via joint modeling of gaze and scene saliency,’’ in Proc. Eur. Conf.
Comput. Vis. (ECCV), Munich, Germany, Sep. 2018, pp. 397–412, doi:
10.1007/978-3-030-01228-1_24.

[27] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie,
‘‘Feature pyramid networks for object detection,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2117–2125, doi:
10.1109/CVPR.2017.106.

[28] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778, doi: 10.1109/CVPR.2016.90.

[29] S. Senarath, P. Pathirana, D. Meedeniya, and S. Jayarathna, ‘‘Retail
gaze: A dataset for gaze estimation in retail environments,’’ in Proc.
Int. Conf. Decis. Aid Sci. Appl. (DASA), Mar. 2022, pp. 1040–1044, doi:
10.1109/DASA54658.2022.9765224.

[30] B. Mahanama, Y. Jayawardana, and S. Jayarathna, ‘‘Gaze-Net:
Appearance-based gaze estimation using capsule networks,’’ in
Proc. 11th Augmented Hum. Int. Conf., May 2020, pp. 18–21, doi:
10.1145/3396339.3396393.

[31] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ in Proc. 3rd Int. Conf. Learn. Represent.
(ICLR), 2015, pp. 1–14.

[32] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778, doi: 10.1109/CVPR.2016.90.

[33] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun, ‘‘Towards
robust monocular depth estimation: Mixing datasets for zero-shot cross-
dataset transfer,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 3,
pp. 1623–1637, Mar. 2022, doi: 10.1109/TPAMI.2020.3019967.

[34] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘Ima-
geNet: A large-scale hierarchical image database,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2009, pp. 248–255, doi:
10.1109/CVPR.2009.5206848.

64918 VOLUME 10, 2022

http://dx.doi.org/10.1145/3394171.3413683
http://dx.doi.org/10.1016/j.jretai.2009.01.001
http://dx.doi.org/10.1016/j.jretai.2004.10.002
http://dx.doi.org/10.1109/ICCE-Berlin.2018.8576169
http://dx.doi.org/10.1109/SIBGRAPI.2019.00029
http://dx.doi.org/10.1109/SIBGRAPI.2019.00029
http://dx.doi.org/10.1109/TPAMI.2021.3124956s
http://dx.doi.org/10.1109/TPAMI.2021.3124956s
http://dx.doi.org/10.1109/CVPRW53098.2021.00349
http://dx.doi.org/10.1109/TPAMI.2021.3051319
http://dx.doi.org/10.1016/j.eswa.2022.116894
http://dx.doi.org/10.1016/j.eswa.2022.116894
http://dx.doi.org/10.5555/2969239.2969262
http://dx.doi.org/10.5555/2969239.2969262
http://dx.doi.org/10.1109/ICARC54489.2022.9754167
http://dx.doi.org/10.1109/CVPR46437.2021.01123
http://dx.doi.org/10.1109/ACCESS.2020.3013540
http://dx.doi.org/10.1109/ACCESS.2020.3013540
http://dx.doi.org/10.1109/ACCESS.2017.2735633
http://dx.doi.org/10.23919/SpliTech52315.2021.9566413
http://dx.doi.org/10.1109/ICCV.2019.00701
http://dx.doi.org/10.1109/TPAMI.2017.2778103
http://dx.doi.org/10.1145/2501988.2501994
http://dx.doi.org/10.1007/978-3-030-01249-6_21
http://dx.doi.org/10.1007/978-3-030-01249-6_21
http://dx.doi.org/10.1007/978-3-030-58558-7_22
http://dx.doi.org/10.1007/978-3-030-21074-8_2
http://dx.doi.org/10.1109/CVPR42600.2020.00544
http://dx.doi.org/10.1109/CVPR42600.2020.00544
http://dx.doi.org/10.1007/978-3-030-20893-6_3
http://dx.doi.org/10.1145/3126594.3126630
http://dx.doi.org/10.1007/978-3-030-01228-1_24
http://dx.doi.org/10.1109/CVPR.2017.106
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/DASA54658.2022.9765224
http://dx.doi.org/10.1145/3396339.3396393
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/TPAMI.2020.3019967
http://dx.doi.org/10.1109/CVPR.2009.5206848


S. Senarath et al.: Customer Gaze Estimation in Retail Using Deep Learning

[35] P. Pathirana and S. Senarath. Retail Gaze: Gaze Estimation in
Retail Environment. Accessed Feb. 16, 2022. [Online]. Available:
https://www.kaggle.com/dulanim/retailgaze

[36] T. Judd, K. Ehinger, F. Durand, andA. Torralba, ‘‘Learning to predict where
humans look,’’ in Proc. IEEE 12th Int. Conf. Comput. Vis., Sep. 2009,
pp. 2106–2113, doi: 10.1109/ICCV.2009.5459462.

SHASHIMAL SENARATH (Student Member,
IEEE) received the B.Sc.Eng. degree (Hons.) from
the Department of Computer Science and Engi-
neering, Faculty of Engineering, University of
Moratuwa, Sri Lanka. His main research interests
include computer vision and deep learning.

PRIMESH PATHIRANA (Student Member,
IEEE) received the B.Sc.Eng. degree (Hons.) from
the Department of Computer Science and Engi-
neering, Faculty of Engineering, University of
Moratuwa, Sri Lanka. His main research interests
include computer vision and deep learning.

DULANI MEEDENIYA (Senior Member, IEEE)
received the Ph.D. degree in computer science
from the University of St. Andrews, U.K. She is
a Professor of computer science and engineering
with the University ofMoratuwa, Sri Lanka. She is
the Director of the Bio-Health Informatics Group,
where she engages in many collaborative research.
She is a coauthor of 100+ publications in indexed
journals, peer-reviewed conferences and interna-
tional book chapters. She serves as a reviewer,

a program committee, and an editorial team member in many international
conferences and journals. Her main research interests include software
modeling and design, bio-health informatics, deep learning and technology-
enhanced learning. She is a fellow of HEA (U.K.), MIET, a member of ACM,
and a Chartered Engineer registered at EC, U.K.

SAMPATH JAYARATHNA (Member, IEEE)
received the Ph.D. degree in computer science
from Texas A&M University College Station,
in 2016. He is an Assistant Professor of com-
puter science with Old Dominion University,
Norfolk, Virginia, USA, where he is associ-
ated with the Web Science and Digital Libraries
(WS-DL) Research Group. His research interests
include machine learning, information retrieval,
data science, eye tracking, and brain–computer

interfacing. He was a recipient of the 2021 National Science Foundation
CAREER Award. He is a member of ACM and Sigma XI.

VOLUME 10, 2022 64919

http://dx.doi.org/10.1109/ICCV.2009.5459462

