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c Architecture Technology Department, Universitat Politècnica de Catalunya⋅BarcelonaTech (UPC), Barcelona, Spain   

A R T I C L E  I N F O   

Keywords: 
Subway underground stations 
Sliding-hinged connections 
Rubber bearings 
Seismic performance 
Seismic damage 

A B S T R A C T   

This paper proposes an innovative seismic design approach for shallow rectangular cut-and-cover underground 
subway or railway stations. The traditional approach is to design rigid frame-like structures by connecting rigidly 
the main horizontal and vertical structural elements (side walls, top, bottom and intermediate slabs, and central 
columns); on the contrary, the proposed strategy consists of joining them by means of hinged and sliding con
nections, in order to obtain structures whose lateral stiffness is almost zero. The objective of this approach is to be 
able to adapt to the transverse racking motion imposed by the seismic ground motion without significantly 
increasing the internal forces in the structural members. The aforementioned flexibility of the joints is achieved 
by interposing rubber bearings between the connected structural elements. As a case study, an existing 2-story 3- 
bay subway station located in Southwest China is redesigned with the proposed technology; its seismic perfor
mance is numerically investigated by performing nonlinear dynamic analyses for a number of horizontal 
transverse input ground motions (accelerograms) representing the site seismicity. Such inputs are scaled to fit 
PGAs ranging from 0.1 to 0.6 g. As expected, the results of the time-history analyses reveal that the seismic 
damage to the structural members is significantly alleviated in the sliding-hinged alternative solution. This 
conclusion can be understood as a preliminary confirmation of the satisfactory seismic performance of the 
proposed technology.   

1. Introduction 

The nowadays rapid development of buried structures, such as tun
nels, underground parking lots, subway and railway stations, etc. pro
vides alternatives to the insufficient ground space. Taking subway 
stations as an example, according to the International Association of 
Public Transport [1], there were 11,084 stations spreading over 13,903 
km of subway operating lines at the end of 2017 in the world, and in the 
next few years another 1700 km were to be built. However, recent and 
past investigation reveals that earthquakes can damage underground 
stations [2–8]; therefore, further research is required on their seismic 
design. 

The traditional seismic design of underground stations is based on 
providing sufficient stiffness and strength to absorb the strains imposed 
by the seismic ground motion without excessive damage. This approach 
is basically correct and leads to safe constructions, but omits that 

earthquakes are indirect actions (i.e. imposed displacements): designing 
stiffer structures generates an increase of the soil-structure interaction 
force, thus providing little benefit (if any). Another smarter strategy is to 
try to reduce that force, either by lowering the lateral stiffness of the soil 
(locally) or the station. The first objective is achieved with seismic 
isolation [9,10], and the second with structural flexibilization measures 
[9,10]. Both approaches are briefed in the next two paragraphs, 
respectively.  

• Seismic isolation. This technology (also known as shock absorption 
or seismic reduction) consists of surrounding the station with a soft 
isolation layer that mitigates the soil restraining effect. This layer can 
be made of various materials such as rubber, foam or other mixing 
materials [11–13]. Several studies have examined the seismic per
formance of underground structures with seismic isolation, either 
through numerical simulation or experiments [14–20]. 
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• Structural flexibilization. The station lateral stiffness can be 
decreased by installing flexible joints (sliding bearings or hinges) 
between the structural members. This approach is mainly utilized in 

the central columns, as these elements were severely damaged at the 
well-known Daikai station (Kobe, Japan) [21–25]. Similarly, shear 
panel dampers [26], lead-rubber bearings [27–29], sliding isolation 
bearings [10], friction pendulum bearings [30] and natural rubber 
bearings [31–33], have also been considered. Noticeably, in this 
strategy, the underground structure is still a rigid frame; although 
the central columns are protected, damage at slabs and walls can be 
intensified [33]. 

This paper participates in the structural flexibilization philosophy, 
but takes a step forward and proposes to make all the connections 
flexible, not only those that involve the central columns; the result is a 
structure whose lateral stiffness is near zero. 

To corroborate the feasibility of the proposed solution, the case study 
of an existing two-story, three-bay subway station located in Chengdu 
(Southwest China) [34] is analyzed. This station has been chosen mainly 
because of its complexity, involving several stories and bays. The chosen 
station had been designed following the classical approach (rigid con
nections between main structural members); herein, it is redesigned 
with a novel sliding-hinged solution, where rubber bearings are utilized 
at the connections between the structural elements. The seismic per
formance of the proposed solution is analyzed with nonlinear dynamic 
analyses. The derived conclusions may provide a new perspective for the 
seismic design of underground structures. 

Fig. 1. Original two-story, three-bay subway station.  

Fig. 2. The working mechanism of different subway stations under earthquake.  

Fig. 3. Free-field racking deformation curve (PGA 0.1 g).  
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2. Existing station with traditional structure 

As discussed in the Introduction, this paper numerically analyzes the 
seismic performance of an underground railway station with an inno
vative structural design based on hinged and sliding connections be
tween its main structural members. The general conditions of this 
construction (i.e. shape, size and soil type) are based on a real 2-story 3- 

bay subway station that is located in Chengdu (Southwest China) and 
has a conventional structural design (rigid connections between its 
structural elements) [34]; this underground construction is described in 
this section. 

Fig. 1 depicts the main dimensions and structural reinforcement 
composition of the existing station; Fig. 1 a displays a general transverse 

Fig. 4. Internal forces in the subway station.  

Fig. 5. The detailed sectional dimension of the sliding-hinged subway station.  

Table 1 
Characteristics of the rubber bearings of the sliding-hinged subway station.  

Bearing Diameter 
di or 
width wi 

(mm) 

Height 
hi 

(mm) 

Maximum 
axial force 
(kN) 

Maximum 
shear 
displacement 
(mm) 

Maximum 
rotation 
angle θ 
(mrad) 

Vertical 
bearing 
(1) 

300 140 880 ±40 21 

Vertical 
bearing 
(2) 

400 140 1880 ±54 21 

Horizontal 
bearing 
(3) 

450 140 2390 ±54 21 

Bearing 
upon 
central 
column 
(4) 

800 170 15,000a ±60 24  

a The longitudinal size of the bearing on the central column is 1 m (as the 
column). 
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Fig. 6. FE model of the station (traditional and innovative design) and the surrounding soil.  

Fig. 7. Engineering site information of the surrounding medium in the existing station.  

Fig. 8. Site soil information of the subway station [45].  
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section and Fig. 1 b describes the reinforcement. Overall width and 
height of the station are 22.9 m and 15.1 m; the depth of its top surface is 
3 m. The thickness of the ceiling slab, mid slab and bottom slab are 0.8 
m, 0.4 m and 0.9 m, respectively; the side wall is 0.8 m thick. Central 
columns are made of reinforced concrete, with a rectangular cross- 
section 0.8 and 1 m wide in transverse and longitudinal directions, 
respectively; columns are spaced 8 m. Fig. 1 a shows that two 1.2 m 
thick, 22.1 m deep diaphragm walls are located on each side of the 
station to protect the site during the excavation stage and to provide 
further additional support; these walls are rigidly connected (tied) to the 
side walls of the station. 

In Fig. 1 a, sections A (diaphragm wall), B (side wall), C (inner col
umn) and D (top and bottom slabs) are selected to later compare the 
seismic responses of the traditional and proposed sliding-hinged solu
tions. In Fig. 1 b, D20@150 means that the rebar diameter is 20 mm and 
their separation is 150 mm. 

The peak ground acceleration (PGA) of the subway station is 0.1 g. 
The soil properties are discussed later in section 4.2. 

3. Alternative station with near-zero transverse stiffness 

3.1. General description of the alternative structural solution 

Fig. 2 displays sketches of traditional (Fig. 2a) and sliding-hinged 
(Fig. 2b) solutions for the case study station described in section 2. 
Fig. 2 b shows that the connections between walls and slabs are hinged, 

while those between interior columns and slabs are sliding; therefore, 
the lateral stiffness of the station is practically zero. 

In Fig. 2 a all the connections are rigid; hence, the structure is stat
ically redundant (hyperstatic), and the imposed seismic lateral racking 
generates relevant internal forces in the structural members. Conversely, 
the structure in Fig. 2 b can accommodate racking without significant 
affectation; noticeably, the central columns do not experience relevant 
bending. 

3.2. Simplified seismic analysis of the alternative structural solution 

Traditionally, racking deformation has been considered to dominate 
the seismic response of rectangular underground structures [35]. 
However, recent studies have revealed a coupled racking-rocking 
deformation pattern during transverse ground shaking [36–44]. The 
demanding racking displacement for the proposed sliding-hinged sub
way station is estimated by newly proposed R–F relations [43], where F 
is the flexibility ratio (quotient between the soil and underground 
structure stiffnesses) and R is the racking coefficient (quotient between 
the structure and soil relative displacements) [35]: 

F = Gs
S

R =
Δ

Δfree− field

(1) 

In Eq. (1), Gs is the soil shear modulus, S is the station lateral stiff
ness; Δ and Δfree-field are the racking displacement of the structure 

Table 2 
Material parameters of concrete in subway station [58].  

Elastic modulus (GPa) Density (kg/m3) Poisson’s ratio Dilation angle Eccentricity Fb0/fc0 K Viscosity 

33.7 2500 0.2 36.3 0.1 1.16 0.667 1e-5  

Fig. 9. Acceleration time-history records of the four considered earthquake inputs.  
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(including the effect of the rocking rotation) and the free-field one, 
respectively. 

The equivalent-linear program EERA [45] is utilized to calculate the 
soil lateral displacement. Fig. 3 displays the maximum free-field 
displacement of the soil for two locally recorded accelerograms corre
sponding to PGA 0.1 g (section 4.4). 

Fig. 3 shows that, for the most demanding input (SFBJ wave), the 
difference between the maximum free-field soil displacements at the 
upper and lower level of the structure is 10 mm; then, the demanding 
racking displacement in the station can be computed as the product of 
the free-field soil displacement times the racking coefficient due to the 
near-zero lateral stiffness of the station (that is, with a large value of F). 
The racking coefficient is obtained from a chart in Ref. [43] representing 
the soil-underground structure interaction; its value is 2.27. Therefore, 
the station racking displacement is given by 10 mm × 2.27 = 23 mm. 

Fig. 4 displays the internal forces (axial force and bending moment) 
of the subway station with traditional design (Fig. 4 a and Fig. 4b) and 
the proposed sliding-hinged solution (Fig. 4 c and Fig. 4d), due to the 
static permanent actions and to the racking imposed displacement 
simultaneously. 

Fig. 4 shows that the axial force and bending moment of traditional 
and sliding hinge stations are quite similar. Therefore, large changes in 
the thickness and reinforcement amount of walls, slabs and columns are 

not expected. 

3.3. Preliminary design of the rubber bearings 

The required flexibility of the connections (Fig. 2b) is obtained with 
rubber bearings; this section describes their preliminary design. Their 
characteristics are obtained from the demanding axial forces and 
required strains. Regarding this latter issue, Fig. 5 displays a more 
detailed view of the alternative station than that of Fig. 2 b; this 
description includes the rubber bearings. 

In Fig. 5, di and hi are, respectively, the diameter and height of the 
bearings connecting the slabs to the side walls; w4 and h4 denote, 
respectively, the width and height of bearings installed upon the central 
columns; θ and Δ denote the rotation angle and racking displacement of 
the subway station respectively. As the racking displacement is Δ =
0.023 m, the rotation angle is θ = 23/15,100 = 1.52 mrad. 

The geometrical and mechanical parameters (capacity) of the rubber 
bearings are summarized in Table 1. 

Fig. 10. Peak acceleration of slabs of the subway station under different earthquake inputs.  
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Fig. 11. Maximum inter-story drift ratio of the subway station structure.  

Fig. 12. Deformation the of case study subway station for the input WL scaled to 0.4 g.  
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4. Finite element analysis of the alternative subway station 

4.1. Numerical model of the soil and the structure 

As discussed in subsection 3.2, the main dimensions of the structural 
elements of the existing station, and their reinforcement arrangement 
(section 2), are maintained in the proposed alternative solution; the soil 
condition is also taken from the station with traditional design. ABAQUS 
finite element analysis software [46] is utilized to model soil and 
structure. 

Fig. 6 displays the 2D model of the structure and the surrounding 
soil; it corresponds to plane strain condition. This model includes both 
the existing station (traditional design) and the innovative one (sliding- 
hinged connections). 

Fig. 6 shows that the model is 200 m wide; to avoid the influence of 
the boundary, this value has been selected as approximately 10 times the 
station width [47]. The analyses are split into static (gravity) and dy
namic (seismic) calculations. In the static analyses the lateral boundaries 
are constrained in horizontal direction and free in the vertical one. In the 
dynamic analyses the lateral boundaries are modelled as viscoelastic 
(springs and dashpots) to avoid unrealistic wave bouncing [48–52]; 
vertical motion is restricted, as only vertical SH wave propagation is 
considered. In the static analyses the bottom boundary is fixed; in the 

dynamic analyses its horizontal displacement is released [53,54], as the 
excitations (horizontal seismic accelerograms) are inputted at the bot
tom boundary. The stiffness (Kbn) and damping (Cbn) coefficients of the 
springs and dashpots are given by Ref. [50]: 

Kbn = Al
1

1 + A
λ + 2 G

r
Cbn = Al B ρ cp

(2) 

In Eq. (2), Al is the dominant area of node l; G, ρ are the soil shear 
modulus and density, respectively; r is the distance between the source 
of scattering wave and the lateral boundary; A = 0.8 and B = 1.1; λ is 
the soil Lamé coefficient; cp represents the velocity of the compression 
wave. 

The soil and the concrete of the station are discretized with 4-node 
element CPE4R; the steel reinforcement bars are represented by 2D 
beam elements. Bond-slip between concrete and steel is not contem
plated; as well, in the contact between the sidewalls and the diaphragm 
walls, no separation is assumed. The element size of the soil-structure 
interaction model is selected as to range between one eighth and one 
tenth of the ratio between the shear wave velocity and the cutoff fre
quency [55]: 

Fig. 13. Rotation angle of the central columns.  
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vs

10 fmax
≤ hmax ≤

vs

8 fmax
(3) 

In Eq. (3), vs is the shear wave velocity, fmax is the cutoff frequency 
and hmax is the element size. Thus, the size of the finite elements ranges 
from 1.4 to 1.8 m. 

4.2. Material parameters of the soil and the structure 

Fig. 7 displays the main parameters (depth, density, Poisson’s ratio 
and shear wave velocity) of the soil layers. 

The soil nonlinear behavior is described with the equivalent 
simplified method EERA (Equivalent-linear Earthquake site Response 
Analysis) [45]. Fig. 8 displays the constitutive curves of the G/ Gmax 
ratio (Fig. 8a) and damping ratio (Fig. 8b) in terms of the shear strain. 

The concrete damage plasticity model [56,57] is used; Table 2 pre
sents the major parameters. 

In Table 2, Fb0/fc0 is the ratio between biaxial compressive yield 
strength and uniaxial compressive yield strength, and K is the ratio be
tween second stress invariants on tensile and compressive meridians. 
The damage variables evolution is set as in Ref. [58]. The characteristic 
value of the concrete compressive strength for the slabs, side walls and 
central columns is 45 MPa, and for the diaphragm wall it is 30 MPa. The 
elastic modulus and density of the central columns are reduced to 
convert the spatially distributed columns into plane strain behavior. 

Soil damping is described with a mass and stiffness-dependent Ray
leigh damping model [59–63]: 

[C] = α [M] + β [K] (4) 

In Eq. (4), α and β denote Rayleigh damping coefficients, and [C], [M]

and [K] are the damping, mass and stiffness matrices, respectively. The 
Rayleigh damping coefficients are given by: 
{

α
β

}

=
2 ζn

ωs + ωe

[
ωs ωe

1

]

(5) 

In Eq. (5), ζn is the equivalent viscous damping obtained from EERA, 
ωs is the soil fundamental frequency, and ωe is the predominant fre
quency of the earthquake input motion [62,63]. 

4.3. Simulation of the rubber bearings and the soil-structure contact 

As discussed in subsection 3.3, rubber bearings are widely employed 
because they are capable of providing sufficient vertical bearing and 
horizontal deformation capacities. This study concentrates on their 
global behavior as sliding-hinged components, and other issues (influ
ence of ambient temperature, nonlinear behavior etc.) are disregarded. 

The contacts between the rubber bearings and the connected ele
ments, and between the station and the surrounding soil (soil-slab and 
soil-diaphragm wall interaction, respectively) are simulated with the 
dynamic contact model. In normal direction this model prevents pene

Fig. 14. Stress-time history curves of the central column under SFBJ accelerogram with PGA 0.6 g.  
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tration under compression while allows separation under tension stress; 
in the tangential direction the behavior is governed by Coulomb’s law of 
friction: 

τcritical = μ P (6) 

In Eq. (6), μ is the friction coefficient and P is the normal contact 
stress. For rubber-concrete interaction μ = 0.025, and for soil-concrete 
interaction μ = 0.4 [28,33,64,65]. 

Finally, as discussed in section 2, the connection between the dia
phragm walls and the station side walls is assumed to be rigid (neither 
separation nor sliding) [28,33,66,67]. 

4.4. Selected seismic input ground motions 

Four earthquake records are considered in this study; they are dis
played in Fig. 9. 

The accelerograms in Fig. 9 are the SFBJ wave (Fig. 9 a, Shi
fangbajiao station, Wenchuan earthquake 2008, PGA 0.569 g), the WL 
wave (Fig. 9 b, Wolong station, Wenchuan earthquake 2008, PGA 0.977 
g), the EC wave (Fig. 9 c, El Centro, Imperial Valley earthquake 1940, 
PGA 0.349 g) and the KB wave (Fig. 9 d, Kobe University station, Great 
Hanshin earthquake 1995, PGA 0.329 g). These ground motions have 
been downloaded from the PEER-NGA database (http://peer.berkeley. 
edu/nga/) [68] and the strong-motion seismograph networks (K-NET, 
KiK-net: https://www.kyoshin.bosai.go.jp/) [69]. The accelerograms in 
Fig. 9 have been scaled to a maximum acceleration of 0.1 g, 0.2 g, 0.4 g 
and 0.6 g with a duration time of 40 s. 

These four accelerograms have been selected considering that El 
Centro is widely used in earthquake engineering, and SFBJ, WL and KB 

have seriously damaged underground structures [28,33,70]. 

5. Numerical results for the alternative subway station 

5.1. Acceleration response 

Fig. 10 displays, for each of the four seismic waves (accelerograms) 
in Fig. 9 scaled to 0.1 g, 0.2 g, 0.4 g and 0.6 g, the maximum lateral 
acceleration of each slab corresponding to traditional rigid and sliding- 
hinged connection between the structural components. 

Fig. 10 shows that the accelerations in the traditional and innovation 
design solutions are rather similar; therefore, the same level of damage 
to acceleration-sensitive nonstructural components is to be expected. 
This trend is credible, as the seismic effect is basically an imposed 
displacement, and the seismic response is not highly sensitive to its own 
stiffness. 

5.2. Lateral displacement response 

Fig. 11 displays, for each of the four accelerograms in Fig. 9 scaled to 
0.1 g, 0.2 g, 0.4 g and 0.6 g, the maximum lateral inter-story drift ratio 
corresponding to the traditional and innovative design solutions. 

Fig. 11 shows that the drifts in the traditional and innovative design 
solutions are rather similar; therefore, the same level of damage to drift- 
sensitive nonstructural components is to be expected. As in Fig. 10, this 
trend is credible, as the seismic action is basically a displacement- 
controlled action, almost irrespective of the structure itself. 

To better explain the influence of the sliding-hinged connections on 
the seismic behavior of the station, its maximum deformation is 

Fig. 15. Tensile damage nephogram of the station with innovative design. KB wave.  
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represented in Fig. 12 taking the WL wave as an example. 
Fig. 12 corroborates, in a quantified way, the qualitative trends 

shown in Figs. 2 and 5. However, Fig. 12 b shows that the deformation of 
the brackets is significant; hence, they should be given sufficient 
attention in future research. 

5.3. Seismic performance of the central columns 

As outlined in section 1, it is widely accepted that central columns 
constitute the key issue for the seismic performance of underground 
stations [2,21,22,24], as learned from the collapse of the Daikai station 
by the Great Hanshin earthquake (January 17, 1995, Mw = 6.9). In this 
section, the seismic performance of the central columns of the case study 
station is investigated. 

Fig. 13 displays, for each of the four accelerograms in Fig. 9 scaled to 
0.1 g, 0.2 g, 0.4 g and 0.6 g, the maximum global rotation angle of the 
central columns. Results in Fig. 13 correspond to the traditional and 
innovative design solutions. 

Fig. 13 corroborates that the rotation angle of the central columns is 
significantly smaller in the innovative design solution than in the 
traditional one. 

For further clarity, Fig. 14 displays, for the SFBJ wave scaled to PGA 
0.6 g, the time histories of the maximum vertical axial stress of the inner 
columns. Plots in Fig. 14 a, Fig. 14 b, Fig. 14 c and Fig. 14 d correspond 
to points A, B, C and D, respectively. 

Fig. 14 confirms the trends shown by Fig. 13. Noticeably, tension of 
the central columns is almost totally eliminated in the proposed sliding- 
hinged solution; this improvement is particularly significant, given that 
such elements have been the most seriously damaged ones. 

5.4. Damage indices 

As discussed in subsection 4.2, the nonlinear concrete behavior is 
simulated with a concrete damage plasticity model; in that model, 
compressive and tensile damage indices (DAMAGEC and DAMAGET, 
respectively) range between 0 (no damage) and 1 (entire damage). 
Fig. 15 and Fig. 16 display, for the KB accelerogram scaled to 0.1 g, 0.2 g, 
0.4 g and 0.6 g, color maps of the tensile and compressive damage 
indices, respectively. 

Fig. 15 shows that unsurprisingly, the higher the PGA, the more 
important the damage. For the traditional design solution, as anticipated 
[28,29,33,70], the most severe tensile cracking damage occurs at the 
connection between side walls and slabs, in the end sections of the 
central columns and mid slabs, and in the sections of the diaphragm 
walls that adjacent to slabs. In the innovative solution, the cracking 
damage is dramatically reduced, being totally absent in the central 
columns; as seen in Fig. 12, it is mainly concentrated in the brackets. 

Fig. 16 shows that the compressive crushing damage is significantly 
lower than the tensile one, being virtually non-existent in the sliding- 
hinged solution. In fact, only slight crushing damage is observed in 
the central columns of the traditional solution for PGA 0.6 g. 

For deeper information, Fig. 17 displays, for the KB accelerogram, 
comparisons between the tensile damage indices in characteristic points 
of the traditional and innovative design solutions. 

Fig. 17 shows that the damage in the sliding-hinged solution is 
significantly smaller, particularly in the central columns and slabs. 

Fig. 16. Compression damage nephogram of the station with innovative design. KB wave.  
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5.5. Comparison between the internal forces of the traditional and 
innovative stations 

Aiming to corroborate the remarks from subsection 5.4, a particular 
comparison between the internal forces of the members of the tradi
tional and innovative design solutions is presented herein. In this sense, 
Fig. 18 presents, under the KB seismic wave scaled to 0.1 g, 0.2 g, 0.4 g 
and 0.6 g, the maximum axial and shear forces and the bending moment 
in the sections indicated in Fig. 1 a. 

Fig. 18 shows that the internal forces in the diaphragm walls (sec
tions A1 and A2) are rather similar in the traditional and innovative 
stations. In the side walls (sections B1 and B2) the internal forces in the 
sliding-hinged solution are appreciably smaller. Regarding the interior 
columns (sections C1 and C2) the reduction is even higher. Finally, the 
lessening in the ceiling and floor slabs (sections D1 and D2) is also 
relevant. 

6. Conclusions 

This paper proposes a new alternative seismic design solution for 
rectangular cut-and-cover underground stations; it consists of replacing 
the traditional rigid connections between the structural elements with 
hinged and sliding joints, as to obtain near-zero lateral stiffness. The 
required flexibility of the joints is achieved through the use of rubber 
bearings. The ensuing structures are expected to be able to accommo
date the imposed seismic racking without relevant strains in the struc
ture. As a case study, an existing 2-story 3-bay subway station located in 

Southwest China is redesigned with the proposed technology; its seismic 
performance is investigated numerically by time-history analyses for a 
set of input seismic accelerograms. These inputs are scaled to fit PGAs 
ranging from 0.1 to 0.6 g. 

The main output of this study is that the damage to the structural 
elements is considerably lessened in the sliding-hinged alternative so
lution; this trend is particularly intense for not only central columns but 
also structural connections. On the other hand, the acceleration and drift 
do not alter much; therefore, no higher damage to the acceleration and 
drift-sensitive nonstructural components is to be expected in the pro
posed alternative solution. These conclusions hold for all the considered 
levels of PGA. The remarks obtained can be read as a preliminary vali
dation of the proposed seismic design approach. 

Further research (currently under development) includes consider
ation of other representative case studies, performing parametrical 
studies to corroborate the general validity of the proposed solution, and 
deep analysis of the construction issues (e.g. waterproofing system). 
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Fig. 18. Maximum internal forces under different ground motion intensities. KB wave.  
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