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A B S T R A C T

Advanced models of Artificial Intelligence enable systems of IoT to work with great flexibility to the needs of
users. In this article we present our developed IoT system for driving support by the use of type-2 fuzzy logic
control module. We have developed the IoT system to collect the data about driving conditions and evaluate
them adjusting to the needs of user. Applied module of fuzzy logic of the second type was used in analysis
of accelerometers signals to flexibly adjust to uncertainty of evaluation of driving expectations of each driver.
Our developed system was tested in different cars by driving on various roads and results show excellent
efficiency.
1. Introduction

Development of real-time Internet of Things (IoT) applications im-
proves technological advances in intelligent transportation and car
diagnostic systems. We can read about recent ideas which make Cyber–
Physical Systems (CPS) not only supportive to humans but also predic-
tive in potential malfunctions of appliances that we all use in our daily
routine. In smart car IoT systems are developed by using sensors and
devoted smart technologies to compose innovative control processing.

IoT systems for cars can work with many different features used in
control and diagnostics to autonomous driving aspects. In Cao et al.
(2020) was presented a model for smart front detection by using
Singular Spectrum Decomposition (SSD) model. Model explained in
Luque-Vega, Michel-Torres, Lopez-Neri, Carlos-Mancilla, and González-
Jiménez (2020) was using SPIN-V sensors to improve procedure of safe
parking. We can also implement models which will prevent collisions
and help to maintain elements of car engine and suspension in good
conditions. Idea presented in Krishnan (2018) was based on readings
from ultrasonic sensor which measured distances to objects and helped
in managing of safe drive. Very important for smart cars is also design
of software. In practice we can use operating system in smartphones
and just implement apps to connect to car sensors, i.e. Minnetti et al.
(2020) proposed a smartphone based flush measurement to improve
car body assembly procedure. System presented in Saeliw, Hualkasin,
Puttinaovarat, and Khaimook (2019) was developed as mobile app to
support parking procedure by using rfid infrastructure. In Xu et al.
(2020) was presented an interesting discussion on networking, com-
munication and applicable wireless technologies which serve as data
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transfers for smart cars. The model presented in Olivares-Rojas, Reyes-
Archundia, Gutiérrez-Gnecchi, González-Murueta, and Cerda-Jacobo
(2020) used 5G internet infrastructure to improve smart metering of
multi-tire objects. A spectrum of control solutions in car development
was presented in Gupta, Benson, Patwa, and Sandhu (2019). Future
aspects and perspective possibilities for car technologies were discussed
in Ooi (2019).

The vast majority of publications on testing the road surface quality
concern the use of accelerometers built into smartphones, as described
in the review (Harikrishnan & Gopi, 2017; Sattar, Li, & Chapman, 2018;
Wang, Huo, Li, Wang, & Wang, 2018). In some of described works,
portable devices are mounted in standard holders and the data from
the accelerometer is taken into analysis. The weakness of such solution
is repeatability of measurements due to the difficulty of ensuring the
same orientation of the smartphone in the vehicle at all measurements.
Mechanical design of holder can also significantly affect quality of the
data, which may additionally dampen or cause vibrations. Another
approach is to determine quality of the road surface on the basis of
recorded vibrations, regardless of the location of the smartphone in the
car. Such approach requires use of methods that normalize orientation
of the smartphone in relation to the car, which requires additional
calculations and thus implies errors related to it. In this respect, at our
work, we propose a novel approach to IoT infrastructure of wireless
sensors, thanks to which it is easy and uncomplicated to install the
system in the car. Contrary to smartphone-based solutions, in our case
accelerometers are rigidly attached to the structural elements. Thanks
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Fig. 1. System operation diagram of the proposed road anomaly detection system based on the type-2 fuzzy logic model.
to this, the elements of the measuring system do not move in relation
to the car’s structural elements. As a result of our proposed mounting
method, we do not cause vibrations that would additionally disturb the
test results. Our approach also guarantees repeatability of test results
for a given vehicle.

1.1. Related works

In various application, the most efficient control models are re-
ported for development by the use of fuzzy systems. This type of
Artificial Intelligence (AI) is based on expert knowledge and can be
efficiently modeled to solve control tasks considering changing condi-
tions. We can read about smart grid controls applied in cars to help
manage the load (Ali, Adnan, Tariq, & Poor, 2020), while a fuzzy
model presented in (Sun, Qiang, Xu, & Lin, 2020) was monitoring
condition of a train. Fuzzy systems are presented in diagnostics for
engine maintenance and prediction of potential malfunctions. In Xiao,
Cao, and Jolfaei (2020) was discussed how to model prediction of
fault by using fuzzy approach, while in Zhang, Sun, et al. (2019) was
presented an idea of deep fuzzy architecture for decision-making in
machinery fault diagnosis. Fuzzy system proposed in Shen, Xing, Wu,
Xu, and Cao (2019) was able to use static output in time shifting
domain to control electric circuits, while model proposed in Zhang,
Shi, Shen, and Wu (2019) was developed for actuator control. In car
applications we can see a variety of potential fuzzy interfaces. The
idea presented in Alyas et al. (2019) used Mamdani model for IoT
car parking system. Fuzzy interference model presented in Li et al.
(2019) was developed to automate impedance control. Fuzzy systems
are also used in control modules for variety of electric engines. In Qu,
Liu, Zhu, and Zang (2020) was presented how to implement a higher
order fuzzy system for wind turbine monitoring. Developed system
was able to predict condition of the turbine using multidimensional
functions adjusted to variety of features. Due to flexible development
and adjustable nature of fuzzy systems there is a very wide range of
potential applications. We can read about expert systems which help in
more efficient driving. Such models consider many different aspects of
load, driving style, road or condition of the car. Fuzzy system presented
in Mao, Dou, Yang, Tian, and Zong (2020) was developed to consider
aeroservoelastic characteristic of a vehicle to improve driving, while
the model proposed in Stan, Suciu, and Potolea (2019) discussed smart
driving for connected cars.

The road surface quality detection process is complicated and not
easy. Mostly it works based on the use of smartphones and individual
measurement infrastructure, two basic directions of analysis can be
found:

• First is based on threshold values recorded by the sensors,
• Second is machine learning based approach.
2

The first group of tests is sensitive to a large variety of cars, different
driver skills and other individual characteristics. As a result, application
of this approach is not flexible and may not fit all cases. The second
group related to machine learning is also sensitive due to the driver’s
driving style and individual skills, quality of car suspension compo-
nents, which in practice leads to the need for multiple databases. Thus,
applicable methods of artificial intelligence should be flexible to change
of driving style, car speed, etc. In Badurowicz, Montusiewicz, and Kar-
czmarek (2020), the use of type-1 fuzzy logic to detect anomalies on the
road was proposed. This work concerns performance of measurements
with the use of a smartphone and the model itself combines fuzzy
sets with assumed threshold based on expert knowledge. In addition
to these studies, mention should also be made of works Cui, Han, and
Wang (2019) and Basudan, Lin, and Sankaranarayanan (2017), which
deal with building a general system based on multi-car data collection
and processing in fog. These works do not concern methodology of
substrate quality detection, but concern construction of the system,
assuming model of detection method.

In this article we propose a new method of identifying anomalies on
the road based on type-2 fuzzy system. Fuzzy sets of type-2 can be used
in case of problems with uncertainty of measurement or subjectivity of
their interpretation (Sanchez, Castillo, & Castro, 2015). Fuzzy sets of
the second type naturally take into account variety of features related
to user’s driving style, car suspension features (different damping of
vibrations), etc. The rules of the proposed system depend not only on
the fuzzy values recorded by accelerometer system for accelerations in
three axes, but also on fuzzy values of the speed of test vehicle. The idea
presented in this paper is focused on smart driving. Proposed system is
able to notify drivers about quality of the road and possible obstacles or
anomalies on the road surface on the way. For this purpose, our system
is using GPS location module and our developed IoT infrastructure.
The research vehicle was equipped with accelerometers which measure
driving features. The analog signal was assigned to the position data
from GPS and then processed by the type-2 fuzzy logic analysis system
implemented in Raspberry Pi microcomputer. The fuzzy logic of the
second type was used for the analysis due to the specific nature of
the measuring data and the uncertainty resulting from the individual
driving behavior of each driver and individual damping characteristics
in various types of test vehicles. General idea is shown in Fig. 1. We
have tested this system in various road conditions to verify our model.
Results show that proposed solution is efficient and perspective in
further development.

2. System concept

The concept of our system 1 is based on commonly available GPS
systems. General idea is presented in Fig. 2. We have developed IoT
system for monitoring quality of road surface while driving. For the
implementation of the system, it was assumed that individual vehicles



Expert Systems With Applications 207 (2022) 117798M. Woźniak et al.
registered in the system would be equipped with the necessary IoT in-
frastructure. Additionally, the implementation of our IoT was assumed
based on simple, generally available sensors, e.g. accelerometers from
the Arduino platform. The system is marking characteristic places on
roads in the context of the surface quality by using GPS location system
therefore it is necessary to access the Internet while traveling.

It was assumed that the data obtained by many users would be
processed in order to correctly identify the quality of the pavement.
The system user will be informed on an ongoing basis about possible
anomalies on the road in a certain environment. In addition, the system
allows users to view the history of traveled routes, taking into account
the recorded overloads, anywhere on the route. A local application
running on the Raspberry Pi microcomputer monitors the reading from
each of the built-in sensors on an ongoing basis and, thanks to the
developed type-2 fuzzy inference system, determines the current condi-
tion of the surface. After identification of anomaly encountered while
driving sends this information to the data server in a cloud to mark the
place for other system users. The server application is responsible for
processing of data reported by individual vehicles. This data is collected
and, after analysis, made available to vehicles in specific locations.

As part of the project, measuring equipment installed in different
cars was prepared in two variants. One variant of the apparatus uses
one accelerometer mounted in the vehicle cabin and it is installation is
limited to attaching the measurement module to any structural element
in the vehicle cabin. The second variant is a more complex and consists
of five accelerometers, four of which are mounted on the vehicle’s
suspension components. Both variants are independent of the car’s
structure and their assembly consists only in the permanent (play-free)
attachment of sensors to the appropriate vehicle components. Sample
idea of our developed IoT infrastructure is presented in Fig. 3.

The central part of the system is server module and is available
to all registered users. Local apps from each car in the network send
to the server current data about the condition of the pavement in
specific locations and report all identified and unidentified anomalies.
The server application, after logging in, allows the user to view all
recorded routes on the map. For the selected route, it is possible to
view graphs of vibrations recorded in a certain vicinity of this point and
the vehicle speed graph plotted in the same area. On the basis of these
data, the type-2 fuzzy system determines the condition of the pavement
quality.

The system can be used for ongoing monitoring of the surface
condition, which could be used by appropriate road services. Repeated
reports of anomalies in a given place probably indicate the need to
check the road quality in the indicated place and the need to improve
it. From the perspective of road users, information on the quality of the
surface could be included in packages of commonly used car navigation
systems.

3. Developed IoT cyber–physical system

The central unit of the measurement IoT infrastructure is a Rasp-
berry Pi minicomputer with access to the Internet via GSM network.
The solution uses a Raspberry Pi version 4 model B with 4 GB of RAM.
The local server (microcomputer) has two basic functions. On the one
hand, it is responsible for collecting data from other modules with
which it communicates via WiFi network. The Raspberry Pi acts as an
Access Point creating a subnetwork for the rest of the modules mounted
in the vehicle. In addition, Raspberry Pi has an application which
processes the acquired data recorded by accelerometer modules and
the GPS module, and performs local analysis of current data. Result of
type-2 fuzzy logic expert system is sent in the appropriate format to the
server application located in the cloud. The measurement infrastructure
is be equipped with a localization module. The implemented solution
uses the GPS system. Later in the work, the location module will be
called the GPS module.
3

Fig. 2. The figure shows a diagram of the concept of the safe driving assistance system.
Our system reads the location of the vehicle from the GPS module. Based on the
positioned sensors and the proposed model of the fuzzy logic of the second type, our
system examines whether the vehicle is subject to excessive fluctuations while driving
on any part of the road. If the evaluation of the system is conclusive, this section is
marked on the map so that the driver can be warned about possible potholes or poor
road conditions in the future.

The schematic diagram of the IoT infrastructure for a single vehicle
is shown in Fig. 4. This diagram shows all the possible modules used
in both variants of our solution. Modules necessary in each of solutions
are framed with a solid line, optional modules with a broken line.

All overload modules use the Arduino GY-61 accelerometer. At the
output, this module has three analog signals representing overloads in
three perpendicular axes. This signal is received by the ATiny 13 micro-
controller. The accelerometer outputs are connected to three different
inputs of the analogical-digital converter which the microcontroller is
equipped with. The ATiny 13 microcontroller is connected to the ESP
8266 WiFi communication system. The program implemented by the
ATiny 13 microcontroller works in such a way as to obtain the highest
possible sampling frequency of signals from the accelerometer. For this
purpose, the process of sampling and sending data was implemented
in such a way that during the sampling of the signal from one input,
the result of the previous sampling is sent to ESP 8266. The software
output of the ATina 13 serial port is connected to the hardware input
of the ESP 8266 serial port including mentioning the operation of the
program implemented by the ESP 8266 module.

Due to the fact that only some cases are interesting for the op-
eration of the system, given accelerometer modules operate in such
a way that all samples go to the ESP 8266 memory, where they are
buffered and their maximum and minimum values are determined for
each subsequent second and such data is sent to a local application
running on the Raspberry Pi and the local Artificial Intelligence system
operates based on this data. The overloads registered by the internal
accelerometer module are significantly damped by the vehicle’s sus-
pension system. The four remaining accelerometer modules are placed
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Fig. 3. Construction of our IoT system built into a test car. The aim is to create a system for notifying users about the quality of roads and about possible obstacles or other
anomalies on the road surface causing vibrations. For this purpose, a system was created based on GPS location module and IoT infrastructure with accelerometers sensors. A
vehicle is equipped with one or more accelerometers which measure the overload while driving the vehicle on an ongoing basis. The analog signal is assigned to the position data
and then processed by the type-2 fuzzy logic in local analysis system implemented in the Raspberry Pi microcomputer.
Fig. 4. Schematic diagram of implemented IoT measurement modules with the location of their installation in the vehicle. As our system can be installed in different versions,
optional modules are marked with a dashed line.
on the suspension elements so that the accelerometer is placed on the
elements the vibrations of which are damped only by the tire of the
wheel. Therefore, it was assumed that the data downloaded from the
accelerometer internal module are used by the local application as a
criterion for detecting any anomalies. This means that exceeding the
set level of overloads (max and min from 1 s) in the vehicle cabin
(subjectively felt by the vehicle moving) triggers the download of data
4

buffered in the memory of the ESP 8266 system within 5 s. ESP 8266
program cyclically buffers data from the last 5 s. The data download
signal causes the data to be buffered for another two seconds and then
the data from the entire buffer is sent to the local application. The
local application, based on the data from the last 5 s, for each of the
wheels carries out an analysis and possible identification of the existing
anomaly.
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The GPS module works independently of the other modules. It was
created based on the GY-NEO6MV2 board of the Arduino platform.
As in the previous modules, communication with the local application
takes place via the WI-FI network. For this purpose, the serial port of
the GY-NEO6MV2 module has been connected to the serial input of the
ESP 8266 system, which sends the recorded data to the local server.
The local application combines geolocation data with the results of
congestion measurements, which is necessary to assign anomalies to
the travel routes.

Measurement data is analyzed on an ongoing basis by a system
based on type-2 fuzzy logic. The output from the system is information
about the quality of the road in the examined place. The fuzzy logic of
the second type was used for the analysis due to the specific nature of
the measuring data and the uncertainty resulting from the individual
driving behavior of each driver and individual damping characteristics
in various types of test vehicles. Detection of poor road quality by the
fuzzy system in the case of using the variant with five accelerometers
results in the analysis of data from four additional accelerometers. The
data buffered for 5 s in the ESP8266 systems are then sent to the
Raspberry Pi and analyzed for possible determination of the nature
of the obstacle. For this purpose, a decision-making system based on
the created rules was created. In the case of the variant with one
accelerometer installed in the cabin of the vehicle, only the analysis
is performed based on the type-2 fuzzy system to determine the quality
of the surface.

4. Developed type-2 fuzzy logic control module

The article proposes a fuzzy inference system of the second type,
which allows decision making process based on measurement data from
vehicle speed and overloads recorded by the accelerometer installed
in the car cabin, with particular emphasis on overloads in the axis
perpendicular to the ground on which the vehicle is moving. Due to
the fact that our analysis will be carried out in different cars, driven by
different drivers with individual personal characteristics affecting the
driving style, we decided to use the type-2 fuzzy logic with the interval
function of belonging to the second order. These sets will be the best
choice to take into account a certain measurement uncertainty and take
into account the diversity of features of individual vehicles and drivers.

4.1. Theoretical introduction to the developed model of type-2 fuzzy logic
control system

In order to describe the concept of operation of the proposed fuzzy
system, we will first introduce the mathematical description of type-2
fuzzy sets. Due to the fact that the membership function is a type-1
fuzzy set, they model the measurement uncertainty better than type-1
fuzzy sets.

Fuzzy set 𝐴̃ type-2, that 𝐴̃ ⊆ 𝑋, where 𝑋 is decision space we define
a set of pairs:
{

𝑥, 𝜇𝐴̃(𝑥)
}

, (1)

where 𝑥 is element of fuzzy set, and membership function 𝜇𝐴̃(𝑥) to the
fuzzy set 𝐴̃ is type-1 fuzzy set defined in 𝐽𝑥 ⊂ [0, 1]. It means, that

𝜇𝐴̃(𝑥) = ∫𝑢∈𝐽𝑥
𝑓𝑥(𝑢)∕𝑢. (2)

To illustrate the definition of the fuzzy set of the second type, we
present main idea of uncertainty in measurement represented in type-2
fuzzy model in Fig. 5, where the upper figure shows an exemplary fuzzy
set of the second type (marked in gray). The point 𝑥1 was marked here
and 𝐽𝑥1 = [𝑦1, 𝑦2] the domain of the second type of uncertainty function,
the two examples of which are presented in the form of a triangular
function in the lower left figure and an interval function in the lower
right figure, is marked for it. In the case of interval type-2 fuzzy sets,
5

Fig. 5. The upper figure shows an example of type-2 fuzzy set, where 𝐽𝑥1 is marked for
the point 𝑥1 where the secondary membership function is specified, the two examples
of which (triangular function — left and interval function — right) are shown in the
figures below.

the membership function is an interval function, i.e. a constant in the
field 𝐽𝑥1 .

In our considerations, we will use interval type-2 fuzzy sets. In the
inference system we propose, that fuzzy values will be composed for
the speed of the car, and the values of the 𝑍 axis (perpendicular to
the ground on which the car moves) and the 𝑋 𝑌 axis recorded by the
accelerometer. The surface quality function will also be defined as the
fuzzy set of the second type.

Another theoretical concept important for the implementation of the
proposed fuzzy system is the concept of the trace of uncertainty.

Let 𝐽𝑥 ⊂ [0, 1] denotes the basic affiliation of 𝑥. The trace of
uncertainty 𝑆𝑁 of a fuzzy set type-2 𝐴̃ ⊆ 𝑋, is a limited area composed
of all points of the basic affiliation of 𝑥 elements:

𝑆𝑁(𝐴̃) =
⋃

𝑥∈𝑋
𝐽𝑥. (3)

In Fig. 5 the trace of uncertainty for the presented set has the form
of an area marked in gray. In practice, the trace of uncertainty is
the domain of numerical calculations for a given fuzzy set of type-2.
Another theoretical aspect necessary to build a fuzzy inference system
is the sum and product operation defined for fuzzy sets of the second
type.

Let sets 𝐴̃ i 𝐵̃ are defined:

𝐴̃ = ∫𝑥∈𝑋

(

∫𝑢∈𝐽 𝑢
𝑥

𝑓𝑥(𝑢)∕𝑢

)

∕𝑥, (4)

𝐵̃ = ∫𝑥∈𝑋

(

∫𝑣∈𝐽𝑣
𝑥

𝑔𝑥(𝑣)∕𝑣

)

∕𝑥. (5)

Sum of sets 𝐴̃ i 𝐵̃ is a fuzzy set type-2 of membership function:

𝜇𝐴̃∪𝐵̃(𝑥) = ∫𝑢∈𝐽 𝑢
𝑥
∫𝑢∈𝐽𝑣

𝑥

𝑓𝑥(𝑢)
𝑇
∗ 𝑔𝑥(𝑣)∕𝑢

𝑆
∗ 𝑣. (6)

Intersection of sets 𝐴̃ i 𝐵̃ is a fuzzy set type-2 of membership function:

𝜇𝐴̃∩𝐵̃(𝑥) = ∫𝑢∈𝐽 𝑢
𝑥
∫𝑢∈𝐽𝑣

𝑥

𝑓𝑥(𝑢)
𝑇 ∗

∗ 𝑔𝑥(𝑣)∕𝑢
𝑇
∗ 𝑣, (7)

where 𝑇 ∗ is 𝑡-norm for 2nd type membership.
In our considerations for interval type-2 fuzzy sets, we used the

minimum operation as 𝑡-norm and the maximum operation as 𝑠-norm.
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Fig. 6. The charts show the traces of uncertainty of the proposed fuzzy sets of type-2 for the measured quantities. Sequentially from the left we have a representation of speed,
overload in the direction perpendicular to the ground (𝑍 axis) and maximum overload in the direction of movement (𝑋 axis) and overload in the direction perpendicular to the
direction of movement and the ground (𝑌 axis).
Fig. 7. Applied reasoning by using our proposed fuzzy inference system of the second type.
4.2. Reduction from type-2 to type-1, and defuzzification

Another important stage in creating the inference system is possi-
bility of sharpening obtained result.

Defuzzification of type-2 fuzzy sets consists of two stages: reduction
of type-2 to type-1 and then sharpening of type-1 set. Assuming the
discretization of the 𝑋 set to the 𝑅 set, the values 𝑥1,… , 𝑥𝑅, the fuzzy
set of type-2 𝐴̃ can be written:

𝐴̃ =
𝑅
∑

𝑘=1

[

∫𝑢∈𝐽𝑥𝑘
𝑓𝑥𝑘 (𝑢)∕𝑢

]

∕𝑥𝑘. (8)

The set resulting from the reduction of the type is called a centroid.
For the discrete form of the set 𝐴̃, centroid is a set of type-1 and has
the form:

𝐶𝐴̃ = ∫𝜃∈𝐽𝑥1
…∫𝜃∈𝐽𝑥𝑅

[𝑓𝑥1 (𝜃) ∗ … ∗ 𝑓𝑥𝑅 (𝜃)]

/

∑𝑅
𝑘=1 𝑥𝑘𝜃𝑘
∑𝑅

𝑘=1 𝜃𝑘
. (9)

Based on approach discussed in Torshizi, Zarandi, and Zakeri (2015)
on type reduction algorithms and considering that our system was
designed for interval type-2 fuzzy sets, we will use Karnik–Mendel
algorithm for reduction. Assuming that the secondary membership
functions are interval centroids, it has the form of an interval and can
be determined based on the iterative Algorithm 1.
6

4.3. Proposed type-2 fuzzy logic reasoning system

Prosed type-2 fuzzy logic reasoning was built according to the
scheme shown in Fig. 7. We assume that all the sets used in the
proposed model are fuzzy sets of type-2 for which the secondary
membership function is an interval function. First, the input data speed
and overloads registered inside the car must be blurred. It should be
emphasized here that by entering the fuzzy system, the following are
determined in 1 s time intervals: the maximum module overload values
in the direction perpendicular to the ground (𝑍 axis) and the maximum
module overload value recorded in the directions consistent with the
vehicle motion (𝑋 axis) and perpendicular to it and the ground (axis
𝑌 ):

𝑎𝑚𝑎𝑥𝑍 (𝑡𝑖) = max
{

|𝑎𝑍 (𝑡)|, < 𝑡𝑖 ≤ 𝑡 < 𝑡𝑖+1
}

, (10)

𝑎𝑚𝑎𝑥𝑋𝑌 (𝑡𝑖) = max
{

|𝑎𝑋 (𝑡)|, |𝑎𝑌 (𝑡)|, < 𝑡𝑖 ≤ 𝑡 < 𝑡𝑖+1
}

, (11)

where 𝑡𝑖 is 𝑖 second in iteration.
For the proposed reasoning, fuzzy sets of the second type represent-

ing the measured values were defined. Traces of uncertainty of these
clusters are presented in Fig. 6. The first from the left concerns the
vehicle speed, the middle one — overloads in the 𝑍 axis. The figure on
the right shows the traces of uncertainty for the fuzzy sets representing
the maximum overloads towards the 𝑋 axis and the direction of the 𝑌
axis.
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Table 1
Developed knowledge base for proposed driving support considering condition of the road.

Velocity Acceleration 𝑍

Very low Low Medium Hight Very hight

Very slow – Bad Very bad Very bad Very bad

Slow –

Acceleration 𝑋𝑌

Low Med. Hight

– Bad V. bad

Bad Very bad Very bad

Medium

Acceleration 𝑋𝑌

Low Med. Hight

– Bad V. bad

Acceleration 𝑋𝑌

Low Med. Hight

Good Accept. Bad

Acceptable Bad Very bad

Fast Very good

Acceleration 𝑋𝑌

Low Med. Hight

V. good Good Accept.

Acceleration 𝑋𝑌

Low Med. Hight

Good Accept. Bad

Acceptable Bad

Very fast Very good Very good

Acceleration 𝑋𝑌

Low Med. Hight

V. good Good Accept.

Acceleration 𝑋𝑌

Low Med. Hight

V. good Good Accept.

Accept.
Algorithm 1 Type reduction algorithm
Input: discretized type-2 set with interval function of secondary

membership: 𝐴̃ Eq. (8) on decision space 𝑋 =
{

𝑥1, 𝑥2,… , 𝑥𝑅
}

. Let:

𝑠(𝜃1,… , 𝜃𝑅) =
∑𝑅

𝑘=1 𝑥𝑘𝜃𝑘
∑𝑅

𝑘=1 𝜃𝑘
.

Output: set of type-1 in the form of a range [𝑥𝑙 , 𝑥𝑟].
Initialization: Calculate

𝜃𝑘 =
𝜃𝑘 + 𝜃𝑘

2
, for 𝑘 = 1,… , 𝑅

and calculate 𝑠0 = 𝑠(𝜃1,… , 𝜃𝑅) Eq. (1) and assume that 𝑠1 = 𝑠0 + 1
while 𝑠0 ≠ 𝑠1 do

Find 𝑗 that 𝑥𝑗 ≤ 𝑠0 < 𝑥𝑗+1
for 𝑘 = 1 to 𝑗 do

𝜃𝑘 = 𝜃𝑘
end for
for 𝑘 = 𝑗 + 1 to 𝑅 do

𝜃𝑘 = 𝜃𝑘
end for
𝑠1 = 𝑠(𝜃1,… , 𝜃𝑅)

end while
𝑥𝑟 = 𝑠0
Repeat Initialization.
while 𝑠0 ≠ 𝑠1 do

Find 𝑗 that 𝑥𝑗 ≤ 𝑠0 < 𝑥𝑗+1
for 𝑘 = 1 to 𝑗 do

𝜃𝑘 = 𝜃𝑘
end for
for 𝑘 = 𝑗 + 1 to 𝑅 do

𝜃𝑘 = 𝜃𝑘
end for
𝑠1 = 𝑠(𝜃1,… , 𝜃𝑅)

end while
𝑥𝑙 = 𝑠0
Return defuzzified set of type-1 has the form of a range [𝑥𝑙 , 𝑥𝑟].

The road quality was also described with the use of type-2 fuzzy
sets. Traces of uncertainty of the fuzzy functions for this parameter are
shown in Fig. 8.

The knowledge for our expert system is represented by rules written
7

in the general form:
Fig. 8. Traces of uncertainty of the proposed type-2 fuzzy sets for road quality.

IF velocity is V AND acceleration 𝑍 is 𝑎𝑚𝑎𝑥𝑍
AND acceleration 𝑋𝑌 is 𝑎𝑚𝑎𝑥𝑋𝑌 THEN quality of road is 𝑄

All rules for fixed input values are listed in Table 1, where the − sign
means that nothing can be said about the quality of the road in this
case.

The iterative algorithm described in the previous section was used
to sharpen the result. Fig. 9 shows 4 example drawings illustrating the
calls of the fuzzy system with the black line marked visualizing the
operation of the sharpening algorithm.

5. Experimental results

The research confirms effectiveness of the proposed method. Our
tests were carried out for 5 different passenger cars. The tests lasted 6
months and the cars covered a total distance of 52,350 km. The basis
for the research were fixed routes for the participants of the experiment
along the home work route, which allowed to test the effectiveness
of the proposed system. Two of the experimental cars were equipped
with a system of additional 4 accelerometers which, apart from the
overloads measured in the vehicle cabin, measured overloads on each
of the vehicle wheels without taking into account vibration damping
by the vehicle suspension system. The second version of the system
is expanded by an additional 4 accelerometers. The advantage of the
proposed expansion of the system is the additional ability to detect
not only poor-quality surface — because it is similarly provided by
the system in the first version, but the identification of the type of
obstacle thanks to a thorough analysis of overloads on all 4 wheels of

the car. The accuracy of the method was determined on the basis of 10
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Fig. 9. A few sample illustrations showing the operation of our developed inference system, with black lines showing the operation of the sharpening algorithm.
Fig. 10. Waveforms of overloads for individual wheels along the axis perpendicular to the surface, with marked mean (blue line), standard deviation (dashed gray lines) and
anomaly detection threshold (red dotted lines) for a very poor condition of the road (damaged railway crossing).
test route sections, each of them approximately 20 km long. On these
routes, after 10 test runs, the anomalies were marked manually. For
each route, 20 representative points (being anomalies and representing
an acceptable quality) were selected. Then, many test runs (100 runs)
were made on these routes. Due to the fact that the GPS measurement
is performed with a frequency of 1 Hz and assuming that the maximum
speed of the car does not exceed 40 m/s and taking into account the
accuracy of GPS measurements, we treat two points on two different
routes as similar if the distance between them is not greater than
50 m. At the stage of marking the route, the point of the anomaly was
determined as the average of the latitude and longitude determined by
the GPS sensor in 10 test runs. In this way, determining the similarity of
the run as the accuracy of the method, we define the arithmetic mean
of the accuracy of detecting each of the anomalies occurring on all test
routes, where the accuracy of detecting a single anomaly meant the
percentage share of anomalies correctly marked by the system to all
8

performed tests.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 100

∑𝑁
𝑖=1

∑𝑘𝑖
𝑗=1

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑗𝑖
𝑎𝑙𝑙𝑖

∑𝑁
𝑖=1 𝑛𝑖 ⋅ 𝑚𝑖

% (12)

where 𝑛𝑖 i 𝑚𝑖 mean the number of measurements and the number of
test points for 𝑖-th test section, 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑗𝑖 number of positively identified
surface condition detections in 𝑗-th test point 𝑖 of this route test route
and 𝑎𝑙𝑙𝑖 means the number of all test runs on 𝑖-th of this test route, 𝑁
— the number of routes. For our research, we obtained the score of
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 91%.

We will now present a few examples to illustrate how the system
works. Figs. 13–15 show a screenshot of the application created as part
of the work. The current location of the car is marked with a blue
circle on the map (on the right). The graphs on the left side show the
measurement input data as a function of time expressed in seconds. The
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Fig. 11. Waveforms of overloads for individual wheels in the axis perpendicular to the road, with marked mean (blue line), standard deviation (dashed gray lines) and anomaly
detection threshold (red dotted lines) for the damaged right part of the road-shoulder.
Fig. 12. Waveforms of overloads for individual wheels along the axis perpendicular to the surface, with marked mean (blue line), standard deviation (dashed gray lines) and
anomaly detection threshold (red dotted lines) for a very good quality road-highway.
first three charts show, respectively, the overloads in the 𝑋, 𝑌 and 𝑍
axes, where the shaded area represents the area between the maximum
and minimum overload values determined from the data recorded by
the cabin accelerometer determined at 1 s intervals. The results are
presented as overloads, i.e. they represent the recorded acceleration
value divided by the gravitational acceleration. The last fourth graph
shows the vehicle speed function, expressed in m/s. All four charts
are synchronized. Additionally, the map shows a fuzzy set with its
elevation, which is the result of the operation of the fuzzy system for
the current measuring moment.

We will now present three examples of the system operation for
large anomalies on the road and for a very good quality pavement.
In all of these cases, we will show the results from the accelerometer
9

inside the car and a summary of the exact results from the other 4
accelerometers mounted on all wheels.

The first case concerns the detection of a damaged road at a railway
crossing. The screen shot of the created system is presented in this case
in Fig. 13. The next three charts on the left show the overloads in the
𝑋, 𝑌 and 𝑍 axes, respectively. The fourth graph shows the graph of the
speed of a moving car. The map shows the route and the point in the
vicinity of which the data is plotted on the charts. Additionally, there is
a graph showing the operation of our type-2 fuzzy logic control system.

The detection of a very poor road quality triggered the addition of
data from 4 accelerometers on wheels. For this case, the data is pre-
sented in Fig. 10. From the presented detailed data, the system detected
numerous anomalies on both sides of the road, which corresponded to
a seriously damaged surface at the railway crossing.
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Fig. 13. Result from our system. On the left recorded accelerometers signals in each of axis, on the right GPS positioning result of detection of a large anomaly on the road (used
railroad crossing) with presentation of resulting from our developed type-2 fuzzy logic system.
Fig. 14. Result from our system. On the left recorded accelerometers signals in each of axis, on the right GPS positioning result of detection of a large anomaly on the road
(damaged roadside) with presentation of resulting from our developed type-2 fuzzy logic system.
The second presented case shows the damaged road shoulder. The
screenshot of the system operation is presented in Fig. 14. It can be
noticed here that the car was moving at medium speed and encountered
a large overload in the vehicle cabin. A detailed analysis of Fig. 12
shows result of a significantly greater overload recorded on the right
side of the car (damaged road shoulder).

In addition, as an example, there is also a screenshot showing fast
driving on a highway with a good quality surface. In Fig. 15 we can
see that a very fast car registers small vibrations on the highway. An
accurate record was also triggered by the operator (our fuzzy system
did not report poor road quality) in order to show the readings also
from the accelerometer on the wheels when driving on the highway. A
detailed analysis is presented in Fig. 11.

Table 2 presents comparison of the methods proposed in research
related to the road quality and effectiveness of the developed decision
10
support systems. Compiled data shows that most of related models
which use more complex reasoning approaches do not take into account
the measurement uncertainty caused by different driving styles. In
contrast, our proposed model is more flexible to different conditions
on the road and also can adjust to different driving styles. As a result
of using type-2 fuzzy logic approach we have developed a new model,
which is flexible and reliable at the same time. Results show that
proposed in this article decision support reaches highest effectiveness
among compared models.

6. Conclusions

In this article we present a type-2 fuzzy system for smart driving
support. Proposed system is working in IoT infrastructure of accelerom-
eter sensors placed in a car. Data collected in the car is stored in
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Fig. 15. Result from our system. On the left recorded accelerometers signals in each of axis, on the right GPS positioning result of detection of a no anomaly on the road (highway)
with presentation of resulting from our developed type-2 fuzzy logic system.
Table 2
Comparisons of models developed for road quality detection and their effectiveness.

Article General characteristic Applied model Effectiveness

Our Rule based model Type-2 fuzzy logic control system on accelerometers data and car
geolocation

91%

Wang et al. (2018) Signal transform Mahalanobis–Taguchi System, Daubechies wavelet transform Error 6%

Singh, Bansal, Sofat, and Aggarwal
(2017)

DTW technique Dynamic Time Warping 88.66%

Harikrishnan and Gopi (2017) Threshold-based Fitting Gaussian models to normal roads and comparing
accelerometer sensor data value on 𝑍 component with the mean of
fitted model

Speed dependent error which
increases with increasing speed (up
to 30%)

Devapriya, Babu, and Srihari (2016) Threshold-based Standard deviation of the 𝑍 component of the accelerometer Not provided

Yi, Chuang, and Nian (2015) Threshold-based Two steps of pothole verification based on the standard deviation of
sensor data

Not provided

Bhoraskar, Vankadhara, Raman, and
Kulkarni (2012)

Machine learning SVM Not provided

Perttunen et al. (2011) Machine learning SVM 80%

Mednis, Strazdins, Zviedris, Kanonirs,
and Selavo (2011)

Threshold-based Z-THRESH, Z-DIFF, STDEV-Z 68–90%

Ndoye, Barker, Krogmeier, and Bullock
(2011)

Signal processing Multi-scale CA Algorithm Not provided
data base from which can be shared with other users of the system,
so that results of each driving can be compared to other drivers and
also all users can benefit from shared knowledge of road conditions
in different localizations. Our proposed model is using knowledge
base developed for expert system evaluating road conditions. Proposed
model composition enabled better adjustment to driving style which
may differ for different people. Thus, all the features of driving can
be better evaluated with tolerance to the style of driving of different
people.

Results of our experiments showed that developed system is very
efficient. We have done experiments by using different cars in various
locations. We have also asked various drivers to collect data for us.
Proposed type-2 fuzzy logic system enabled flexible adjustment to var-
ious driving style and various expectations of drivers, however showing
correct result of road condition evaluation in each case.
11
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