
Journal of King Saud University – Computer and Information Sciences 34 (2022) 4191–4208
Contents lists available at ScienceDirect

Journal of King Saud University –
Computer and Information Sciences

journal homepage: www.sciencedirect .com
Resource identifier interoperability among heterogeneous IoT platforms
https://doi.org/10.1016/j.jksuci.2022.05.003
1319-1578/� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding authors at: Department of Computer and Information Security,
and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006,
Republic of Korea.

E-mail addresses: sigmao91@sju.ac.kr (J. Koo), alwaysgabi@sejong.ac.kr (Y.-G.
Kim).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier
Jahoon Koo ⇑, Young-Gab Kim ⇑
Department of Computer and Information Security, and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Republic of Korea
a r t i c l e i n f o

Article history:
Received 1 November 2021
Revised 3 April 2022
Accepted 4 May 2022
Available online 8 May 2022

Keywords:
Internet of Things
Interoperability
IoT platform
Resource identifier
Smart city
a b s t r a c t

Many standards, projects, and platforms are being developed as the Internet of Things (IoT) is adopted in
a wide range of fields. However, because each IoT platform is based on a different resource identifier (ID),
it is difficult to identify each device and use the service among heterogeneous IoT platforms. To solve this
problem, we propose an interoperability framework that includes an IoT resource name system (RNS)
based on analysis of the resource IDs (i.e., device ID and resource request formats) of five selected IoT
platforms: oneM2M, Oliot, Watson IoT, IoTivity, and FIWARE. The IoT RNS converts a specific resource
path into a resource request format for each platform. The converted resource path is shared among
IoT RNSs for each platform, and users can request services from other platforms using converted resource
paths. We also present an example of interoperability scenario among heterogeneous IoT platforms using
the proposed IoT RNS in a smart city. The scenario includes each stage, such as resource registration and
deletion, sharing mapping tables, converting resource addresses, and service requests. Furthermore, to
prove the aims of the proposed approach, we implemented the resource interoperability scenario
between oneM2M and FIWARE. In the experiments, resources can interwork in the two platforms
through resource path conversion. Based on the results, we performed a qualitative evaluation of the
IoT RNS with the current studies. In conclusion, our proposal overcomes the issues of building an existing
integrated platform or specific central ontology and duplicating resources inside the platform. In addi-
tion, we separate the functions of the root and local IoT RNSs to solve communication traffic and memory
capability issues.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Internet of Things (IoT) technology is developing and expanding
in various fields such as smart homes, healthcare, smart cities,
logistics, and smart car. The international standard, ‘‘ISO/IEC
20924:2018 Information technology—Internet of Things (IoT)—
Vocabulary” (ISO/IEC, 2021), defines the IoT as the ‘‘infrastructure
of interconnected entities, people systems, and information
resources together with services that process and react to informa-
tion from the physical and virtual world.” In other words, the IoT is
hyper-connectivity among smart things, services, and humans to
provide useful and seamless services regardless of the types of net-
works, devices, and platforms and with minimum human involve-
ment. These technologies, related standards, projects, and
platforms are continuously being developed (Lee et al., 2021). In
particular, IoT platforms are an essential factor in providing inter-
operability because they support the network connection to vari-
ous devices (e.g., sensors and access points) and provide services
to users. According to the IoT Platform Companies Landscape &
Database 2020, the official number of IoT platform companies in
the open market is more than 620, up from 450 in 2017. For exam-
ple, many platforms (e.g., AllSeen Alliance AllJoyn, Apple HomeKit,
oneM2M, FIWARE, Google Cloud IoT, GS1 Oliot, IBM Watson IoT,
Microsoft Azure, and OCF IoTivity) are being developed to provide
various services. Therefore, interoperability, such as requesting
services and sharing resources among diverse IoT platforms, is
important, and it is an essential factor for building a real IoT envi-
ronment that provides seamless services regardless of the type of
IoT platform.

Platform interoperability is challenging to resolve due to vari-
ous issues such as support for diverse protocols, device discovery,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2022.05.003&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jksuci.2022.05.003
http://creativecommons.org/licenses/by/4.0/
mailto:sigmao91@sju.ac.kr
mailto:alwaysgabi@sejong.ac.kr
https://doi.org/10.1016/j.jksuci.2022.05.003
http://www.sciencedirect.com/science/journal/13191578
http://www.sciencedirect.com

J. Koo and Young-Gab Kim Journal of King Saud University – Computer and Information Sciences 34 (2022) 4191–4208
well-defined semantic management, and processing of data for-
mats in heterogeneous platforms. However, current diverse plat-
forms and related standards make it difficult to achieve
interoperability and collaboration among heterogeneous IoT plat-
forms. Each IoT platform has been developed using a specific and
unique device identifier and resource-request format. These
unique formats cause difficulty in identifying each resource among
heterogeneous IoT platforms. For example, as depicted in Fig. 1,
suppose that four IoT platforms (i.e., oneM2M, Watson IoT,
FIWARE, and IoTivity) are connected to the same middleware. It
will cause interoperability issues in resource discovery and
resource requests due to the differences in resource discovery
and request format of each platform.

OneM2M users check the available services using the resource
discovery provided by oneM2M, but because resource discovery
is based on identifiers unique to each platform, resources of
heterogeneous IoT platforms are not discovered. In addition, even
if a oneM2M user sends a request in the oneM2M format, the
meaning of the request and the included resource identifier cannot
be understood because each platform uses a different identifier
and request format. Therefore, even if multiple platform resources
are connected to the same middleware, the user is provided with
only limited services. To solve these resource interoperability
issues, existing research focuses mainly on integrating the ontol-
ogy of each platform or duplicating the resources of other plat-
forms on the corresponding platform. Furthermore, the existing
interoperability schemes need to construct specific ontologies
(Thiéblin et al., 2020; Ranpara and Kumbharana, 2021) and con-
sume a significant amount of memory (Li et al., 2019).

Therefore, to overcome the limitations of the existing
approaches, we propose an IoT resource name system (RNS), which
focuses on mapping and converting the format of a resource iden-
tifier (ID) among diverse IoT platforms. We concentrate on con-
verting resource paths (e.g., device ID, resource-request format)
used in a specific IoT platform to the target IoT platform, but data
transmission issues (e.g., data format, supported network proto-
cols) are not addressed. Koo et al. (Koo and Kim, 2017; Koo et al.,
2019; Koo and Kim, 2021) proposed an architecture for semantic
interoperability and implemented a simple testbed for interoper-
ability based on resource path conversion by mapping the IDs in
heterogeneous IoT platforms. We use this approach as the initial
model for the current study. In particular, we clearly distinguish
and describe procedures such as creating, deleting, and converting
resources for interoperability and service requests in a smart city.
The proposed IoT RNS analyzes and converts resource IDs into the
desired request formats, including reconfiguring requests among
Fig. 1. Problems in resource disc

4192
heterogeneous IoT platforms as appropriate for the requested
resources. The contributions of this paper include the following:

(1) The proposed IoT RNS focuses on the resource IDs of the IoT
platforms. We analyzed and mapped the format of resource
IDs and service requests used by five representative IoT plat-
forms. The IoT RNS uses the mapped information to convert
the resource IDs.

(2) We also propose a conceptual framework and architecture to
convert resource IDs among heterogeneous IoT platforms.
The resource registration, discovery, path conversion, and
service request processes are proposed, and examples of
each step are presented through resource interoperability
scenarios in a smart city.

(3) Furthermore, to prove the aims of the proposed approach,
we created an implementation scenario for two IoT plat-
forms (i.e., oneM2M and FIWARE). Experimental results
indicate that resources can interwork in the two platforms
through resource path conversion. Based on the results, we
performed a qualitative evaluation of our proposal with
the current studies.

The remainder of this paper is organized as follows. Section 2
analyzes background knowledge and summarizes related works
regarding interoperability in IoT environments. Section 3 proposes
an IoT RNS architecture, including a scenario in the smart city envi-
ronment. Section 4 implements an interoperability scenario of our
proposal. Section 5 explains the comparative evaluation and dis-
cusses the limitations. Finally, Section 6 summarizes this study
as a conclusion and future work.

2. Background and related work

Section 2.1 describes a taxonomy for interoperability in the IoT
environment. Section 2.2 compares resource IDs (i.e., the resource
request format and the device ID) for the five selected IoT plat-
forms. Section 2.3 describes and summarizes IoT interoperability
studies.

2.1. Taxonomy for interoperability in the IoT environments

The IoT environment can be divided into diverse layers such as
device, network, middleware, and application, as shown in Fig. 2.
Each layer includes various elements. For example, the device layer
includes heterogeneous sensors and actuators such as drones,
surveillance cameras, and smart cars in different domains used in
overy and resource request.

Fig. 2. Interoperability issues for multi-layers in IoT.

J. Koo and Young-Gab Kim Journal of King Saud University – Computer and Information Sciences 34 (2022) 4191–4208
IoT environments. The network layer consists of the communica-
tion protocols used by heterogeneous devices (e.g., power line
communication (PLC), Bluetooth, wireless fidelity (WiFi), long-
term evolution (LTE), Zigbee, and long-range (LoRa)). The middle-
ware layer includes various platforms that provide services and
infrastructure in the IoT environment, and numerous platforms
are currently being developed, such as oneM2M, sensiNact, IoTiv-
ity, OpenIoT, FIWARE, and WSO2. The application layer includes
services and data of various domains provided through the IoT
platform. IoT requires hyper-connectivity among different objects
(e.g., software or hardware platforms, network, resource (service
or device)) in the various layers.

Therefore, interoperability is a key factor in building a real IoT
environment, especially sharing the resource among heteroge-
neous IoT platforms. The diversity of each layer has several issues
and requirements to build interoperability in an IoT environment.
In addition, these issues and requirements can be classified accord-
ing to the interoperability types. In the international standard,
‘‘ISO/IEC 21823-1, Internet of things (IoT) – interoperability for
IoT systems – part 1: framework” (ISO/IEC, 2019), IoT interoper-
ability is divided into five types (transport, syntactic, semantic,
behavioral, and policy). Similar to types of standards, some papers
(Bröring et al., 2017; Bröring et al., 2018; Ganzha et al., 2017)
include semantic, syntactic, middleware, and networks in the clas-
sification of interoperability in IoT systems, although there are
Table 1
Resource identifier of five IoT platforms.

Platform Type Devic
Resou

oneM2M OID based [OID(
(HTTP

GS1 Oliot OID, GS1 ID Key OID =
GS1 I
(HTTP

IBM Watson IoT Client ID d:[org
(HTTP
iot-2

OCF IoTivity Resource type, device id [di], r
(coap

FIWARE Entity type, Entity ID No sp
(HTTP

4193
some differences in configuration and expression. Based on it, we
classify the interoperability issues and requirements in IoT systems
as middleware, network, syntax, semantic, and security.

(1) Middleware interoperability refers to interoperability
among IoT platforms and includes factors supported by the
platform (i.e., data structures, resource discovery, heteroge-
neous resource, and ID management).

(2) Network interoperability includes network functions for
each end device (i.e., communication protocols, network
mechanisms, and access networks).

(3) Syntactic interoperability includes format, schema, and
interface for data shared among IoT platforms.

(4) Semantic interoperability includes factors representing the
same data in heterogeneous platforms, such as data model,
information model, and ontology.

(5) Security factors commonly required for interoperability
include communication security, data encryption, authenti-
cation, authorization, access control, identity management,
monitoring, auditing, and anonymization.

2.2. Resource identifiers in the IoT platforms

As mentioned previously, the official number of IoT platform
companies in the open market is more than 620. In this paper,
e ID Format
rce-Request Format

Higher Arc)].[ManufacturerID].[DeviceTypeID].[DeviceSerialNo]
) [Server_IP_address]/[CSEBase_Name]/[cse_name]{n}/[ae_name]/[cnt_name]
GS1 OID(2.51).Identification Keys(1).[ID Key Type],

D Key = [GS1prefix].[CompanyNo].[ReferenceNo].[Serial/ExtensionNo]
) urn:epc:id:[ID Key Type]:[GS1 ID Key]
ID]:[deviceType]:[deviceID]
) GET /device/types/[typeId]/devices/[deviceId]/state/[logicalInterfaceId](MQTT)
/type/$[typeId]/id/$[deviceId]/intf/$[logicalInterfaceId]/evt/state
t:oic.wk.d, oic.d.[*]
)://[IP_address]/[path]?[Query]
ecific restriction except some characters (e.g., <, >, etc.)
) [ip address]: [port]/v2/entities/[id] or [type]

J. Koo and Young-Gab Kim Journal of King Saud University – Computer and Information Sciences 34 (2022) 4191–4208
we selected the five IoT platforms (i.e., oneM2M, GS1 Oliot, IBM
Watson IoT, OCF IoTivity, and FIWARE), which have important con-
tributions to the IoT industrial environment. In this section, we
describe the contributions of the five selected IoT platforms and
compare the resource IDs. Table 1 depicts the device ID and
resource request format of the five selected IoT platforms.

(1) oneM2M is an international Machine-to-Machine (M2M)
standard organization that provides IoT architectures, plat-
forms, application programming interfaces (API), and secu-
rity solutions (oneM2M, 2021). oneM2M has a tree
structure jointly developed by ITU-T and ISO/IEC and identi-
fies devices using object identifiers (OID). The resource
structure of oneM2M consists of an infrastructure node
(IN), a middle node (MN), a common service entity (CSE),
an application service node (ASN), and an application-
dedicated node (ADN). In addition, when requesting service
in oneM2M, it can have several CSEs attached depending on
the structure. In these cases, the number of CSEs in the
request formats may be different.

(2) GS1 is a private international organization for developing
standards for barcode IDs and electronic catalogs of products
used in all industries (e.g., distribution and logistics). GS1 is
developing an IoT platform named Oliot (2021). GS1 Oliot
uses an ID Key based on the OID system to identify various
resources (e.g., devices and events). Oliot stores and man-
ages all resources in event format through electronic pro-
duct code information services (EPCIS).

(3) IBM is developing the Watson IoT platform to connect and
analyze IoT data securely (Watson IoT, 2021). IBM Watson
IoT uses a client ID to identify each device, and the format
for HTTP requesting includes these IDs.

(4) OCF is an international organization for developing the
IoTivity platform as an open-source framework and aims
to provide easy and secure communication among IoT
devices (IoTivity, 2021). OCF IoTivity identifies all resources
using resource type (rt) and a device identifier (di). The
IoTivity format for resource requests includes the ID is used
as a component of [path].

(5) FIWARE is a framework of open-source platform compo-
nents to accelerate intelligent solutions (e.g., smart cities,
smart agrifood, smart energy, and smart industry) developed
by the future internet public–private partnership (FI-PPP)
within Europe (FIWARE, 2021). The FIWARE device ID is
based on the ETSI NGSI-LD standard and identifies all enti-
ties using entity type and entity id. Three brokers (i.e.,
Orion-LD, Scorpio, and Stellio) are being developed in
FIWARE, and Orion-LD is used in this paper. In addition, this
paper analyzes the HTTP resource request format based on
ETSI NGSI-LD.

The five analyzed IoT platforms use different structures of a
device ID and request formats. Due to different request formats,
requests among different platforms cannot be understood, and it
is challenging to discover and request resources of different plat-
forms. Therefore, it is necessary for a system that maps and con-
verts different IDs.
2.3. Related work

Related work includes research proposing solutions for the
types such as syntactic, semantic, and middleware interoperability.
In addition, existing interoperability studies can be divided into
two types (i.e., building an integrated platform and duplicated
resources).
4194
2.3.1. Integrated platform
The IoT European platforms initiative (IoT-EPI) (Bröring et al.,

2018) was formed to increase innovation in IoT research in Europe.
The primary purpose of the project is to develop an integrated plat-
form that dynamically composes several technologies. The IoT-EPI
project is considering a platform for providing IoTwith various con-
nected devices into the web to users in a smart environment. Major
projects include AGILE, BIG IoT, INTER-IoT, VICINITY, SymbIoTe, bIo-
Tope, and TagItSmart. Bröring et al. (2017) investigated IoT ecosys-
tem interoperability through the BIG IoT project. They devised an
IoT ecosystem architecture using common information models to
bridge interoperability gaps. This architecture uses the open frame-
work BIG IoT API and BIG IoTMarketplace to solve the interoperabil-
ity issues among heterogeneous platforms, standards, and domains.
Providers use APIs to implement registries and provide services and
applications through marketplaces to consumers. Ganzha et al.
(2017) introduced use case scenarios highlighting INTER-IoT pro-
jects and summarized the necessary steps to construct common
semantics among various IoT platforms. The approach employed a
modularized central ontology to make semantic interoperability
among IoT platforms. The purpose was a semantic-driven transla-
tion formessages, and the core factorwas the IoT platform semantic
mediator (IPSM) to address message translation by applying ontol-
ogy alignment. Zarko et al. (2017) presented symbIoTe, an interop-
erability approach from the H2020 project to create an
interoperability framework providing semantic interoperability.
The symbIoTe is a hierarchical stack-based architecture of applica-
tion, cloud, and smart environments to achieve interoperability
among heterogeneous resources. They described in detail the role
of IoT platform federations and the symbIoTe architecture and
defined four compliance levels for IoT platforms.

2.3.2. Duplicated resources
oneM2M has developed an interworking proxy entity (IPE)

(oneM2M, 2019b) that focuses on interworking with different IoT
systems. IPE converts resources from other systems to the
oneM2M resource format and creates redundant resources on the
oneM2M gateway. All devices connected to the oneM2M gateway
provide resource discovery results at regular intervals. As an exam-
ple of using duplicated resources, the oneM2M device can use the
converted OCF IoTivity resource. In addition, oneM2M provides
oneM2M base ontology (oneM2M, 2019a) to provide semantic
and syntactic interoperability through the mapping ontology
method with other platforms and organizations. Kang and Chung
(2018) proposed the IoT framework based on the oneM2M stan-
dard and ontology to achieve interoperability among heteroge-
neous IoT platforms. When a new resource is connected to the
IoT platform through a network, the IoT platform server registers
the resource as a oneM2M platform and performs a health check
to managing devices dynamically. Data generated by registered
devices are integrated into the oneM2M gateway by discovering,
and data events generated by middleware are reported. Tao et al.
(2017, 2018) applied ontology representation in the public cloud
to satisfy interoperability among heterogeneous platforms. They
proposed a multilayer cloud architectural model. In addition,
ontology has been used to address heterogeneous data representa-
tion and application. Wu et al. (2017) proposed the IPE-based inte-
gration architecture to achieve the interworking between oneM2M
and IoTivity. This IPE is a middleware that supports the mapping of
device management functions. They presented mapping IoTivity
resources (i.e., di) to the container (i.e., AE) under the MN-CSE tree
in oneM2M and evaluated the proposal by testing interworking
cases. Carrez et al. (2017) described the FIESTA-IoT platform sys-
tem architecture in detail. The main purpose is to federate various
testbeds and offer researchers to address various semantically
interoperable resources. The FIESTA-IoT platform is enabled to

J. Koo and Young-Gab Kim Journal of King Saud University – Computer and Information Sciences 34 (2022) 4191–4208
integrate the semantics, and various mechanisms are required
semantics such as languages and ontologies. An et al. (2019)
designed and implemented a novel IoT interworking architecture
by taking the example of two standards (i.e., oneM2M and
FIWARE) to provide a semantic integration framework in a smart
city. They approached the transforming data format between
oneM2M and FIWARE to address an interworking proxy that per-
forms a static mapping of sensor data. Yang and Wei (2018)
addressed the user-device interoperability framework to imple-
ment semantic interoperability. They approached the cross-
context semantic document exchange consistently interpreted
between heterogeneous devices and user applications. They also
proposed a semantic extraction and interpretation algorithm to
implement an automatic sharing message. Ahmed et al. (2018)
proposed an IoT Hub based on modeling principles to offer syntac-
tic, semantic, communication interoperability. It aims at system
integration and data exchange between heterogeneous systems
in a smart gas network. They presented the common data model
that aggregates the transformed data from each data producer. In
Table 2
Interoperability classification and summary of IoT RNS and related studies.

Paper Interoperability Types

Syntactic Semantic Network Middleware Securit

Bröring et al., 2018 U U U

Ganzha et al., 2017 U U

Zarko et al., 2017 U U U

Kang and Chung, 2018 U U

Tao et al., 2017, 2018 U U

Wu et al., 2017 U U

Carrez et al., 2017 U U

An et al., 2019 U U

Yang and Wei, 2018 U U

Ahmed et al., 2018 U U U U

Antoniazzi and Viola,
2019

U U

Tolcha et al., 2021 U U

Cavalieri, 2021 U U

Zyrianoff et al., 2021 U U

Proposed U U

4195
addition, they implemented software and described the approach
of use cases. Antoniazzi and Viola (2019) designed the concept of
dynamic ontology, including the patterns of interaction in hetero-
geneous devices. The dynamic ontology was used to describe the
device semantics incorporated in the web of things (WoT) and
enabled the dynamic interactions among devices. They presented
an implementation of the WoT using the common ontology for
describing devices. Tolcha et al. (2021) focused on interoperability
between an event-based GS1 EPCIS and an entity-based FIWARE
NGSI. They proposed the Oliot Mediation Gateway and showed
its feasibility by applying it to an actual case study. When the Oliot
Mediation Gateway receives NGSI entity data, it generates EPCIS
events based on it. EPCIS stores the newly generated events and
enables interoperability by allowing any application to access
events via the EPCIS standardized query interface. Cavalieri
(2021) proposed the OPCUA-IPE that enables Open Platform Com-
munications Unified Architecture (OPC-UA), the main reference
communication standard among industrial applications, to con-
sume information generated by oneM2M. OPCUA-IPE maps and
Description

y

They devised an IoT ecosystem architecture that uses the BIG IoT API and BIG
IoT Marketplace among heterogeneous platforms, standards, and domains. In
addition, they register redeveloped resources based on a common API and
share them with providers and consumers.
The approach was a semantic-driven translation for messages, and the core
factor was the IPSM to address message translation by applying ontology
alignment.
The symbIoTe is a hierarchical stack-based architecture of application, cloud,
and smart environments to achieve interoperability among heterogeneous
resources. They built a core information model (CIM) ontology in which
various platforms participate for semantic and syntactic interoperability with
heterogeneous information models, and CIM acts as an intermediary between
applications and platforms.
They proposed the oneM2M ontology based IoT framework that the IoT
platform server registers the new resource as a oneM2M platform and
performs a check to managing devices dynamically.
They proposed a multilayer cloud architectural model and applied ontology
representation in the public cloud.
They proposed the IPE-based integration architecture mapping IoTivity
resource to the container under the MN-CSE tree in oneM2M.
They described the FIESTA-IoT platform system architecture that federates
various testbeds to integrate the semantics. This system architecture
semantically transforms other information model testbeds and replicates
them to the local database of FIESTA-IoT.
They designed a novel IoT interworking architecture transforming data
format between oneM2M and FIWARE using a static mapping of data.
They designed the semantic extraction and interpretation algorithm to
handle cross-context semantic document exchange consistently interpreted
between heterogeneous devices and user applications.
They proposed an IoT Hub that aggregates the transformed data from each
data producer based on modeling. IoT Hub supports communication
protocols for OPCUA, Rest web service, and file sharing and centrally manages
data by converting it into a common format for semantic/syntactic
interoperability of data.
They presented an implementation of the WoT using the common ontology
that enabled the dynamic interactions among devices for describing devices.
They proposed the Oliot Mediation Gateway that generates EPCIS events
based on received NGSI entity data. EPCIS stores the newly generated events
and users can access the events via the EPCIS standardized query interface.
They proposed the OPCUA-IPE that maps and transforms the information
model of OPC-UA and oneM2M to use the oneM2M resource by OPC-UA
users.
They proposed an adapter that converts W3C WoT data into FIWARE NGSI
format by subscribing to WoT Thing Description events and mapping it to a
FIWARE Orion entity.
IoT RNS converts heterogeneous platform resource addresses to each
connected platform’s format using a mapping table and connected platforms
can request resources of heterogeneous platforms using converted addresses.

J. Koo and Young-Gab Kim Journal of King Saud University – Computer and Information Sciences 34 (2022) 4191–4208
transforms the information model of OPC-UA and oneM2M based
on IPE, an interoperability solution between oneM2M and non-
oneM2M, so that OPC-UA users can use the converted resources
of other standards through the server. Zyrianoff (2021) proposed
an adapter that connects the Web of Things (WoT) architecture
proposed by the W3C Consortium to the FIWARE. This adapter is
a general mashup application that converts WoT data into NGSI
format by subscribing to WoT Thing Description events and map-
ping it to a FIWARE Orion entity. If this entity does not exist in
Orion, the adapter creates it, and Orion stores this entity informa-
tion in the FIWARE database.

Table 2 shows a comparison of related work in IoT and repre-
sents the type of interoperability. Building an integrated platform
requires an accurate ontology and a relationship with the central
platform. In addition, resource duplication has memory and format
conversion issues. In order to solve these issues, we propose an
approach that converts resource paths of heterogeneous platforms
and details are described in Section 3.

3. Proposed IoT RNS

This section describes the proposed IoT RNS architecture and
scenario. Section 3.1 presents the assumption of the environment.
Section 3.2 describes the IoT RNS functions and presents the shared
mapping table components. Section 3.3 describes scenarios for
sharing resources among heterogeneous IoT platforms in a smart
city and details the process for each stage.

3.1. Assumption

To illustrate our IoT RNS, we take into consideration some pre-
requisites and assumptions as follows:
Fig. 3. Overview of IoT RNS – syste

4196
(1) In numerous IoT platforms, various devices are abstracted to
different levels. For example, some devices may be core
devices performing data collection, calculation, and process-
ing. Some may be sensors that only measure specific data or
devices that perform simple services. These low perfor-
mance sensors have limitations for requesting and process-
ing resources. Since there are many different types of
devices in the IoT environment, it is difficult to generalize.
Therefore, we assumed that service requests using the con-
verted resource table are not sent directly from the client
(i.e., the end device) but are sent through the server of a
specific platform.

(2) Some IoT platforms (e.g., oneM2M and IoTivity) only pro-
vide resource discovery functions to users. In our scenar-
io, the root IoT RNS must manage the resources
connected to each IoT platform (e.g., whether the
resources are connected). Therefore, we assumed that
each platform could provide a resource discovery func-
tion. Furthermore, the local IoT RNS stores the resource
information (e.g., service list) discovered in each platform
in the resource table. In addition, the resource informa-
tion stored in the local IoT RNS can be shared with the
root IoT RNS periodically.

(3) This study defines a resource as the services used between
devices based on various IoT platforms. Therefore, the pro-
posed interoperability framework concentrates on convert-
ing resource paths (e.g., uniform resource identifier (URI)
used in heterogeneous IoT platforms) in a specific IoT plat-
form to the target IoT platform. However, in some service
centric IoT platforms (e.g., oneM2M and FIWARE), a user
should input data as a parameter to get a service. We do
not consider it in this study.
m structure and components.

J. Koo and Young-Gab Kim Journal of King Saud University – Computer and Information Sciences 34 (2022) 4191–4208
(4) In general, the FIWARE platform uses the expression as an
entity, including various entities such as devices, services,
and data. Therefore, in our study, the scope of entities to
be devices typically used in NGSI-LD, such as cars and build-
ings, to reduce confusion with other platforms. In addition,
in the oneM2M platform, we use the hierarchical CSEBase
relative representation although there are various represen-
tations for a specific resource.

3.2. Architecture and algorithms

Fig. 3 represents the system structure and components of the
proposed IoT RNS. It is divided into three sides (i.e., server, middle-
ware, and end device side).

The server-side includes the root IoT RNS that manages the con-
nected resources of various IoT platforms. The root IoT RNS has a
database that manages the integrated service list, mapping infor-
mation, and resource metadata. In our proposal, an integrated ser-
vice list means the discovered resources (i.e., service name) from
the diverse IoT platforms. The mapping information refers to a
mapping table in which ID formats among heterogeneous IoT plat-
forms are mapped. In addition, resource metadata contains
resource information such as a resource name, platform type,
device type, device ID, IP address, resource path, and service
parameter. The service parameter is required data when a user
requests a resource in a service-centric platform (e.g., oneM2M
and FIWARE). The local IoT RNS is modularized in the IoT platform
and has the service information (i.e., service list, service parame-
ters, resource metadata, and integrated service list) and the path
conversion module. The end device side includes the sensor
devices that provide the service and the client user interface with
the service list and the request module. The overall flow of IoT RNS
is as follows:

(1) When an administrator registers a new sensor device, the
resource metadata is stored in the IoT platform server.
Fig. 4. Overall function and algo

4197
(2) Resource metadata through resource discovery of the IoT
platform server is stored periodically in local IoT RNS.

(3) The local IoT RNS transfers resource metadata to the root IoT
RNS periodically.

(4) The root IoT RNS integrates the resource metadata received
from all connected local IoT RNSs and sends them to each
local IoT RNS.

(5) Each local IoT RNS converts the resource path of integrated
service information.

(6) The local IoT RNS sends the integrated service list to the cli-
ent user interface.

(7) A user requests a service, and the local IoT RNS uses the con-
verted path to use the service on another platform.

Fig. 4 represents the overall function and algorithm of IoT RNS
in the IoT environment. It represents IoT RNSs, including local
IoT RNSs that modules on each server device and a root IoT RNS
connected to the local IoT RNSs and managing the entire resource
table.

The root IoT RNS manages the metadata for connected and dis-
connected resources. Each local IoT RNS sends related metadata
(i.e., device type, device ID) to the root IoT RNS when new devices
and services are registered and informs the root IoT RNS when
devices and services are deleted or disconnected. The root IoT
RNS updates the resource table with metadata received from each
local IoT RNS and then transmits the integrated resource table to
each local IoT RNS. Regardless of updates, the integrated resource
table is sent to each local IoT RNS at regular intervals. Local IoT
RNSs convert and store the resource path in the resource table
received from the root RNS, depending on the format requested
by each platform using the mapping table as shown in Table 3.

The mapping table includes the root and local mapping table.
The root mapping table manages the local mapping tables in vari-
ous IoT platforms. If a new IoT platform is added or the existing ID
format changes, the root mapping table is updated and sent to the
rithm of proposed IoT RNS.

Table 3
Proposed mapping table example of IoT RNS.

Platform Device Type Device ID IP Path

oneM2M Device Type Device ID IP [Server_IP_address]/ [CSEBase_Name]/[cse_name]{n}/[ae_name]/[cnt_name]
GS1 Oliot n/a GS1 ID Key IP urn:epc:id:[ID Key Type]:[GS1 ID Key]
IBM Watson IoT Type ID Device ID IP /device/types/[typeId]/devices/[deviceId]
OCF IoTivity Resource type (rt) Device ID (di) IP [ip address]/[URL path]
FIWARE n/a Entity ID IP [ip address]:[port]/v2/entities/[id] or [type]

J. Koo and Young-Gab Kim Journal of King Saud University – Computer and Information Sciences 34 (2022) 4191–4208
local IoT RNS. Then each local IoT RNS updates their local mapping
table received from the root mapping table. The mapping table
contains resource information for IoT platforms, including
attributes such as platform type, device type, device ID, IP address,
and resource path. The device ID and request format for each plat-
form differs for each IoT platform and is used by the local IoT RNS
to convert into the appropriate request format. Fig. 5 represents
the metamodel of the IoT RNS architecture using the class diagram.
The root IoT RNS has four functions:

(1) Store connected and registered resource metadata.
(2) Send updated root resource table components to the local

IoT RNSs.
(3) Send the integrated root resource table to the local IoT RNSs

at regular intervals.
(4) Send updated root mapping tables to the local IoT RNSs.

The local IoT RNS has five functions:

(1) Send newly registered resource metadata to the root IoT
RNS.

(2) Inform the root IoT RNS of disconnected resource metadata.
(3) Send updated resource metadata to the root IoT RNS.
(4) Convert resource paths using the local mapping table.
(5) Update the local mapping table when a root mapping table is

received.

When the resource is updated, the root IoT RNS only sends
the updated part to the local IoT RNS. Thus, it can reduce traffic
issues between the root and local IoT RNS. In addition, since
the entire resource table is sent at regular intervals, it is possi-
ble to check all connected resources. The root resource table
Fig. 5. Proposed IoT

4198
includes resource name, platform name, device ID, device type,
IP address, resource path, and service parameter, and the local
resource table includes resource name, platform name, device
ID, device type, IP address, original path, converted path, and
service parameter. Root and local mapping tables include plat-
form name, device ID, device type, IP address, and resource
path format. Each platform contains registered resource meta-
data. The root IoT RNS stores and manages registered resource
metadata for each platform and employs default or arbitrary
values for any missing parameter when mapping the metadata
by data type. Fig. 6 represents how the local IoT RNS converts
the resource path of a newly registered resource. The local IoT
RNS converts and maps the resource path from the root IoT
RNS into the request format of its corresponding platform, as
follows:

(1) Input updated resource table from the root IoT RNS.
(2) Check if the resource is newly registered.
� If the resource has disconnected: delete the related
metadata.

� If the resource is newly registered: check if it is a local
platform.
- If it is a local platform, use the original path.
- If it is another platform, convert the path using the

requested format in the mapping table and store it
in the resource table.

(3) Update the resource table.

Based on the converted path stored on the platform server, the
end device for each platform can request the service to the end
device of any other platform.
RNS metamodel.

Fig. 6. Flowchart for resource path conversion.

Fig. 7. Proposed IoT RSN interoperability scenario in a smart city.

J. Koo and Young-Gab Kim Journal of King Saud University – Computer and Information Sciences 34 (2022) 4191–4208
3.3. Scenario

Fig. 7 represents the considered smart city scenario in this
research. A smart city is an urban area that provides the informa-
tion to efficiently manage assets and resources using various elec-
tronic data collection sensors. Smart cities connect various
resources within the city through a network and optimize city
operations by introducing IoT, artificial intelligence, big data
technologies. The current study represented an example scenario
that requests resources among heterogeneous platform’s devices
in a smart city. This scenario is a limited smart city environment,
which considered only five IoT platforms (i.e., oneM2M, GS1 Oliot,
IBM Watson IoT, OCF IoTivity, and FIWARE). In this scenario, the
root IoT RNS is assumed to be managed by a trusted organization
such as a trusted third party (TTP), including the government. It
has high performance and securely manages all platform’s
resources existing in the smart city. In addition, it is assumed that
servers or gateways of all platforms are connected to the root IoT
RNS and share the list of available resources in advance. The sce-
nario supposes that a user connected to oneM2M sends a service
4199
request to the nearest device connected to FIWARE. In addition,
it is assumed that Interworking between the user platform (i.e.,
oneM2M) and the nearest IoT device platform (i.e., FIWARE) is
enabled. The overall flow of the scenario is as follows:

(1) After the user selects the service (i.e., Abnormal Behavior
Detection), the request is sent to the nearest IoT device
(i.e., CCTV 1).

(2) The request is shared with other IoT devices (i.e., smart
buildings, CCTVs, and drones) without requiring human
intervention.

(3) Every IoT device that detects abnormal activity sends the
results to the user (i.e., locations and images).

(4) Results could also be sent to other smart objects (i.e., smart
cars) if necessary.

We presented a scenario-based sequence diagram of an exam-
ple that converts the resource path among heterogeneous IoT plat-
forms, as shown in Fig. 8. It represents the sequence in which a
new device is registered in the FIWARE platform, and the resource

Fig. 8. Scenario-based sequence diagram that converts the resource path among heterogeneous IoT platforms.

Fig. 9. Example of the proposed path conversion in IoT RNS.

J. Koo and Young-Gab Kim Journal of King Saud University – Computer and Information Sciences 34 (2022) 4191–4208
path for this device is converted and used by each heterogeneous
IoT platform.

Firstly, a new IoT device (i.e., CCTV) is registered on the FIWARE
platform by the owner or administrator. The local IoT RNS modu-
larized in the FIWARE server sends the metadata of newly regis-
tered CCTV (e.g., device ID, IP, and platform) to root IoT RNS.
Then, the root IoT RNS stores the metadata of the newly registered
device in the resource table and sends the newly added part to the
local IoT RNS modularized to each platform server. Since different
platform’s resources have been registered, local IoT RNSs modular-
ized in IoTivity, and oneM2M server converts and stores the
resource path according to the ID format used by its own platform.
When a user with a oneM2M’s device checks the available list
using service discovery and requests another platform service,
the user’s device requests a service using the converted path. Then,
the local IoT RNS modularized in the oneM2M server can request
the service using the original path mapped to the request. The pro-
cedure for a user to use a newly registered resource on another
platform is divided into three stages: resource registration and
deletion, resource discovery and path conversion, and service
request. Details of each stage are as follows.

3.3.1. Resource registration and deletion
The FIWARE server sends the newly registered resource meta-

data to the root IoT RNS, including resource name, platform type,
device type, device ID, IP address, original resource path, and ser-
vice parameter which is stored in the root IoT RNS’s resource table.
The root IoT RNS stored the metadata (i.e., platform: FIWARE,
device type: CCTV, device ID: FI_CCTV_1, IP:223.195.123.52, origi-
nal resource path, service parameter: object_name) of the service
(i.e., Abnormal Behavior Detection) in the resource table.

3.3.2. Resource discovery and path conversion
When new resources are registered, each local IoT RNS receives

the updated table from the root IoT RNS and checks the platform
type. Local IoT RNS converts the resource paths depending on their
4200
platform format if the resource is registered from another platform,
referring to the mapping table. In this scenario, in the root IoT RNS,
the new resource (i.e., Abnormal Behavior Detection) has been reg-
istered, and the root resource table updated. And then, the root IoT
RNS sends the updated resource table to the local IoT RNSs in all
IoT platforms. Fig. 9 represents how the local IoT RNS in the
oneM2M platform converts the resource path of the FIWARE
platform:

J. Koo and Young-Gab Kim Journal of King Saud University – Computer and Information Sciences 34 (2022) 4191–4208
(1) Create a new path by inputting the IP address and entity ID
into the oneM2M platform’s request format.

(2) Store the oneM2M path of the new resource in the oneM2M
resource table.

(3) When the conversion of the resource path is completed, the
user can receive a list of available services newly.

3.3.3. Service request
As mentioned previously, additional data input is required

when the user requests a service in the FIWARE platform. In our
scenario, when the oneM2M user uses a FIWARE platform’s service
(i.e., converted ‘Abnormal Behavior Detection’ service), the
oneM2M user should input the service parameter and send it to
the oneM2M server. Then, the oneM2M server deals with the
oneM2M user’s request using the original resource path, including
inputted data (e.g., object_name: gun).

4. Proof of concept

This section designs and implements a feasible scenario to rep-
resent the proof of concept for the proposed IoT RNS. The scenario
uses oneM2M and FIWARE, which are open source IoT platforms,
and includes detailed examples and sequences for using other plat-
form resources.

4.1. Feasible scenario

Fig. 10 presents an overview of ID interoperability scenarios
between IoT platforms based on different standards (i.e., oneM2M
and FIWARE). This scenario does not include the resource register-
ing process because it focuses on the path conversion and service
request for the resource in oneM2M and FIWARE. The scenario
can be divided into three phases (i.e., resource discovery, path con-
Fig. 10. Overview of a feasible scenario for resource ID

4201
version, and service request). Sequences 1 to 3 are resource discov-
ery phases that share the metadata of resources registered to
all platforms through the root IoT RNS. Sequence 4 and its
subsequence are the phases in which the IoT RNSs of oneM2M
and FIWARE convert the resource paths of each other. Sequences
5 and 6 show that when a user requests a service of another plat-
form using the request module of the Client User Interface, the
local IoT RNS requests the service using the original path mapped
for the converted request.

4.2. Implementation

Implementing the feasible interoperability scenario illustrated
in Fig. 10 requires the oneM2M and FIWARE platforms (i.e., server,
client, and sensor), root IoT RNS, and local IoT RNS in oneM2M and
FIWARE. This section describes the implementation environments
and details.

4.2.1. Environment
All modules use Python code, oneM2M uses JavaScript, and

FIWARE uses C++. The modules used are a Python request mod-
ule, which sends the requests in Python, and a MySQL connector
module named PyMySQL, which connects MySQL and Python. In
addition, all modules use Raspberry Pi OS, except the FIWARE
server, which uses Ubuntu on a Raspberry Pi, as shown in
Table 4.

In the oneM2M environment, Mobius and &Cube were used,
and a service to control the LED was configured. Fig. 11 shows
the resources of the oneM2M server and sensor in a tree structure.

The resource structure has a container called cnt-led under CSE-
Base, called mobius-yt. In addition, services can be requested when
creating content instances called led_on and led_off under this
container. The URL path to control this LED is https://192.168.0.
interoperability between oneM2M and FIWARE.

https://192.168.0.138%3a7579/mobius-yt/ae-edu0/cnt-led

Table 4
Specifications for each module in the implementation environment.

List Root IoT RNS oneM2M
Client

oneM2M
Sensor

oneM2M
Server

FIWARE
Client

FIWARE Sensor FIWARE Server

Source Language Python Python Python Python Python Python Python
JavaScript JavaScript JavaScript C++ C++ C++

Python request module: Python requests version: 2.23.0
MySQL connector module: PyMySQL version: 0.9.3

Module & Tool &Cube Mobius Orion_client Orion Context
Broker

Device Name Desktop Raspberry Pi 3 Model B+
CPU 1.4 GHz ARM

Cortex-A53
MP4

1.4 GHz ARM
Cortex-A53
MP4

OS Windows 10 Raspberry Pi OS Stretch with desktop version:
February 5th 2020

Ubuntu MATE 18.04

Sensor Device LED DHT11 (Temperature
&Humidity)

Fig. 11. oneM2M resource structure for LED control.

Fig. 12. FIWARE resource structure for measuring the temperature and humidity.

J. Koo and Young-Gab Kim Journal of King Saud University – Computer and Information Sciences 34 (2022) 4191–4208
138:7579/mobius-yt/ae-edu0/cnt-led. If the oneM2M client
requests the URL including the BODY statement, a content instance
that controls the LED is created.

To build the FIWARE environment, we use the Orion Context
Broker, which the user can query to register and manage the con-
text elements. In addition, an Orion_client with a dht11 sensor is
used to measure temperature and humidity, and the client device
is used for the user request. We create an entity with an id status
of My_Room, containing temperature and humidity attribute val-
ues, in the Orion Context Broker database. The temperature and
humidity values are measured regularly and updated in the Orion
Context Broker database, as shown in Fig. 12.

In this implementation, we modularize the root IoT RNS to
manage various resources on the desktop, which perform better
than a Raspberry Pi. The root IoT RNS integrates and stores the
resource information received from oneM2M and FIWARE, includ-
ing the resource number, platform number (i.e., platform type),
resource name, device ID, resource path, device type, IP, and
parameter. The integrated resource list is sent to and stored in
the local IoT RNS in oneM2M and FIWARE at regular intervals.
The local IoT RNS has a resource table that stores the list of inte-
grated resources received from the root IoT RNS, and the resource
table of the local IoT RNS has an additional property where the
converted paths are stored, as shown in Fig. 13.
4202

https://192.168.0.138%3a7579/mobius-yt/ae-edu0/cnt-led

Fig. 13. Resource table in local IoT RNSs. (a) is the resource table in the oneM2M IoT RNS. (b) is the resource table in the FIWARE IoT RNS.

Fig. 14. Example of path conversion in local IoT RNSs.

J. Koo and Young-Gab Kim Journal of King Saud University – Computer and Information Sciences 34 (2022) 4191–4208
Fig. 14 shows that if the platform type is oneM2M, a new
request statement is created using the oneM2M format and stored
as ConvertedPath in the FIWARE IoT RNS. In contrast, if the plat-
form type is FIWARE, a new request statement is created using
the FIWARE format and stored as ConvertedPath in the oneM2M
IoT RNS. The path conversion module of the local IoT RNS identifies
the platform type by checking the platform number in the inte-
grated resource list and converts it into the form of its own
resource path type.
4.2.2. Demonstration
As described previously, if the original resource path is con-

verted in the local IoT RNS of each IoT platform, users can employ
services based on other IoT platforms using the converted path.
This section demonstrates using the oneM2M service at the
request of the FIWARE client and using the FIWARE service at
the request of the oneM2M client. As depicted in Fig. 15, when
the FIWARE Client User Interface is executed and connected to
4203
the User-Agent of the local IoT RNS, the FIWARE user can check
the list of available services.

The first number in the service list is the resource number, and a
request can be made by inputting that number. The second num-
ber is the platform number used to identify each platform type.
In this example, the number 1 means the service of the oneM2M
platform, and the number 5 means the service of the FIWARE plat-
form. To test the request of the oneM2M service from the FIWARE
client, service number 1 and service number 2 (i.e., platform num-
ber 1, LED _ON and LED_OFF) are input.

When the user inputs the resource number, the request module
sends a request using the converted path, and the User-Agent of
the local IoT RNS requests the oneM2M service using the original
path mapped to the corresponding converted path. If the request
through the mapped original path is successful, a new content
instance is created in the existing oneM2M resource structure, as
shown in Fig. 16.

A FIWARE service request from the oneM2M client is similar
to that described above. Through the FIWARE client, the user

Fig. 15. The request of oneM2M service from FIWARE client. (a) is the oneM2M request for LED_ON, and (b) is the oneM2M request for LED_OFF.

Fig. 16. Example of the successful creation of a content instance in the oneM2M resource structure. (a) is the result of the request for LED_ON, and (b) is the result of the
request for LED_OFF.

Fig. 17. Example of a successful request for the FIWARE service. (a) is the result of a temperature request, and (b) is the result of a humidity request.

J. Koo and Young-Gab Kim Journal of King Saud University – Computer and Information Sciences 34 (2022) 4191–4208
inputs service numbers 3 and 4 (i.e., temperature and humidity
measurements), as shown in Fig. 17. The converted path is used
through the request module of the oneM2M client, and the
local IoT RNS uses the original path mapped to the converted
4204
path to request a service. If the service request on the FIWARE
server-side is successful, request-statement can access the data-
base, inquire about the measured value, and respond to the
oneM2M client.

J. Koo and Young-Gab Kim Journal of King Saud University – Computer and Information Sciences 34 (2022) 4191–4208
5. Evaluation and discussion

Section 5 compares our proposal with other projects and
related studies through qualitative evaluation. In addition, we
describe IoT RNS limitations and necessary factors for future
study.

5.1. Qualitative evaluation

Existing research can be divided into two approaches regarding
resource ID interoperability: integrated platform and duplicated
resources, and the detailed features and limitations are described
as follows.

5.1.1. Integrated platform
An integrated platform is a common central platform that

requires creating resources newly with an API or constructing
ontology for each platform based on a core ontology. The method
requires a platform to participate in the integrated platform or
construct a relationship with the central ontology, which requires
newly creating resources with an API or constructing ontology for
each platform based on a core ontology. However, existing meth-
ods require the construction of a precise ontology and a relation-
ship with the central platform. BIG IoT provides integrated
platform functions through BIG IoT Marketplace and BIG IoT API.
However, in order to use resources of heterogeneous platforms,
resources created through the BIG IoT API and registered in the
BIG IoT Marketplace can be only shared. INTER-IoT uses global
ontology for IoT platform (GOIoTP), a modular central ontology.
Each platform constitutes an IoT platform federation, constructing
an ontology with matching, merging, and alignment processes
using IPSM with the central ontology. However, each platform’s
ontology should be constructed to participate in the IoT platform
federation, and it is difficult to define the relationship between
the central ontology and each platform’s ontology. SymbIoTe uses
an integrated ontology approach. Each platform constructs an
ontology to share resources based on the ontology for the desig-
nated CIM platform. However, it is difficult to adapt CIM ontology
construction rules for the other platforms accurately.

5.1.2. Duplicated resources
Duplicating resources is a conversion method and storing

heterogeneous platforms’ resources into their own platform for-
mat. Duplicating and storing resources raise memory capability
issues when connecting many resources and require format con-
version before storing the duplicated resources. oneM2M uses an
IPE to convert other platform resources into oneM2M format and
then stores that. However, it is inefficient to duplicate and use all
resources when diverse platforms and resources are connected.
In addition, it is difficult to map resources from other platforms
onto the oneM2M resource format and structure for resource
duplication. FIESTA-IoT constructs and uses its own ontology. The
nonFIESTA-IoT platform resources are duplicated in the FIESTA-
IoT ontology and stored. However, similar to oneM2M IPE, memory
limitations become essential when there are many platforms and
resources. In addition, it is impossible to use and share the
resources for platform types that do not accurately map onto the
FIESTA-IoT ontology.

5.1.3. Path conversion in the IoT RNS
In contrast, the proposed IoT RNS is similar to the role of the

existing integration platform and central ontology, but it is not
necessary to construct the ontology of each platform. The IoT
RNS approach focused on path conversion, such as URI of services
provided by each IoT platform. The IoT RNS is divided into root and
4205
local to separate roles. The root IoT RNS stores resources of all plat-
forms and sends updates related resources to the local IoT RNS.
Metadata for the available resources of all connected platforms
be stored, but the local IoT RNS plays a role in resource path con-
version, reducing the centralization of the root IoT RNS. In addition,
when the local IoT RNS converts the path, it uses a switch-case
statement to reduce the processing speed. Thus, communication
traffic and memory issues can be solved by separating the func-
tions of root and local IoT RNS without duplicating resources inside
the platform. In other words, IoT RNS has fewer memory capability
issues than duplicating all resources. Table 5 represents the com-
parison of existing research and projects with the proposed IoT
RNS. In addition, Table 6 represents the qualitative evaluation of
existing research and proposed IoT RNS for the identified issues.

5.2. Discussion

The proposed IoT RNS approach has several issues to be consid-
ered and studied in the future.

5.2.1. Evaluation method and implementation
Currently, interoperability technologies among heterogeneous

IoT platforms are being developed, and there is no clear solution.
In addition, it is limited to implement such an actual environment,
including numerous resources. There are few studies that test
semantic, syntactic, and middleware interoperability in a smart
city environment where numerous real resources are connected,
and quantitative comparative evaluation is limited. Therefore, this
study focused on the proposal of the framework to provide inter-
operability among heterogeneous IoT platforms. To prove the aims
of the proposed approach, we implemented the resource interoper-
ability scenario between oneM2M and FIWARE. Furthermore, we
performed a qualitative evaluation of our proposal with the current
studies and did not provide a quantitative evaluation of its
implementation.

5.2.2. Scope of scenario
Related to the scenario of IoT RNS, there are some limitations as

follows:

(1) In our scenario, each IoT platform provides a resource dis-
covery function, and the discovered resource information
is updated in the resource table of the local IoT RNS. In addi-
tion, the updated resource table is periodically shared with
the root IoT RNS, and the root IoT RNS sends the integrated
resource table to each local IoT RNS. In order for a user to
check a list of all connected services, a client user interface
that can communicate with the local IoT RNS is required.
The client user interface should be modularized on the user
terminal and can support resource request and resource dis-
covery functions.

(2) Data-centric IoT platforms (i.e., oneM2M and FIWARE) can-
not use the service directly and should update data to pro-
vide the service. However, since our proposal focuses on
service interworking, data-centric platforms require addi-
tional data input from the user to request the service. There-
fore, there is a limitation that data input should be provided
through the client user interface.

(3) In our scenario, we selected only the five platforms (i.e.,
oneM2M, Oliot, Watson IoT, IoTivity, and FIWARE). However,
other IoT platforms can be easily added if the ID format of
another platform is analyzed and inputted into the mapping
table.

(4) As analyzed in Section 2.2, some IoT platforms have multiple
ID formats. For example, in the IBM Watson IoT, HTTP
requests (i.e., GET /device/types/[typeId]/devices/[devi

Table 5
Comparison of existing projects and proposed IoT RNS.

Project/architecture Type Feature Limitation

BIG IoT (Bröring et al., 2018) Integrated
platform

� Using an open BIG IoT API and BIG IoT Marketplace enables semantic interoperability on cross-plat-
form. The architecture is based on a common interface, and providers and consumers share resources
using the BIG IoT Marketplace, a form of an integrated platform.
Service providers in heterogeneous platforms can register resources on the BIG IoT Marketplace using
the BIG IoT API.

� The resources and services created through the
BIG IoT API can be only shared between plat-
forms.It
is difficult to interoperate services from heteroge-
neous IoT platforms.

INTER-IoT (Ganzha et al., 2017) Integrated
platform

� INTER-IoT provides the common interpretation of data and information among heterogeneous IoT
platforms and data sources that cannot share information with each other due to heterogeneous data
formats and ontology.
INTER-IoT is based on the semantic translation among a common central ontology, global ontology
for IoT platforms, and heterogeneous IoT platform ontologies. INTER-IoT developed an inter platform
semantic mediator that applies ontology alignment based on message semantics to solve message
translation among heterogeneous IoT platforms.

� For an IoT platform to participate in a federation,
the ontology of each platform must be con-
structed.It
is difficult to automatically update and clearly
define the relationship between the central ontol-
ogy and the ontology for each platform.

SymbIoTe (Zarko et al., 2017) Integrated
platform

� The CIM is a central model for describing resources registered with symbIoTe and is shared among all
platforms participating in the federation. It is an ontology providing information related to sensors,
actuators, applications, and services.
The CIM performs the intermediary between IoT platforms and applications, retrieves registered
resources from heterogeneous platforms and provides them to users.

� Requires constructing an accurate ontology for the
main model (i.e., the CIM).
Other platforms must be accurately constructed
using the main ontology to be interoperable.

Smart hub (Ahmed et al., 2018) Integrated
platform

� Aggregates the transformed data from each data producer based on modeling principles.
Interoperability is satisfied by converting the data format into a predetermined common format and
classifying it into a predetermined meaning.

� There is a limitation in that heterogeneous IoT
platform-based resources must be converted to a
specified modeling method.

oneM2M (Kang and Chung, 2018; Tao
et al., 2017, 2018; Wu et al., 2017; An
et al., 2019)

Duplicated
Resources

� oneM2M is developing an IPE for interworking with heterogeneous IoT platforms. The IPE converts
resources of other platforms into oneM2M resource structure and creates new resources in oneM2M
gateway.
All devices connected to the oneM2M gateway periodically transmit the discovery results to the gate-
way and convert the results into the oneM2M resource tree structure.

� IPE converts resources of other platforms to
oneM2M resource structures and creates dupli-
cated resources in the oneM2M gateways.
Inefficient memory usage by gateways due to
resources being only created by changing the
structure.

FIESTA-IoT (Carrez et al., 2017) Duplicated
resources

� Classifies various testbeds by type. Testbeds that use FIESTA-IoT compliant and semantic annotated
data together store the data locally.
Uses endpoints and queries directly for services and resources. Testbeds that use other annotated
data replicate the data according to the FIESTA-IoT ontology.

� Huge memory requirement due to storing
resource replicas in the FIESTA-IoT registry.
Difficult to accurately construct the FIESTA-IoT
registry because it is converted and stored based
on the FIESTA-IoT ontology.

Dynamic ontology (Antoniazzi and
Viola, 2019)

Common
ontology

� Defines the patterns for dynamic interactions among devices as a dynamic ontology and implements
the WoT using the common ontology.

� The ontology of each platform must be con-
structed.
Other platforms must be accurately constructed
using the common ontology to be interoperable.

Oliot Mediation Gateway (Tolcha et al.,
2021)

Duplicated
Resources

� For syntactic interoperability between the event-based information model and the entity-based
information model, the information model of FIWARE NGSI and GS1 EPCIS is mapped, and the data
format is converted.

� A specific mapping between information models
is required. In the example of the proposal, only
limited domains and platforms are possible.

OPCUA-IPE (Cavalieri, 2021) Duplicated
Resources

� A syntactic interoperability solution performs information model mapping and converting between
OPC-UA and oneM2M based on oneM2M IPE.
OneM2M resources converted through the interworking manager can be used by OPC-UA users.

� A clear and specific mapping between the infor-
mation model of oneM2M and OPC-UA is required
for format conversion of existing resources.
One-way solution for OPC-UA users to use
oneM2M resources.

WoT-FIWARE Adapter (Zyrianoff et al.,
2021)

Duplicated
Resources

� An adapter maps WoT thing description events to FIWARE Orion entities and converts them to NGSI
format.

� As with conventional IPE, accurate conversion
between resources is required, and synchroniza-
tion of short time lags is required.

Proposed IoT RNS Converts
and maps the
resource
address

� It is not necessary to construct the ontology of each platform, and it enables interoperability among
heterogeneous platforms through mapping and conversion of IDs.
Converts the resource path to each platform’s format using a mapping table, and each platform can
request to other platforms using the converted path.
Communication traffic and memory issues can be solved by separating the functions of root and local
IoT RNS without duplicating resources inside the platform.

� To add a new IoT platform, the ID format must be
manually registered in the IoT RNS in advance.

J.K
oo

and
Young-G

ab
K
im

Journal
of

K
ing

Saud
U
niversity

–
Com

puter
and

Inform
ation

Sciences
34

(2022)
4191–

4208

4206

Table 6
Qualitative evaluation between existing approach and the proposed IoT RNS.

Project/architecture Integrated platform Duplicated resources

Accurate ontology Mapping with the central platform High memory Format conversion

BIG IoT (Bröring et al., 2018) ✗ U ✗ ✗

INTER-IoT (Ganzha et al., 2017) U U ✗ ✗

SymbIoTe (Zarko et al., 2017) U U ✗ ✗

oneM2M IPE (oneM2M, 2019b) ✗ ✗ U U

oneM2M base ontology (oneM2M, 2019a) U U ✗ ✗

Smart hub (Ahmed et al., 2018) ✗ U ✗ ✗

FIESTA-IoT (Carrez et al., 2017) ✗ ✗ U U

Dynamic ontology (Antoniazzi and Viola, 2019) U U ✗ ✗

Oliot Mediation Gateway (Tolcha et al., 2021) ✗ ✗ U U

OPCUA-IPE (Cavalieri, 2021) ✗ ✗ U U

WoT-FIWARE Adapter (Zyrianoff et al., 2021) ✗ ✗ U U

Proposed IoT RNS ✗ ✗ ✗ ✗

Note that symbols in the interoperability types denote the following: (U) is required and (✗) is not required qualitative factor.

J. Koo and Young-Gab Kim Journal of King Saud University – Computer and Information Sciences 34 (2022) 4191–4208
ceId]/st-ate/[logicalInterfaceId]) andMQTT requests (i.e., iot-
2/type/${typeId}/id/${deviceId}/intf/${logicalInterfaceId}
/evt/state) format is different. In our scenario, a single ID for-
mat is only used in each platform. Therefore, a scenario
using various ID formats are considered as future work.

(5) As mentioned previously, five platforms were only targeted
in this scenario, but in an actual IoT environment (e.g., smart
cities), various platforms and devices can be connected.
Therefore, the high performance of the root IoT RNS is indis-
pensable for manage the local IoT RNSs in various IoT plat-
forms. In addition, root IoT RNS should be managed by a
trusted organization (e.g., TTP).

(6) In this scenario, service requests are restricted to one direc-
tion. For example, oneM2Musers request a FIWARE resource,
and a specific service is conducted. However, additional data
exchanges following the performance of the request are not
considered. Therefore, the format and meaning for exchang-
ing data should be further considered in future work.

(7) Security issues have not yet been fully considered for the
proposed IoT RNS. The authenticated users should only
access the mapping table in root IoT RNS, and security poli-
cies must be defined. In addition, users authenticated on
their platforms need to control access to specific resources
on other platforms (Oh et al., 2019). For example, how to
authorize users authenticated on platform A to use resources
on platform B should be considered.

6. Conclusion

IoT technology is rapidly expanding in many fields, including
smart homes, logistics, automobiles, healthcare, and smart cities,
and related standards, projects, and IoT platforms are constantly
being developed and improved. However, the numerous platforms
and related standards make it difficult to achieve interoperability
and collaboration among platforms. In particular, identifying each
resource among heterogeneous IoT platforms is challenging due to
various ID formats.

In order to solve this problem, we firstly classified interoper-
ability taxonomy in IoT environments into middleware, network,
syntactic, and semantic interoperability, with common security
factors for each case. In addition, we proposed an IoT RNS architec-
ture and scenario in a smart city to convert IDs between heteroge-
neous IoT platforms. Finally, we compared the proposed IoT RNS
with existing projects under development and showed it satisfies
the interoperability in the heterogeneous IoT platforms.

Future studies will expand interoperability by considering secu-
rity and implementation-related issues in a real environment.
Device authentication and authorization will be added to resource
sharing among heterogeneous platforms to address particular
4207
security issues. Defining these security policies and applying them
to IoT RNS will allow restrictions to be applied for unauthorized
access to heterogeneous platform resources.

Funding

This work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIT) (No.
2021R1A2C2012635).

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

Ahmed, A., Kleiner, M., Roucoules, L., 2018. Model-based interoperability IoT hub for
the supervision of smart gas distribution network. IEEE Syst. J. 13 (2), 1526–
1533. https://doi.org/10.1109/JSYST.2018.2851663.

An, J., Le Gall, F., Kim, J., Yun, J., Hwang, J., Bauer, M., Zhao, M., Song, J., 2019. Toward
global IoT-enabled smart cities interworking using adaptive semantic adapter.
IEEE Internet Things J. 6 (3), 5753–5765. https://doi.org/10.1109/
JIOT.2019.2905275.

Antoniazzi, F., Viola, F., 2019. Building the semantic web of things through a
dynamic ontology. IEEE Internet Things J. 6 (6), 10560–10579. https://doi.org/
10.1109/JIOT.2019.2939882.

Bröring, A., Schmid, S., Schindhelm, C.-K., Khelil, A., Käbisch, S., Kramer, D., Le Phuoc,
D., Mitic, J., Anicic, D., Teniente, E., 2017. Enabling IoT ecosystems through
platform interoperability. IEEE Softw. 34 (1), 54–61. https://doi.org/10.1109/
MS.2017.2.

Bröring, A., Zappa, A., Vermesan, O., Framling, K., Zaslavsky, A., Gonzalez-Usach, R.,
Kiraly, C., 2018. Advancing IoT Platforms Interoperability. River Publishers.

Carrez, F., Elsaleh, T., Gomez, D., Sanchez, L., Lanza, J., Grace, P., 2017. A reference
architecture for federating IoT infrastructures supporting semantic
interoperability. In: European Conference on Networks and Communications
(EuCNC), pp. 1–6. https://doi.org/10.1109/EuCNC.2017.7980765.

Cavalieri, S., 2021. A proposal to improve interoperability in the industry 4.0 based
on the open platform communications unified architecture standard.
Computers 10 (6), 1–24. https://doi.org/10.3390/computers10060070.

FIWARE, 2021. https://www.fiware.org/about-us/. (accessed 27 October 2021).
Ganzha, M., Paprzycki, M., Pawłowski, W., Szmeja, P., Wasielewska, K., 2017.

Towards semantic interoperability between internet of things platforms. In:
Integration, Interconnection, and Interoperability of IoT Systems, pp. 103–127.
https://doi.org/10.1007/978-3-319-61300-0_6.

IoTivity, 2021. https://iotivity.org/about. (accessed 27 October 2021).
ISO/IEC, 2019. ISO/IEC 21823-1:2019 Internet of things (IoT) — Interoperability for

IoT systems — Part 1: Framework.
ISO/IEC, 2021. ISO/IEC 20924:2021 Information technology — Internet of Things

(IoT) — Vocabulary.
Kang, S., Chung, K., 2018. IoT framework for interworking and autonomous

interaction between heterogeneous IoT platforms. In: International
Conference on Smart Computing and Communication, pp. 217–225. https://
doi.org/10.1007/978-3-030-05755-8_22.

Koo, J., Kim, Y.-G., 2017. Interoperability of device identification in heterogeneous
IoT platforms. In: 13th International Computer Engineering Conference
(ICENCO), pp. 26–29. https://doi.org/10.1109/ICENCO.2017.8289757.

https://doi.org/10.1109/JSYST.2018.2851663
https://doi.org/10.1109/JIOT.2019.2905275
https://doi.org/10.1109/JIOT.2019.2905275
https://doi.org/10.1109/JIOT.2019.2939882
https://doi.org/10.1109/JIOT.2019.2939882
https://doi.org/10.1109/MS.2017.2
https://doi.org/10.1109/MS.2017.2
http://refhub.elsevier.com/S1319-1578(22)00152-5/h0025
http://refhub.elsevier.com/S1319-1578(22)00152-5/h0025
https://doi.org/10.1109/EuCNC.2017.7980765
https://doi.org/10.3390/computers10060070
https://doi.org/10.1007/978-3-319-61300-0_6
https://doi.org/10.1007/978-3-030-05755-8_22
https://doi.org/10.1007/978-3-030-05755-8_22
https://doi.org/10.1109/ICENCO.2017.8289757

J. Koo and Young-Gab Kim Journal of King Saud University – Computer and Information Sciences 34 (2022) 4191–4208
Koo, J., Kim, Y.-G., 2021. Interoperability Requirements for a Smart City. 36th ACM
Symposium on Applied Computing (ACM SAC 2021). 690–698. https://doi.org/
10.1145/3412841.3441948.

Koo, J., Oh, S.-R., Kim, Y.-G., 2019. Device identification interoperability in
heterogeneous IoT platforms. Sensors 19, 1–16. https://doi.org/10.3390/
s19061433.

Lee, E., Seo, Y.-D., Oh, S.-R., Kim, Y.-G., 2021. A survey on standards for
interoperability and security in internet of things. IEEE Commun. Surv.
Tutorials 23 (2), 1020–1047. https://doi.org/10.1109/COMST.2021.3067354.

Li, Y., Zheng, C., Wang, S., 2019. Efficient oneM2M protocol conversion platform
based on NB-IoT access. China Commun. 16 (11), 56–69. https://doi.org/
10.23919/JCC.2019.11.005.

Oh, S.-R., Kim, Y.-G., Cho, S., 2019. An interoperable access control framework for
diverse IoT platforms based on OAuth and role. Sensors 19, 1–17. https://doi.
org/10.3390/s19081884.

Oliot, 2021. https://gs1oliot.github.io/oliot/. (accessed 27 October 2021).
oneM2M, 2019. TS-0012-V3.7.3 Base Ontology.
oneM2M, 2019. TS-0024-V3.2.2 OCF Interworking.
oneM2M, 2021. https://www.onem2m.org/harmonization-m2m. (accessed 27

October 2021).
Ranpara, R., Kumbharana, C.K., 2021. Challenges and issues in the existing

methodology for dynamic data capturing of ontology. In: Rising Threats in
Expert Applications and Solutions, pp. 263–268. https://doi.org/10.1007/978-
981-15-6014-9_30.

Tao, M., Ota, K., Dong, M., 2017. Ontology-based data semantic management and
application in IoT-and cloud-enabled smart homes. Future Generation Comput.
Syst. 76, 528–539. https://doi.org/10.1016/j.future.2016.11.012.
4208
Tao, M., Zuo, J., Liu, Z., Castiglione, A., Palmieri, F., 2018. Multilayer cloud
architectural model and ontology-based security service framework for IoT-
based smart homes. Future Generation Comput. Syst. 78, 1040–1051. https://
doi.org/10.1016/j.future.2016.11.011.

Thiéblin, E., Haemmerlé, O., Hernandez, N., Trojahn, C., Sabou, M., 2020. Survey on
complex ontology matching. Semantic Web. 11 (4), 689–727.

Tolcha, Y., Kassahun, A., Montanaro, T., Conzon, D., Schwering, G., Maselyne, J., Kim,
D., 2021. Towards interoperability of entity-based and event-based iot
platforms: the case of ngsi and epcis standards. IEEE Access 9, 49868–49880.
https://doi.org/10.1109/ACCESS.2021.3069194.

Watson IoT, 2021. https://www.ibm.com/docs/en/watson-iot-platform. (accessed
27 October 2021).

Wu, C.-W., Lin, F.J., Wang, C.-H., Chang, N., 2017. OneM2M-based IoT protocol
integration. In: IEEE Conference on Standards for Communications and
Networking (CSCN), pp. 252–257. https://doi.org/10.1109/CSCN.2017.8088630.

Yang, S., Wei, R., 2018. Tabdoc approach: an information fusion method to
implement semantic interoperability between IoT devices and users. IEEE
Internet Things J. 6 (2), 1972–1986. https://doi.org/10.1109/JIOT.2018.2871274.

Zarko, I.P., Soursos, S., Gojmerac, I., Ostermann, E.G., Insolvibile, G., Plociennik, M.,
Reichl, P., Bianchi, G., 2017. Towards an IoT framework for semantic and
organizational interoperability. Global Internet of Things Summit (GIoTS) 1–6.
https://doi.org/10.1109/GIOTS.2017.8016253.

Zyrianoff, I., Heideker, A., Sciullo, L., Kamienski, C., Di Felice, M., 2021.
Interoperability in open IoT platforms: WoT-FIWARE comparison and
integration. In: 2021 IEEE International Conference on Smart Computing
(SMARTCOMP), pp. 169–174. https://doi.org/10.1109/SMARTCOMP52413.
2021.00043.

https://doi.org/10.3390/s19061433
https://doi.org/10.3390/s19061433
https://doi.org/10.1109/COMST.2021.3067354
https://doi.org/10.23919/JCC.2019.11.005
https://doi.org/10.23919/JCC.2019.11.005
https://doi.org/10.3390/s19081884
https://doi.org/10.3390/s19081884
https://doi.org/10.1007/978-981-15-6014-9_30
https://doi.org/10.1007/978-981-15-6014-9_30
https://doi.org/10.1016/j.future.2016.11.012
https://doi.org/10.1016/j.future.2016.11.011
https://doi.org/10.1016/j.future.2016.11.011
http://refhub.elsevier.com/S1319-1578(22)00152-5/h0135
http://refhub.elsevier.com/S1319-1578(22)00152-5/h0135
https://doi.org/10.1109/ACCESS.2021.3069194
https://doi.org/10.1109/CSCN.2017.8088630
https://doi.org/10.1109/JIOT.2018.2871274
https://doi.org/10.1109/GIOTS.2017.8016253
https://doi.org/10.1109/SMARTCOMP52413.2021.00043
https://doi.org/10.1109/SMARTCOMP52413.2021.00043

	Resource identifier interoperability among heterogeneous IoT platforms
	1 Introduction
	2 Background and related work
	2.1 Taxonomy for interoperability in the IoT environments
	2.2 Resource identifiers in the IoT platforms
	2.3 Related work
	2.3.1 Integrated platform
	2.3.2 Duplicated resources

	3 Proposed IoT RNS
	3.1 Assumption
	3.2 Architecture and algorithms
	3.3 Scenario
	3.3.1 Resource registration and deletion
	3.3.2 Resource discovery and path conversion
	3.3.3 Service request

	4 Proof␣of concept
	4.1 Feasible scenario
	4.2 Implementation
	4.2.1 Environment
	4.2.2 Demonstration

	5 Evaluation and discussion
	5.1 Qualitative evaluation
	5.1.1 Integrated platform
	5.1.2 Duplicated resources
	5.1.3 Path conversion in the IoT RNS

	5.2 Discussion
	5.2.1 Evaluation method and implementation
	5.2.2 Scope of scenario

	6 Conclusion
	Funding
	Declaration of Competing Interest
	References

