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A B S T R A C T   

Vertical displacement is a common concrete slab sidewalk deficiency, which may cause trip hazards and reduce 
wheelchair accessibility. This paper presents an automatic approach for trip hazard detection and mapping based 
on deep learning. A low-cost mobile LiDAR scanner was used to obtain full-width as-is conditions of sidewalks, 
after which a method was developed to convert the scanned 3D point clouds into 2D RGB orthoimages and 
elevation images. Then, a deep learning-based model was developed for pixelwise segmentation of concrete slab 
joints. Algorithms were developed to extract different types of joints of straight and curved sidewalks from the 
segmented images. Vertical displacement was evaluated by measuring elevation differences of adjacent concrete 
slab edges parallel to the boundaries of joints, based on which potential trip hazards were identified. In the end, 
the detected trip hazards and normal sidewalk joints were geo-visualized with specific information on Web GIS. 
Experiments demonstrated the proposed approach performed well for segmenting joints from images, with a 
highest segmentation IoU (Intersection over Union) of 0.88, and achieved similar results compared with manual 
assessment for detecting and mapping trip hazards but with a higher efficiency. The developed approach is cost- 
and time-effective, which is expected to enhance sidewalk assessment and improve sidewalk safety for the 
general public.   

1. Introduction 

Public sidewalks are essential infrastrstructures in cities to provide 
convenience for urban life. Deficiencies of sidewalks will lead to 
inconvinence, disruptions and potential hazards to residents. Hence, it is 
important to monitor and evaluate sidewalk condition such as to take 
necessary maintenance measures to ensure the normal functionality of 
sidewalks. To ensure public sidewalks remain in good conditions, local 
governments usually have their own sidewalk program to assist private 
property owners (who are the maintaining authority of the sidewalk 
adjacent to their property) with concrete slab evaluation and defect 
correction. The typical traditional approach for sidewalk surveying is 
using smart-level and measuring tools, e.g. tapes, to manually take slope 
readings and evaluating the compliance with related regulations. 
However, such manual surveying method takes a long time to assess 

overall conditions of sidewalks, for example, the City of Middleton and 
the Village of Shorewood both require eight years to go through each 
neighborhood (City of Middleton, 2021b; Village of Shorewood, 2021). 

Particularly, vertical displacement, also known as vertical fault, is a 
common concrete slab sidewalk deficiency, which may cause tripping 
hazards and reduce wheelchair accessibility (CCRPC, 2016; City of Sioux 
Falls, 2017; Yates, Fouts, Sehgal, & Mcren, 2017). To be compliant with 
Americans with Disabilities Act (ADA), any vertical displacement of new 
sidewalk concrete slabs (at joints) must be less than 13 mm (1/2 in.) 
(Department of Justice, 2010). Local governments have different crite-
rions (e.g., the listed criterions in Table 1) considering the repair cost 
and budgets to decide the maintenance actions to take. In general, 
grinding should be performed to correct the trip hazard, when a joint or 
crack has a vertical displacement between 13 mm (1/2 in.) and 3.81 cm 
(1½ inches); otherwise, replacement would be the best method to 
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mitigate trip hazards on public sidewalks (City of Middleton, 2021a; 
Board, 2019). Obviously, manually evaluating sidewalk condition based 
on such detailed criterions is very time-consuming and labour intensive. 
In addition, there is a lack of comprehensive and updated database of 
sidewalk features and condition. Some cities spent several months in a 
one-time Sidewalk Network Inventory and Assessment project to create 
a comprehensive database of sidewalk network features within the cit-
ies’ urbanized areas (CCRPC, 2016; City of Sioux Falls, 2017). However, 
as time passed, these databases become too outdated to reflect the 
sidewalks’ as-is conditions. 

Therefore, automated sidewalk surveying methods are desired to 
improve the surveying efficiency and alleviate manual workloads. Pre-
vious studies have proposed using the Ultra-Light Inertial Profiler (ULIP) 
(Cole, 2013), which is a Segway-based sensor and acquisition system. In 
addition, ULIPr (which is the RoLine 1130 laser line scan sensor version 
of ULIP) was designed to capture a 3D representation of the travel sur-
face (Starodub Inc, 2009a). Nevertheless, both ULIP and ULIPr have 
limited coverage of the sidewalk, making them likely to miss the vertical 
displacement between the sidewalk slabs. Pose estimation sensors such 
as IMU are also utilized to measure the condition of sidewalks, which 
however also suffer from the same problem of limited coverage of the 
object (Kim & Ahn, 2016; Kim, Ahn, & Yang, 2016). 

To address limitations of previous studies and automatically detect 
and geo-visualize sidewalk trip hazards, this study proposed a cost-and 
time-effective approach that integrates mobile devices, deep learning, 
and geographic information systems (GIS) in the scanning phase, data 
processing phase, and trip hazard mapping phase. In the scanning phase, 
the as-is conditions of sidewalk sections are scanned using mobile de-
vices, in which both low-cost LiDAR (light detection and ranging) 
scanner (which determines distances by targeting a surface with a laser 
and measuring the time for the reflected light to return to the receiver) 
(Wikipedia, 2022a) and SfM (structure from motion) photogrammetry 
(which estimates 3D structures from 2D image sequences) (Wikipedia, 
2022b) are supported. In the processing phase, a method is developed to 
convert the obtained point cloud data to feature images, after which a 
deep learning-based segmentation model is adopted for precise concrete 
slab joint detection, which showed good performances in building and 
infrastructure defect detection (Jiang, Han, & Bai, 2021a). In addition, 
this study proposed a concrete slab joint extraction and vertical 
displacement measurement algorithm to extract joints from the 
segmented images of both straight and curved sidewalks with straight 
and oblique joints. After that, the elevation differences of adjacent slab 
edges are measured, while the detected trip hazards are marked at the 
higher edges with wavy lines and the calculated displacement values. In 
the mapping phase, all sidewalk concrete slab joints are mapped in the 
Web GIS platform with measured vertical displacement values and 
attached annotated images. All joints are classified as trip hazard and 
normal as well. Furthermore, comprehensive experiments were con-
ducted to evaluate the developed sidewalk trip hazard detection and 
geo-visualization approach in three communities, including University 

Table 1 
Vertical displacement (changes in level) regulations.  

Sources Criterion of vertical 
displacement (changes in 
level) 

Comments 

2010 ADA Standards for 
Accessible Design ( 
Department of Justice. 
(2010), 2010) 

Section 303 Changes in 
LevelChanges in level of 6.4 
mm (1/4 in.) high maximum 
shall be permitted to be 
vertical.Changes in level 
between 6.4 mm (1/4 in.) high 
minimum and 13 mm (1/2 in.) 
high maximum shall be 
beveled with a slope not 
steeper than 1:2.Changes in 
level greater than 13 mm (1/2 
in.) high shall be ramped. 

For design and 
construction 

(Proposed) Public Rights-of- 
Way 
Accessibility Guidelines 
(Access Board, 2013) 

R302.7.2 Vertical Surface 
Discontinuities 
Vertical surface 
discontinuities shall be 13 mm 
(1/2 in) maximum.Vertical 
surface discontinuities 
between 6.4 mm (1/4 in) and 
13 mm (1/2 in) shall be 
beveled with a slope not 
steeper than 50 percent.The 
bevel shall be applied across 
the entire vertical surface 
discontinuity.  

Sidewalk Deficiencies 
Examples, City of 
Middleton, WI (City of 
Middleton, 2021a) 

At a crack or joint, has a 
vertical displacement greater 
than 13 mm (1/2 in.) height 
but less than 38.1 mm (1 ½ 
inches), the available repair 
options are: Saw Cut high 
edge, Mud Jack low edge, or 
Replacement. 

For maintenance 
and replacement 

Policy No. 36, Concrete 
Replacement Criteria, 
Village of Shorewood, WI ( 
Board, 2019) 

All concrete slabs that have 
cracks (including control 
joints) with differential 
settlement of greater than 
19.05 mm (3/4 in.) which may 
cause tripping.A concrete slab 
is eligible for grinding to 
correct a trip hazard(s) if the 
vertical displacement is 
between 19.05 and 38.1 mm 
(3/4 and 1 ½ inches).This 
criterion does not require 
replacement of all concrete 
sidewalk that does not meet 
ADA requirements for change 
in level of 6.4 mm (1/4 in.) 
due to the significant amount 
of sidewalk replacement 
which would be required to 
meet these criteria. 

For maintenance 
and replacement  

Fig. 1. Sketch of sidewalk concrete slabs at joint Jij.  
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of Wisconsin-Milwaukee (UWM), Shorewood Village, and South Dakota 
State University (SDSU). 

The remaining of the paper is organized as follows. Section 2 reviews 
related works in this area. Section 3 introduces the proposed approach 
for detecting and mapping trip hazards. Section 4 presents the experi-
ments and results, followed by Conclusion in Section 5. 

2. Related works 

2.1. Sidewalk surveying and assessment 

Currently, the most common engineering approach is using smart- 
level and measuring tape to manually take slope readings. This 
inspector-led practice is very labor-intensive and time-consuming, tak-
ing six times longer than the Ultra-Light Inertial Profiler (ULIP)-based 
approach (Cole, 2013). ULIP is a Segway-based sensor and acquisition 
system, which can assess the sidewalk by recording a profile of the travel 
path on the sidewalk. Meanwhile, ULIPr is a RoLine 1130 laser line scan 
sensor version of ULIP. However, even the most powerful ULIPr 
designed to capture a 3D representation of the travel surface (Starodub 
Inc, 2009a) only has a narrow coverage (approximately 100 mm) in 
width, which means a high chance of skipping maximum displacement 
caused by sedimentation. In addition, the pose estimation sensors-based 
approaches (Kim & Ahn, 2016; Kim et al., 2016) were also used for 
assessing sidewalks. They generate signal vector magnitude of the 
walked path using smart phone (or table computer) with an inertial 
measurement unit (IMU) sensor (e.g., accelerometer and gyroscope) and 
a global positioning system (GPS). Nevertheless, such method also suf-
fers from the problem of limited coverage of the sidewalk,. As shown in 
Fig. 1, sedimentation of concrete slabs may cause different vertical 
displacement along the joint of two adjacent concrete slabs. Thus, the 
walked path- and travel surface-based approaches would skip the 
maximum vertical displacement when it is located at the end of a joint 
like the bottom four conditions shown in Fig. 1(d). To evaluate the 
elevation of the sidewalk in full-width coverage, 3D dense point clouds 
can potentially provide more comprehensive and accurate information. 
One method for sidewalk scanning is directly obtaining point cloud 
using laser scanning (LiDAR) while another is reconstructing 3D point 
cloud from images or videos using 3D reconstruction approaches such as 

SfM photogrammetry. Both methods have been previously applied in 
roadway pavement evaluation (Edmondson et al., 2019; Gézero & 
Antunes, 2019; Li, Cheng, Kwan, Tong, & Tian, 2019; Roberts, Inzerillo, 
& Di Mino, 2020), indicating their potential applicability for sidewalk 
surveying as well. Table 2 summarizes the existing and potential ap-
proaches for sidewalk condition surveying. 

However, SfM photogrammetry requires much more time in side-
walk scanning and point cloud acquisition due to two main reasons: (a) 
highly overlapped high-resolution images are essential raw data for SfM, 
which needs the camera to remain a small distance away from sidewalk 
surfaces, and slowly move over multiple paths to guarantee overlaps and 
full coverage; (b) image processing and 3D reconstruction are slowed 
down due to the number of images, for example, cloud processing one 
hundred images needs approximately 50 to 70 min by Autodesk ReCap 
Photo, which may need additional time for waiting in the queue before 
the processing (Jiang & Bai, 2021). In contrast, LiDAR can obtain dense 
point clouds for the scanned object immediately. It is the most effective 
technique for capturing 3D reality data if its price drops down. Fortu-
nately, LiDAR sensors are built-in components for some relatively low- 
cost mobile deceives such as iPad Pro and iPhone Pro. Thus, this study 
utilized and tested the low-cost LiDAR scanner for sidewalk as-is con-
dition scanning while the SfM photogrammetry was tested for sidewalk 
scanning with a mobile phone without LiDAR sensor as well. 

2.2. Infrastructure defect detection and assessment using deep learning 

The sidewalk (concrete slabs) surfaces (see Fig. 1) are similar to the 
roadway pavement surfaces, both of which are relatively flat planes. It is 
feasible to simplify (convert) a 3D point cloud to a 3D image to represent 
the elevation feature of the sidewalk concrete slab surface. Similar idea 
has been applied in previous studies, such as the surface height plot 
(Edmondson et al., 2019), depth map (Roberts et al., 2020), range image 
(Zhou & Song, 2020a, Zhou and Song, 2020b) and elevation map (Jiang 
and Bai, 2021, 2020a, 2020b). In addition, the corresponding 2D image, 
e.g., top-view and drone photogrammetric orthophoto, can provide the 
spectral features (Red, Green, Blue) at the same pixel coordinates 
(Dadrasjavan, Zarrinpanjeh, Ameri, Engineering, & Branch, 2019; Jiang, 
Bai, & Han, 2020; Li et al., 2019). With the 2D or 3D images, deep 
learning approaches such as convolutional neural networks (CNNs)- 

Table 2 
Comparison of sidewalk surveying approaches.  

Performance Most common engineering method 
(CCRPC, 2016; City of Sioux Falls, 
2017) 

ULIP/ ULIPr 
(Starodub Inc, 2009a, 
2009b; Yates, Fouts, Sehgal, 
& Mcren, 2017) 

Pose estimation sensors ( 
Frackelton et al., 2013; Kim & 
Ahn, 2016; Kim et al., 2016) 

Camera and SfM 
photogrammetry (Tested in 
this paper) 

Low-cost LiDAR 
scanner (Proposed in 
this paper, Fig. 2) 

Field 
equipment 

Smart-level (i.e., smart slope 
meter), and Measuring wheel (i.e., 
measuring tape), Table computer 
(e.g., iPad, Google Nexus), and Esri 
ArcGIS Collector application 

ULIP is a Segway-based 
sensor and acquisition 
system. ULIPr is a RoLine 
1130 laser line scan sensor 
version of ULIP 

Smart phone (or table computer) 
with an inertial measurement 
unit (IMU) sensor (e.g., 
accelerometer and gyroscope) 
and a global positioning system 
(GPS) 

Smart phone (or digital 
camera) 

iPad Pro (iPhone Pro, 
or other table 
computers and smart 
phones with LiDAR 
sensor or depth 
camera) 

Raw data and 
coverage 

Points with measured information Profile of the travel path. 
Approximate 100 mm 
width 3D representation of 
the travel surface 

Signal vector magnitude (SVM) 
of the walked path 

Numbers of highly 
overlapped images of the 
scanned full-width sidewalk 
surfaces 

Dense 3D point clouds 
of the scanned full- 
width sidewalk 
surfaces 

Limitation Labor-intensive, inaccurate, time- 
consuming. 

Limited coverage, which 
means a high chance of 
skipping maximum 
displacement caused by 
sedimentation 

Limited coverage, which means 
a high chance of skipping 
maximum displacement caused 
by sedimentation 

It requires a long image 
processing and 3D 
reconstruction time to get 
point clouds of the scanned 
concrete slabs. 
Resolutions are limited at 1 
cm/pixel.   
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based classification models (Ali, Valappil, Kareem, John, & Al Jassmi, 
2019; Cheng & Wang, 2018; Fan et al., 2019; Jiang, Han, & Bai, 2021b; 
Maniat, 2019; Protopapadakis, Voulodimos, Doulamis, Doulamis, & 
Stathaki, 2019; Tan, Cai, Li, Chen, & Wang, 2021; Yang, Shi, Chen, & 
Lin, 2020; Zhou & Song, 2020a) and fully convolutional networks 
(FCNs)-based segmentation methods (Alipour, Harris, & Miller, 2019; 
Augustaukas & Lipnickas, 2019; Dung & Anh, 2019; Ji, Xue, Wang, Luo, 
& Xue, 2020; Jiang et al., 2021a; Jiang et al., 2021b; Liu, Cao, Wang, & 
Wang, 2019; Song, Jia, Zhu, Jia, & Gao, 2020; Zou et al., 2019) have 

been used for roadway pavement distress detection. The successful ap-
plications of deep learning-based distress detection in previous studies 
making them potential methods for detecting sidewalk concrete slab 
joints and deficiencies as well. 

To evaluate defects and structure condition, one method is to pre-
cisely extract boundaries of target objects (e.g., cracks). Previous studies 
adopted the deep learning based image semantic segmentation models 
such as FCN (Alipour et al., 2019; Shelhamer, Long, & Darrell, 2017), U- 
Net (Liu et al., 2019; Ronneberger, Fischer, & Brox, 2015), SegNet 
(Badrinarayanan, Kendall, & Cipolla, 2017; Kearney, Coops, Sethi, & 
Stenhouse, 2020), PSPNet (Zhao, Shi, Qi, Wang, & Jia, 2017) and 
DeepLabv3+ (Chen, Zhu, Papandreou, Schroff, & Adam, 2018; Ji et al., 
2020) for crack detection on bridge and pavement surface. Some studies 
also developed specific deep learning models such as DeepCrack (Zou 
et al., 2019), CrackSeg (Song, Jia, Zhu, Jia, & Gao, 2020) and DilaSeg- 
CRF (Wang & Cheng, 2020) for crack detection with 2D images. The 
comparisons showed the performances of the above models were not 
significantly different in the CrackDataset (Song et al., 2020). However, 
the U-Net can reach a higher accuracy with fewer training data sets of 
images and labels (Liu et al., 2019; Zhang, Zhang, & Cheng, 2020), and 
has a good performance in thin cracks detection like in (Augustaukas & 
Lipnickas, 2019; Jiang et al., 2021b, 2021a; Majidifard, Adu-Gyamfi, & 
Buttlar, 2020). Hence, U-Net was used as an example segmentation 
model in this study. 

In concrete slabs, temperature changes can result in concrete 
expanding or shrinking, thus joints are commonly designed and created 
by forming, tooling, sawing, and placing joint formers to prevent cracks 
when the concrete shrinks (Palmer, 2020; Rodriguez, 2021). Sidewalk 
concrete slab joints can be classified as contraction (control) joint, 
isolation (expansion) joint, and construction joint. They are normally in 
a straight-line shape, as shown in Fig. 1(b), ranging from 3 mm to 20 mm 
with different creating methods. As joints have similar features as 

Fig. 2. The proposed automated trip hazard detection approach. (Map Data © 2021 Esri).  

Table 3 
Parameters of scanning.  

Parameters Options Instructions by (Labs, 2021) This paper 

Confidence [Low, 
Medium, 
High] 

Options for thresholding the data 
coming in from the sensor. [High] 
only keeps the best quality data, 
but reduces the amount of data 
available. 

Medium 

Range 0.3 m to 5.0 
m 

Discards LiDAR data after a certain 
distance. Limiting range reduces 
scan size and increases accuracy. 

3.0 m 

Resolution 5 mm to 20 
mm 

Lower values mean higher 
resolution, but also limited scan 
size. 

10 mm and 
5 mm 

Masking [None, 
Object, 
Person] 

This feature masks LiDAR data 
based on the type of object in 
view. [Object] attempts to isolate 
prominent objects in view. For 
best results, keep the object fully 
in view, and use on a simple 
background without other clutter 
in view. 

None 

Point cloud 
export 

[Low, 
Medium, 
High] 

Allow the model to be shared as 
USDZ, GLB, GLTF, OBJ, DAE, STL, 
Point Cloud, or to Sketchfab. 

High 
density LAS 
file.  
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cracks, this research explored deep learning-based segmentation model 
(e.g. U-Net) for sidewalk joint detection and segmentation. 

3. The proposed automated trip hazard detection approach 

To improve the efficiency in sidewalk assessment, this study pro-
posed an approach of automatic trip hazard detection and mapping. 
Fig. 2(a) presents the procedure of the proposed approach. There are 
four main steps involved in the whole process, including (1) sidewalk 
scanning using mobile devices and feature image generation, (2) deep 
learning-based image segmentation, (3) joint extraction and vertical 
displacement measurement, and (4) trip hazard mapping and geo- 
visualization in the Web GIS platform. Details of each step are intro-
duced in the following. 

3.1. Sidewalk scanning and feature image generation 

Mobile devices such as iPad Pro (or iPhone Pro) with LiDAR sensor 
are used for scanning sidewalks in this study to obtain the point cloud 
data. 3D scanning tools such as the 3D Scanner App (Labs, 2021) is used 
to acquire the 3D point cloud of the sidewalk in real-time. Table 3 lists 
the parameters of the high-resolution mode of 3D Scanner App used in 
this study. After scanning, the data will be processed to generate the 
textured point cloud in the 3D Scanner App, see Fig. 2(b). Then, the 
point cloud can be exported as a LAS file. 

Moreover, this study proposed a sidewalk public reporting platform 
via a Web GIS system (i.e. ArcGIS online) for property owners or con-
cerned citizens to report sidewalk trip hazards with their surveyed re-
sults. Users can place start and end points, paths, and regions to mark the 

scanned sidewalks in the reporting platform, where location service is 
enabled to fast and accurately find the user’s current location as shown 
in the left screenshot of Fig. 2(c). The scanned files can be uploaded to 
the reporting platform as shown in the right two screenshots of Fig. 2(c). 
As a result, the local governments can easily review the reported cases 
and assign teams to inspect or repair the concrete slabs. 

Following that, the authors proposed a pointcloud2orthoimage algo-
rithm and developed the tool (code and demo in (Jiang, 2022)) to 
automatically convert a sidewalk point cloud to feature images, e.g., 
orthoimage and elevation image, see Fig. 2(d). The algorithm has the 
following key processes: (a) Find a plane in the point cloud (in general, 
the plane contains most of the sidewalk surface points); (b) Calculate the 
rotation angle between the normal and Z-axis of the plane, and use the 
angle to rotate the point cloud such as to align the sidewalk surface with 
the XY-plane; (c) Find an oriented bounding box for the point cloud (with 
a rotation matrix R), and use the inverse matrix R− 1 to rotate the point 
cloud and make the sidewalk centerline codirect to the X-axis; and, (d) 
Translate the point cloud and make its center close to (0,0,0) if neces-
sary. The developed tool utilized the plane segmentation and oriented 
bounding box functions in Open3D to obtain geometry information 
(Open3D, 2020). The generated point cloud feature images have un-
limited size, which means any scanned long sidewalk can be presented 
in a continuous high-resolution image. Meanwhile, the differently sized 
RGB feature images also have the same geospatial resolution, known as 
ground sampling distance (GSD). 

3.2. Deep Learning-based image segmentation 

After generating sidewalk feature images, a deep learning model was 

Fig. 3. The proposed algorithm for joint extraction and vertical displacement measurement.  
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proposed for pixelwise segmentation of sidewalk joints in the image. 
During model training and prediction stages, the disassembling and 
assembling algorithm presented in (Jiang et al., 2021b) was used 
because the dimension of a feature image may be too large to be pro-
cessed by a workstation. Specifically, the algorithm first disassembled a 
large-resolution feature image into multiple small-patches with a 
dimension of 128 × 128-pixel, each of which overlaps 50% with the 
adjacent small-patches in both width and height directions. Then, the 
disassembled small-patches were fed into the deep learning segmenta-
tion model rather than directly using the large-resolution input, and 
correspondingly small-patch outputs would be generated by the model 
with segmented labels. In the end, the small-patch outputs were 
assembled to produce a segmented image with the same dimension as 
the original input image. 

After segmentation, the 1-channel segmented label image has a pixel 
value range of 0 to 255 which is obtained by multiplying 255 with the 
results of Sigmoid (i.e. the activation function in the end layer of the 
segmentation model), which are in the range of 0 to 1. Then, any pixel 
with a value less than the threshold (which is 255/2 = 127) was updated 
to 0 to indicate the joint, otherwise, replaced with 255 to represent non- 
joint objects. As a result, the trained model can be utilized for label 
image generation (i.e. segmentation) for large-resolution feature image 
inputs as shown in Fig. 2(d). 

3.3. Joint extraction and vertical displacement measurement 

Typically, sidewalk concrete slabs are in a rectangular shape, and 
joints are perpendicular to the sidewalk centerline as shown in Fig. 1(b). 
Once the sidewalk path is rotated into the horizontal direction, the joints 
are in vertical directions in the feature image as shown in Fig. 2(d). In 
addition, the special case of a curved sidewalk is shown in Fig. 3(b), 
where joints are perpendicular to the centerline, while oblique joints 
have an angle φ to the vertical direction. An example of vertical 

(straight) joint and oblique joint is illustrated in Fig. 3(c) and Fig. 3(d) 
respectively. To accurately measure the vertical displacement between 
adjacent concrete slabs, this study proposed a joint extraction and ver-
tical displacement measurement algorithm to process both vertical 
(straight) joints and oblique joints. Details of the algorithm are shown in 
Fig. 3(a). 

Table 4 summarizes the parameters of the proposed algorithm, 
which uses a joint label image as input. Since joints are scatter instances 
in the label image, edges of joints are easy to determine as contours. 
Then, the ensuing steps and geometry information as follows are used to 
process a joint Jij. 

(1) Find a rotated bounding rectangle for the extracted joint contour 
Jij, where a center of (x0, y0) and an angle φ (compared to the vertical 
direction) are returned (see Fig. 3 (b)). 

(2a) If angle φ falls in a range of [− 10◦,10◦], the joint is classified as a 
vertical joint. Find a straight bounding rectangle for joint Jij, which has 
the top-left corner (x,y), width w and height h (see Fig. 3 (c)). 

(2b) If the absolute value of angle φ is larger than 10◦, the joint is 

classified as an oblique joint. Fit a line l
→

for the joint Jij, and also find a 
straight bounding rectangle for joint Jij (see Fig. 3 (d)). The fitted 
straight line would pass through the joint, and have the minimum sum of 
distances to all points of the joint. 

(3a) For an approximate vertical joint Jij, the concrete slab edges i 
and j are set as two-line segments with an offset to the straight rectangle 
(offset = 3-pixel) and have the pixel length of h-20 (see Fig. 3 (c)). 

(3b) For an oblique joint Jij, with a large φ, the concrete slab edges i
→

and j
→

are codirected to the line l
→

, and have the middle point (x0 + oi,
y0 + oi′ ) and (x0+ oj,y0 + oj′ ), respectively (see Fig. 3 (d)), where [oi,
oi′ , oj, oj′ ] are small values designed to offset slab edges from the fitted 
line of the oblique joint Jij. For example, assume (Vx,Vy) is the 

normalized vector collinear to the line l
→

, ifVy/Vx greater than 0, set 
them as [-6,3,6,-3], or ifVy/Vx less than 0 (in Fig. 3 (d)), set them as [-6,- 
3,6,3]. 

(4) For a given (X, Y), calculate elevation difference of the corre-
sponding points on the two slab edges. Elevations of points can be ob-
tained from the corresponding elevation image based on pixel 
coordinates of points. If the maximum elevation difference exceeds the 
vertical displacement criterion of 13 mm (1/2 in.), then fill joint Jij (like 
Fig. 3 (c)) and annotate the maximum elevation difference at the cor-
responding location with a numerical value and a wavy line to create the 
annotation of trip hazards in the image like Fig. 3 (b). 

Additionally, to automatically execute the proposed algorithm, 
image processing techniques are utilized to extract all individual con-
crete slab joints in a pixelwise segmented label image, as well as the 
contour features of straight bounding rectangle and rotated rectangle. 
Following that, the geometry information (e.g. center point, width, 
height, etc.) of joints is obtained by fitting functions (e.g. “fitting a line” 
(OpenCV, 2021a)) based on the extracted contours. 

3.4. Trip hazards mapping and geo-visualization 

To better visualize and manage the potential trip hazards, a method 
was proposed to map the detection results (joints and vertical dis-
placements) to a Web GIS platform. The method was based on the image 
with annotated trip hazards and GPS coordinates of the scanning start-
ing and ending point. If the sidewalk path is arbitrarily scanned, there 
are two scenarios for the sidewalk, including: Scenario 1, sidewalk 
(nearly) along the west-east direction, which has a longitude difference 
i.e. |Longitudeend − Longitudestart | larger than the latitude difference i.e. 
|Latitudeend − Latituestart |; and, Scenario 2, sidewalk (nearly) along the 
south-north direction, which has a latitude difference larger than the 
longitude difference. In addition, by considering orders of the scanning 
start and end points, the two scenarios can be classified into four cases, 
including: Case1, scan in West-East direction; Case 2, scan in East-West 

Table 4 
Parameters of the proposed algorithm for joint extraction and vertical 
displacement measurement.  

Parameter Definition Comments 

(X,Y) Pixel coordinate, origin is 
top-left corner of a feature 
image. 

Horizontal axis X has positive 
direction in the right. Vertical axis Y 
has positive in downward. 

φ Angle of joint Jij direction, 
positive in clockwise 

An approximate straight joint Jij has 
− 10◦

≤ φ ≤ 10◦ ; An oblique joint Jij 

has φ < − 10◦ or φ > 10◦

(x,y) Coordinate of top-left corner 
of a straight bounding box. 

A straight bounding box that contains 
all pixels for a joint Jij. 

w,h Width and height of a 
straight bounding box 

{
Xi
Y , 

{
Xj
Y 

Edges of left and right 
concrete slabs i and j around 
a joint Jij 

Left slab edge 
{ Xi = x − 3

y + 10 < Y < y + h − 10
; Right 

slab edge 
{

Xj = x + w + 3
y + 10 < Y < y + h − 10 ; 

where 3 is used to offset the bounding 
box edges; and 10 is used to offset the 
sidewalk edges to avoid measuring 
vegetation. 

→
l 

Line of an oblique joint Jij , 
which has the equation 
(Y − y0)/(X − x0) = Vy/Vx 

Joint Jij has a center (x0,y0), and a 
normalized vector (Vx,Vy), which is 
the normalized vector collinear to the 

line l
→

. 
→
i 

Line of left slab edge, which 
is parallel to →

l 

Left slab edge has a 
center(x0 + oi, y0 + oi′ ), right slab 
edge has a center(x0 + oj, y0 + oj′ ), 
and X has a range of( − L/2, L/2), 
where oi, oi′ , oj, andoj′ are small 
values used to offset slab edges from 
the joint fitted line →

l
, and L =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b2 + w2

√
. 

→
j 

Line of right slab edge, which 
is parallel to →

l  
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direction; Case 3, scan in South-North direction; and Case 4, scan in 
North-South direction. The corresponding case is determined by 
comparing the longitude and latitude GPS coordinates of the start and 

end points. Then, GPS coordinates of trip hazards and sidewalk joints are 
determined using equations as follows. 

For Case 1 (West-East), the GPS coordinates of a joint Jij can be 
determined via Eq. (1a),   

For Case 2 (East-West), the GPS coordinates of a joint Jij can be 
determined with Eq. (1b),   

For Case 3 (South-North), the GPS coordinates of a joint Jij can be 
determined with Eq. (1c),  

Fig. 4. Examples of the mapped joint and trip hazards with annotated image segments. (Map Data © 2021 Esri).  

Fig. 5. Experimental sidewalk paths. (Map Data © 2021 Google.).  

{
LongitudeJij

LatitudeJij
=

{
Longitudestart + (Longitudeend − Longitudestart) × ratiox

Latitudestart + (Latitudeend − Latitudestart) × (ratiox − 0.5 + 1 − ratioy)
(1a)   

{
LongitudeJij

LatitudeJij
=

{
Longitudestart + (Longitudeend − Longitudestart) × ratiox

Latitudestart + (Latitudeend − Latitudestart) × (ratiox − 0.5 + ratioy)
(1b)   
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And for Case 4 (North-South), the GPS coordinates of a joint Jij can be 
determined with Eq. (1d),  

where, 
{

ratiox
ratioy

=

{
x0/ImageWidth
y0/ImageHeight (1e), and (x0, y0) are pixel co-

ordinates of the middle points of joint Jij (see Fig. 3(d)). 
After obtaining the coordinates of trip hazards and sidewalk joints, 

Web GIS platform is utilized to geo-visualize the sidewalk assessment 
results, in which sidewalk concrete slab joints are mapped in a point 
layer with the longitudes and latitudes GPS coordinates of joints that are 
determined by Eqs (1a, b, c, and d). Point objects are classified as trip 

hazards and normal sidewalk joints with different labels while the 
values of vertical displacement are linked with each point object. In 
addition, cropped segments of the annotated sidewalk trip hazard and 
joint images are attached to all points, like in Fig. 4, where a cropped 

{
LongitudeJij

LatitudeJij
=

{
Longitudestart + (Longitudeend − Longitudestart) × (ratiox − 0.5 + ratioy)

Latitudestart + (Latitudeend − Latitudestart) × ratiox
(1c)   

Table 5 
Training and validation data for the segmentation model.  

Dataset RGB RGB + Normal 

Training 72,725 56,055 
Validation 8,081 6,229 
Total 80,806 62,284  

{
LongitudeJij

LatitudeJij
=

{
Longitudestart + (Longitudeend − Longitudestart) × (ratiox − 0.5 + 1 − ratioy)

Latitudestart + (Latitudeend − Latitudestart) × ratiox
(1d)   

Table 6 
U-Net model layers and output shapes.  

Layer (type) Output shape Parameter number Connected to 

input_1 (InputLayer) (128, 128, 3) 0  
conv2d_1 (Conv2D) (128, 128, 64) 1792 input_1 
conv2d_2 (Conv2D) (128, 128, 64) 36,928 conv2d_1 
max_pooling2d_1 (MaxPooling2D) (64, 64, 64) 0 conv2d_2 
conv2d_3 (Conv2D) (64, 64, 128) 73,856 max_pooling2d_1 
conv2d_4 (Conv2D) (64, 64, 128) 147,584 conv2d_3 
max_pooling2d_2 (MaxPooling2D) (32, 32, 128) 0 conv2d_4 
conv2d_5 (Conv2D) (32, 32, 256) 295,168 max_pooling2d_2 
conv2d_6 (Conv2D) (32, 32, 256) 590,080 conv2d_5 
max_pooling2d_3 (MaxPooling2D) (16, 16, 256) 0 conv2d_6 
conv2d_7 (Conv2D) (16, 16, 512) 1,180,160 max_pooling2d_3 
conv2d_8 (Conv2D) (16, 16, 512) 2,359,808 conv2d_7 
dropout_1 (Dropout) (16, 16, 512) 0 conv2d_8 
max_pooling2d_4 (MaxPooling2D) (8, 8, 512) 0 dropout_1 
conv2d_9 (Conv2D) (8, 8, 1024) 4,719,616 max_pooling2d_4 
conv2d_10 (Conv2D) (8, 8, 1024) 9,438,208 conv2d_9 
dropout_2 (Dropout) (8, 8, 1024) 0 conv2d_10 
up_sampling2d_1 (UpSampling2D) (16, 16, 1024) 0 dropout_2 
conv2d_11 (Conv2D) (16, 16, 512) 2,097,664 up_sampling2d_1 
concatenate_1 (Concatenate) (16, 16, 1024) 0 dropout_1, conv2d_11 
conv2d_12 (Conv2D) (16, 16, 512) 4,719,104 concatenate_1 
conv2d_13 (Conv2D) (16, 16, 512) 2,359,808 conv2d_12 
up_sampling2d_2 (UpSampling2D) (32, 32, 512) 0 conv2d_13 
conv2d_14 (Conv2D) (32, 32, 256) 524,544 up_sampling2d_2 
concatenate_2 (Concatenate) (32, 32, 512) 0 conv2d_6, conv2d_14 
conv2d_15 (Conv2D) (32, 32, 256) 1,179,904 concatenate_2 
conv2d_16 (Conv2D) (32, 32, 256) 590,080 conv2d_15 
up_sampling2d_3 (UpSampling2D) (64, 64, 256) 0 conv2d_16 
conv2d_17 (Conv2D) (64, 64, 128) 131,200 up_sampling2d_3 
concatenate_3 (Concatenate) (64, 64, 256) 0 conv2d_4, conv2d_17 
conv2d_18 (Conv2D) (64, 64, 128) 295,040 concatenate_3 
conv2d_19 (Conv2D) (64, 64, 128) 147,584 conv2d_18 
up_sampling2d_4 (UpSampling2D) (128, 128, 128) 0 conv2d_19 
conv2d_20 (Conv2D) (128, 128, 64) 32,832 up_sampling2d_4 
concatenate_4 (Concatenate) (128, 128, 128) 0 conv2d_2, conv2d_20 
conv2d_21 (Conv2D) (128, 128, 64) 73,792 concatenate_4 
conv2d_22 (Conv2D) (128, 128, 64) 36,928 conv2d_21 
conv2d_23 (Conv2D) (128, 128, 2) 1154 conv2d_22 
conv2d_24 (Conv2D) (128, 128, 1) 3 conv2d_23 
Total parameters  31,032,837   
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sidewalk segment is centered at the middle point of joint Jij. As the 
sidewalk centerline is along the horizontal direction in the sidewalk trip 
hazards image, the cropped segment needs to rotate 0◦ for Case 1, rotate 
180◦ for Case 2, rotate 90◦ for Case 3, and rotate 270◦ for Case 4 in 
counterclockwise. Consequently, the rotated segment presents the 
sidewalk in the correct direction, a demo can be found in (Jiang, 2021b). 

4. Experimental results and discussions 

Experiments were performed to validate the feasibility of the pro-
posed approaches, including the concrete slab joints segmentation with 
deep leaning model, the algorithm for joint extraction and vertical 
displacement measurement, as well as trip hazard detection and 
mapping. 

4.1. Preparation of the sidewalk joint data set 

To validate the proposed approach, four sidewalk paths (i.e., P1, P2, 
P3, P4, see Fig. 5) on the UWM campus were scanned using an iPad Pro 
(12.9-in., 4th generation, with a built-in LiDAR sensor) to prepare the 
model training and testing dataset. 

4.1.1. Sidewalk scanning 
The scanning was conducted with a resolution of 10 mm and other 

setting in Table 3, and a textured point cloud is generated by a pro-
cessing tool (3D Scanner App). Then, it is necessary to check the start 
and end points of the scanned sidewalk and the obtained point cloud, 
especially when the sidewalk path is long, because part of the point 
cloud may be lost due to technique issues of the point cloud processing 
tool. Thus, the following strategies are proposed to obtain geo-
coordinates for the scanned sidewalk paths: 

(1) Place features of points, lines, or polygons to annotate the scan-
ning start and end points, path, or region in the sidewalk public 
reporting platform by users (see Fig. 2(c)), and the scanned files 
also could be attached. The alternative option is taking two 
photos on the scanned sidewalk at the start and end points with a 
smart phone. The GPS coordinates of the start and end points are 
recorded in the two images. As a result, the GPS coordinates can 
be extracted from image properties, and used to improve the 
automatic level of trip hazard mapping.  

(2) Scan an entire sidewalk path (ending with corners or turning 
points) in a single scanning if possible. Turning points can be 
manually located on the aerial imagery basemap in the Web GIS if 
GPS coordinates are not recorded or not accurately recorded 
during the scan.  

(3) Plan breaking points before the scanning if breaks are necessary. 
Breaking points should be on or next to noticeable reference 
objects, such as sidewalk intersections, isolated trees, building 
corners and entrances. Those reference objects should be easy to 
manually locate on the aerial imagery basemap in the Web GIS as 
well. 

4.1.2. Feature image generation 
The obtained point clouds were exported as LAS files and imported 

into a point cloud processing tool, Autodesk ReCap, for visualization and 
sidewalk plane alignment (in case the scanned sidewalks have a 
noticeable slope). By setting the display point size as 2, the orthographic 
view is close to true orthoimages with few gaps in sparse point regions. 
Then, sidewalk feature images, including orthographic views of RGB 
and normal features for the aligned point clouds, were created via 
screenshot. As a point cloud was kept in the same viewpoint and zoom 
scale, the captured screenshots of RGB and normal views have the same 
pixel coordinates. Examples of sidewalk feature images are shown in 
Fig. 2(d), where the RGB view shows points with camera captured 
colors, and the Normal view displays normal vectors of points in color 
(Autodesk, 2021; Jiang et al., 2021a). 

As previous research showed that the integrated features had better 
segmentation performance than single feature (Jiang et al., 2021a), this 
research also generated integrated feature images. Specifically, the 6- 
channel integrated feature images were generated by assembling RGB 
and Normal information, which have R, G, and B color information in 
the first three channels, and the normal information in the following 
three channels. The elevation image was not used for integrated feature 
image creation because elevations may change along the joint as shown 
in Fig. 1. In the experiment, segmentation performance was compared 
for models trained with RGB and RGB + Normal features respectively to 
investigate whether adding the normal feature can improve the sidewalk 
concrete slab joint detection. To prepare the groundtruth annotation for 
the segmentation task, binary pixelwise joint label images were manu-
ally created via the labeling tool and steps presented in (Jiang et al., 
2021b). When preparing the groundtruth labels, only the concrete slab 
joints that are perpendicular to the sidewalk centerlines were created by 
assigning a label value of 0 for joint pixels and a label value of 255 for 
non-joint pixels. The prepared model training and testing data sets are 
downloadable in (Jiang, 2021a). 

4.1.3. Training and validation data 
In this paper, two west-east direction sidewalk paths, P1 and P2, were 

used for model training, in which only up-down joints were labeled 
(while data of P3 and P4 are only for testing the trained model). To 
enrich the training dataset, the following data augmentation (DA) 
strategies were conducted in preparing the 128 × 128-pixel training 

Fig. 6. Plot of model training and validation with RGB and RGB + Normal, (a) loss, and (b) accuracy.  
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images and labels. (a) Randomly flip feature image and label in one of 
the following options: horizontal, vertical, both horizontal and vertical, 
non-flipping. (b) Randomly resize the flipped feature image and label in 
the range of [0.5,2.5]. (c) Randomly rotate the resized feature image and 
label in the range of [− 30,30] degrees. (d) Either randomly conduct the 
perspective transformation of the feature image and label (keep left, 
right, top, or bottom edge the same), or not. (e) Cut black margins from 
the transformed feature image and label, and pad the remaining feature 
image and label to be multiples of 128 pixels. (f) Randomly adjust the 
padded feature image’s brightness, color, contrast, or sharpness in the 

Fig. 7. Comparison of segmentation results.  

Table 7 
Evaluation results.  

Sidewalk 
Path 

Pixel Accuracy Non-joint IoU Joint IoU 

RGB RGB +
Normal 

RGB RGB +
Normal 

RGB RGB +
Normal 

P1  0.9933  0.9955  0.9931  0.9954  0.7413  0.8163 
P2  0.9958  0.9976  0.9957  0.9976  0.8112  0.8880 
P3  0.9940  0.9941  0.9940  0.9940  0.5469  0.5517 
P4  0.9896  0.9900  0.9894  0.9898  0.6658  0.6875  
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range of [0.5, 1.5], adjustments are not applied to the normal feature 
and label. (g) Rotate the adjusted feature image and label by 0◦ and 180◦

(because sidewalk paths are always rotated in a horizontal direction, 
and only joints perpendicular to the centerline are considered in this 
paper). (h) Crop the two sets of rotated feature images and labels into 
128 × 128-pixel small-patches (which have 50% overlap among adja-
cent ones) by moving a 128 × 128-pixel slide window with a stride of 64- 
pixels in both width and height directions, skipping blank windows. 

By repeating the above DA steps with several rounds (skipping the 
random processing steps in the first round to keep the original feature 
image and label, and then, runs all steps for remaining times), the 
created model training data sets would have a high variety of size, shape, 
color, orientation, and views of concrete slabs and joints. This study ran 
the DA for 51 rounds and generated 80,806 RGB (3-channel) and ground 
truth label samples, which were temperately saved in the RAM. Since the 
RGB + Normal sample is larger than the RGB sample, a fewer number of 
round DA (i.e., 41 rounds) was applied, which generated 62,284 RGB +
Normal (6-channel) and label samples (see Table 5). 

4.2. Training and testing results of the segmentation model 

After preparing the dataset, the U-Net models were constructed with 
software packages of Keras 2.3.1, Python 3.6.8, OpenCV 3.4.2 and 
TensorFlow-GPU 1.14, and ran on a workstation of 96 GB RAM and 4 ×
11 GB GPUs (GeForce RTX 2080 Ti) for model training. The U-Net model 
architecture was well described in (Ronneberger et al., 2015), and the 
code can be found in (Zhi, 2019). With a 128 × 128-pixel RGB sample, 
the detailed U-net model layers and output shapes are shown in Table 6, 
where the hidden layers “conv2d_1” to “conv2d_23” (kernel size 3 × 3) 
use an activation function ReLU for faster model training; the two 
dropout layers are used to prevent overfitting; the four concatenate 
layers are used to combine the feature-maps (tensors) from two different 
layers as a new feature-map (tensors); and the output layer “conv2d_24” 
(kernel size 1 × 1) uses the Sigmoid activation function to create label 
pixels in the range of 0 to 1 (Chollet, 2020b; Jiang & Bai, 2020b; Jiang, 
Bai, & . , 2020; Ronneberger et al., 2015). Similarly, for any RGB +
Normal sample, the output shape of the “input_1” layer is (128, 128, 6), 
and the parameter number of the “conv2d_1” layer is 3520, and the 

remaining shapes and parameter numbers are the same as Table 6. 
Moreover, for the model training, the optimized configurations in 

(Jiang et al., 2021a) were adopted in this research. In detail, the Adam 
optimizer (learning rate 0.0001) and binary cross-entropy loss function 
were used. Each model was set to be trained up to 100 epochs, batch size 
was set as 256. In addition, 10% of samples were randomly selected to 
validate the model in each training epoch. Meanwhile, early stopping 
criteria was used to avoid model overfitting, which would stop the 
model training once the validation loss does not decrease for 10 epochs. 

4.2.1. Training results 
Fig. 6 shows the plots of loss (binary cross-entropy loss) of the U-Net 

training and validation process with two different types of datasets (RGB 
and RGB + Normal). The training of both models was stopped before the 
100th epoch which avoided the model overfitting with the early stop-
ping criteria of the validation loss has not been decreased for 10 epochs. 
In detail, the RGB model reached the smallest validation loss of 0.1083 
at the 15th epoch, and had an ending validation loss of 0.1151 at the 
25th epoch; the the RGB + Normal model achieved the smallest vali-
dation loss of 0.1561 at the 34th epoch, and got an ending validation loss 
of 0.1653 at the 44th epoch. 

Moreover, in Fig. 6, the training and validation accuracy was 
measured by Keras “accuracy” which calculates how often predictions 
equal labels for the 128 × 128-pixel small-patches (Chollet, 2020a). 
With the additional 10 epochs training, the RGB model slightly 
increased the validation accuracy from 0.9478 to 0.9517, and the RGB 
+ Normal model slightly improved the validation accuracy from 0.9521 
to 0.9531. The restuls indicate the RGB + Normal model’s validation 
accuracy is only slightly better than the RGB model. However, training 
the U-Net model with the RGB + Normal dataset (56,055 samples, 140 
s/epoch in average, 44 epoches in total, and about 103 min) costs much 
more time than the RGB dataset (72,725 samples, 170 s/epoch in 
average, 25 epoches in total, and approximate 71 min). Thus, the per-
foramcnes of the two trained U-Net models will be further evaluated 
with the testing dataset. Furthermore, since both models achieved 
satisfactory performance, with an accuracy over 0.95 in the end, the 
saved models at the ending epochs were used for testing and generating 
label prediction in this research. 

Fig. 8. (a) and (b) grinding eligible concrete slabs with marked trip hazards, (c) and (d) repaired concrete slabs without marked trip hazards, (e) a curved sidewalk 
Path E in good condition with groover cut contraction joints, (f) a newly constructed sidewalk Path F with sawcut contraction joints. 
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4.2.2. Testing results 
After training the models, data of the curved sidewalk path P3 (see 

Fig. 7 (a), where joints are presented as oblique joints and different from 
training data sets of sidewalk path P1 and P2) and the south-north di-
rection sidewalk path P4 were used to test the well-trained RGB model 
and RGB + Normal model. Data of P3 and P4 were fed into the trained U- 
Net model, which then generated the 128 × 128-pixel small patch 
predictions. For example, Fig. 7 (a) has dimensions of 3,456 × 512-pixel, 
which was disassembled into 371 small patches (because the width di-
rection has 2 × 3,456/128–1 = 53 and the height direction contains 2 ×
512/128–1 = 7 slide windows with a 64-pixel stride), then the U-Net 
model generated 371 output patches. 

As the output patches were 50% overlapped with each other, only 
central parts of the output patches were assembled (Jiang et al., 2021b) 
to obtain the large-sized segmented images, which were compared to the 
ground truth label images to evaluate the segmentation accuracy. Pixel 
accuracy, non-joint IoU (Intersection over Union) and joint IoU were 
used as the evaluation metrics. The evaluation results in Table 7 show 
that the model trained with RGB + Normal dataset performed slightly 

better than the model trained with only RGB dataset for all the four 
sidewalk paths. This conclusion is also supported by the validation ac-
curacy plotted in Fig. 6 (b). The first two rows P1 and P2 in Table 7 
indicate the U-Net model in sidewalk joint segmentation has better 
performance than the U-Net model in pavement cracking segmentation 
(Jiang et al., 2021a), which has an average pixel accuracy of 0.9817, 
average non-crack IoU of 0.9813, and average cracking IoU of 0.5728 in 
validation. In addition, in sidewalk joint segmentation, the integrated 
RGB + Normal feature is slightly better than the singular RGB feature 
because joints are straight lines with uniform normal features, while in 
pavement cracking segmentation, the singular RGB feature is better than 
the integrated RGB + Normal feature because cracks are irregular curves 
with more complicated normal features. 

Additionally, Table 7 shows pixel accuracies obtained by the two 
models are similar when testing on each sidewalk path data. Similarly, 
there is only tiny or no difference of the non-joint IoUs for the two 
models. In contrast, relative larger differences were observed in joint 
IoUs obtained by the two models. In addition, both models always 
achieved the highest accuracy (in terms of all the three metrics) for 

Fig. 9. Experimental results of Path C with repaired concrete slabs.  

Y. Jiang et al.                                                                                                                                                                                                                                    



Expert Systems With Applications 207 (2022) 117980

13

segmenting the data of P2 while the lowest for P4 (in terms pixel accu-
racy and non-joint IoU) and P3 (joint IoU). One possible reason for such 
results is that data of P3 and P4 are not included in the training dataset 
and the joints of P3 are oblique joints which are different from those in 
P1 and P2. 

Furthermore, Fig. 7 (b) and (c) show the applied DA made the 
oblique joints in the curved section of sidewalk path P3 detectable in the 
RGB and RGB + Normal models, respectively. The widths of the detected 
joints are smaller than the manually annotated label image (in Fig. 7 
(d)), which resulted in the smallest joint IoUs in Table 7 when testing the 
models on sidewalk path P3. That is reasonable because the manually 
created label images used line segments with a constant width to 
represent all joints without considering the actual joint widths. More-
over, the geospatial resolution values of GSD are different among 
training and testing data sets (Jiang, 2021a), where the concrete slab 
widths (joint lengths) are about 72, 143, 66 and 96-pixel in sidewalk 
paths P1, P2, P3 and P4, respectively. The applied DA has randomly 
scaled ratios of (0.5, 2.5), which made the joint detectable in feature 
images with different GSDs. For future application, increasing the size of 
feature images (i.e., using a small GSD) to increase the number of joint 
pixels could be considered for improving performance of pixelwise 
segmentation, which is discussed later. 

4.2.3. Testing on images generated by the pointcloud2orthoimage tool 
The RGB images created by the pointcloud2orthoimage tool (Fig. 7 (e) 

and (g)) were processed by the well-trained RGB model with the dis-
assembling and assembling algorithm (Jiang et al., 2021b). The Fig. 7 (e) 
has dimensions of 8,539 × 1,128-pixel (GSD = 1 cm/pixel), which was 
disassembled into 2,261 overlapped 128 × 128-pixel small-patches 
(because the image was padded into 8,576 × 1,152-pixel first, and 
then 2 × 8,576/128–1 = 133 columns and 2 × 1,152/128–1 = 17 rows, 
and a total of 2,261 small-patches were generated), and then the same 
number of 128 × 128-pixel U-Net output patches were used to assemble 
the Fig. 7 (g). The corresponding output segmented label image in Fig. 7 
(f) has dimensions of 8,539 × 1,128-pixel (GSD = 1 cm/pixel), which are 
much larger than Fig. 7 (b) - (d) with dimensions of 3,456 × 512-pixel. 
The results show that the proposed deep learning-based image seg-
mentation can process a very large sidewalk RGB image to produce 
pixelwise label image, in which all joints were well segmented, and 
several cracks were detected in Fig. 7 (f) as well. Large cracks on con-
crete slabs would cause the trip hazards (see Table 1), while small cracks 
can be discarded by setting an area threshold in the joint extraction, as 
discussed later. Moreover, the label image prediction in Fig. 7 (h) shows 
the segmentation model trained with RGB dataset successfully 
segmented sawcut joints that are perpendicular to concrete slab 

Fig. 10. Experimental results of Path E with groover cut contraction joints.  
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centerlines and skipped joints along centerline directions. Since the 
segmentation performances are very similar between the models trained 
with integrated RGB + Normal and singular RGB datasets as shown in 
Table 7, this paper used the U-Net model trained with RGB dataset for 
the remaining joint extraction tasks. 

4.3. Results of joint extraction and vertical displacement measurement 

Typically, sidewalk concrete slab joints include contraction (control) 
joint, isolation (expansion) joint, and construction joint, which a width 
range from 3 mm to 20 mm with different construction methods and 
tools. The authors scanned additional old and new concrete sidewalks to 
test the developed joint extraction and vertical displacement measure-
ment algorithm (in Fig. 3). First, two manually surveyed old sidewalk 
Paths A and B and one repaired (with grinding) sidewalk Path C were 
scanned (with resolution of 5 mm and other settings in Table 3) at the 
Shorewood Village in the USA. Shorewood Village conducted the side-
walk replacement program in the year of 2021, and the grinding eligible 
concrete slabs were marked with white wavy lines on the edges of the 
slabs if their vertical displacement is between 19.05 and 38.1 mm (3/4 

and 1 ½ inches), indicating the trip hazards, as shown in Fig. 8 (a) and 
(b). In addition, three relatively new sidewalks (without marked trip 
hazards) with sawcut (Fig. 8 (d) and (f)) and concrete groover cut (Fig. 8 
(e)) contraction joints were scanned on the SDSU campus. The scanned 
point clouds were automatically converted into orthoimages and 
elevation data via the pointcloud2orthoimage tool with GSD = 1 cm/ 
pixel. 

4.3.1. Experimental results of non-trip hazard sidewalks 
The joint segmentation result for Path C by the well-trained RGB 

model-based is shown in Fig. 9 (a), where all joints perpendicular to the 
sidewalk centerline were successfully detected, and any joints codirect 
to the sidewalk path centerline direction were not detected as designed. 
Fig. 9 (b) shows extracted nine joints which are imposed on the RGB 
image, where the linked dash-dotted line shows the maximum vertical 
displacement points are irregularly distributed, and the noise annotated 
in Fig. 9 (a) was discarded as its area is smaller than the threshold of 
200-pixel. Fig. 9 (c) shows the measured vertical displacement of each 
joint, where a maximum vertical displacement of 7.5 mm was detected 
at the extracted joint J2. As all joints have vertical displacements less 

Fig. 11. Experimental results of Path F with sawcut contraction joints.  
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than the trip hazard criterion of 13 mm (1/2 in.), no wavy line was 
marked in Fig. 9 (b). This evaluation result shows the grinding work at 
joints J5, J8 and J9 was well performed, as the vertical displacements 
are 4.9, 5.6 and 5.4 mm respectively, all of which are less than 6.4 mm 
(1/4 in.) to satisfy ADA Standards (in Table 1). The annotated region in 
Fig. 9 (c) contains several instances of elevation noise because it is a 
sparse point region. The authors applied a median filter (OpenCV, 
2021b) with a size of 5 × 5-pixel and removed some noises, which 
smoothed the elevation data but kept all edges of elevation changes. To 
avoid this issue, obtaining a dense point cloud is necessary, which means 
moving forward slowly over the joint when scanning the sidewalk is 
required. 

Moreover, Fig. 10 shows the results (i.e. segmentation, extracted 
joints and vertical displacement) of a curved sidewalk Path E which is in 
good condition with groover cut contraction joints, and Fig. 11 shows 
the same set of results of a newly constructed sidewalk Path F with 
sawcut contraction joints. Evaluation results show all concrete slabs in 
these two paths are in a good condition with vertical displacements less 
than 13 mm (1/2 in.). 

4.3.2. Experimental results of trip hazard sidewalks 
The grinding eligible sidewalk Paths A and B were evaluated, and 

results are shown in Fig. 12. For sidewalk Path A in Fig. 12(a), the 
developed method correctly identified four potential trip hazards, and 
the generated wavy lines match with the manually performed evalua-
tion results in the same concrete slab edges. For sidewalk Path B in 
Fig. 12(b), six trip hazards were identified, i.e., their vertical displace-
ment exceeded the criterion of 13 mm. The largest three vertical 
displacement values occurred at X4, X2 and X1, and match with the 
manual evaluation results. Since Shorewood Village’s policies (in 
Table 1) only identify vertical displacements larger than 19.05 mm (3/4 
in.), the other three identified joints with vertical displacements (17.2, 
17.4, 17.6 mm) less than 19.05 mm were not marked on Path B. In 
Fig. 12 (a) and (b), several extracted joints missed the parts where joints 
were covered by vegetation and dead leaves, as shown in Fig. 8 (a) and 
(b). One potential approach to avoid that is to clean the sidewalk before 
scanning. Since the repaired sidewalk Path C is much cleaner than A and 
B, the joint extraction is better as well. Another approach is preparing 
additional joint label images for the covered conditions as labeling the 
joint label images is easier than labeling the point cloud. 

Furthermore, a trip hazard was successfully detected on the joint 
edge of Path D and annotated in Fig. 13 (a) with a vertical displacement 

of 14.7 mm. The possible reason is that, Fig. 8 (d) shows that only the 
concrete slab edge was grinded for Path D, and the repairing was not 
thoroughly performed as with path C in Fig. 8 (c). Moreover, the authors 
tried a smaller GSD of 5 mm/pixel to improve the pixelwise segmenta-
tion for Path D, in which the broken contraction joints were extracted as 
two separated joints in Fig. 13 (a). The developed pointcloud2orthoimage 
tool created a new RGB orthoimage in Fig. 13 (c), which has double the 
pixel size of the one in Fig. 13 (a). As a result, the broken contraction 
joints were extracted as a single joint in Fig. 13 (c). The maximum 
vertical displacement was slightly decreased from 14.7 mm to 12.9 mm, 
hence made the trip hazard disappear in Fig. 13 (c). However, this small 
difference is reasonable because: the edge offset parameter in Table 4 
was not changed, the left slab edge (Xi = x − 3) and right slab edge 
(Xi = x+w+3) are closer to the joint with the smaller GSD; then, the 
elevations of edges were measured on the grinded slope with a slightly 
smaller maximum vertical displacement. 

4.4. Long path trip hazards detection, mapping and geo-visualization 

The sidewalk joint segmentation and extraction results in Section 4.3 
further confirmed the trained U-Net model with RGB dataset has good 
performances on the pointcloud2orthoimage tool generated RGB images. 
Those RGB images (GSD = 1 cm/pixel) have the maximum width of 
2,910-pixel, which is the longest (29.1-m) sidewalk Path A in Fig. 12 (a). 
In this section, SfM and LiDAR are compared for scanning long sidewalk 
paths, and the joint and trip hazard mapping is discussed later. 

4.4.1. Trip hazards detection of long paths using SfM and LiDAR 
As mentioned in Table 2, SfM photogrammetry is another alternative 

scanning method to obtain a sidewalk full-width as-is condition. To test 
the feasibility of the camera and SfM photogrammetry method, three 
trials of sidewalk scanning were conducted. In Trial 1, there were 1,136 
images of a long singular walk path manually captured with a smart 
phone (Apple iPhone SE). The images were used to generate point cloud 
using a photogrammetry software (Pix4Dmapper) and SfM tool, Visu-
alSFM (Wu, 2011). However, both methods failed to generate the point 
cloud file that continually represents the straight and flat sidewalk 
surfaces that have been scanned. Moreover, Pix4Dcatch (an application 
for ground 3D scans from mobile devices) was used to assist the sidewalk 
scanning in Trials 2 and 3. 

In Trial 2, the authors walked twice on a short sidewalk (about 20 m) 
and obtained 100 images (with effective overlaps: 3.14 images per pair, 

Fig. 12. Experimental results of Paths A and B with trip hazards.  
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GSD: 1.019 cm/pixel). The ReCap Photo took 65 min but only produced 
an area of 0.103 m2 of point cloud. In contrast, the LiDAR point cloud 
scanned by iPhone Pro has full coverage of the short sidewalk, as shown 
in Fig. 14 (a). Following that, the created orthoimage (GSD = 1 cm/ 
pixel) from the LiDAR data, segmented image, and extracted joints are 
shown in Fig. 7 (g), Fig. 7 (h), and Fig. 14 (e), respectively. All joints 
perpendicular to sidewalk centerline were detected, joints across several 
concrete slabs were extracted as single long joints, while joints along 
centerline directions were skipped as per the design. 

In Trial 3, two concrete slab joints were scanned and 100 images 
(effective overlaps: 4.37 images per pair, GSD: 1.001 cm /pixel) were 
obtained. The ReCap Photo took 61 min to generate the SfM photo-
grammetric point cloud with the orthoimage shown in Fig. 14 (c), which 

covers an area of 6.148 m2 and the two concrete slab joints. The same 
joints were also scanned with an iPad Pro using built-in LiDAR sensor. 
Fig. 14 (d) and (e) show the LiDAR point cloud converted orthoimage 
and the elevation image, which have a GSD = 1 cm/pixel. In Trial 3, the 
LiDAR and SfM method had equal scanning time, but the latter was 
much slower than former in converting images to textured point cloud. 
Thus, camera and SfM photogrammetry could be used for scanning a 
piece of trip hazard by property owners and concerned citizens, but for 
reporting a long sidewalk path, LiDAR would be a better option. Ac-
cording to the developed methods presented in this paper, the extracted 
joints and measurements of vertical displacements have the same length 
as the actual joints in Fig. 14. 

For scanning a long sidewalk path (like in Fig. 7 (e)), which has an 

Fig. 13. Experimental results of Path D with different GSDs.  
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Fig. 14. Experimental results on Trials 2 and 3 to compare SfM and the proposed method.  

Fig. 15. Images with detected and annotated trip hazards for path P1, P2, P3, and P4.  
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approximate length of 90 m along the sidewalk centerline, using a res-
olution of 10 mm is recommended, because the point cloud processing 
tool e.g. 3D Scanner App has limited storage for the point cloud file in a 
single scan. By setting GSD = 1 cm/pixel, the point cloud converted 
elevation data is smooth without gaps. The point clouds of the four 
scanned long sidewalk paths P1, P2, P3 and P4 (see Fig. 5, concrete slab 
width about 1.8 m) were converted to feature images via the developed 
pointcloud2orthoimage tool with GSD = 1 cm/pixel. All concrete slab 
joints were extracted, and vertical displacements were measured via the 
developed joint extraction and vertical displacement measurement al-
gorithm. The created images of annotated trip hazards are shown in 
Fig. 15, in which 54, 26, 56, and 40 joints were extracted, and three, 
four, five and two trip hazards were identified in paths P1, P2, P3, and P4, 
respectively. 

4.4.2. Mapping and geo-visualization of the results in Web GIS 
GPS coordinates of the start and end points of the four long paths 

were manually obtained from the Web GIS platform i.e., ArcGIS Online 
because they are corners and intersections. Based on the GPS co-
ordinates of start and end points, the sidewalk Paths P1 and P2 belong to 
Case 1 (scanned from west to east), Path P3 is Case 2 (scanned from east 
to west), and Path P4 is Case 3 (scanned from south to north). The GPS 
coordinates of the middle points of each joint were calculated via Eq. (1) 
and the middle point was added to the Web GIS platform to represent the 
joint. Meanwhile, the joint segments were cropped from the annotated 
trip hazards images, and rotated zero degrees for Paths P1 and P2 (see 
Fig. 16(a)), rotated 180◦ for Path P3 (see Fig. 4(a)), and rotated 90◦ for 
Path P4 (see Fig. 4(b)). In the end, both the cropped joint image and 
specific displacement value were attached to each point of the joint in 
the Web GIS platform, as shown in Fig. 16 and also available in (Jiang, 
2021b). This method can not only visualize and facilitate sidewalk 
assessment, but also help monitor and analyze the long-term sidewalk 
condition changes if scanning data are obtained continuously. 

5. Conclusion 

This paper developed and tested a sidewalk trip hazard detection and 
geo-visualization method that can automatically assess concrete slab 
deficiencies after obtaining the point clouds via a low-cost LiDAR 
scanner. Firstly, low-cost mobile LiDAR devices were used to scan 
sidewalks to obtain the point cloud data, which were then converted to 
RGB images using the develop tool. Second, a deep learning-based 
segmentation model U-Net was trained with the sidewalk images to 
segment concrete joints in the image. Afterwards, joints were extracted 
from the segmented image and vertical displacements for each joint 
were evaluated, based on which potential trip hazards were identified 
and specific information was geo-visualized in Web GIS platform. The 
experiment results demonstrated the effectiveness of the proposed 
method. Specifically, the segmentation model performed well for seg-
menting different types of joints in images (with a highest joint IoU of 
0.88) and all the vertical displacement conditions were accurately and 
comprehensively detected. It was found that integrating the RGB feature 
with the Normal feature can improve the joint segmentation accuracy of 
the deep learning model, but the improvement was not significant. For 
future application, using the point cloud converted orthoimages is suf-
ficient to detect joints. In this study, the segmentation model trained 
with a few images of straight sidewalks with groover cut contraction 
(control) joints and the corresponding joint label images already ob-
tained good performance, but adding extra images, such as vegetation 
covered joints, to enrich the dataset will be considered for future 
application. Compared to the methods (in Table 2) in existing studies, 
scanning the as-is condition of the sidewalk with a mobile device is 
convenient and faster in achieving full-width coverage. 

The main contributions of this study are as follows:  

(1) Developed more efficient detection and mapping of sidewalk trip 
hazards by mobile devices. A pointcloud2orthoimage algorithm and 

Fig. 16. Mapped joint and trip hazards with annotated image segments and specific information. (Map Data © 2021 Esri).  
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tool was developed (code available in (Jiang, 2022)), which can 
generate large-size high-resolution sidewalk feature images of 
orthoimage and elevation image from the mobile devices (e.g., 
iPad and iPhone Pro) scanned LiDAR point cloud automatically. 
Then, a deep learning-based image segmentation method was 
developed for concrete slab joint extraction and vertical 
displacement measurement, which can evaluate performance or 
condition of constructed concrete slabs, such as the sidewalk trip 
hazards detection presented in this paper.  

(2) Developed a sidewalk reporting and management platform based on 
Web GIS. With the sidewalk public reporting port, property 
owners and concerned citizens can report community sidewalk 
deficiencies, such as trip hazards, crack, spalling and chipping, 
gap at edge, and vertical displacement. With the sidewalk man-
agement function, facility management agencies can maintain 
the updated sidewalk performance information for maintenance 
planning. Moreover, technicians can use the mapped joints and 
trip hazards information to fast locate them on jobsite. After the 
repairing, superintendent can inspect the repairing quality, and 
update the sidewalk performance information to the Web GIS 
platform. In addition, wheelchair users can find the best path 
based on the geo-mapped sidewalk deficiencies. 
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