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Abstract: Renewable and local energy communities are viewed as a key component to the success
of the energy transition. In this paper, we estimate wind power potential for such communities.
Acquiring the most accurate weather data is important to support decision-making. We identify
the most reliable publicly available wind speed data and demonstrate a case study for typical
energy community scenarios such as a single commercial turbine at coastal and inland locations in
Ireland. We describe our assessment methodology to evaluate the quality of the wind source data
by comparing it with meteorological observations. We make recommendations on which publicly
available wind data sources, such as reanalysis data sources (MERRA-2, ERA-5), PVGIS, and NEWA
are best suited to support Renewable Energy Communities interested in exploring the possibilities of
renewable wind energy. ERA5 is deemed to be the most suitable wind data source for these locations,
while an anomaly is noted in the NEWA data.

Keywords: renewable energy communities; renewable energy; wind speed; reanalysis data

1. Introduction

EU legislation is moving at pace to ensure a clean and fair energy transition at all levels
of the economy. The final Clean Energy Package makes the EU’s electricity market more
interconnected, flexible, and consumer-centred [1]. The Clean Energy Package measures
aim to make different actors in the energy field more competitive and innovative. Member
states must respond and transpose the directives into national law to ensure this happens.
The Electricity and Renewables Directives are transposed into Irish law to allow Renewable
Energy Communities to participate in the electricity market. Similarly, other jurisdictions
are considering what legal, regulatory, grid, and market codes need to be amended to
comply with the directives and unlock the potential of energy communities.

The Electricity Directive is consumer-focused and outlines requirements for Mem-
ber States and Regulatory Authorities to develop frameworks that allow for consumer
participation in energy markets [2]. The Directive contains two definitions of an energy
community: Citizen Energy Community, which is contained in Directive (EU) 2019/944
(recast Electricity Directive), and Renewable Energy Community, which is contained in
Directive (EU) 2018/2001 (the recast Renewable Energy Directive). In both cases, the com-
munities are autonomous legal entities based on open and voluntary participation with
the purpose of providing environmental, economic, or social community benefits for its
shareholders or members rather than financial profits. Energy communities are entitled
to generate, consume, store and sell renewable energy and may be allowed to participate
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in cross-border electricity exchanges. In this paper, we use the term “renewable energy
community” interchangeably with the term “local energy community”.

Energy communities can be realised in various legal forms, which depend on national
and regional regulations. For example, Community Benefit Societies (CBS) are a legal
structure for community-led initiatives and exist to serve the broader interests of the
community. Any profit made by a CBS must be used for the benefit of the community. The
appropriate use of the CBSs model in Community Renewable Energy projects is to sell
electricity directly to the national grid and reinvest the profits generated for the benefit of
the community.

Social Enterprises combine different economic, social, and environmental goals at the
core of their activities. Social enterprises are incredibly diverse across Europe, encompass-
ing a range of organisational and legal forms and statuses [3]. These enterprises express
their commitment to their social goals by limiting the distribution of surplus income to
members and instead reinvesting this for future development.

Cooperatives are community-owned social and economic enterprises. They are the
dominant institutional architecture for community renewables in Europe and are gaining
popularity. There are a growing number of energy cooperatives in the EU, notably in coun-
tries like Belgium, Denmark, Germany, France, and Spain but increasingly also in the other
Member States. In Greece, the 2018 law on energy communities adopted cooperatives as the
basis for its definition of energy communities. In Sweden, Renewable Energy Communities
must take the legal form of an Economic Association, which is their adapted form of a coop-
erative. There are many other forms and interpretations of energy communities, the review
in [4] synthesises 183 definitions across three dimensions of meanings (interpretations of
the community concept rather than legal forms or definitions), activities, and objectives of
the community. The authors note the foremost meaning ascribed to an energy community
is a community associated with a “place”, and this is particularly prominent for community
wind where locally owned, utility-scale wind development interconnected to the grid is
anticipated. We adopt this interpretation that an energy community is expected to conduct
projects located in the vicinity of where they live.

There are many challenges to the success of local energy communities (LECs), includ-
ing policy support, social acceptance, financing, management and market structures, and
smart grid technologies [5]. LECs must decide the mix of renewable energy generation and
storage, where to locate, and how best to manage the assets to achieve the LEC objectives.
Energy communities are not just about technical smart energy systems innovations, but
they cannot succeed without technological and decision support. Likewise, the Clean
Energy Package and National Energy and Climate Plan (NECP) ambitions of EU Member
states cannot be achieved without energy community and energy citizen participation.

In Ireland, the Renewable Electricity Support Scheme (RESS) supports community so-
cial enterprise and community participation in the electricity market through a competitive
auction-based framework [6]. Through a community enabling framework supported by
the Sustainable Energy Authority of Ireland (SEAI), citizens can form a Renewable Energy
Community and then apply for a license at RESS auctions. The auctions are designed to
support progress toward the 80% renewable electricity target in Ireland’s NECP [7].

Wind energy development usually presents greater challenges in terms of planning
and engineering. However, in the case of Ireland, which lies at 53◦ North and has an
extensive coastline and temperate maritime climate, wind projects are likely to provide a
higher Community Benefit Fund (CBF) return compared to solar. The CBF is a mandatory
contribution of €2/MWh for all generation projects to be used for the wider economic,
environmental, social, and cultural well-being of the local community. Figure 1 shows
estimated wind speeds at 20 m elevation over Ireland based on measurements taken during
2001–2010 [8].
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Figure 1. Wind Speeds m/s at 20 m elevation over Ireland–, adapted with permission from [8].
2022, SEAI.

Micro wind generation means a wind turbine or turbines with a nominal output of
300 watts or more but no more than 50 kilowatts with hub heights of 10–15 m. Planning
permission is required for the installation of all but the smallest turbines. While lower
turbine heights may be allowed in urban settings, the technology to date has not been
cost-effective [9]. Very low performances are observed for a micro-wind turbine in an
urban area in Italy for most of the year, and the technology is deemed not to be suitable or
cost-effective [10]. A possible case for micro wind turbines in agricultural farms is made
in [11] but is dependent on a longer than usual payback period of 12 years and state grants.
The same team of authors at the University of Southampton outlined the “Boom-to-bust”
history of micro wind in [12] and concluded that half of the urban turbines evaluated
in their study have a negative load factor, that is, they consume more power than they
generate over the year.

The turbines for commercial wind farms are 100 m or higher, where wind speeds are
higher than those measured at ground level. Community-led projects in the RESS scheme
have an upper limit of 5 MW, effectively restricting the design choice to one or two wind
turbines [13]. Wind farm technology is constantly improving, and investment costs are
reducing. The estimated costs are around €1.4 million per megawatt installed for the types
of wind turbines a LEC would use (1.5 to 3 MW in size) [14]. The wind turbine itself incurs
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the most significant costs (~€1.25 M–€2.5 M). Additional costs include groundworks, grid
connection, planning, and consultancy costs.

Evidence of long-term wind speed trends is required to secure financial backing for
a project. Wind speed is the most significant factor in determining the amount of wind
power that can be produced, but wind speeds are difficult to predict and highly variable.
The wind at coastal locations is strongly influenced by changes in sea-surface temperatures
(breeze circulations), friction, as well as local topography. Furthermore, wind resources at
a specific site are difficult to quantify with any level of confidence without undertaking
field trials. Potential LECs are advised to first utilise the best available wind speed data
and estimation tools and then install anemometry to determine the observed wind speed
distribution at a particular site.

Reanalysis provides a picture of past weather and climate. Reanalysis blends obser-
vations with past short-range weather forecasts rerun with modern weather forecasting
models. Reanalysis data is produced by running a numerical weather prediction (NWP)
model in hindcast mode, i.e., a projection back in time rather than a forecast prediction of
future values. The reanalysis models assimilate historical observations and produce a time
series of historical weather variable values. Three reanalysis data sets are evaluated in [15].
The authors conclude that the choice of dataset depends on the type of renewable energy
and the location; there may not be a single best source for wind and solar at all locations.

The authors in [16] note that ideally, wind speed should be measured at a typical
turbine hub height. However, there are no long-term records of hub height wind speed
available at different locations around Ireland, and anemometry equipment can be expen-
sive. Therefore, their study focuses on 10 m wind speed observation records from synoptic
stations, using extrapolation to estimate the wind speed at 100 m hub height.

Reliable historical wind speed and solar irradiance databases are fundamental for
policymakers and the distribution system operator (DSO). Rapid variations in wind and
solar power availability may compromise the secure operation of the grid. The intermittent
nature of renewable energy can result in voltage fluctuations and a decrease in power
quality. Even with the high penetration of renewable energy, the low voltage (LV) network
must be able to keep the voltage levels and system frequency within the allowable limits
while the balance between power generation and demand remains stable. Renewable
energy scenarios provide a framework for exploring future energy perspectives, give insight
into the behaviour of complex systems, and demonstrate both benefits and challenges
associated with the increased integration of renewables into the LV network.

Additionally, data-driven management strategies will determine the short-term decision-
making of prosumers in local energy markets. The design of markets and policies such as
grid usage pricing heavily depends on modelling prosumers’ behaviour [17,18]. The design
of such policies as a function of minute-based operation may bring opportunities for coping
with the rapid variations of the uncertainty. The data used to feed those models should
capture the complex spatiotemporal correlations found in actual scenarios [19]. A higher
sampling frequency (in the order of the seconds) is required to perform out-of-sample
simulations of real-time operations.

With regards to energy planning, the problem of unit commitment is historically
one of the most important tools in power systems. This is a challenging optimisation
problem in planning which thermal and hydro generation units to “commit” to serve the
electricity demand. Recently, renewable energies have been incorporated. The conventional
generation is only required to serve the net demand. The problem becomes more difficult
to solve when variable wind generation is included [20]. Renewable energy scenarios play
a fundamental role in obtaining robust planning and production schemes [21].

In this paper, we focus on identifying the most suitable publicly available wind speed
data for LECs to evaluate the potential for renewable wind as part of an Initial Viability
Study. We demonstrate the approach at a sample set of locations in Ireland. The paper is
organised as follows: Section 2 gives a detailed overview of the data and methodology
used for the quality assessment. Section 3 presents the results of the quality and accuracy
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assessment. Section 4 discusses the insights on identifying the best data source. Finally,
conclusions are highlighted in Section 5.

2. Materials and Methods

Since micro-wind has been shown to have limited potential, we focus on a scenario of
a LEC that wishes to install a single commercial wind turbine. We consider wind speed at
a hub height of 110 m for a potential community-owned onshore wind turbine. We first
evaluate two important reanalysis datasets, ERA-5 and MERRA-2, one high-resolution
mesoscale data (NEWA), and four PVGIS datasets (two satellite and two reanalysis datasets)
by comparing them with the Met Éireann hourly wind speed data observations at four
locations in Ireland over a common data period 2009 to 2016. The objective of this step is to
identify the best wind speed data source for LECs in Ireland.

Once the best data source was identified, we then assessed the energy potential at a
sample of 13 locations in Ireland as a case study to demonstrate the methodology. Seven of
the 82 licensed projects in the first RESS auction in 2021 are majority-owned by communities,
and the revenues from their operation will be cycled back into those communities. Table 1
shows a summary of the five solar energy and two onshore wind community projects that
were successful.

Table 1. Location of Local Energy Community Projects licensed in the RESS 2020 auction in Ireland.

Company Name Project RES Type Capacity MW County

CEARTH Ltd.,Kinsale, Co. Cork Dooleeg More Wind Farm Onshore Wind 2.5 Mayo
Clooncon East Single WTG Ltd.
Ballinlass, Co. Galway Clooncon East Single WTG Onshore Wind 0.9 Galway

Ballytobin Solar Ltd. Dublin D20 A970 Ballytobin Solar PV Solar 4 Kilkenny
Davidstown Renewables Ltd. Wexford Davidstown Solar Solar 4.95 Wexford
I.Q Solar Ltd. Cloyne, Cork Lurrig Solar Farm Solar 4 Cork
Templederry Energy Resources Ltd.
Nenagh Co Tipperary Barnderg Solar Farm Solar 4 Galway/Mayo

Templederry Energy Resources Ltd.
Nenagh Co Tipperary Lisduff Solar Park Solar 4 Clare

In addition to the types of locations where community projects were licensed, we
consider six additional locations taken from [15], based on the availability of continuous
records of hourly data. Figure 2 shows the 13 locations in our study that span the island
of Ireland geographically. These stations represent the longest available record of wind
and shortwave radiation covering different regions of Ireland. The locations include eight
coastal locations (Galway, Wexford, Mayo, Clare, Belmullet, Dublin Airport, Malin Head,
and Valentia Observatory) and five inland stations (Kilkenny, Cork, Birr, Clones, and
Mount Dillon).

In the final step, we extract wind speeds for the sample of 13 locations in Ireland
from the best data source. Wind speed is then converted to wind power using a sample
manufacturer’s turbine power curve.
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Figure 2. Thirteen study locations in Ireland.

2.1. Data Sources

The availability of wind speed data at hub height is limited. The Met Éireann “ground
truth” wind observations are available at 10 m height only. Therefore, we use 10 m wind
speed records for the quality assessment. The global reanalysis (ERA-5 and MERRA-2),
satellite datasets (SARAH and CMSAF), regional reanalysis (ERA-5 and COSMO), and
station data (Met Éireann) were available at a one-hour temporal resolution, whereas
the NEWA data was available at 30 min resolution, all freely available. Table 2 shows a
summary of the data sources which were assessed in our study. In the following sections,
we describe the data sources in more detail.

Table 2. Reference datasets used in the study over a common data period of 2009 to 2016.

Parameter ERA-5 MERRA-2 NEWA PVGIS-SARAH PVGIS-SARAH2 PVGIS-ERA5

Model/Satellite IFS Cycle 4lr2 GEOS v5.12.4 WRF v3.8.1 EUMETSAT CMSAF IFS
Institution ECMWF NASA NEWA JRC JRC ECMWF

Horizontal grid 0.25◦ × 0.25◦

(~31 km)
0.5◦ × 0.625◦

(~70 km)
0.027◦ × 0.027◦

(~3 km)
0.05◦ × 0.05◦

(~5 km)
0.038◦ × 0.0.38◦

(~4 km)
0.038◦ × 0.0.38◦

(~4 km)
Time coverage 1979–2021 1980–2021 2009–2018 2005–2016 2005–2020 2005–2020
Time resolution 1 h 1 h 30 min 1 h 1 h 1 h

Spatial coverage Global Global Europe
Europe, Asia,
Africa, and South
America

Europe, Africa,
parts of South
America

Europe

2.2. Met Éireann Observational Data

Met Éireann is the Irish Meteorological service and has an observation network that
gathers weather data across the country for use in weather forecasts, aviation, and me-
teorological research. Their aim is to produce data of the highest quality that is widely
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available and very easy to access; they also have researcher-friendly access. The weather
observations (for example, temperature, relative humidity, wind speed, wind direction,
shortwave radiation, and rainfall) record day-to-day changes in the atmosphere and are
quality controlled and archived in the Met Éireann database [22]. This historical data is
available at different temporal scales such as hourly, daily, or monthly for various weather
variables. The Met Éireann dataset was considered the “ground truth” in this paper against
which the reference data were compared to check their quality and accuracy.

2.3. ERA-5

ERA-5 is a fifth-generation reanalysis by the European Center for Medium Range
Weather Forecasts—ECMWF. Hourly data of many atmospheric, land, and oceanic climate
variables such as wind speed at 10 m and 100 m elevations from 1979 to the present at a
spatial resolution of 0.25◦ × 0.25◦, i.e., a ~31 km grid [23]. ERA-5 includes information
about uncertainties for all variables at reduced spatial and temporal resolutions. The data
covers the entire Earth. Studies have shown ERA-5 data fit the ground measurements for
Ireland well [15] and have found its usage satisfactory for energy system modelling [24].
ERA-5 can be accessed from the climate data store. The downloading procedure is through
the web interface of CDS. A procedure to download the ERA-5 data is outlined in [25].

2.4. MERRA-2

The second version of Modern-Era Retrospective analysis for Research and Applica-
tions (MERRA-2) data is produced by NASA [26] using an upgraded version of the Goddard
Earth Observing System Model version 5.12.4 (GOES-5) based on three-dimensional varia-
tional data assimilation system. MERRA-2 is one of the few global reanalyses that assimilate
the data from the entire constellation of NASA satellites. MERRA-2 data is available from
1980 to the present day, with global coverage of 0.5◦ lat × 0.625◦ lon (horizontal grid
resolution). MERRA-2 data can be downloaded from NASA Goddard Earth Sciences (GES)
data and information service center. This procedure is outlined in [27].

2.5. NEWA

The New European Wind Atlas (NEWA) is a joint research effort from eight European
countries and is a combination of downscaling of ERA-5 data and Weather Research
Forecast (WRF) model data. It is a comprehensive mesoscale model with a spatial coverage
of the whole of Europe and Turkey, extending at least 100 km from any known coastlines.
Data are available at 30 min temporal resolution for 2009–2018. It is driven by ERA-5
with special nudging over a domain. Nudging, or Newtonian relaxation, is a simple
form of data assimilation that adjusts dynamical variables of free-running Global Climate
Models (GCMs) using meteorological reanalysis data to give a realistic representation of the
atmosphere at a given time. All mesoscale simulations in NEWA use three nested domains
with a 3 km horizontal grid spacing for the innermost grid and a 1:3 ratio between inner
and outer domain resolution, leading to three different resolutions: 27 km for the outer
domain and 9 and 3 km for the inner nested domains. The model details can be seen in [28].
The temporal coverage of the sensitivity simulations is 1 year (2015 or 2016), based on data
availability. WRFs over 10 domains cover most of Europe. NEWA data can be accessed
via a web interface that includes interactive maps, time series of wind speed and direction
at different heights, as well as other information of relevance to the wind industry. Full
details of the NEWA model are described in [29,30].

2.6. PVGIS

While the focus of this paper is on wind energy assessment, we mention here sources
that provide additional focus on solar irradiance as many LECs will be interested in
selecting the best mix of renewable energy sources to meet their goals. In other works,
we evaluated the reference data sources with respect to temperature and solar irradiance.
PVGIS version 5.2 is a tool developed at the European commission joint research center
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that provides meteorological data. The main focus of PVGIS is solar resource assessment
and photovoltaic (PV) performance studies, but hourly wind speed at 10 m at high spatial
scales is also available. Data is available on the website [31]. PVGIS 5.2 provides three
different sub-datasets (a) PVGIS SARAH, (b) PVGIS SARAH2, and (c) PVGIS-ERA5.

2.6.1. PVGIS-SARAH

The Surface Solar Radiation Data Set-Heliosat (SARAH) is a satellite-based climatology
of the solar surface irradiance, the surface direct normalised irradiance, and the effective
cloud albedo derived from satellite observations of the visible channels of the MVIRI and
SEVIRI instruments onboard the geostationary Meteosat satellites. The data are available
from 2005 to 2016 and cover the region ±65◦ longitude and ±65◦ latitude. The products
are available as monthly, daily, and hourly averages on a regular latitude/longitude grid
with a spatial resolution of 0.05◦ × 0.05◦. For more detailed information, see [32].

2.6.2. PVGIS-SARAH2

The Satellite Application Facility on Climate Monitoring (CMSAF) solar radiation
product SARAH-2.1 (PVGIS-SARAH2) provides data from 2005 to 2020. The CMSAF
solar surface irradiance retrieval is based on radiative transfer calculations using satellite-
derived parameters as input. It is a part of the European Organization for the Exploitation
of Meteorological Satellites (EUMETSAT) ground segment and part of the EUMETSAT
network of Satellite Application Facilities.

2.6.3. PVGIS-ERA5

Data from the ERA-5 ECMWF are processed to higher resolutions. The original ERA-5
data is gridded into a higher spatial resolution, 4 by 4 km. The PVGIS ERA5 data covers
the Earth over a time frame from 2005 to 2020 and provides 137 elevation levels from the
surface up to a height of 80 km.

2.7. Methodology for the Quality Assessment

Four skill scores are used to compare the reference data sets in Table 2 to the Met
Éireann ground truth measurements. The statistical metrics are; correlation coefficient (R),
mean error or bias (ME), root-mean-square error (RMSE), and index of agreement (IOA). xi
are the estimates and yi are the Met Éireann observations. N is the number of data points
for analysis. x and y are the average of the estimated and observed values, respectively. We
define each metric next.

R =
∑ (xi − x)(yi − y)√
∑ (xi − x)2(yi − y)2

(1)

Equation (1) is the correlation coefficient. The numerator of Equation (1) is the co-
variance of two variables, and the denominator is the product of standard deviations of
two variables.

Bias =
∑N

i=1(xi − yi)

N
(2)

Equation (2) is the difference between model-predicted and observed values i.e.,
the mean model error or “bias”. Bias is the tendency of a statistic to overestimate or
underestimate a parameter. A positive value signifies that the model has overestimated the
actual value. A negative value signifies that the model has underestimated the actual value
of the period.

Equation (3) is the root mean squared error (RMSE).

RMSE =

√
1
N ∑N

i=1(xi − yi)
2 (3)

Finally, the Index of Agreement (IOA) is a standardised measure of the degree of model
prediction error which varies between 0 and 1 [33]. It represents the relative covariability of
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the estimates and observations about the ‘true’ mean. The agreement value of ‘1′ indicates
a perfect match, and ‘0′ indicates no agreement at all. The IAO can detect additive and
proportional differences in the observed and simulated means and variances; however,
IOA is overly sensitive to extreme values due to the squared differences. The IOA is given
in Equation (4).

IOA = 1− ∑N
i=1(xi − yi)

2

∑N
i=1(|xi − y |+ |yi − y |)2 (4)

2.8. Wind Power Model

Wind speed is the most significant variable in estimating wind to electrical energy
transformation. The validity of wind power estimates is significantly affected by the quality
of the input wind speed data. Wind speed measurements are rarely available to Local
Energy Communities without the installation of anemometry equipment and present a
challenge to long-term strategic decisions. Hence we recommend the use of sources such
as those in Table 2 for the initial evaluation of site suitability.

We follow the approach in [34] to generate wind power energy for a particular type or
set of turbines. The steps to transform wind speed into wind power are:

1. Acquire wind speed records for at least two heights;
2. Extrapolate the wind speeds to the turbine hub height;
3. Convert hub height wind speed to power output using the manufacturers’ power curve.

A common approach is to extrapolate the vertical wind speeds (WS) at 10 and 100 m
to hub height (HH). dWS

dz is the rate of change of WS with height z between 10 m and 100 m
heights in Equation (5).

dWS
dz

=
WS100 −WS10

log(100)− log(10)
(5)

Equation (6) allows us to estimate the wind speed at hub height, WSHH.

WSHH = WS10 +
dWS

dz
(log(HH)− log(10)) (6)

Once the wind speed records at hub height are derived from Equations (5) and (6), the
wind speed time-series values are converted into wind power energy using the appropriate
power curve for the selected turbine.

Power curves depict the relationship between wind speed and power and the range of
operation of the turbine [35]. The system of equations in Equation (7) shows the relationship.
No power is produced when the wind speed is below a cut-in threshold, Vc. Power is
produced rated according to a polynomial function Pn up to the rated speed Vr. The turbine
operates at full capacity up to the furling speed Vf—the speed at which the turbine cuts out
to protect the blades in strong winds. The system is normalised by the capacity factor, the
average power output divided by the rated power of the turbine. Hence full production is
shown with a capacity of 1.

P(WS) = 0 WS < Vc
P(WS) = Pn(WS) Vc ≤WS ≤ Vr

P(WS) = 1 Vr < WS ≤ Vf
P(WS) = 0 WS > Vf

(7)

Several power curves for commercial turbines are available from renewable ninja [36].
In this paper, we have chosen a Vestas V110 2.0 MW IEC IIIA turbine as it is suitable for
low-wind sites with a cut in wind speed of 3.0 m/s. It has a capacity of 2 MW, in the range
suitable for the RESS scheme in Ireland. The hub height is 110 m. Technical information is
available at [37].

The power curve from “Ninja Renewables” is in the form of a discrete series of power
values versus wind speeds between 0 and 40 m/s with a resolution of 0.01 m/s. Figure 3
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shows the “Wind Turbine Power Curves~5 (0.01 ms with 0.00 w smoother).csv” data for
the Vestas.V110.2000 turbine. Then, a smoothed power curve data “Wind Turbine Power
Curves~5 (0.01 ms with 0.40 w smoother).csv” is considered. Next, we fit a polynomial
of sixth order to the discrete power curve data for the range Vc ≤WS ≤ Vr to derive the
coefficients of a polynomial Pn as given in Equation (8).

Pn(WS) = ∑i=6
i=1 ai WSi (8)

where ai is the coefficient of the best-fitted polynomial.
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Figure 3. The x-axis is wind speed. The y-axis is the capacity factor for a representative wind power
curve (Vestas V110 2.0 MW IEC IIIA).

Table 3 shows the parameters and technical details of the turbine used in our study.
Pn(WS) is the normalised power output value. By considering Equations (7) and (8), a time
series of WS at hub height is converted to wind power energy. Both the capacity factor and
power in Watts are computed at one-hour temporal resolution. The capacity factor (CF) is
defined as the ratio of average power, Pavg, and rated power, Pr, i.e., CF = Pavg/Pr.
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Table 3. Vestas V110 2.0 MW technical details.

Parameter Value

Cut in speed of turbine (Vc) 3.0 m/s
Rated speed of turbine (Vr) 11.5 m/s
Furling speed of turbine (Vf) 20 m/s
Rated power of turbine (Pr) 2000 kW
Wind class IEC IIIA

Pn polynomial coefficients (a0, a1, a2, a3, a4, a5, a6)

a0 = 0.03319; a1 = −0.10065;
a2 = 0.04862; a3 = −0.00478;
a4 = 1.96414 × 10−4; a5 = −3.71117× 10−6;
a6 = 2.67285× 10−8

We then consider the 110 m wind speeds at the 13 sample locations and generate a
corresponding time series of wind energy capacity factors and power (Watts) using the
methodology described here to support a LEC in the initial site evaluation.

3. Results

In this section, we present the results of our work. We first compare the reanalysis,
mesoscale, and satellite datasets listed in Table 2 with the Met Éireann observations over a
common data period at four assessment sites. Based on the assessment, we select the best
data source for wind speed for wind resource evaluation by a LEC. We then analyse the
wind power energy at the 13 sample locations shown in Figure 2.

3.1. Quality Assessment of Reference Datasets

The four locations for the quality assessment were chosen because they provide the
largest amount of Met Éireann hourly resolution wind records at 10 m height observations
from 2009 to 2016. The four meteorological stations for the quality assessment are Dublin
Airport, Valentia Observatory, Belmullet, and Mount Dillon. The evaluation metrics are set
out in Section 2.7.

Table 4 shows the skill scores of the hourly 10 m wind speed analysis averaged over the
four assessment stations. The weaker winds in the ERA-5 reanalysis data were attributed
largely to the misrepresentation of surface friction and the elevation differences. At all
stations, the diurnal variability was less evident in the three PVGIS datasets, where the
wind speeds do not vary ±10% from the mean.

Table 4. The average values of skill scores of different reference datasets for the wind speed at 10 m
height. The mean is taken over four stations.

Reference Data Corr. Bias RMSE IOA

Obs vs. ERA5 0.89 0.23 1.47 0.92
Obs vs. MERRA2 0.87 1.28 2.06 0.88
Obs vs. NEWA 0.84 1.89 2.76 0.82
Obs vs. PVGIS SARAH 0.89 −0.19 1.63 0.89
Obs vs. PVGIS SARAH2 0.89 −0.19 1.63 0.89
Obs vs. PVGIS ERA5 0.89 −0.19 1.63 0.89

Overall, the ERA-5 exhibited the lowest value of RMSE and the highest value of
correlation and IOA. All the correlations were≥0.84, suggesting that the referenced datasets
are able to capture the observed wind speed at the four stations. ERA-5 and PVGIS showed
a higher correlation, followed by MERRA-2. The lowest correlation was seen in the NEWA
data. The IOA suggests a similar story with higher values in ERA-5 data (0.92) and lower
values in NEWA data (0.82).

As seen in Table 4, positive biases are evident in ERA-5, MERRA-2, and NEWA, and a
negative bias is seen in the three PVGIS datasets. The lowest values of bias are recorded in
the PVGIS dataset, followed by ERA-5 data. The good performance of ERA-5 may be due
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to the newer method of data assimilation (4D-var) in the model compared with the other
reanalysis 3D-var version. ERA5 also has a greater number of vertical levels, with the first
vertical level closest to the observations at 10 m.

The poorest skill scores were noticed in the NEWA data with higher values of bias
and RMSE and lowest values of correlation and IOA. On further investigation, we also
observed an issue with the NEWA wind speeds at higher elevations. Figure 4 shows the
NEWA wind speeds at 10, 100, and 110 m by season at Dublin Airport as an example. The
dip in midday values in Figure 4a could be explained by the mixing of convection currents.
However, the coincidence of 10 m, 100, and 110 m wind speeds at midday in Figure 4b,c
was unexpected. We would expect to see a difference in the values of wind speed at 10 m
compared to 100 or 110 m. This issue was observed at the four assessment locations over
the time frame and requires further investigation.
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Figure 4. NEWA Wind speeds at 10, 100, and 110 m by season (a–d) and time of day at Dublin Airport
over 2009–2016. Note the anomaly with the 100 and 110 m data.

3.2. Diurnal Variation of Wind Speeds

Hourly mean wind speeds at the four stations over the time frame 2009 to 2016 are
presented in Figure 5. The diurnal cycle (daily pattern) of mean wind speed is of interest
in LEC decision making, as historically, electricity demand is higher during the day. The
wind experienced at any given location is highly dependent on local topography and
other factors. All the stations exhibit significant diurnal variation in wind speed. Stronger
winds are evident around noon hours (12–14 IST) compared to the rest of the hours in
the observations and all reference datasets. This rise is explained by increased convection
currents associated with the rise in temperate during the day.
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Figure 5. Mean 10 m wind speed records at the four assessment locations: (a) Dublin Airport,
(b) Valentia Observatory, (c) Belmullet, and (d) Mount Dillon stations showing diurnal variation.
Black lines represent Met Éireann observations, blue is ERA-5 data, red is MERRA-2 data, green is
NEWA data, orange is PVGIS SARAH data, brown is PVGIS SARAH2 data, and purple is PVGIS
ERA5 data. The bias and RMSE values between reference datasets and observations are given in the
respective colored boxes.

The tendency for maximum wind speed to occur in the afternoon is noticeable only in
the long-term figures, such as the time frame in our study from 2009–2016. The maximum
may occur at any hour on any individual day.

The diurnal pattern is a surface-driven phenomenon attributed mainly to the oscilla-
tion of the transfer of momentum, i.e., the potential for upper-level winds to mix down to
the surface. The daily maximum occurring at midday is mostly because of the increased
downward transfer of momentum as a result of increased thermal mixing, while during the
night-time, when radiative cooling dominates, a stable boundary layer is formed that pre-
vents the transfer of momentum, thus leading to relatively calm winds at the near-surface
level [38].

Relatively higher wind speeds were noticed over coastal stations (Figure 4b,c) com-
pared to inland stations (Figure 4a,d). At Mount Dillon, an inland station, the observations
show a peak in the wind speed at 14.00 IST with a magnitude of 4.8 m/s, whereas the
reference datasets identify a peak one hour earlier with higher wind speeds in NEWA
(7.6 m/s) and MERRA-2 (6 m/s) data sets, and lower wind speeds in ERA-5 (4.2 m/s) and
all 3-PVGIS datasets (3.1 m/s).

3.3. Seasonal Variation of Wind Speed

Wind speed is subject to seasonality. We next explore the diurnal cycle of mean
wind speed at 10 m height as a function of different seasons. For climatological and
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meteorological purposes, based on air temperature, seasons in the northern hemisphere
are regarded as 3-month periods as follows: December to February—winter, March to
May—spring, June to August—summer, and September to November—autumn. Results
are presented in Figure 6 using Dublin Airport as an example which shows that the diurnal
pattern of wind speed changes with the season.
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Figure 6. Seasonal, diurnal variation of 10 m wind speed at Dublin Airport during the seasons
(a) winter: December, January, February (DJF); (b) spring: March, April, May (MAM); (c) summer:
June, July, August (JJA); (d) autumn: September, October, November (SON).

Similar results were observed for all four assessment locations. Note that Ireland
uses daylight savings and experiences short winter days and long summer days. The
wind speeds were higher during the midday hours 12.00–14.00 in all seasons. The diurnal
variation was less pronounced in summer than in winter. This is a result of surface heating,
which increases the mixing of the faster-moving air at higher levels with the air near the
surface. As the effect of surface heating diminishes, the wind speed decreases, and during
the night, there was little variation from hour to hour.

ERA-5 and the three PVGIS datasets show negative biases at Dublin Airport; the
models underestimate the observed wind speeds. In contrast, the NEWA and MERRA-2
data sets show positive biases regardless of the season. Interestingly, the biases were largest
during the midday hours 12.00–14.00 compared to other hours.

The correlation and IOQ between observations and reference dataset as a function of
the season are shown in Table 5, using Dublin Airport as an example.

Table 5 shows that the minimum correlation for Dublin Airport was 0.8, which indi-
cates that the reference datasets are able to capture approximately 80% variation of the
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observed wind speeds. Similar results were observed at all four assessment locations.
Higher correlation values occur for the ERA-5 and PVGIS datasets, followed by MERRA-2
data, with the weakest correlation noticed with the NEWA data, irrespective of the season.
Interestingly, cooler seasons (winter and autumn) have 5%–10% higher correlation com-
pared to the warmer seasons (spring and summer). This striking feature is clearly evident
in all reference datasets.

Table 5. Correlations, R, and IOA between Dublin Airport 2009 to 2016 hourly wind speed observa-
tions and reference datasets by season.

Reference Data Winter
R|IOA

Spring
R|IOA

Summer
R|IOA

Autumn
R|IOA

Obs vs. ERA5 0.91|0.94 0.88|0.93 0.83|0.91 0.89|0.92
Obs vs. MERRA2 0.88|0.82 0.86|0.86 0.83|0.80 0.87|0.81
Obs vs. NEWA 0.88|0.82 0.84|0.76 0.80|0.67 0.82|0.74
Obs vs. PVGIS SARAH 0.91|0.93 0.88|0.88 0.84|0.88 0.89|0.92
Obs vs. PVGIS SARAH2 0.91|0.93 0.88|0.88 0.84|0.88 0.89|0.92
Obs vs. PVGIS ERA5 0.91|0.93 0.88|0.88 0.84|0.88 0.89|0.92

Though both the PVGIS and ERA-5 datasets had similar correlation values, the bi-
ases and RMSE values were lower in ERA-5 data and were evident in all seasons, see
Figures 4 and 5. The sample IOA values in Table 5 also suggest that ERA-5 had a higher
agreement with the observations regardless of the season. Hence, we have considered
ERA-5 to be the best wind data source for LECs in Ireland to conduct an initial wind
resource assessment.

On the basis of the quality metrics in Table 4, we considered ERA-5 to be the best data
source for the wind speed evaluation by LECs in Ireland.

3.4. Wind Energy Assessment

We proceeded with ERA-5 data to estimate and analyse wind power energy over
13 different locations in Ireland. We use the methodology in Section 2.8 to convert wind
speed to wind power for each of the 13 locations by taking the hourly wind the ERA-5
wind speeds at 10 m and 100 m heights for the period 1979 to 2021, a total of 43 years.

Figure 7 shows the mean wind speeds at Dublin Airport as an example. We see that
the wind speeds vary with elevation. Higher wind speeds were recorded during the winter
season, and lower wind speeds were recorded during the summer season. One point
worth noting is that regardless of the season, the diurnal variability of wind speed at 100 m
and 110 m heights was less pronounced. In contrast, the wind speed at 10 m exhibited
significant diurnal variability with a peak at midday.

Next, we checked the wind speed density. Figure 8 shows a histogram of the 110 m
wind speeds, again using Dublin as an example. We observe the typical Weibull shape
right-skewed distribution. The left tail shaded in grey shows the wind speeds below the
Vestas110 m 3 m/s cutting speed. This accounts for 8.7% of the distribution, 91.2% of the
time the turbine is capable of producing power, and the speeds exceed the furling speed
only 0.1% of the time.

Finally, wind speeds at 110 m heights are used to calculate the wind power energy
capacity factors through the Vestas 110 power curve described in Section 2.8. Table 6 shows
the wind speed statistics and expected annual power for all 13 locations. Inland location
Kilkenny offered the lowest potential with an estimated average annual production of
7499 MWhs. The average annual demand of residential consumers in Ireland is 4200 kW. At
that consumption level, the LEC could potentially support 1785 homes. The incorporation
of low carbon technologies such as heat pumps, electric vehicles, and PV panels is expected
to significantly change both the demand value and time of occurrence.
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Table 6. Summary statistics of Wind Speed (m/s) at 110 m hub height, distribution of wind speeds (below cut in vc, within the operating range, and above the
furling speed vf), and wind energy production using a Vesta 110 m turbine. The last two rows show the estimated annual electricity production (MW) and the
estimated number of average residential consumers that could be served by the turbine.

WS110 m Dublin Belmullet Birr Clare Clones Cork Galway Kilkenny Malin
Head Mayo Mount

Dillon Valentia Wexford

Mean 7.37 9.64 6.84 7.21 6.89 7.34 7.42 6.68 9.38 7.12 6.97 8.24 8.58
Median 7.09 9.17 6.60 6.89 6.64 7.00 7.03 6.43 9.02 6.79 6.71 7.82 8.16
Mode 5.98 8.33 6.26 5.79 5.96 6.04 6.67 5.85 9.18 6.28 6.33 7.55 7.01
StDev 3.39 4.57 2.98 3.28 2.98 3.34 3.37 2.96 4.43 3.17 3.01 4.04 4.06

Kurtosis 0.07 0.16 0.33 0.56 0.30 0.51 0.64 0.37 0.07 0.47 0.41 0.19 0.35
Skewness 0.48 0.54 0.49 0.60 0.49 0.61 0.65 0.52 0.48 0.59 0.51 0.56 0.59

Range 27.55 36.26 27.68 29.61 25.85 30.06 31.27 28.41 35.46 29.64 26.67 32.80 31.24
Below vc 8.73% 5.29% 8.83% 8.37% 8.39% 8.21% 7.48% 9.71% 5.99% 7.98% 8.08% 8.34% 6.74%

Operating 91.20% 92.54% 91.15% 91.52% 91.59% 91.67% 92.35% 90.28% 92.41% 91.95% 91.89% 91.06% 92.35%
Above vf 0.06% 2.17% 0.02% 0.11% 0.02% 0.12% 0.17% 0.01% 1.60% 0.06% 0.03% 0.60% 0.91%

Average Annual Production MW 8532 10,883 7767 8284 7843 8471 8566 7499 10,756 8150 7977 9525 9951
#average homes served 2031 2591 1849 1972 1867 2016 2039 1785 2561 1940 1899 2267 2369
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Sample wind power results are shown as a function of the season in Figure 9, again
using Dublin Airport as an example.
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Figure 9. Diurnal variation of wind energy at 110 m: capacity factor (left axis in black) and wind
speed at 110 m height (right axis in blue) over Dublin Airport during (a) winter (DJF), (b) spring
(MAM), (c) summer (JJA), and (d) autumn (SON) seasons.

Capacity factors were approximately 10%–15% higher in the cooler seasons (winter
and autumn) higher compared to the warmer seasons (spring and summer). On a 24-hour
cycle, average wind power dipped during early evening hours (16–18 IST), especially
during the summer months. Additionally, a small dip was noticed during morning hours
(05–07 IST). However, this pattern did not exist every month. Individual monthly traces
of hourly average wind power at other stations also did not have a consistent pattern
throughout the year. On average, at Dublin Airport, wind energy was slightly higher
around noontime (±2 h). The diurnal pattern is more pronounced at inland stations such
as Mount Dillon.

Figure 10 shows the results for the other 12 locations and demonstrates the variation
between stations. All stations except Wexford and Malin Head exhibited pronounced
diurnal variability in the wind energy capacity factor with a peak at 14 IST, i.e., a time
when the maximum amount of energy was generated. Higher capacity factors were
recorded in coastal station Belmullet, with the lowest capacity factors estimated in Kilkenny.
Capacity factors at the inland stations (Kilkenny, Cork, Birr, Clones, and Mount Dillon)
were approximately 10%–20% lower than at coastal stations.
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Figure 10. Diurnal variation of wind energy capacity factor (left axis) and wind speed at 110 m height
(right axis) over 12 different locations as shown in Figure 1 (except Dublin Airport). In all panels,
the blue color shows wind speed at 110 m height, and black shows wind energy capacity factors.
Subfigures (a–l) show the 12 locations. The location name is shown on the top left of each subfigure.

4. Discussion

This research paper assesses how good the representation of wind speed from various
publicly available datasets is in comparison to observations. The objective is to support
LECs in their initial evaluation of site suitability. Table 6 shows that across Ireland, a wind
turbine such as the Vestas 110 m offers the potential to a LEC to meet the electricity needs of
several thousand homes. Wind assessment should be based on long-term time-series data.
Short periods consisting of a few years may hide variations from the long-term average and
consequently lead to inaccurate wind estimation and poor outcomes for the LEC. Longer
periods yield more representative results.

Moreover, understanding the diurnal variations and their predictability is of key im-
portance for the integration and optimal utilisation of wind in the power system. Figure 11
shows representative electricity demand load profiles for residential consumers in Ireland.
The profiles are created from a smart meter consumer behaviour trial in Ireland; the data
are available from [39]. The electricity load profiles show diurnal patterns with midday
peaks that coincide with high wind capacity factors. However, the evening peaks coincide
with dips in the wind capacity factors. The wind variation is largely due to the fact that
temperature differences, e.g., between the sea surface and the land surface, tend to be larger
during the day than at night.
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Utilising the long-term measurements (2009 to 2016), we found that ERA-5 outper-
formed the other sources in Ireland. We found the highest correlation, IOA values, and
lowest RMSE values. The choice of dataset to use is important for LECs in their initial wind
energy assessment. An overestimation in wind speed during the night often changes to an
underestimation in wind speed during daytime hours and vice-versa, see Figures 5 and 6.
A false representation of vertical mixing in the lower atmosphere in the models and surface
friction, local topography, and many other factors are responsible candidates for these
biases. After sunrise, the observed wind speeds increase faster than all other reference
datasets. This increase is due to turbulent mixing between different vertical levels, where
higher wind speeds are entrained from faster wind speed layers higher up in the atmo-
spheric boundary layer, causing the wind speed at the surface to become faster.

In this paper, we only considered wind-to-power. There are times when electricity
demand is low, and wind generators may be instructed to curtail production. Curtailment
instructions may also be issued for technical or other operating considerations such as
the system’s nonsynchronous penetration limit. There are opportunities to explore how
wind energy could be stored or converted to other forms to reduce curtailment and im-
prove the cost benefits for wind generators generally or how a renewable energy mix
and storage could be combined to serve the LECs needs. As noted, the adoption of low
carbon technologies is expected to significantly change both the demand value and time
of occurrence. Further research is needed to understand how best to match the available
renewable generation with the demand.

We have not explored the difference between the wind power estimates and the
actual power produced. The actual performance may differ from that specified by the
manufacturer under laboratory test conditions since each site has multiple variables that
influence the wind farm performance. There is a gap that needs to be assessed as estimates
are often too optimistic and decision support for long-term investments by the energy
communities [40].

In future work, we aim to explore additional datasets for the European region and
to explore the biases by season, time of day, and particularly by location. Issues in using
ERA-5 data at more challenging sites such as mountains, hills, or ridges are noted in [41]
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in which it is shown that land-use complexity may negatively affect ERA5 wind energy
prediction skills even more so than topography complexity. This will allow us to design
more accurate methodologies to support LECs.

5. Conclusions

This paper aims to raise awareness of the importance of selecting the most suitable
reference dataset. Acquiring the most accurate weather data is important to support the
LECs decision-making. All the evaluated reference datasets capture the observed wind
speed variation and diurnal and seasonal cycles at the selected four locations in Ireland.
The statistical metrics suggest that ERA-5 outperforms other datasets for wind speed. We
select ERA-5 as the most suitable publicly available data source for initial site evaluation by
LECs in Ireland. However, the biases in the models need further investigation; the analysis
of spatial grid behavior differences is beyond the scope of this paper and will be considered
for future work

The poorest skill scores and an anomaly at 100 and 110 m wind speeds were noted
in NEWA data. The highest resolution dataset may not necessarily be the most accurate.
Results also highlight the variability in skill for different locations in Ireland.
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Abbreviations
The following abbreviations are used in this manuscript:
3D VAR Three-dimensional Variational Assimilation
4D VAR Four dimensional Variational Assimilation
DJF December, January, February
ECMWF European Centre for Medium Range Weather Forecasts
ERA ECMWF Reanalysis
EU European Union
GOES Goddard Earth Observing System Model
IOA Index of Agreement
IST Irish Standard Time
JJA June, July, August
JRC Joint Research Community
LEC Local Energy Community
LEM Local Energy Model
MAM March, April, May
ME Mean Error
MERA Met Éireann Reanalysis
MERRA Modern Era Retrospective Reanalysis
NASA National Aeronautics and Space Administration
NECP National Energy and Climate Plan
NEWA New European Wind Atlas
PVGIS PhotoVoltaic Geographical Information System
R Correlation Coefficient
REC Renewable Energy Community
RES Renewable Energy Source
RMSE Root Mean Square Error
SON September, October, November
WRF Weather Research and Forecasting
WS Wind Speed
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