
Information and Software Technology 147 (2022) 106902

A
0

M
a

b

c

d

e

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

A Systematic Literature Review on prioritizing software test cases using
Markov chains
Gerson Barbosa a,e, Érica Ferreira de Souza b,∗, Luciana Brasil Rebelo dos Santos c,

arlon da Silva d, Juliana Marino Balera e, Nandamudi Lankalapalli Vijaykumar e

Universidade Estadual Paulista (UNESP), Guaratinguetá, Brazil
Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Brazil
Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), Jacareí, Brazil
Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), Campos do Jordão, Brazil
Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, Brazil

A R T I C L E I N F O

Keywords:
Systematic Literature Review
Markov Chains
Test case prioritization

A B S T R A C T

Context: Software Testing is a costly activity since the size of the test case set tends to increase as the
construction of the software evolves. Test Case Prioritization (TCP) can reduce the effort and cost of software
testing. TCP is an activity where a subset of the existing test cases is selected in order to maximize the
possibility of finding defects. On the other hand, Markov Chains representing a reactive system, when solved,
can present the occupation time of each of their states. The idea is to use such information and associate
priority to those test cases that consist of states with the highest probabilities.
Objective: The objective of this paper is to conduct a survey to identify and understand key initiatives for using
Markov Chains in TCP. Aspects such as approaches, developed techniques, programming languages, analytical
and simulation results, and validation tests are investigated.
Methods: A Systematic Literature Review (SLR) was conducted considering studies published up to July 2021
from five different databases to answer the three research questions.
Results: From SLR, we identified 480 studies addressing Markov Chains in TCP that have been reviewed in
order to extract relevant information on a set of research questions.
Conclusion: The final 12 studies analyzed use Markov Chains at some stage of test case prioritization in a
distinct way, that is, we found that there is no strong relationship between any of the studies, not only on how
the technique was used but also in the context of the application. Concerning the fields of application of this
subject, 6 forms of approach were found: Controlled Markov Chain, Usage Model, Model-Based Test, Regression
Test, Statistical Test, and Random Test. This demonstrates the versatility and robustness of the tool. A large
part of the studies developed some prioritization tool, being its validation done in some cases analytically and
in others numerically, such as: Measure of the software specification, Optimal Test Transition Probabilities,
Adaptive Software Testing, Automatic Prioritization, Ant Colony Optimization, Model Driven approach, and
Monte Carlo Random Testing.
1. Introduction

It is a fact, nowadays, that the question of software reliability is
extremely relevant, given the dependence society has on software sys-
tems. Quality of all such produced software systems must be ensured,
and hence Verification & Validation (V&V) activities play a major role
to be employed to achieve this goal [2]. Moreover, software testing is
the most used V&V activity in practice [3,4]. The goal of any software

∗ Corresponding author.
E-mail addresses: gerson.barbosa@unesp.br, gerson.barbosa@inpe.br (G. Barbosa), ericasouza@utfpr.edu.br (É.F. de Souza), lurebelo@ifsp.edu.br

(L.B.R. dos Santos), marlon.silva@ifsp.edu.br (M. da Silva), juliana.balera@inpe.br (J.M. Balera), vijay.nl@inpe.br (N.L. Vijaykumar).
1 Defect is an incorrect step, process, or data definition, for example, an incorrect instruction in a computer program — IEEE Std 610.12-1990 [1].

testing effort is to find defects1 in the software product, in this case
very related to defects (faults) in the source code.

Testing activity ensures the conformity of the software product
with the requirements defined by the customer, through a systematic
execution. However, in order to entirely achieve this goal, the ideal
approach is to exhaustively test the software, which is impractical. In
order to cope up with this impracticality, techniques are designed to use
vailable online 18 March 2022
950-5849/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.infsof.2022.106902
Received 21 September 2021; Received in revised form 28 February 2022; Accepte
d 4 March 2022

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:gerson.barbosa@unesp.br
mailto:gerson.barbosa@inpe.br
mailto:ericasouza@utfpr.edu.br
mailto:lurebelo@ifsp.edu.br
mailto:marlon.silva@ifsp.edu.br
mailto:juliana.balera@inpe.br
mailto:vijay.nl@inpe.br
https://doi.org/10.1016/j.infsof.2022.106902
https://doi.org/10.1016/j.infsof.2022.106902
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2022.106902&domain=pdf


Information and Software Technology 147 (2022) 106902G. Barbosa et al.

t
S
r

E
o
S
t
r
a

2

2

a
w
e
o
T
m
s
j
p
i

t
a
t
a
(
s
f
t
C
e
a
d

f
r
f
s
p
o

2

a
i
(
V
u
s
s
t
c
o
a
T
c

t
n
a
t
r

only a small subset of the input domain, but with a high probability
of revealing the presence of defects, if they exist [3]. Therefore, it
is essential to adopt a consolidated methodology that makes the test
activity viable and effective. Some approaches have already been pro-
posed [5], such as Test Case Selection (TCS), which selects a subset of
the test cases for execution according to a specific objective; Test Suite
Reduction (TSR), which reduces the size of the test suite; and Test Case
Prioritization (TCP), which prioritizes test cases to be executed. The
differential of TCP concerning TSR and TCS is that TCP uses the entire
test suite. Every single test case will be considered in prioritization, thus
reducing the risk of omitting some type of defect. As the main interest
of this study is TCP, the paper will focus on its approaches.

TCP presents techniques that propose to order test cases based on
a defined criterion, which can be fault detection rate, coverage rate,
or probability of execution history, among others. Khatibsyarbini et al.
[6] presented a Systematic Literature Review (SLR) in which they
surveyed the main techniques employed in TCP, being Search-based
the most widely employed [7,8], Coverage-based [9,10] and Fault-
based [11], totaling together 53% as the main techniques used in the
studies returned. According to the same study, one of the least explored
techniques was Model based [12], totaling about 4% of the papers
found, which is indicative of little exploitation of the technique in TCP.
Besides, within Model-based techniques approaches, there are no spe-
cific references to approaches using Markov Chains. Markov Chains are
usually applied on statistical testing for software usage [13], defining
a stochastic model that is capable of modeling multiple probability
distributions corresponding to estimated usage patterns. The idea is to
treat software testing as a stochastic process. Whittaker and Thomason
[13] adopted elements and defined a probabilistic relationship between
these elements. Another approach that is found very much in the
literature, is Controlled Markov Chains (CMC) to Software Testing [14].
The authors use the concept of adaptive testing applied for software
reliability improvement with detected software defects being removed
from the SUT during Software Testing. Thus, at each cycle (loop), the
probabilities are updated to select or generate the next test cases.

The software can be modeled as a finite state discrete-parameter
Markov chain [15]. Markov chain may represent the software system,
considering its available states, while the arcs indicate transitions
among states and are assigned probabilities that refer to the proba-
bility of a state to move to another. With these probabilities, Markov
chains can be solved to obtain steady-state probabilities. Steady-state
probabilities represent the percentage of time occupied by each state.
This characteristic can be applied for TCP, using the probabilities to
define priorities of what states are more active than others. So, test
cases going through states which have high probabilities, tend to higher
usage of those specific paths. Therefore, if one must choose test cases,
it is interesting to exercise the paths that contain states with a high
percentage of occupation. Once these characteristics are applied in
TCP, some benefits can be achieved, such as those that can be seen
in [16,17].

The objective of this work is to conduct a Systematic Literature
Review (SLR) in order to understand how Markov Chains have been
applied on TCP. Aspects such as approaches, developed techniques, pro-
gramming languages, analytical and simulation results, and validation
tests were investigated. The major contribution of this present work is
to gather and explore the main test case prioritization techniques using
Markov Chains that were and are being used now. Because of saving
time and money, test cases prioritized according to a defined specifi-
cation become essential. In addition, we believe that these SLR results
can help to identify a body of knowledge to support future research in
Markov Chains and TCP, providing a basis for other researchers as well
as students who consider learning about and contributing to this area.

The remainder of this paper is structured as follows. Section 2 brings
ogether the background to this paper, explaining Markov Chains,
oftware Testing, and Prioritization. Then, Sections 3 and 4 discuss the
2

esearch method and Selection Process applied to perform the SLR. Data s
xtraction and Synthesis is explained in Section 5, analyzing the results
btained according to the research questions defined for this study.
ection 6 reports a general discussion to highlight some research points,
heir implications, and limitations. Section 7 presents the search for
elated works. Lastly, conclusions and future directions for this research
re presented in Section 8.

. Background

In this section, the main concepts of this study are discussed.

.1. Markov Chains

Stochastic processes play a major role in a significant number of
pplications. Markov Chains can be considered as fundamental to deal
ith such stochastic processes. They can be defined as probability mod-
ls where results from successive experiments are dependent on each
ther such that a given experiment depends only on its immediate past.
he underlying idea is the so-called Markov Property, also known as
emory-less property, in which predictions on stochastic processes can

ee the future that is independent of the past and it is enough to know
ust the present. In other words, past and present are independent if the
resent is known. Markov Chains are capable of modeling uncertainty
n many real-world systems that evolve in time [18–20].

Markov Chains can be modeled as Finite State Machines (FSM) [21]
hat are graphically illustrated by state-transition diagrams. The chains
re modeled as a set of states and a set of transition arcs among
he states. Transition arcs have labels that can be transition prob-
bilities (Discrete-Time Markov Chain — DTMC) or transition rates
Continuous-Time Markov Chain — CTMC). In the case of DTMC, the
ystem is observed at discrete points in time, and a change may occur
rom one state to another according to the probability defined on
he corresponding transition arc leaving that state. When referring to
TMC, the state is changed only when an event occurs, i.e., it must be
xplicitly stimulated to change the present state to another. Such events
re associated with transition rates that must follow an exponential
istribution.

Both DTMC and CTMC can be solved using numerical methods [22]
rom which steady-state probabilities are obtained. These probabilities
efer to performance metrics in the long run and such probability
or each state represents the percentage of time occupied by each
tate. These steady-state probabilities will play an important role in
rioritizing software test cases. Prioritization of test cases is the object
f this study employing SLR, the main objective of the paper.

.2. Software testing

Software Testing activities contribute to the quality of developed
nd implemented software codes. In this respect, Verification & Val-
dation (V&V) plays an important role. V&V activities may be static
technical reviews, inspections, etc.) or dynamic (testing) [4]. Besides,
&V ensures that both the software model and the implemented prod-
ct are in conformance according to the specification [3]. Testing
oftware exhaustively is not feasible due to a large input domain. So,
ome techniques to select subsets must be employed bearing in mind
he coverage aspect. Such techniques can be Black-box Techniques (test
ases are generated from the input/output behavior, without the code)
r White-box Techniques (code is necessary to generate the test cases
nd their assessment) [4]. The main interest will be on Black-box
echniques and several methods [3] may be employed to generate test
ases as long as the specification is modeled utilizing FSM [21].

Many a time, depending on the method employed for generating
est cases and if the software specification model is complex, a huge
umber of test cases will be generated. Unfortunately, in real world
pplications, despite the importance of exercising all the test cases on
he implemented code, it is not always possible due to budget and time
estraints. In cases such as these, there might be a need to devise a

olution on which test cases should be exercised first.



Information and Software Technology 147 (2022) 106902G. Barbosa et al.

e
t
w
h
t
w
f
E
‘

S

2.3. Test case prioritization

Black box software test cases (generated by a tool from the speci-
fication, for example) must be exercised in the implemented software
to have a verdict whether the implementation is in conformance with
the specification. The exhaustive exercise of these cases in the imple-
mentation must consider time and available budget as well as human
resources. Given that the number of software test cases generated can
be large, demanding an impractical time for the execution and analysis
of all cases, it is important to investigate alternatives to reduce the num-
ber of test cases, without losing the software quality and reliability. This
aspect implies providing priorities for the choice of which cases should
be exercised first and this depends on the perception and knowledge of
the system by an independent testing team. In order to determine these
priorities, the investigation of automatic and formal means of providing
them for the choice of test cases is in order. Prioritizing test cases refers
to choosing those cases that are more important based on some metric,
but without decreasing the number of faults to be detected [23].

There are some initiatives to minimize the number of test cases
or to prioritize these cases: neural networks [24]; Markovian process
modulated by Markov [25]; indicators for planning tests using models
that use time based on models of use of Markov Chains [26]; Monte
Carlo simulation [27]; simulation to analyze coverage and cost in
generating tests from Statecharts models [28]; analysis of distance
functions [29]; methods to generate few and long test cases [30]; pre-
sentation of several prioritization techniques and search algorithms to
prioritize test cases [31]; employment of data mining [32]; case-based
reasoning [33].

Most of such solutions and approaches look for reducing the number
of test cases while generating them utilizing some criteria. The question
is what if there are already test cases generated. How to exercise
just a portion of these already generated test cases, i.e., is it possible
to classify the existing test cases? If so, depending on the time and
resources, one can exercise only those test cases that have a higher
priority than others that will not be exercised. Besides, this has an
advantage, which is one can find out how many test cases can be
exercised by calculating this number based on the available resources.

3. Research method

The research method conducted in this study was an SLR. SLR is
a type of secondary study that uses a well-defined method to identify,
analyze and interpret the available pieces of evidence in a way that is
unbiased and (to a degree) repeatable. A secondary study is a study
that reviews primary studies related to specific research questions to
integrate/synthesize the evidence related to these questions [34]. The
review was defined based on the guidelines given by Kitchenham
and Charters [34] which involves three main phases: (i) Planning:
refers to the pre-review activities and aims at establishing a review
protocol defining the research questions, inclusion and exclusion cri-
teria, sources of studies, search string and mapping procedures; (ii)
Conducting: regards searching and selecting the studies, in order to
extract and synthesize data from them; and (iii) Reporting: is the
final phase and aims at writing up the results and circulating them to
potentially interested parties.

In addition to the searches in the databases, backward snowballing
from reference lists of Selected Studies was also applied. The refer-
ence lists of the studies can be analyzed looking for other relevant
studies [34]. The process ends when no more relevant studies are
found.
3

Next, we discuss the main protocol steps we performed for the SLR. s
Table 1
Research questions and their rationales.

N𝑜 Research question Rationale

RQ1 When and where the
studies have been
published?

The objective of this research question is
to give an understanding of whether
there are specific publication sources for
these studies, and when they have been
published.

RQ2 How Markov Chains
have been applied to
prioritize test cases?

This research question is to understand
how Markov Chains have been applied
on TCP. The main aspects investigated
in this question are the approaches used
in each study.

RQ3 What are the
algorithms and/or
tools to support TCP
using Markov Chains
in each study?

Highlights the main methodologies
currently used to provide TCP supported
by Markov Chains, such as developed
techniques, programming languages,
analytical and simulation results, and
validation tests. This is useful for
researchers and practitioners that intend
to accomplish new initiatives of Markov
Chains for TCP, as well as to guide
future research towards new methods,
tools, to fill the existing gaps.

Research questions. Table 1 presents the Research Questions (RQ) that
this SLR aims to answer, as well as the rationale for considering them.

Considering the importance of having a well-structured research
question to ensure greater range and specificity, we have defined the
PICO (Population, Intervention, Comparison, and Outcomes) for this
SLR. PICO is suggested for detailing the research question elements in
order to support developing the review protocol [34–36]. The popula-
tion is the group affected by the interventions, which refer to what is
being investigated. The comparison is a reference parameter or a data
set that initially exists. And finally, the intervention results are expressed
by the outcomes. PICO of our SLR is presented as follows. PICO of our
SLR is presented as follows.

Population: Researchers and software testing professionals who
use or are interested in using Markov Chains in TCP.
Intervention: Applications of Markov Chains in TCP.
Comparison: It is not applicable.
Outcome: A summary of the main evidence that presents ap-
proaches to Markov Chains applications for TCP. We also want
to reveal the main algorithms and/or tools to support TCP using
Markov Chains.

Based on population and intervention, mainly, we identified the
main areas to be investigated in this SLR, namely, ‘‘Software Testing’’
and ‘‘Markov Chains’’. The synonyms for each area were identified
and separated into groups. Thus, these groups were considered in the
development of the search string, as detailed below.

Search string . The search string considered in this research explores
two areas — ‘‘Software Testing’’ and ‘‘Markov Chains’’ (see Table 1). To
laborate the search string, we started with an initial set of terms, and
his set was iteratively improved until all relevant pre-selected studies
ere found. The pre-selected studies are part of a control group. We
ave two articles in the control group [16,17]. We used a control group
o calibrate the search string, that is, when the control group studies
ere not retrieved, the string was calibrated (adjusted). In addition,

or the elaboration of the search string, we only considered terms in
nglish. This same criterion was used in the selection process (EC4 —

‘Study is not written in English’’).

ources. Search was done in five electronic databases that were con-

idered the most relevant according to Dyba et al. [37], namely:



Information and Software Technology 147 (2022) 106902G. Barbosa et al.

S
c

D
c
t
s
w
b
h
u
A

a
s

Table 2
Areas and keywords.

Areas Keywords

Software Testing ‘‘Software Testing’’ OR ‘‘Software Test’’ OR ‘‘Test Case’’
OR ‘‘Test Sequence’’

Markov Chains ‘‘Markov Chains’’ OR ‘‘Markovian’’

Search String: (‘‘Software Testing’’ OR ‘‘Software Test’’ OR ‘‘Test Case’’ OR ‘‘Test
Sequence’’) AND (‘‘Markov Chains’’ OR ‘‘Markovian’’)

IEEE Xplore (http://ieeexplore.ieee.org);
ACM Digital Library (http://dl.acm.org);
Scopus (http://www.scopus.com); and
ScienceDirect (http://www.sciencedirect.com);
SpringerLink (https://link.springer.com/).

election criteria. The selection criteria are organized in one inclusion
riterion (IC) and seven exclusion criteria (EC).

The inclusion criterion is:

(IC1) Study must include TCP by employing Markov Chain;
(IC2) Studies published until July 2021.

The exclusion criteria are:

(EC1) Study has no abstract;
(EC2) Abstract or extended abstract without Full Text;
(EC3) Study is not a Primary Study. The studies considered edi-
torials, summaries of keynotes, tutorials, posters were excluded;
(EC4) Study is not written in English;
(EC5) Study is a copy or an older version of another publication
already considered. In these cases, the most current version is
considered;
(EC6) No access to the Full Paper; and
(EC7) Study mentions Markov Chains but not employed for TCP.

ata storage. The publications returned in the searching phase were
ataloged and stored appropriately. We used a data extraction form
o gather all relevant data from the identified studies and manage the
election process. Some of the main information presented in this form
as followed by a protocol, identifier (id) for each returned study,
ibliographic reference, and answers to research questions. This catalog
elps us in the data extraction and synthesis procedures and may be
sed by potentially interested, for example, for updating or replication.
summarized version of this form is available at https://doi.org/10.

5281/zenodo.5783881.

Assessment . Before conducting the SLR, we tested the review protocol.
This test was conducted to verify its feasibility and adequacy, based
on a pre-selected set of studies considered relevant to our investi-
gation (control group). SLR process was conducted by four authors
and the other two carried out the validation. In addition, the results
of each reviewer were then compared to detect possible bias. Kappa
coefficient [38] was also performed to measure the level of agreement
between the results obtained from the reviewers in the selection pro-
cess. Kappa coefficient is a statistical measure of inter-rater agreement
for qualitative items. It is a more robust measure than simple percent
agreement calculation since it considers the agreement occurring by
chance. A Kappa coefficient value of 1 represents total agreement.
Values close to 0 indicate no agreement. For calculating the Kappa
coefficient, we considered the result set from Stage 2 (application
selection criteria), which contains 94 papers. So, in our case, the overall
kappa coefficient obtained was 0.67, whose interpretation, according
to Landis and Koch [38], is to have a substantial agreement.

4. Selection process

Initially, the search string presented in Table 2 was applied to the
electronic databases, considering three metadata fields: title, abstract,
4

and keywords. The search string went through syntactic adaptations
according to the particularities of each source. We considered the
studies published until July 2021 (IC2). The main stages performed in
this SLR are shown in Fig. 1.

As a result of searching the selected sources, a total of 480 publica-
tions were returned, out of which 29 were from IEEE Xplore, 10 from
ACM, 47 from ScienceDirect, 382 from Scopus, and 12 from Springer-
Link. In the 1st stage duplicated studies were eliminated, resulting in
368 studies (reducing approximately 23.3%). In the 2nd stage, the se-
lection criteria (inclusion and exclusion criteria) were applied for title,
abstract, and keywords, leading to 94 studies (reducing approximately
74.5%). In the 3rd stage, the selection criteria were applied considering
the full text, resulting in a set of 10 studies (reducing approximately
89.4%).

The objective of this SLR is to summarize how Markov Chains
approaches have been applied on TCP. Many studies returned by the
search string use Markov Chains in the context of Software Testing.
However, in the 3rd stage of the selection process, most studies were
removed by the exclusion criterion EC7, since although the study
addressed Markov Chains in Software Testing, the study focus was not
applied to prioritize test cases. Hence, 78 studies were removed by
criterion EC7, since Markov Chains was applied in other contexts, for
example, in the work [39] it is a proposed test case generation method
to evaluate the performance of mobile applications. In this work,
Markov Chains are used to evaluate the performance of applications. In
the case of [40], the work is on Partition Testing using Markov Chain.
And as an example of a case we often encounter, the study [41] applies
system reliability using Markov Chain usage models. However, none of
these works use Markov Chains for TCP.

Over these 10 studies that remained in 3rd stage, we performed
backward snowballing in 4th stage. In the snowballing process, we
looked at all the references from the 10 studies selected (306 refer-
ences) and we applied the selection criteria in the title, abstract, and
keywords, leading to 6 studies. The selection criteria were again applied
to the 6 studies considering the full text analysis, resulting in 2 studies.

As a result, we got to 12 studies to be analyzed (10 from the sources
and 2 from backward snowballing). Table 3 summarizes the stages
nd their results, showing the progressive reduction of the number of
tudies throughout the selection stages. Table 4 presents the 12 selected

studies.

5. Data extraction and synthesis

As already mentioned previously, after applying the inclusion and
exclusion criteria, 12 studies remain to be explored in this review (see
Table 4). With these selected studies, we analyzed each one in order to
answer the research questions presented in Table 1.

5.1. (RQ1) When and where the studies have been published?

In order to offer a general view of the efforts in the area investi-
gated, a distribution of the 12 selected studies is shown in Table 5.
Table 5 includes the type, where the studies were published, country
of the institution of the first author, and the distribution of the 12
selected studies over the years. 10 different publication sources were
identified. It is worth pointing out that four studies were published in
the Journal Information and Software Technology, showing that it can be
a well-established forum for discussing the topic.

Regarding the year of publication of the studies, it has spread
over the last two decades (from 2000 to 2017). This indicates that
prioritization of test cases, regardless of the applications and techniques
used, has only been recently employed. Among them, the most recent
are papers 𝐴6 and 𝐴7, both published in 2017. And the oldest papers
𝐴1, 𝐴2, 𝐴12 and 𝐴13 in 2000. Although the search was carried out until
July 2021, the last prioritization study using Markov Chain returned is
from 2017, which shows an exploration gap in the last four years.

http://ieeexplore.ieee.org
http://dl.acm.org
http://www.scopus.com
http://www.sciencedirect.com
https://link.springer.com/
https://doi.org/10.5281/zenodo.5783881
https://doi.org/10.5281/zenodo.5783881
https://doi.org/10.5281/zenodo.5783881


Information and Software Technology 147 (2022) 106902G. Barbosa et al.

l
F

Fig. 1. Search and selection SLR process.
Table 3
Results from the selection stages.

Stage Applied criteria Analyzed content Initial number of studies Number of excluded studies Final number of studies

1st Duplicate removal Title, abstract, keywords 480 112 (23.3%) 368
2nd IC1, EC1–EC4 Title, abstract, keywords 368 274 (74.5%) 94
3rd IC1, EC5–EC7 Full text 94 84 (89.4%) 10
4th (a) Snowballing, IC1, EC1–EC4 Title, abstract, keywords (306) References from 10 studies 296 (96.7%) 6
4th (b) Snowballing, IC1, EC5–EC7 Full text 6 4 (66.7%) 2

Final Result: 10 (electronic databases) + 2 (backward snowballing) = 12 selected studies
c

Table 4
Selected studies.

Study Title Reference

𝐴1 Measuring complexity and coverage of software
specifications

[16]

𝐴2 Software dependability evaluation based on Markov
usage models

[42]

𝐴3 Optimal Software Testing and adaptive Software
Testing in the context of software cybernetics

[43]

𝐴4 Optimal and adaptive testing for software reliability
assessment

[44]

𝐴5 Optimal test profile in the context of software
cybernetics

[45]

𝐴6 Test suite prioritization for efficient regression testing
of model-based automotive software

[17]

𝐴7 Statistical prioritization for software product line
testing: an experience report

[46]

𝐴8 Automated generation of software testing path based
on ant colony

[47]

𝐴9 A model driven approach for system validation [48]

𝐴10 Reducing safety-critical software statistical testing cost
based on importance sampling technique

[49]

𝐴11 Application of Markov chain Monte Carlo random
testing to test case prioritization in regression testing

[50]

𝐴12 A Controlled Markov Chains Approach to Software
Testing

[14]

To better understand the possible relationship between the 12 se-
ected studies, we created a citation relationship graph presented in
ig. 2. Fig. 2 highlights when a study cites another study, for example,

study 𝐴3 was cited by study 𝐴12. Analyzing the citations presented in
Fig. 2, we can see that there is no significant relationship between
5

the 12 selected studies. It is believed that this happens because the s
Table 5
Sources and types of selected articles.

Study Type Publication source Year Country

𝐴1 Journal Information and Software
Technology

2000 USA

𝐴2 Journal Performance Evaluation 2000 Austria

𝐴3 Journal Information and Software
Technology

2002 China

𝐴4 Journal Information and Software
Technology

2004 China

𝐴5 Conference Second Asia-Pacific Conference on 2001 China
Quality Software

𝐴6 Conference International Conference on
Software Analysis,

2017 Germany

Testing and Evolution

𝐴7 Journal Software and Systems Modeling 2017 France

𝐴8 Congress Second International Congress on
Technology,

2016 Iran

Communication and Knowledge

𝐴9 Conference International Systems Conference
(SysCon)

2012 USA

𝐴10 Journal Advanced Materials Research 2012 China

𝐴11 Journal IEICE Transactions on Information
and Systems

2012 USA

𝐴12 Journal European Journal of Operational
Research

2011 China

nature of the test case prioritization applications in each study is quite
different. The approach to TCP of each study is presented in Section 5.2.

An important aspect to better understand a research segment is
where this type of work has been carried out. Table 4 shows the
ountries of the institutions in which the first author of each selected

tudy is affiliated. Only 12 studies remained for final analysis, where



Information and Software Technology 147 (2022) 106902G. Barbosa et al.

c
i
l
i
t
b
o
p
t

t
f
a
a
d
p
E
c
t
p

Fig. 2. Relationship between citations of selected studies.

Table 6
Distribution of articles by application.

Context 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6 𝐴7 𝐴8 𝐴9 𝐴10 𝐴11 𝐴12

Usage model ✓ ✓ ✓

Controlled MC ✓ ✓ ✓ ✓

Model-based testing ✓ ✓ ✓

Regression testing ✓ ✓

Statistical testing ✓ ✓

Random testing ✓

institutions of these authors are in six different countries. Among them,
the largest concentration is in China, containing five, followed by the
USA with three in the final group of selected articles. The remainder of
the distribution is made up of four more containing one article each.

The concern with testing has always been a concern of any device,
be it technological, mechanical, or even organizational. However, the
increase of such applications inserted in humanity in an interconnected
way to life and survival, made that exhaustive testing was essential.
Table 5 shows the year of publication of the selected studies. The first
of them, published in 2000 [16], demonstrates the beginning of the
concern with prioritizing the countless number of tests of any tool
used by humanity at the beginning of the new millennium. Likewise,
we can see a trend in the first decade (half of the selected works).
This beginning of concern with the main tests to be carried out within
increasingly complex devices is noticeable in different regions of the
globe (see Table 5). Whether they are related to each other or not
(see Fig. 2). This aspect demonstrates independence linked to the need
for the topic. In the second decade, the same occurs. That is, different
approaches concerned with prioritizing test cases in different regions
of the planet are also noticeable in Table 5. Fig. 2 shows us how the
concern with prioritizing test cases arose from the very need of the
time, that is, without so much influence from previous studies, as we
can see by only four citations between them that exist in the works,
which demonstrates that the trend occurred independently around the
world.

5.2. (RQ2) How Markov Chains have been applied to prioritize test cases?

To understand key initiatives of using Markov Chains in the priority
test cases context, we investigate which approaches have been proposed
or applied in the selected studies. Table 6 shows the main contexts
in which test case prioritization using Markov Chains are inserted.
It shows us how this subject has resources to be useful in different
applications.

The following is a brief presentation of the approach addressed by
each study. We separate the articles according to the main context in
which they are inserted. Some papers are inserted in more than one
6

context, so we will separate them according to the main one. s
5.2.1. Usage model
Coverage tests, using Markov Chain usage models, explore test

sequences through the intended use of software, rather than testing a
specific code implementation. In 𝐴1 [16], Markov Chains are used to
cover the states and arcs of a model. Each possible path in the model,
that is, traveling from state to state through the arcs that connect them,
has a probability of occurring. From the perspective of prioritization,
the authors seek to find, among the infinity of a model’s test cases,
several test cases that cover all the model’s behavior employing the
probability of the test cases to occur. This idea is an example of the
popular Chinese postman problem for targeted graphs [51].

Still, in the context of Markov Chain usage models, the study
𝐴2 [42] developed a technique for computing optimal test transition
probabilities. The author performs the optimization of test cases using
three measures: (i) risk; (ii) safety; and (iii) reliability. This information is
previously added in a probabilistic way, such as a probability of failure
and loss. Thus, the study statistically prioritizes test cases using these
new parameters.

5.2.2. Controlled MC
In study 𝐴3 [43], the author explores Controlled Markov Chains

(CMC) in the context of cybernetics software. This context explores
the interplay between software and control, with an attempt to apply
cybernetic or control-theoretical approaches to solve Software Engi-
neering problems. The author also introduces an adaptive software
testing strategy for state transitions to behave like a Markov chain. This
work presents a potential solution for prioritizing test cases, addressing
the problem as a control problem in the context of cybernetics software.
Still, in the same context of CMC, the study 𝐴4 [44] following an
optimal software test idea, shows that the CMC approach is also appli-
cable to dealing with optimal software testing problems for software
reliability assessment. Then, the code of the software under test is
frozen and the number of prioritized test cases is given. The study 𝐴5 is
the first of this trilogy of applications in the context of CMC. It shows
the initial concepts used in these two previous ones (𝐴3 and 𝐴4). The
analyses of this paper suggest that nonhomogeneous Markov models
should also be considered for software operational profile modeling.

Again inserted in the context of CMC, the study 𝐴12 [14] per-
forms, among other things, prioritization of test cases. Using the same
methodology as in 𝐴3, 𝐴4, and 𝐴5, the author presents a new case
study of adaptive testing and discusses why the CMC approach or
control-theoretic approach can work in practice.

5.2.3. Model-based testing
The study 𝐴8 [47] presents a proposed solution based on the ant

olony optimization algorithm and model-based tests. This algorithm
s a probability-based heuristic, created to solve computational prob-
ems that involve searching for paths in graphs. This algorithm was
nspired by observing the behavior of ants when they leave their colony
o find food [52]. With this approach, the study that is based on model-
ased tests, the software under test is considered as a module and this
ptimization with Markov Chains is used to produce prioritized test
aths. With this, the coverage of the model’s behavior is complete, and
he cost of the test is reduced.

It is considered as a system validation, a series of checks to verify
he functioning/compliance of an application with its purpose and
unctions. Within this context, in the study 𝐴9 [48], the authors propose

methodology in which the usage of a system is modeled through
Markov Modulated Markov Process (MMMP). With these modeled

iagrams, first, the test cases are generated, and then these cases are
rioritized. The state transition probabilities are estimated using the
xpectation–Maximization algorithm [53]. The prioritization of test
ases is done following what is described in [23]. That is, considering
hat a system is modeled in a probabilistic sense, an example of a
rioritization criterion depends on the probability of a generated test

equence being part of the usage.



Information and Software Technology 147 (2022) 106902G. Barbosa et al.

T
t

a
b
t
d
w
t
c
D
n
w

5

c
o
t
p
T
m
t
d
c

i
b
i
t
t
e
s
r
t

5

t
a
a
t
f
C
i
M
o
c

5
M

t
p
t
l
i
b
t

1
(
f

T
𝐴
p

n
p
(
s
𝐴
c

i
𝐴
t
w
s
c

g
t
c
t
s
o
h
a
r

6

i
c
v
D
c
n
p
t
b

C
5
u
r
r
c
S
a
f
(
T
I
c
s
d
O
t
d
p
s

p

5.2.4. Regression testing
The study 𝐴6 [17] is motivated by automotive software applications.

he authors introduce a new method for automatic prioritization of
est cases of an original test suite for efficient regression testing. The

test suite prioritization method is based on two key principles: (i) Fault
ctivation analysis — A test case should stimulate an error in an updated
lock; and (ii) Error propagation analysis — the most important is that
he stimulated error should propagate to a code location where it can be
etected. This second part is the most important, considering that this is
here the prioritization of test cases through Markov Chains occurs. In

his part, the authors use software (ErrorProTM [54]) that automatically
reates a set of discrete-time Markov Chain (DTMC) models using the
ual-graph Error Propagation Model (DEPM) and computes the mean
umber of errors that will reach the selected data storages, associated
ith the assertions.

.2.5. Statistical testing
Software Product Lines (SPL) are families of systems that have several

haracteristics in common, but each member of that family has its
wn features. Thus, within an SPL family, given the huge number of
est cases generated by the combinations of these characteristics, the
ractice of software tests that cover all of them becomes impracticable.
hus, a prioritization of test cases naturally becomes essential for the
ain characteristics of these products to be tested. In 𝐴7 [46], the au-

hors assess the integration of usage models through Markov Chains to
erive statistical test approaches for SPLs. Thus, this approach allows
ases to find the most probable and the rarest tests in a specification.

In the study, 𝐴10 [49], prioritization of test cases is done by optimiz-
ng the transition probabilities of the Markov Chain. The technique is
ased on Importance Sampling (IS). In statistics, importance sampling
s a general technique for estimating properties of a particular distribu-
ion, while only having samples generated from a different distribution
han the distribution of interest. The method proposed in the study is
fficient in reducing the cost of the statistical test of security-critical
oftware and can also produce an impartial reliability test result. The
esults of the field test show that the method reduces the cost of the
est while producing unbiased estimates of software reliability.

.2.6. Random testing
The 𝐴11 [50] proposes the test case prioritization in regression

esting. The motivation of the proposal is the big problem found in
ll studies, a large amount of tests suite to be executed which causes
great operational cost, now in regression testing. Thus, highlighting

he importance of prioritizing test cases so that correct analysis is
easible. The paper discusses the applicability of Markov chain Monte
arlo random testing (MCMC-RT) to the test case prioritization, which

s an alternative random-coverage-based algorithm. The basic idea of
CMC-RT is to estimate the distribution of fault location from the past

utcomes of software test execution, and, as a result, it leads to test
ases as evenly as possible across the input domain.

.3. (RQ3) What are the algorithms and/or tools to support TCP using
arkov Chains in each study?

The main objective of this research question is to bring to light
he main methodologies used in the application of Markov Chains for
rioritizing test cases. Table 7 compiles the main information related
o this goal. Information refers to developed techniques, programming
anguages, analytical and simulation results, and validation tests. An
mportant piece of information that could be present in the table would
e an open-source application that was developed. However, none of
he studies produced one.

From the second column of the table (‘‘Context’’), we can infer that
∕3 of the studies refer to Controlled Markov Chains (Controlled MC)
𝐴3, 𝐴4, 𝐴5 and 𝐴12). In these cases, state transition probabilities are
7

unctions of control inputs, making this the most present approach.
hree studies have more than one main context in which (𝐴6, 𝐴10 and
11). Finally, continuing the second column, the least used approach,
resent in only one study (𝐴7), is Statistical Testing.

Except for 𝐴5, 𝐴7, and 𝐴10, all others have generated some new tech-
iques in which Markov Chains are used in the test case prioritization
rocess. The techniques are shown in the third column of the table
‘‘Developed Techniques’’). The application of Markov Chains plays a
ignificant role within each technique. As a major highlight, the study
6 has the most directly applied technique, where automation of test
ases prioritization is developed.

Most of the studies do not indicate the programming language used
n their development. Only three indicate this information: 𝐴3, 𝐴6 and
9. In 𝐴3 and 𝐴9, MATLAB is used and 𝐴6 uses MATLAB Simulink. With

his information, we can better identify how the generated techniques
ere developed, in terms of paradigms, for example. However, we can

ee that MATLAB is the most used for this use of Markov Chains in test
ases prioritization.

The last three columns of the table bring us how the results were
enerated (‘‘Analytical results’’, ‘‘Simulation results’’, and ‘‘Validation
ests’’). Only studies 𝐴7, 𝐴8, and 𝐴11 did not generate results analyti-
ally. This demonstrates a lot of mathematical appeal in most cases. On
he other hand, studies 𝐴5 and 𝐴12 were the only ones that did not use
ome numerical form to demonstrate their results. This combination
f analytical and numerical results and in most cases demonstrates
ow complete the results are. And finally, which brings even more
ssurance and confidence in the techniques developed and, in the
esults presented, only study 𝐴5 does not present a validation test.

. Discussions

Model Based Testing can develop test cases, based on specification,
n the early phases much before the software is ready. These test
ases must be exercised on the implemented software to provide a
erdict of whether the software is in conformance with its specification.
epending on the criteria (to generate the tests), the number of test
ases can be large. Depending on the time and budget restraints, it is
ot always possible to exercise the entire set. In such cases, TCP can
lay an important role. What are the strategies to understand which
est cases must be run before the others, i.e., which should be exercised
ased on some priority?

The approach the paper described here discusses the use of Markov
hains. The idea originated because of the tool WEB-PerformCharts [55,
6] developed by some of the authors. The tool has two options to be
sed. The first one is to generate test cases given a software model rep-
esented as a Finite State Machine [21] or Statecharts [57]. The second
efers to steady-state probabilities by solving a Markov Chain. In both
ases, the model can be represented as a Finite State Machine (FSM) or
tatecharts. When the representation is modeled in Statecharts, there is
translation to FSM. The tool was heavily used to generate test cases

or space applications within the National Institute for Space Research
INPE).2 For the option of test cases, several criteria, such as Transition
our, Switch Cover, H-Switch Cover, Distinguished Sequence, Unique
nput Output are implemented and used [58–61]. Depending on the
riteria, several test cases are generated. If the same FSM is used with
tochastic transition events or transition probabilities, it is possible to
etermine the steady-state probabilities by solving a Markov Chain.
ne must remember the memory-less property of Markov Chains and

herefore, the labels on the transition arcs must follow an exponential
istribution. These steady-state probabilities can in turn be used to
rioritize the test cases as they represent the percentage of time each
tate is active.

Among the 12 resulting studies, most of them are from Journals with
ublications years between 2000 and 2017 which can be considered

2 www.gov.br/inpe.

http://www.gov.br/inpe


Information and Software Technology 147 (2022) 106902G. Barbosa et al.
Table 7
Information on the methodology used in the development of works on the use of Markov Chains for prioritizing test cases.

ID Context Developed technique Programming
language

Analytical results Simulation results Validation tests

𝐴1 Usage model Measure of the complexity
of a software specification

– ✓ ✓ ✓

𝐴2 Usage model Optimal test transition
probabilities in a Markov
software usage model

– ✓ ✓ ✓

𝐴3 Controlled MC Adaptive software testing MATLAB ✓ ✓ ✓

𝐴4 Controlled MC Adaptive software testing
(extended)

✓ ✓ ✓

𝐴5 Controlled MC – – ✓ – –

𝐴6 Model-based testing,
Regression testing

Automatic prioritization of
test cases

MATLAB Simulink ✓ ✓ ✓

𝐴7 Statistical testing – – – ✓ ✓

𝐴8 Model-based testing Ant colony optimization
algorithm and model-based
testing

– – ✓ ✓

𝐴9 Model-based testing Model driven approach for
system validation

MATLAB ✓ ✓ ✓

𝐴10 Usage model,
Statistical testing

– – ✓ ✓ ✓

𝐴11 Regression testing,
Random testing

Markov Chain Monte Carlo
Random Testing

– – ✓ ✓

𝐴12 Controlled MC – – ✓ – ✓
that prioritization of tests cases as recent. Among the journals, more
papers were submitted to IST. One can observe a weak relationship
among the Selected Studies as the applications to prioritize test cases
are very distinct. The analysis also pointed out that publications are
from 8 countries. The analysis of the studies also indicated that the
approach proposed in the paper described here is quite different from
other publications. The paper also shows the publications that refer to
important information on developed techniques or tools, programming
languages used to develop the technique, whether results used simula-
tion or calculated analytically, etc. While evaluating the context used
by the studies, we observe that most of the studies employed Controlled
Markov Chains, and the least used context was Statistical Testing. All
the Selected Studies employed Markov Chain in some context but one
that automated the prioritization of test cases was directly related
to our paper. Concerning programming languages, MATLAB was the
most used. In terms of results, most depended on simulation and not
analytical calculations.

Our focus has always been, Model Based Testing (MBT) and it is
very well established within the testing community. Maybe it is worth
exploring any new suggestions of methods to represent reactive sys-
tems. Our knowledge lies in FSM and Statecharts. Most of our examples
come from Space Applications due to the mission of the space institute
of one of the authors. However, it would be good if there were more
practical approaches along with free software systems or frameworks
available to the general interested public. We intend to make our tool
WEB-PerformCharts available to anyone willing to explore to generate
steady-state probabilities and/or test cases.

Markov chains have been in use to model performance in a wide
variety of applications such as traffic flows, communications networks,
genetic engineering, and queueing systems. The same is true when the
application is a software system. The potential of using Markov chains
in other areas can greatly benefit software systems as well. Even though
an important contribution Whittaker and Thomason [13] dates in the
1990s, one can say that associating Markov chains with software testing
is not yet very consolidated. This is one of the reasons for conducting
a Systematic Literature Review on this topic. As shown in the analysis
of the resulting literature, not much has been done.

This opens some avenues for those researchers interested in explor-
8

ing this topic. We intend to explore the ideas presented in the selected
studies as well as our own to contribute to our computational tool,
WEB-PerformCharts to include test case prioritization. This approach
may be attractive to companies that develop software and come up
with budget restrictions putting pressure to deliver a software product
with quality and duly validated. The first idea is to use the existing
test cases already generated from our tool for certain space application
systems and model a Markov Chain of these systems. With the steady-
state probabilities, we must develop an algorithm of ordering the test
cases based on those that traversed through the state with higher
probabilities.

6.1. Threats to validity

SLR presented in this paper has some limitations. We discussed the
validity concerning the four groups of common threats to validity [62]:
internal validity, construct validity, external validity, and conclusion
validity.

Internal Validity. The study selection was initially performed by
a part of the authors (four authors), and thus some subjectivity could
have been embedded. To reduce this subjectivity, the other two authors
performed selection in a sample (approximately 30%) and then com-
pared to detect possible bias. In addition, an analysis of the degree of
conformance was performed to measure the level of agreement between
the results obtained from the reviewers in the selection process. Kappa
coefficient was calculated (Section 3). This analysis considers the agree-
ment occurring by chance, so it is a more robust measure than a simple
percent agreement calculation. For calculating the kappa coefficient,
we considered the result set from Stage 2 which contains 92 papers. In
our case, the overall kappa coefficient obtained was 0.67. According to
Landis and Koch [38], this value is considered a substantial agreement.
The value obtained in the Kappa calculation demonstrates that the
reviewers are qualified to evaluate the characteristics of interest in this
SLR, that is, the reviewers had no difficulty in verifying whether the
study was dealing with TCP approaches using Markov Chains.

Once we retrieved the papers, we had to decide if the studies
meet our selection criteria (IC and EC). Some studies were the subject
of intense debate. 78 studies were discussed among the authors and

removed based on criterion EC7. As mentioned in the selection process



Information and Software Technology 147 (2022) 106902G. Barbosa et al.

s
m
t
h
b
e
M
w
w
p

Table 8
Tertiary studies — Areas and Keywords.

Areas Keywords

Software Testing ‘‘Software Testing’’ OR ‘‘Software Test’’ OR ‘‘test case’’ OR
‘‘test cases’’ OR ‘‘test sequence’’

Markov Chains ‘‘Markov Chains’’ OR ‘‘Markovian’’

Secondary Study ‘‘Systematic Review’’, ‘‘Literature Review’’, ‘‘Systematic
Mapping’’, ‘‘Mapping Study’’, ‘‘Systematic Map’’,
‘‘Meta-analysis’’, ‘‘Survey’’ and ‘‘Literature Analysis’’

Search String: (‘‘Software Testing’’ OR ‘‘Software Test’’ OR ‘‘Test Case’’ OR ‘‘Test
Cases’’ OR ‘‘Test Sequence’’) AND (‘‘Markov Chains’’ OR ‘‘Markovian’’) AND
(‘‘Systematic Review’’ OR ‘‘Literature Review’’ OR ‘‘Systematic Mapping’’ OR
‘‘Mapping Study’’ OR ‘‘Systematic Map’’ OR ‘‘Meta-analysis’’ OR ‘‘Literature
Analysis’’)

(Section 4), although the study addressed Markov Chains in Software
Testing, the study focus was not applied to prioritizing test cases.

Construct Validity. Some terminological problems in the search
trings or the number of electronic databases used may have led to
issing some primary studies. The exclusion of other sources makes

he review more repeatable, but possibly some valuable studies may
ave been left out of our analysis. Although this limitation exists, we
elieve that the studies discussed in this SLR provide a snapshot of
mpirical research on outcomes and impacts of existing research on
arkov Chains and TCP. Even though, to minimize these problems,
e performed backward snowballing in the Selected Studies. The back-
ard snowballing allowed complementing the selected studies with
otentially other studies indexed in different sources.
External Validity. Although Springer’s electronic database is an

important source of studies on the topics discussed in this SLR, we
only had access to studies considered content type equal to ‘‘Article’’
and ‘‘Conference paper’’. Studies that have been published in ‘‘Chapter’’
format are restricted. This fact may also have led to missing some
primary studies. However, as discussed in construct validity, we believe
that the discussed selected studies provide an important vision of
empirical research on Markov Chains and TCP.

Conclusions Validity. In the same way, as during the study selec-
tion stage, some subjectivity may have occurred in the data extraction.
To reduce this subjectivity, the data extraction was performed by more
than one author considering different samples (approximately 30%)
and later compared to detect possible bias.

7. Related work

In this paper, we presented an SLR, i.e. a secondary study that is
based on analyzing research papers (primary studies) [34]. Our SLR
aims to identify and classify all research related to understanding how
Markov Chains have been applied on TCP. Hence, before accomplishing
the secondary study presented in this paper, we performed a tertiary
study looking for other secondary studies investigating the same re-
search topic, that is, Software Testing and Markov Chains. Tertiary
studies are considered as a review that focuses only on secondary
studies (SLR or Mapping Studies), i.e., it is a review about other
secondary studies [34].

In this tertiary study, we used the search string shown in Ta-
ble 8, which was applied in three metadata fields (title, abstract, and
keywords).

We applied the search string in the following scientific databases:
IEEE Xplore, ACM Digital Library, Scopus, ScienceDirect, and Springer-
Link. ACM Digital Library was the only database without returning
any study. In the other databases, we found 5 results in IEEE Xplore,
9 in ScienceDirect, and 13 in Scopus. Nevertheless, not even one of
the results was related to the goal of the tertiary study, i.e., related to
SLRs or mapping studies about Markov Chains and Software Testing
simultaneously.
9

As we did not find any secondary study addressing Markov Chains
and TCP, we decided to investigate secondary studies that deal with
Markov Chains and TCP separately. We started looking for secondary
studies in TCP using the following search string: (‘‘Test Case Prioritiza-
tion’’) AND (‘‘Systematic Review’’ OR ‘‘Literature Review’’ OR ‘‘Systematic
Mapping’’ OR ‘‘Mapping Study’’ OR ‘‘Systematic Map’’ OR ‘‘Meta-analysis’’
OR ‘‘Literature Analysis’’). The string was applied in three metadata
fields (title, abstract, and keywords). The same five electronic databases
were searched. A total of 32 were identified. After eliminating du-
plication and applying the selection criteria, we reached 18 papers
presenting secondary studies on TCP. We analyze the authors’ different
interests in summarizing evidence on TCP. We grouped these interests
in the following categories: (i) Approaches (3 studies); (ii) Regression
Testing Techniques (5 studies); (iii) Model-based Testing (2 studies);
(iv) Web Services (2 studies); (v) Genetic algorithms (2 studies); (vi)
Event sequences (2 studies); Requirements (2 studies); and Others (3
studies), including Continuous Integration environments (TCPCI), Evo-
lutionary Algorithm, Industrial relevance, and Applicability. In some
cases, we classified the studies in more than one category since the
study covered more than one interest.

Now, we also looked for secondary studies in Markov Chain, we
used the following search string: (‘‘Markov Chain’’) AND (‘‘Systematic
Review’’ OR ‘‘Literature Review’’ OR ‘‘Systematic Mapping’’ OR ‘‘Mapping
Study’’ OR ‘‘Systematic Map’’ OR ‘‘Meta-analysis’’ OR ‘‘Literature Analy-
sis’’). The same five electronic databases were searched, and 37 studies
were returned. Duplications were eliminated, resulting in 32. Two
papers were presenting secondary studies on Markov Chains. In one of
these papers [63], the SLR conducted was about the application of Hid-
den Markov Models (HMMs) in the field of sentiment analysis. HMM
is a Markov-based probabilistic graphical model, and the respective
literature review analyzed use cases applied to sentiment classification.
The other paper [64] studies the Business Processes Modeling applied
to Small Medium Enterprises (SME). It relates analytical management
of computational techniques from a systematic review about Markov
chain modeling and other methods such as the game-theoretic analy-
sis, the probabilistic modeling, and the Cognitive Maps methodology.
However, the model proposed as a result of the SLR, in this case, is
Petri nets-based.

Based on the results of these two investigations, one can say that
there is a diversity of secondary studies in TCP and Markov Chains.
However, when we combined these two areas, no secondary studies
were identified.

8. Conclusions

In this paper, we have reported the results of an SLR on TCP
using Markov Chains. From the defined search string, a total of 468
studies obtained from five databases were returned (IEEEXplore, ACM,
ScienceDirect, SpringerLink, and Scopus), of which only 12 persisted
until the last selection step. For this study, 3 research questions were
defined, whose objective is not only to clarify the technologies and
methodologies involved in the application of Markov Chains and the
prioritization of test cases but also to understand how research related
to this field is being distributed and studied by the around the world.

The main objective of this work was to investigate all the ap-
proaches and applications related to this topic, so that, based on the
correlations between the studies found, we could trace possible future
directions regarding this topic. Our motivation for this was the fact that
Test Case Prioritization is a profitable field from the point of view of the
entire software development cycle, as its application can be useful in
many ways, such as saving time and budget since the goal is to optimize
the process of software testing, which often consumes a good deal of
effort on the part of the development team.

Overall, the major contribution of this study was to elucidate the
context of the application of this subject. However, based on data
extracted from each of the 12 studies analyzed, we found that there



Information and Software Technology 147 (2022) 106902G. Barbosa et al.

a
w
u
u

i
m
a
a

C

R
c
R
B
d
M
s
M
s
m
i

D

c
i

A

t
4

R

is no strong relationship between any of the studies. This idea is based
on several findings throughout the conduct of this SLR, among them,
we can mention the fact that the studies were conducted independently
of each other: although these works have used Markov Chains at some
stage of prioritization, they are not related to each other. Furthermore,
we realized with our results that the applications of Markov Chains
in the prioritization of test cases vary a lot, since their motivation
concerning the developed processes.

In a general way, we can summarize the findings of this research
below:

• Regarding the distribution of research related to this topic around
the world, the research centers dedicated to this subject are
concentrated in 3 of the 6 continents. In addition, from a temporal
point of view, activities were concentrated between 2000 and
2017, and there was an interval without any publication between
2003 and 2011. However, with this SLR’s data, there is a gap time
since the publication of the last study analyzed, in 2017.

• Concerning the fields of application of this subject, 6 forms of
approach were found: Controlled MC, Usage Model, Model-Based
Test, Regression Test, Statistical Test, and Random Test. Among
them, the most used were Usage Models, Controlled CM, and Test-
Based Models. Of these works, about 67% developed some tech-
nique in their research. This demonstrates how these approaches
are directed to different applications.

• Regarding the technologies used, not all studies have detailed
this point. However, based on the extracted data, the approaches
used were well diversified: Measure of the software specification,
Optimal Test Transition Probabilities, Adaptive Software Testing,
Automatic Prioritization, Ant Colony Optimization, Model Driven
approach, and Monte Carlo Random Testing

Based on the analysis of all 12 studies, we realized the benefits of
pplying Markov Chains for TCP. Thus, as a proposal for future work,
e will develop a test case generation and prioritization technique
sing Markov Chains. Our technique in the initial testing phase will
se the probabilities of each test sequence to perform the ranking.

Finally, we believe that results from this SLR can strongly help to
dentify a body of knowledge to support future research. Learning as
uch as possible from other domains related to the topic and providing
basis for other researchers as well as students who consider learning

bout and contributing to this area.

RediT authorship contribution statement

Gerson Barbosa: Conceptualization, Formal analysis, Validation,
esources, Writing – original draft. Érica Ferreira de Souza: Con-
eptualization, Methodology, Supervision, Formal analysis, Validation,
esources, Writing – original draft, Project administration. Luciana
rasil Rebelo dos Santos: Conceptualization, Formal analysis, Vali-
ation, Resources, Writing – original draft, Writing – review & editing.
arlon da Silva: Conceptualization, Formal analysis, Validation, Re-

ources, Writing – original draft, Writing – review & editing. Juliana
arino Balera: Conceptualization, Formal analysis, Validation, Re-

ources, Writing – original draft. Nandamudi Lankalapalli Vijayku-
ar: Conceptualization, Formal analysis, Validation, Resources, Writ-

ng – original draft, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.
10
cknowledgments

Dr. Érica Ferreira de Souza is supported by a research grant from
he Brazilian funding agency CNPq, Brazil, with reference number:
32247/2018-1.

eferences

[1] I. Eee, Standard Glossary of Software Engineering Terminology, IEEE Software
Engineering Standards & ollection, IEEE, 1990, pp. 610–612.

[2] C. Baier, J.-P. Katoen, Principles of Model Checking, MIT Press, 2008.
[3] M. Delamaro, J. Maldonado, M. Jino, Introdução ao Teste de Software, Rio de

Janeiro, RJ, 2007.
[4] A. Mathur, Foundations of Software Testing, Seventh Impression, Pearson

Education, New York, 2012.
[5] C. Catal, D. Mishra, Test case prioritization: a systematic mapping study, Softw.

Qual. J. 21 (3) (2013) 445–478.
[6] M. Khatibsyarbini, M.A. Isa, D.N. Jawawi, R. Tumeng, Test case prioritization

approaches in regression testing: A systematic literature review, Inf. Softw.
Technol. 93 (2018) 74–93.

[7] F.M. Nejad, R. Akbari, M.M. Dejam, Using memetic algorithms for test case
prioritization in model based software testing, in: 2016 1st Conference on Swarm
Intelligence and Evolutionary Computation (CSIEC), 2016, pp. 142–147.

[8] Y. Lou, D. Hao, L. Zhang, Mutation-based test-case prioritization in software
evolution, in: 2015 IEEE 26th International Symposium on Software Reliability
Engineering (ISSRE), 2015, pp. 46–57.

[9] D. Di Nardo, N. Alshahwan, L. Briand, Y. Labiche, Coverage-based regression
test case selection, minimization and prioritization: A case study on an industrial
system, Softw. Test. Verif. Reliab. 25 (4) (2015) 371–396.

[10] D. Di Nardo, N. Alshahwan, L. Briand, Y. Labiche, Coverage-based test case pri-
oritisation: An industrial case study, in: 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation, 2013, pp. 302–311.

[11] G. Rothermel, R.H. Untch, C. Chu, M.J. Harrold, Test case prioritization: an
empirical study, in: Proceedings IEEE International Conference on Software
Maintenance - 1999 (ICSM’99). ’software Maintenance for Business Change’ (Cat.
No.99CB36360), 1999, pp. 179–188.

[12] B. Korel, G. Koutsogiannakis, L.H. Tahat, Model-based test prioritization heuristic
methods and their evaluation, in: Proceedings of the 3rd International Workshop
on Advances in Model-Based Testing, 2007, pp. 34–43.

[13] J.A. Whittaker, M.G. Thomason, A Markov chain model for statistical software
testing, IEEE Trans. Softw. Eng. 20 (10) (1994) 812–824.

[14] K.-Y. Cai, A controlled Markov chains approach to software testing, Softw. Eng.:
Int. J. (SeiJ) 1 (1) (2011) 38–59.

[15] S.K. Khatri, K. Kaur, R. Datta, Testing Apache OpenOffice Writer using statistical
usage testing technique, Int. J. Syst. Assur. Eng. Manag. 6 (1) (2015) 3–17.

[16] G. Walton, J. Poore, Measuring complexity and coverage of software
specifications, Inf. Softw. Technol. 42 (12) (2000) 859–872.

[17] A. Morozov, K. Ding, T. Chen, K. Janschek, Test suite prioritization for efficient
regression testing of model-based automotive software, in: 2017 International
Conference on Software Analysis, Testing and Evolution (SATE), IEEE, 2017, pp.
20–29.

[18] H.C. Tijms, H.C. Tijms, Stochastic Models: An Algorithmic Approach, Vol. 303,
Wiley, New York, 1994.

[19] H. Tijms, A First Course in Stochastic Models, Wiley, 2003.
[20] E. Cinlar, Introduction to Stochastic Processes, Prentice-Hall, Englewood Cliffs,

New Jersey, 1975, p. 420.
[21] D. Lee, M. Yannakakis, Principles and methods of testing finite state machines-a

survey, Proc. IEEE 84 (8) (1996) 1090–1123.
[22] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Manchester

University Press, 1992.
[23] S. Elbaum, A.G. Malishevsky, G. Rothermel, Test case prioritization: A family of

empirical studies, IEEE Trans. Softw. Eng. 28 (2) (2002) 159–182.
[24] N. Gökçe, F. Belli, M. Eminli, B.T. Dincer, Model-based test case prioritization

using cluster analysis: a soft-computing approach, Turk. J. Electr. Eng. Comput.
Sci. 23 (3) (2015) 623–640.

[25] A. Kashyap, T. Holzer, S. Sarkani, T. Eveleigh, Model based testing for software
systems: an application of markov modulated markov process, Int. J. Comput.
Appl. 46 (14) (2012) 13–20.

[26] S. Siegl, K.-S. Hielscher, R. German, C. Berger, Formal specification and sys-
tematic model-driven testing of embedded automotive systems, in: 2011 Design,
Automation & Test in Europe, IEEE, 2011, pp. 1–6.

[27] P. Brémaud, Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues,
Vol. 31, Springer Science & Business Media, 2013.

[28] L.C. Briand, Y. Labiche, Y. Wang, Using simulation to empirically investigate
test coverage criteria based on statechart, in: Proceedings. 26th International
Conference on Software Engineering, IEEE, 2004, pp. 86–95.

[29] A.E.V.B. Coutinho, E.G. Cartaxo, P.D. de Lima Machado, Analysis of distance
functions for similarity-based test suite reduction in the context of model-based
testing, Softw. Qual. J. 24 (2) (2016) 407–445.

http://refhub.elsevier.com/S0950-5849(22)00062-3/sb1
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb1
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb1
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb2
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb3
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb3
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb3
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb4
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb4
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb4
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb5
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb5
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb5
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb6
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb6
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb6
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb6
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb6
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb7
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb7
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb7
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb7
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb7
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb8
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb8
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb8
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb8
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb8
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb9
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb9
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb9
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb9
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb9
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb10
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb10
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb10
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb10
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb10
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb13
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb13
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb13
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb14
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb14
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb14
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb15
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb15
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb15
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb16
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb16
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb16
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb17
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb17
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb17
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb17
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb17
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb17
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb17
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb18
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb18
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb18
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb19
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb20
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb20
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb20
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb21
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb21
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb21
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb22
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb22
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb22
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb23
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb23
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb23
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb24
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb24
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb24
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb24
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb24
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb25
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb25
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb25
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb25
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb25
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb26
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb26
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb26
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb26
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb26
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb27
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb27
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb27
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb28
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb28
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb28
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb28
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb28
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb29
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb29
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb29
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb29
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb29


Information and Software Technology 147 (2022) 106902G. Barbosa et al.
[30] A.T. Endo, A. Simao, Evaluating test suite characteristics, cost, and effectiveness
of FSM-based testing methods, Inf. Softw. Technol. 55 (6) (2013) 1045–1062.

[31] A.G. Raiyani, S.S. Pandya, Proritization technique for minimizing number of test
cases, Int. J. Softw. Eng. Res. Pract. 1 (2011).

[32] K. Muthyala, R. Naidu, A novel approach to test suite reduction using data
mining, Indian J. Comput. Sci. Eng. 2 (3) (2011) 500–505.

[33] S. Roongruangsuwan, J. Daengdej, Test case reduction methods by using CBR,
in: International Workshop on Design, Evaluation and Refinement of Intelligent
Systems (DERIS2010), 2010, p. 75.

[34] B.A. Kitchenham, S. Charters, Guidelines for performing Systematic Literature
Reviews in Software Engineering, Technical Report EBSE 2007-001, Keele
University and Durham University, UK, 2007.

[35] M. Pai, M. McCulloch, J. Gorman, N. Pai, W. Enanoria, G. Kennedy, P. Tharyan,
J.M. Colford, Systematic reviews and meta-analyses: an illustrated, step-by-step
guide, Natl. Med. J. India 17 (2) (2004) 89.

[36] J. Biolchini, P. Mian, A. Natali, G. Travassos, Systematic Review in Software
Engineering, Technical Report ES 679/05, COPPE/UFRJ, Brazil, 2005.

[37] T. Dyba, T. Dingsoyr, G. Hanssen, Applying systematic reviews to diverse study
types: An experience report, in: International Symposium on Empirical Software
Engineering and Measurement, 2007, pp. 225–234.

[38] J.R. Landis, G.G. Koch, The measurement of observer agreement for categorical
data, Biometrics (1977) 159–174.

[39] M. Al-tekreeti, K. Naik, A. Abdrabou, M. Zaman, P. Srivastava, Test generation
for performance evaluation of mobile multimedia streaming applications, in:
MODELSWARD, 2018, pp. 225–236.

[40] C.-a. Sun, H. Dai, H. Liu, T.Y. Chen, K.-Y. Cai, Adaptive partition testing, IEEE
Trans. Comput. 68 (2) (2018) 157–169.

[41] L. Lin, Y. Xue, F. Song, A simpler and more direct derivation of system reliability
using markov chain usage models, in: Proceedings of the 29th International
Conference on Software Engineering and Knowledge Engineering, KSI Research
Inc. and Knowledge Systems Institute Graduate School, 2017, pp. 462—466.

[42] W.J. Gutjahr, Software dependability evaluation based on Markov usage models,
Perform. Eval. 40 (4) (2000) 199–222.

[43] K.-Y. Cai, Optimal software testing and adaptive software testing in the context
of software cybernetics, Inf. Softw. Technol. 44 (14) (2002) 841–855.

[44] K.-Y. Cai, Y.-C. Li, K. Liu, Optimal and adaptive testing for software reliability
assessment, Inf. Softw. Technol. 46 (15) (2004) 989–1000, Third International
Conference on Quality Software: QSIC 2003.

[45] K.-Y. Cai, Optimal test profile in the context of software cybernetics, in:
Proceedings Second Asia-Pacific Conference on Quality Software, 2001, pp.
157–166.

[46] X. Devroey, G. Perrouin, M. Cordy, H. Samih, A. Legay, P.-Y. Schobbens, P.
Heymans, Statistical prioritization for software product line testing: an experience
report, Softw. Syst. Model. 16 (1) (2015) 153–171.

[47] F. Sayyari, S. Emadi, Automated generation of software testing path based on
ant colony, in: 2015 International Congress on Technology, Communication and
Knowledge (ICTCK), IEEE, 2015, pp. 435–440.

[48] A. Kashyap, W.J.J. Roberts, S. Sarkani, T.A. Mazzuchi, A model driven approach
for system validation, in: 2012 IEEE International Systems Conference SysCon
2012, IEEE, 2012, pp. 1–7.
11
[49] J. Yan, C.H. Deng, M.L. Ji, Reducing safety-critical software statistical testing
cost based on importance sampling technique, Adv. Mater. Res. 433–440 (2012)
4691–4697.

[50] B. Zhou, H. Okamura, T. Dohi, Application of Markov Chain Monte Carlo random
testing to test case prioritization in regression testing, IEICE Trans. Inf. Syst.
E95.D (9) (2012) 2219–2226.

[51] A. Gibbons, Algorithmic Graph Theory, Cambridge University Press, 1985.
[52] M. Dorigo, K. Socha, An introduction to ant colony optimization, in: Handbook

of Metaheuristics, Vol. 26, 2006.
[53] B. Regnell, P. Runeson, C. Wohlin, Towards integration of use case modelling

and usage-based testing, J. Syst. Softw. 50 (2) (2000) 117–130.
[54] A. Morozov, R. Tuk, K. Janschek, ErrorPro: Software tool for stochastic error

propagation analysis, in: 1st International Workshop on Resiliency in Embedded
Electronic Systems, Amsterdam, the Netherlands, 2015, pp. 59–60.

[55] A.O. Arantes, N.L. Vijaykumar, V.A. de Santiago Junior, D. Guimarães, WEB-
PerformCharts: a collaborative web-based tool for test case generation from
Statecharts, in: Proceedings of the 10th International Conference on Information
Integration and Web-Based Applications & Services, 2008, pp. 374–381.

[56] V. Santiago, N.L. Vijaykumar, D. Guimarães, A.S. Amaral, E. Ferreira, An
environment for automated test case generation from statechart-based and finite
state machine-based behavioral models, in: 2008 IEEE International Conference
on Software Testing Verification and Validation Workshop, IEEE, 2008, pp.
63–72.

[57] D. Harel, Statecharts: A visual formalism for complex systems, Sci. Comput.
Program. 8 (3) (1987) 231–274.

[58] E.F. Souza, V.A. Santiago Júnior, D. Guimaraes, N.L. Vijaykumar, Evaluation
of test criteria for space application software modeling in statecharts, in:
International Conference on Computational Intelligence for Modelling Control
and Automation, 2008, pp. 157–162.

[59] A.O. Arantes, V.A. Santiago Júnior, N.L. Vijaykumar, E.F. Souza, Tool support
for generating model-based test cases via web, Int. J. Web Eng. Technol. IiWAS
9 (1) (2014) 62–96.

[60] E.F. Souza, V.A. Santiago Júnior, N.L. Vijaykumar, H-Switch Cover: a new test
criterion to generate test case from finite state machines, Softw. Qual. J. 25 (2)
(2017) 373–405.

[61] M.M. Mariano, E.F. Souza, A.E. Endo, N.L. Vijaykumar, Comparing graph-
based algorithms to generate test cases from finite state machines, J. Electron.
Test.-Theory Appl. 1 (2020) 1–19.

[62] X. Zhou, Y. Jin, H. Zhang, S. Li, X. Huang, A map of threats to validity
of systematic literature reviews in software engineering, in: 23rd Asia-Pacific
Software Engineering Conferencees, 2016, pp. 153–160.

[63] V. Odumuyiwa, U. Osisiogu, A systematic review on hidden Markov models
for sentiment analysis, in: 2019 15th International Conference on Electronics,
Computer and Computation (ICECCO), 2019, pp. 1–7.

[64] D.A. Karras, R.C. Papademetriou, A systematic review of analytical management
techniques in business process modelling for SMEs beyond what-if-analysis and
towards a framework for integrating them with BPM, in: Proceedings of the
Seventh International Symposium on Business Modeling and Software Design –
BMSD, 2017, pp. 99–110.

http://refhub.elsevier.com/S0950-5849(22)00062-3/sb30
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb30
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb30
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb31
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb31
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb31
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb32
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb32
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb32
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb33
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb33
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb33
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb33
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb33
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb34
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb34
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb34
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb34
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb34
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb35
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb35
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb35
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb35
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb35
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb36
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb36
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb36
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb37
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb37
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb37
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb37
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb37
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb38
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb38
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb38
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb39
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb39
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb39
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb39
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb39
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb40
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb40
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb40
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb41
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb41
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb41
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb41
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb41
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb41
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb41
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb42
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb42
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb42
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb43
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb43
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb43
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb44
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb44
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb44
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb44
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb44
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb46
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb46
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb46
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb46
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb46
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb47
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb47
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb47
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb47
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb47
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb48
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb48
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb48
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb48
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb48
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb49
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb49
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb49
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb49
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb49
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb50
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb50
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb50
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb50
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb50
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb51
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb52
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb52
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb52
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb53
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb53
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb53
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb54
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb54
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb54
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb54
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb54
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb56
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb56
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb56
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb56
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb56
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb56
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb56
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb56
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb56
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb57
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb57
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb57
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb58
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb58
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb58
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb58
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb58
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb58
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb58
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb59
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb59
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb59
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb59
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb59
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb60
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb60
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb60
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb60
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb60
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb61
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb61
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb61
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb61
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb61
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb62
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb62
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb62
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb62
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb62
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb63
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb63
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb63
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb63
http://refhub.elsevier.com/S0950-5849(22)00062-3/sb63

	A Systematic Literature Review on prioritizing software test cases using Markov chains
	Introduction
	Background
	Markov Chains
	Software testing
	Test case prioritization

	Research method
	Selection process
	Data extraction and synthesis
	(RQ1) When and where the studies have been published?
	(RQ2) How Markov Chains have been applied to prioritize test cases?
	Usage model
	Controlled MC
	Model-based testing
	Regression testing
	Statistical testing
	Random testing

	(RQ3) What are the algorithms and/or tools to support TCP using Markov Chains in each study?

	Discussions
	Threats to validity

	Related work
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


