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Abstract

The fast proliferation of edge devices for the Internet of Things (IoT) has led to massive volumes of data explosion. The
generated data is collected and shared using edge-based IoT structures at a considerably high frequency. Thus, the data-
sharing privacy exposure issue is increasingly intimidating when IoT devices make malicious requests for filching sensitive
information from a cloud storage system through edge nodes. To address the identified issue, we present evolutionary privacy
preservation learning strategies for an edge computing-based IoT data sharing scheme. In particular, we introduce evolutionary
game theory and construct a payoff matrix to symbolize intercommunication between IoT devices and edge nodes, where IoT
devices and edge nodes are two parties of the game. IoT devices may make malicious requests to achieve their goals of stealing
privacy. Accordingly, edge nodes should deny malicious IoT device requests to prevent IoT data from being disclosed. They
dynamically adjust their own strategies according to the opponent’s strategy and finally maximize the payoffs. Built upon
a developed application framework to illustrate the concrete data sharing architecture, a novel algorithm is proposed that can
derive the optimal evolutionary learning strategy. Furthermore, we numerically simulate evolutionarily stable strategies, and the
final results experimentally verify the correctness of the IoT data sharing privacy preservation scheme. Therefore, the proposed
model can effectively defeat malicious invasion and protect sensitive information from leaking when IoT data is shared.

c© 2022 Published by Elsevier Ltd.
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1. Introduction

The Internet of Things (IoT) can be described as
a network that connects all entities with the inter-
net through information sensing devices to realize the
function of intelligent identification, operation, and
management. The IoT is attracting considerable at-
tention with the continuous development of wireless
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communications, radio frequency identification, and
low-cost sensors. However, IoT network problems,
such as security and privacy, are rapidly emerging, and
thus, privacy protection is of paramount importance
[1, 2, 3, 4, 5].

Edge-based IoT [6] is experiencing rapid growth
because traditional cloud computing is unable to im-
mediately handle the massive data generated by edge
nodes with the rapid development and wide applica-
tion of the IoT, big data, and 5G/6G networks [7].
In this architecture, edge computing provides parts of
cloud services for IoT devices on the edge of the net-
work. It focuses on solving the problems of high la-
tency, network instability, and low bandwidth [8]. Its
applications are initiated on the edge side, resulting in
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the faster response of cloud services, which meets the
basic IoT requirements in real-time business, applica-
tion intelligence, and privacy preservation.

However, privacy issues while sharing edge-based
IoT data are still challenging due to physical attacks,
privacy exposure, service control, and data tampering
[9], although edge computing mitigates the commu-
nication delays caused by cloud computing. Malware
intrusions in IoT networks are becoming increasingly
widespread [10, 11]. Specifically, if nodes are attacked
and high-privilege systems, such as the operating sys-
tem are controlled by the attacker, it becomes easy to
filch the data stored in a cloud storage system, which
places privacy data at great risk [12]. Existing data
sharing protocols divulge data with a central node, ex-
posing the source file directly to the platform. En-
crypting data reduces the possibility of data leaking
during transmission, but it does not restrain malware
from stealing documents from the cloud storage sys-
tem through edge nodes. Hence, preserving data pri-
vacy at the edge is becoming progressively important
[13, 14].

To solve privacy issues, various scenarios have been
proposed, which commonly originate from cache-
based architectures [15, 16, 17], trust computing
mechanisms [18, 19], and Radio Frequency Identifi-
cation (RFID) techniques [20, 21]. Nonetheless, there
are several limitations in the existing scenarios. Al-
though the cache-based strategy is always utilized in
conjunction with k-anonymity, the user movements
are easily divulged in the location-based service on
the basis of information caching. The trusted platform
module, to some extent, enhances the security of the
computing platform via cryptography. However, it is
vulnerable to malignant attacks due to the exposure of
platform configuration. The RFID technique makes it
difficult for sensitive user information to be tampered
with secure authentication, while this data is probably
maliciously revealed.

Moreover, game theory has also been widely uti-
lized in privacy preservation in the last few years
[22], providing a theoretical basis for IoT security-
associated decision-making. In these models, each
player’s payoff depends not only on its own strategy
but also on the strategies of other participants. There-
fore, each player continuously adjusts their strategies
according to the opponent’s strategy to maximize their
own payoffs. In such cases, the choice of a stable strat-
egy is usually worth investigating. Specifically, in the
domain of IoT network security, when attackers at-
tempt to filch users’ privacy via malicious node attacks
or malware dissemination, defenders are required to
take appropriate measures to strengthen the security
defense mechanism of IoT systems.

In the current work, we proposed a privacy preser-
vation model based on evolutionary game theory and
edge computing during IoT data sharing, considering
the detection rate, successful diffusion rate, privacy

risk factor, and trust gain. An evolutionary game can
achieve an equilibrium through constant simulations
and strategy adjustment in the whole process, where
there exists a Nash equilibrium called an evolutionar-
ily stable strategy. Herein, this game model based on
replication dynamics was used to describe the IoT pri-
vacy preservation learning strategies considering in-
trusion detection. The dynamic equations were repro-
duced to describe the changes while adopting differ-
ent strategies, and eventually, the optimal strategy was
obtained. We eventually analyzed the influence of the
above four impact factors on the node evolution sta-
bility strategy and provided suggestions for the cloud
storage system to refuse the malicious requests from
the source and upgrade the privacy preservation. To
the best of our knowledge, this is an early work to
study optimal privacy preservation strategies based on
evolutionary game theory for the edge-based IoT data
sharing scheme.

The main contributions of the current work are epit-
omized as follows:

• We establish an evolutionary IoT data sharing
game based on game theory and edge comput-
ing. In addition, we further analyze whether the
eigenvalues of the model are greater than zero.
Then, we assess the stability by the eigenvalues
and eventually derive the equilibrium points of
this model. Through mathematical modeling, we
can observe the stability of each point in every
case more intuitively.

• We develop a data sharing framework after ana-
lyzing the game process of the privacy preserva-
tion model based on replication dynamics, which
demonstrates the specific process of decision-
making by edge nodes.

• We propose a solution to solve the established
evolutionary learning algorithm and derive opti-
mal privacy preservation strategies for the edge-
based IoT data sharing scheme. Through a con-
stant trial and error, the strategy is adjusted and
improved with time, maximizing the expected
revenue and returning the optimal evolutionary
strategy.

• We numerically simulate the evolutionary pri-
vacy preservation model for edge-based IoT data
sharing, illustrating evolutionarily stable strate-
gies of IoT devices and edge nodes. The relia-
bility of this model is verified by observing the
convergence of the curve by adjusting the pa-
rameters. The simulation experiments ultimately
provide suggestions for enhancing the privacy
preservation of edge nodes while sharing data.

The rest of the current work is organized as follows:
In Section 2, we separately review edge computing-
oriented and game theory-based privacy preservation
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and expound on the differences between our model
and existing models. In Section 3, we construct an
edge computing architecture for IoT data sharing. In
addition, we propose an evolutionary privacy preser-
vation learning game based on edge computing, pro-
viding replication dynamic equations and analyzing
evolutionarily stable strategies. Moreover, we develop
an application framework and an evolutionary learn-
ing algorithm for the edge-computing oriented privacy
preservation model. In Section 4, we numerically sim-
ulate the model to attain the optimal evolutionarily sta-
ble strategies of IoT devices and edge nodes. Then, we
investigate the impact of related parameters on strate-
gies selected by IoT devices and edge nodes, which is
followed by a conclusion in Section 5.

For better clarification, we provide symbol defini-
tions as shown in Table 1.

2. Related work

It is worth mentioning that data privacy in cloud
storage systems has always been a concern of end
users. The distributed parallel data processing method
causes diverse challenges, including physical attacks,
privacy exposure, service control, and data tampering.
Therefore, research on data privacy preservation tech-
niques, such as access control and identity authenti-
cation, has become important to support and ensure
the sustainable development of edge computing. To
construct an intelligent and secure network environ-
ment, Stergiou et al. [15] proposed a cache decision
system in a secure caching scenario combined with
IoT, cloud computing, edge computing, and big data.
Mukherjee et al. [23] highlighted that although there
is less of a delay, intelligent edge computing causes
additional security issues, such as malignant assaults
focusing on intelligent engines. Rao and Bertino [24]
analyzed and proposed several privacy solutions for
various types of data in edge applications. To better
allocate privacy tasks, Zhang et al. [25] imported a
privacy-preserving framework, which can be executed
in an actual edge computing platform. Gu et al. [26]
raised a dynamic privacy preservation model to ensure
the security of data transmission between edge nodes
and clients. In [27], Xu et al. suggested an optimiza-
tion scheme developed on edge computing, improving
resource utilization and synchronically protecting pri-
vacy. To protect the privacy of requesters and clients,
Zhou et al. [28] contrived a context-aware scheme for
mobile crowdsensing under an edge computing sys-
tem. Zhen and Liu [29] proposed a privacy preserva-
tion scheme on the basis of mobile edge computing
to improve wireless body area networks. They also
designed a Merkle tree model and a hybrid signature
algorithm to ensure the security performance of IoT
nodes. To ensure the security of private data on ter-
minal devices, Li et al. [30] developed an outline for
IoT applications accordant with mobile edge comput-

ing. It could not only guarantee the integrity of the
source but it could also decrease the cost of commu-
nication. In [31], Liu et al. unified federated learning
with edge computing, providing a privacy preserva-
tion framework, which can minimize privacy leakage
during data transmission. To prevent sensitive infor-
mation from being exposed, Du et al. [32] utilized dif-
ferential privacy to execute intelligent edge machine
learning. He et al. [33] attached importance to mobile-
edge computing. Their conception ensures user expe-
rience and privacy at the same time. Zhao et al. [34]
proposed a privacy preservation approach to prevent
poisoning attacks in mobile-edge computing, which
could also identify the specific location of poisoning
through the network. Du et al. noticed that distributed
nodes are easy to hack, and thus, privacy preservation
in multiaccess edge computing was studied in [35]. Li
et al. [36] researched a reliable and distributed algo-
rithm upon edge nodes, preserving confidential infor-
mation during outsourcing.

With the popularity of the IoT, privacy preservation
has received increasing attention. Based on this, to
prohibit sensitive information from leaking, game the-
ory has already been widely applied in IoT data pri-
vacy preservation. Do et al. [37] presented game mod-
els and defense mechanisms of cyberspace privacy
to address specific privacy issues with game-theoretic
approaches. In [38], Ezhei and Tork Ladani intro-
duced a differential game model, utilizing the data
sharing thresholds to assess whether a firm shares se-
curity information with central authorities, such as
ISACs, which ensured a social optimum. Cui et al.
[39] constructed a personalized differential privacy
game model to enhance data utility. Qu et al. [40]
utilized a dynamic zero-sum game to explore the op-
timal strategy for protecting location and identity pri-
vacy in cyber-physical social networks. In [41], the
authors modeled a Stackelberg game for k-anonymity
among leaders, followers, and a third-party platform.
To tackle the privacy leak caused by IoT devices, Li
et al. [42] simulated a trilateral game among users,
providers, and antagonists, presenting guidance for
scheming a privacy preservation strategy. Xiong et al.
[43] also provided a three-party game that supported
artificial intelligence for preventing privacy invasion
in mobile edge crowdsensing. Similarly, in [44], the
authors presented a privacy framework based on a
switch-controller mapping mechanism. It could min-
imize the privacy leak in software-defined network-
ing derived from cyber physical systems. To protect
sensitive information, Jin et al. [45] proposed game
models, considering the collaboration gain and pri-
vacy loss between assailants and collaborators. Ri-
ahi Sfar et al. [46] nominated a privacy preservation
model between data owners and receivers by utiliz-
ing Markov chains. It can protect personal privacy
while exchanging the data in intelligent transportation
systems. Nosouhi et al. [47] developed an unlink-
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Table 1. Symbol definitions.

Symbol Definition

α Detection rate
β False alarm rate
γ False alarm lose
δ Rate of successful diffusion
ε Privacy risk factor
ξA Gain obtained by successful access to privacy
ξP Gain obtained by successful privacy preservation
% Gain obtained by the trust of normal requests
ξD Gain obtained by malware diffusion
ξC Gain obtained by normal requests
ξS Gain obtained by successful detection
ςD Cost incurred by malware diffusion
ςC Cost incurred by normal requests
ςS Cost incurred by successful detection
p Probability of IoT devices requesting maliciously
q Probability of edge nodes denying IoT devices requests

able coin protocol to desensitize privacy data through
an anonymity technique, which protects Bitcoin users’
sensitive information. Liu et al. [48] designed a game
model for participants to acquire an optimal payment
strategy, providing sufficient privacy preservation in
crowdsensing. In [49] Liu et al. modeled a bilat-
eral game framework to achieve profit maximization
and privacy preservation simultaneously in spectrum
sharing. Wu et al. [50] propounded a game model of
security assault and guard, considering the actions of
attackers. Mengibaev et al. [51] introduced a hetero-
geneous interaction mechanism to establish an evolu-
tionary game framework for investigating security as-
surance on the internet. Du et al. [52] associated evo-
lutionary dynamics with a game theoretic framework,
urging individuals to focus on their privacy preser-
vation online. Sun [53] built an evolutionary game
model and obtained the optimal privacy preservation
strategy for early adaptation in the network.

Compared to the above work, we concentrate on
seeking evolutionary privacy preservation learning
strategies for edge-based IoT data sharing. The current
privacy preservation schemes are mainly divided into
three categories: k-anonymity [41, 54], access con-
trol [55, 56], and differential privacy [57, 58, 59]. K-
anonymity requires publishers to desensitize data prior
to publication. Access control restricts access to pri-
vacy information. Differential privacy distorts sensi-
tive data via noise addition techniques. However, we
notice that there is a prisoner’s dilemma between IoT
devices and edge nodes. Therefore, to solve the prob-
lem of privacy preservation from the source more ef-
fectively, data-sharing privacy preservation based on
evolutionary game theory is studied from the perspec-
tive of obtaining revenue in the current work, and a
privacy preservation data sharing model is established
for edge-based IoT networks. We next display the

comparison between our proposed method and other
games in Table 2 for further emphasizing our contri-
butions.

3. Evolutionary privacy preservation learning
game for edge-based IoT networks

3.1. Problem statement

The IoT data sharing architecture of edge com-
puting studied in the current work is shown in Fig.
1, which mainly includes a core infrastructure, edge
nodes, and an IoT layer. Data sharing starts from a
cloud storage system deployed in the core infrastruc-
ture, which provides access to the core network and
the management of centralized cloud computing for
edge devices. Note that edge nodes are ones of the
core components in edge computing while sharing IoT
data. They provide users with nearby edge computing
services instead of sending all data back to a central
place for processing, increasing bandwidth, and reduc-
ing latency. Ultimately, the shared data is received by
the IoT layer, consisting of various IoT networks, each
of which includes all sorts of smart devices, such as
mobile terminals and IoT equipment.

Under such an edge-based IoT data sharing ar-
chitecture, the massive data generated by edge de-
vices involve personal privacy, which makes the pri-
vacy preservation problem particularly prominent. It
is also notable that private data is partially or com-
pletely stored in edge data centers, causing the sep-
aration of ownership and control. In this case, it is
easy to bring about data security problems, such as
data leaks and illegal data operation. The data confi-
dentiality and integrity cannot be guaranteed. In ad-
dition, there is a contradiction that it must effectively
prevent IoT devices from trying to make a malicious
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Table 2. Comparison between the proposed method and other games.

Paper Scenario Game
Type

Advances Drawbacks

Ezhei et al. [38] Network secu-
rity information
sharing systems

Differential
game

• Obtain a data sharing thresh-
old determining whether a
company shares their security
information

• Belong to a perfectly rational
game

Cui et al. [39] Personalized
differential pri-
vacy schemes

Differential
game,
Bayesian
game

• Propose a model requiring
less overall privacy budget and
higher data utility

• Eliminate the uncertainty of
data utility measurement

• Belong to a perfectly rational
game

Qu et al. [40] Cyber physical
social networks

Dynamic
multistage
zero-sum
game

• Preserve location privacy and
identity privacy

• Achieve a fast convergence
with a reinforcement learning
algorithm

• Belong to a perfectly rational
game

Zhang et al.
[41]

Social networks Stackelberg
game

• Propose a model achieving
high security in location-based
services

• Analyze the security and per-
formance in different situa-
tions

• Belong to a perfectly rational
game

Li et al. [42] IoT netwroks Three-
party
game

• Address private data transac-
tions in IoT networks

• Belong to a perfectly rational
game

Xiong et al.
[43]

Mobile edge
crowdsensing

Three-
party
game

• Protect the privacy of per-
ceived data

• Obtain a Nash equilibrium
among player strategies,
player profits, and constraint
conditions

• Belong to a perfectly rational
game

Sivaraman et al.
[44]

Smart grids
based on soft-
ware defined
networks

noncooperative
game

• Present a privacy framework
with a switch-controller map-
ping mechanism

• Belong to a perfectly rational
game

Jin et al. [45] Collaborative
security sys-
tems

Zero sum
game,
non-zero
sum game

• Attain collaborative security
scenarios with privacy aware-
ness

• Deduce the optimal strategy in
a complete cooperative game

• Demonstrate the existence of
Nash equilibrium in an incom-
plete cooperative game

• Belong to a perfectly rational
game

Liu et al. [48] Crowdsensing Dynamic
game

• Learn a Payment-privacy Pro-
tection Level (PPL) of plat-
forms and participants

• Speed up the acquisition of
payment-PPL strategy

• Belong to a perfectly rational
game

Liu et al. [49] Spectrum Shar-
ing Systems

Stackelberg
game

• Protect users’ location infor-
mation

• Show the payoff between the
privacy protection levels and
user utilities

• Belong to a perfectly rational
game

Wu et al. [50] Local differen-
tial privacy

Zero sum
game

• Construct a zero-sum game
between a defender and an at-
tacker to solve the privacy is-
sue

• Raise a mutual information
privacy protection method

• Belong to a perfectly rational
game
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Mengibaev et
al. [51]

Social networks Evolutionary
game

• Introduce a heterogeneous in-
teraction pattern to discuss the
privacy protection in social
networks

• Not highlight IoT network fea-
tures

Du et al. [52] Social networks Evolutionary
game

• Analyze information protec-
tion through user interactions
and decisions

• Not highlight IoT network fea-
tures

Sun [53] Cloud service
systems

Evolutionary
game

• Increase the accuracy of repli-
cation dynamic equation

• Propose an optimal protection
strategy selection algorithm

• Lead to serious delay in cloud
service systems

Current work Edge-based IoT
schemes

Evolutionary
game

• Construct an evolutionary
privacy preservation learning
game describing edge-based
IoT features

• Propose an algorithm maxi-
mizing the expected revenue
and returning the optimal evo-
lutionary strategy

• Approximately obtain the
equilibrium point

Fig. 1: Edge computing architecture for IoT data sharing.

request for stealing this kind of information while al-
lowing access to privacy-related information. Thus,
an urgent problem to be solved is researching privacy
preservation from the perspective of payoff, establish-
ing a privacy preservation model based on game the-
ory, and further seeking an optimal privacy preserva-
tion strategy to protect user privacy, while also sharing
edge-based IoT data.

3.2. Game construction
Definition 1. The evolutionary privacy preservation

learning game for edge-based IoT networks is denoted
by a quad (P,R,D,E), where:
• P = {IoT devices o, Edge nodes ε} represents a

set of players.
• R = RM × RN represents a set of IoT devices re-

quests, where RM represents malicious requests and
RN represents normal requests.
• D = DG × DD represents a set of edge nodes re-

sponses, where DG represents granting IoT requests
and DD represents denying IoT requests.
• E = {IoT devices revenue υ, Edge nodes revenue

ξ} represents a set of expected revenue.
In the proposed game, two players, namely, IoT de-

vices o and edge nodes ε are considered. IoT devices

may make malicious requests, represented by RM , or
make normal requests, represented by RN . Similarly,
edge nodes may grant the requests through intrusion
detection, represented by DG, or deny the requests
through intrusion detection, represented by DD. Ad-
ditionally, E represents the set of the expected revenue
of IoT devices o and edge nodes ε, represented by υ
and ξ, respectively.

Utilizing the symbols defined in Table 1, we con-
struct a payoff matrix of the evolutionary privacy
preservation learning game, as presented in Table 3.
In the first case, IoT devices make malicious requests
and edge nodes grant the requests, which means mal-
ware diffuses successfully. At that time, IoT devices
receive a malware diffusion gain (1 − α)δξD, whereas
they incur a malware diffusion cost ςD and need to bear
a detection loss αξS . During this period, the privacy is
accessed by the IoT devices that receive a gain εξA.
In contrast, the edge nodes will earn a gain due to a
successful detection, but they stand a loss (1 − α)δξD

due to an error detection. Edge nodes should also
bear the loss εξA caused by privacy leaks and a de-
tection cost ςS . Therefore, the revenue of IoT devices
and edge nodes are (1 − α)δξD + εξA − αξS − ςD and
αξS − (1 − α)δξD − εξA − ςS , respectively.

In the second case, IoT devices make malicious re-
quests and edge nodes deny the requests, which means
the nodes successfully defend the malware. At that
time, IoT devices receive a gain δξD due to malware
diffusion but incur a malware diffusion cost ςD, and
bear a detection loss αξS . In contrast, the edge nodes
earn a gain αξS due to a successful detection, but they
stand a loss δξD due to malware diffusion and a suc-
cessful detection cost ςS . Edge nodes also earn a gain
εξA because of successful privacy preservation. There-
fore, the revenue of IoT devices and edge nodes are
δξD −αξS − ςD and αξS + εξA − δξD − ςS , respectively.

In the third case, IoT devices make normal requests
and edge nodes grant the requests, which means that
the nodes have secure access to privacy data. At that
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Evolutionary privacy-preserving learning strategies for edge-based IoT data sharing schemes 7

time, the IoT devices acquire a gain ξC and an addi-
tional trust gain % due to the normal request, but they
also sustain a cost loss ςC . In terms of the edge nodes,
they acquire a gain ξP because of successful privacy
preservation, while there is a successful detection cost
ςS . Therefore, the revenue of IoT devices and edge
nodes are ξC + % − ςC and ξP − ςS , respectively.

In the fourth case, IoT devices make normal re-
quests and edge nodes deny the requests, which means
the nodes make an error detection. The expected rev-
enue of IoT devices is similar to that of the third case.
Furthermore, the edge nodes must pay a loss βγ due to
the false alarm and a detection cost ςS . Therefore, the
revenue of IoT devices and edge nodes are ξC + %− ςC

and −βγ − ςS , respectively.

3.3. Evolutionary privacy preservation strategies
analyses

In this section, we analyze the replication dynamics
of IoT devices and edge nodes, as well as obtain the
equilibrium point by solving the replication dynamic
equations. Finally, we investigate the evolutionarily
stable strategies of the two sides of the game. The
conclusion can provide suggestions for edge nodes to
realize privacy preservation during the process of IoT
data sharing.

3.3.1. Replication dynamic equations
According to Table 3, the expected revenue of IoT

devices making malicious requests is as follows:

E(RM) = q((1 − α)δξD + εξA − αξS − ςD)
+ (1 − q)(δξD − αξS − ςD)

(1)

and the expected revenue of IoT devices making nor-
mal requests is as follows:

E(RN) = q(ξC + % − ςC)
+ (1 − q)(ξC + % − ςC)
= ξC + % − ςC

(2)

Therefore, the average expected revenue of IoT de-
vices according to [10, 60] is as follows:

E(R) = p ∗ E(RM) + (1 − p) ∗ E(RN) (3)

Furthermore, the replication dynamic equation of
IoT devices is as follows:

R(p) =
dp
dt

= p ∗ (E(RM) − E(R))

= p ∗ (1 − p) ∗ (E(RM) − E(RN))
= p ∗ (1 − p) ∗ (q ∗ (−αδξD + εξA)
+ δξD − αξS − ςD − ξC − % + ςC)

(4)

However, the expected revenue of edge nodes deny-
ing a request is as follows:

E(DD) = p(αξS + εξA − δξD − ςS )
+ (1 − p)(−βγ − ςS )

(5)

and the expected revenue of edge nodes granting a re-
quest is as follows:

E(DG) = p(αξS − (1 − α)δξD − εξA − ςS )
+ (1 − p)(ξP − ςS )

(6)

Therefore, the average expected revenue of edge
nodes is as follows:

E(D) = q ∗ E(DG) + (1 − q) ∗ E(DD) (7)

Furthermore, the replication dynamic equation of
edge nodes is as follows:

D(q) =
dq
dt

= (1 − q) ∗ (E(DD) − E(D))

= q ∗ (1 − q) ∗ (E(DD) − E(DG))
= q ∗ (1 − q) ∗ (p ∗ (2εξA − αδξD

+ βγ + ξP) − βγ − ξP)

(8)

3.3.2. Evolutionarily stable strategy analyses
According to Eq. (4), we let R(p) = 0; there are

three states as follows:

p = 0 (9)

p = 1 (10)

q =
αξS + ςD + ξC + % − ςC − δξD

−αδξD + εξA
(11)

According to Eq. (8), we let D(p) = 0; there are
three states as follows:

q = 0 (12)

q = 1 (13)

p =
βγ + ξP

2εξA − αδξD + βγ + ξP
(14)

Theorem 1: While q > αξS +ςD+ξC+%−ςC−δξD
−αδξD+εξA

, p = 1 is
the only point of convergence of IoT devices selecting
an action, meaning that IoT devices make a malicious
request to the edge nodes after evolutionarily playing
the game.
Proof. See Appendix A.

According to Eqs. (A.2) and (A.3), the phase di-
agram of Eq. (4) is demonstrated in Fig. 2. It is
shown that this curve tends to 1, illustrating that if
q > αξS +ςD+ξC+%−ςC−δξD

−αδξD+εξA
, then p = 1 is the only point

of convergence of IoT devices selecting an action.
Theorem 1 indicates that regardless of if the edge

nodes choose to grant or deny the request, the revenue
of IoT devices making normal requests is always
less than that of making malicious requests when the
probability of edge nodes denying IoT device requests
is greater than the value of an evolutionarily stable
strategy. Hence, IoT devices make malicious requests
to edge nodes. This strategy behavior incurs IoT data
privacy leaks. Therefore, administrators should try
to configure the IDSaaS and adjust the parameters
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Table 3. Payoff matrix.

IoT devices Edge Nodes
Detect & Grant (DG) Detect & Deny (DD)

Request Maliciously (RM) (1 − α) δξD + εξA − αξS − ςD, δξD − αξS − ςD,
αξS − (1 − α) δξD − εξA − ςS δξS + εξA − δξD − ςS

Request Normally (RN) ξC + % − ςC , ξC + % − ςC ,
ξP − ςS , −βγ − ςS

Fig. 2: Phase diagram of replication dynamic equation of IoT de-
vices, such that q > αξS +ςD+ξC +%−ςC−δξD

−αδξD+εξA
.

Fig. 3: Phase diagram of replication dynamic equation of IoT de-
vices, such that q =

αξS +ςD+ξC +%−ςC−δξD
−αδξD+εξA

.

of edge-based IoT networks in practice to avoid
satisfying the condition of Theorem 1 to maximally
preserve data privacy during the process of IoT data
sharing.

Theorem 2: While q =
αξS +ςD+ξC+%−ςC−δξD

−αδξD+εξA
, there is no

convergence point.
Proof: To reach a stable state, it needs to satisfy
R′(p) < 0. However, if q =

αξS +ςD+ξC+%−ςC−δξD
−αδξD+εξA

, then
R(p) = 0 for ∀p, as shown in Fig. 3. Hence, there is
no stable status in this case. This completes the proof.

Theorem 3: While q < αξS +ςD+ξC+%−ςC−δξD
−αδξD+εξA

, p = 0 is
the only point of convergence of IoT devices selecting

Fig. 4: Phase diagram of replication dynamic equation of IoT de-
vices, such that q < αξS +ςD+ξC +%−ςC−δξD

−αδξD+εξA
.

an action, meaning that IoT devices make normal re-
quests to the edge nodes after evolutionarily playing
the game.
Proof. See Appendix B.

From Eqs. (B.1) and (B.2), the phase diagram of
Eq. (4) is given in Fig. 4. It is proven that this curve
tends to 0, emphasizing that if q < αξS +ςD+ξC+%−ςC−δξD

−αδξD+εξA
,

then p = 0 is the only point of convergence in IoT
devices selecting an action.

Theorem 3 indicates that regardless of if the edge
nodes choose to grant or deny requests, the revenue of
IoT devices making malicious requests is always less
than that of making normal requests when the prob-
ability of edge nodes denying IoT devices requests is
less than the value of the evolutionarily stable strategy.
Hence, IoT devices make normal requests to the edge
nodes, which is beneficial for preserving data privacy
during the process of IoT data sharing. Therefore, ad-
ministrators should keep the current configuration of
the IDSaaS and edge-based IoT networks to satisfy the
condition of Theorem 3, such that the privacy preser-
vation of IoT data sharing is consistent.
Theorem 4: While p > βγ+ξP

2εξA−αδξD+βγ+ξP
, q = 1 is the

only point of convergence of edge nodes selecting an
action, meaning that the edge nodes deny the requests
of IoT devices after evolutionarily playing the game.
Proof. See Appendix C.

Based on Eqs. (C.2) and (C.3), the phase diagram
of Eq. (8) is displayed in Fig. 5. It is indicated that this
curve tends to 1, clarifying that if p > βγ+ξP

2εξA−αδξD+βγ+ξP
,

then q = 1 is the only point of convergence of edge
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Evolutionary privacy-preserving learning strategies for edge-based IoT data sharing schemes 9

Fig. 5: Phase diagram of replication dynamic equation of edge
nodes, such that p > βγ+ξP

2εξA−αδξD+βγ+ξP
.

Fig. 6: Phase diagram of replication dynamic equation of edge
nodes, such that p =

βγ+ξP
2εξA−αδξD+βγ+ξP

.

nodes selecting an action.
Theorem 4 explains that regardless of if IoT de-

vices make malicious or normal requests, the revenue
of edge nodes granting requests is always less than
that of denying requests when the probability of IoT
devices making malicious requests is greater than the
value of an evolutionarily stable strategy. Hence, the
edge nodes eventually deny IoT device requests, pre-
venting the IoT data from leakage.
Theorem 5: While p =

βγ+ξP
2εξA−αδξD+βγ+ξP

, there is no
convergence point.
Proof: To reach a stable state, it needs to satisfy
D′(q) < 0. However, if p =

βγ+ξP
2εξA−αδξD+βγ+ξP

, then
D(q) = 0 for ∀q, as shown in Fig. 6. Hence, there is
no stable status in this case. This completes the proof.

Theorem 6: While p < βγ+ξP
2εξA−αδξD+βγ+ξP

, q = 0 is the
only point of convergence of edge nodes selecting an
action, meaning that the edge nodes grant the requests
of IoT devices after evolutionarily playing the game.
Proof. See Appendix D.

Considering Eqs. (D.1) and (D.2), the phase di-
agram of Eq. (8) is explicated in Fig. 7. It is

Fig. 7: Phase diagram of replication dynamic equation of edge
nodes, such that p < βγ+ξP

2εξA−αδξD+βγ+ξP
.

presented that this curve tends to 0, meaning that if
p < βγ+ξP

2εξA−αδξD+βγ+ξP
, then q = 0 is the only point of

convergence of edge nodes selecting an action.
Theorem 6 indicates that regardless of if IoT de-

vices make malicious or normal requests, the revenue
of edge nodes denying requests is always less than that
of granting requests when the probability of IoT de-
vices making malicious requests is less than the value
of an evolutionarily stable strategy. Hence, the edge
nodes eventually grant IoT device requests.

3.4. Evolutionary privacy preservation stability anal-
ysis

Stability analysis provides the optimal choice for
the game model. To be specific, the edge nodes can
be seen as the players, which are bounded rationally
in the game, and it is unable to search out the evo-
lutionarily stable point at the beginning. Thus, they
must learn constantly and correct their strategic mis-
takes gradually in the gaming process. At the end of
the game, both sides of the game tend to converge to a
stable strategy. Therefore, they acquire a satisfactory
result concurrently by stability analyses based on trial
and error. Based on Eqs. (4), (8), (A.1), and (C.1),
we obtain the Jacobian matrix J according to [61] as
follows:

J =

 ∂R(p)
∂p

∂R(p)
∂q

∂D(q)
∂p

∂D(q)
∂q

 (15)

where the equations are as follows:

∂R(p)
∂p

= (1 − 2p) ∗ (q ∗ (−αδξD + εξA)

+ δξD − αξS − ςD − ξC − % + ςC)
(16)

∂R(p)
∂q

= p(1 − p)(−αδξD + εξA) (17)

∂D(q)
∂p

= q(1 − q)(2εξA − αδξD + βγ + ξP) (18)

Jo
urn

al 
Pre-

pro
of



10 Yizhou Shen, et al.

∂D(q)
∂q

= (1 − 2q)(p ∗ (2εξA − αδξD + βγ

+ ξP) − βγ − ξP)
(19)

Then, we analyze the stability of each equilibrium
point illustrated in Table 4.

In Table 4, we have the equations as follows:

q∗ =
αξS + ςD + ξC + % − ςC − δξD

−αδξD + εξA
(20)

p∗ =
βγ + ξP

2εξA − αδξD + βγ + ξP
(21)

X∗ =
(βγ + ξP) (2εξA − αδξD) (−αδξD + εξA)

(2εξA − αδξD + βγ + ξP)2 (22)

and
Y∗ = U∗

V∗W∗

(−αδξD + εξA − αξS )2 (23)

where the equations are as follows:

U∗ = (αξS + ςD + ξC + % − ςC − δξD) (24)

V∗ = (−αδξD + εξA − 2αξS + δξD − ςD

− ξC − % + ςC)
(25)

and W∗ is as follows:

W∗ = (2εξA − αδξD + βγ + ξP) (26)

From Table 3, we obviously attain the equations as
follows:

ξC + % − ςC > δξD − αξS − ςD

⇒ δξD − αξS − ςD − ξC − % + ςC < 0
(27)

ξP − ςS > −βγ − ςS ⇒ −βγ − ξP < 0 (28)

and the equation as follows:

αξS + εξA − δξD − ςS

> αξS − (1 − α)δξD − εξA − ςS

⇒ 2εξA − αδξD > 0
(29)

We next derive evolutionarily privacy preservation sta-
ble points under two cases.

Case 1: ξC+%−ςC > (1−α)δξD+εξA−αξS−ςD. This
case represents that the revenue of IoT devices making
normal requests is more than that of making malicious
requests when edge nodes grant IoT devices requests.

Case 2: ξC + %− ςC < (1− α)δξD + εξA − αξS − ςD.
This case indicates that the revenue of IoT devices
making normal requests is less than that of those
making malicious requests when edge nodes grant
IoT device requests.
Theorem 7: Under both Cases 1 and
2, only (0, 0) is evolutionarily stable and
(αξS +ςD+ξC+%−ςC−δξD

−αδξD+εξA
, βγ+ξP

2εξA−αδξD+βγ+ξP
) is the saddle

point.
Proof: We assume the matrix as follows:

A =

∣∣∣∣∣∣∣
∂R(p)
∂p

∂R(p)
∂q

∂D(q)
∂p

∂D(q)
∂q

∣∣∣∣∣∣∣ (30)

and introduce

τE =

∣∣∣∣∣∣τ 0
0 τ

∣∣∣∣∣∣ (31)

then obtain

|τE − A| =

∣∣∣∣∣∣τ 0
0 τ

∣∣∣∣∣∣ −
∣∣∣∣∣∣∣
∂R(p)
∂p

∂R(p)
∂q

∂D(q)
∂p

∂D(q)
∂q

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣τ −
∂R(p)
∂p −

∂R(p)
∂q

−
∂D(q)
∂p τ − ∂D(q)

∂q

∣∣∣∣∣∣∣
(32)

Based on “stability theory for ordinary differential
equations" [62], if and only if both the eigenvalues of
the Jacobian matrix are negative, the equilibrium point
is stable; if one eigenvalue is positive and the other is
negative, it is a saddle point; if both eigenvalues are
positive, it is unstable. Thus, we can summarily tab-
ulate the eigenvalues of each point, as shown in Table
5.

When the equilibrium point is (0, 0), the matrix is
as follows:

A =

∣∣∣∣∣∣δξD − αξS − ςD − ξC − % + ςC 0
0 −βγ − ξP

∣∣∣∣∣∣
(33)

We can obtain two eigenvalues τ1 and τ2 as follows:

τ1 = δξD − αξS − ςD − ξC − % + ςC < 0 (34)

and
τ2 = −βγ − ξP < 0 (35)

From Eqs. (34) and (35), both eigenvalues τ1 and
τ2 are less than zero under Cases 1 and 2. There-
fore, point (0, 0) is evolutionarily stable. Similarly,
for (0, 1), (1, 0), and (1, 1), it is easy to obtain eigen-
values τ1 and τ2. Then, comparing these two eigen-
values with 0, we can eventually attain that (1, 0) is an
unstable point, and the stability of (0, 1) and (1, 1) are
unable to be assessed. For, (q∗, p∗), it can be expressed
as follows:

A =

∣∣∣∣∣∣ 0 X∗

Y∗ 0

∣∣∣∣∣∣ (36)

We can obtain two eigenvalues τ1 and τ2 as follows:

τ1 =
√

X∗Y∗ (37)

and
τ2 = −

√
X∗Y∗ (38)

The eigenvalues obviously satisfy ξ1 > 0 and ξ2 <
0 in both Cases 1 and 2. Hence, (q∗, p∗) is a saddle
point. Furthermore, for ease of checking, we tabulate
the stability of each case, as shown in Table 6. This
completes the proof.

Theorem 7 considers the stability of each equilib-
rium point under the two above cases and seeks out
that the equilibrium point (0, 0) is an evolutionarily
stable strategy through trial and error. In practice,
(0, 0) represents that IoT devices make normal re-
quests, and the edge nodes grant the requests, preserv-
ing sensitive information privacy while sharing IoT
data.
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Table 4. Stability of each equilibrium point.

Equilibrium Point ∂R(p)
∂p

∂R(p)
∂q

∂D(q)
∂p

∂D(q)
∂q

(0, 0) δξD − αξS − ςD − ξC − % + ςC 0 0 −βγ − ξP

(0, 1) −δξD + αξS + ςD + ξC + % − ςC 0 0 2εξA − αδξD

(1, 0) −αδξD + εξA − αξS + δξD − ςD − ξC − % + ςC 0 0 βγ + ξP

(1, 1) αδξD − εξA + αξS − δξD + ςD + ξC + % − ςC 0 0 −2εξA + αδξD

(q∗, p∗) 0 X∗ Y∗ 0

Table 5. Eigenvalues of each equilibrium point.

Equilibrium Point Eigenvalues

(0, 0) τ1 = δξD − αξS − ςD − ξC − % + ςC , τ2 = −βγ − ξP

(0, 1) τ1 = −αδξD + εξA − αξS + δξD − ςD − ξC − % + ςC , τ2 = 2εξA − αδξD

(1, 0) τ1 = −δξD + αξS + ςD + ξC + % − ςC , τ2 = βγ + ξP

(1, 1) τ1 = αδξD − εξA + αξS − δξD + ςD + ξC + % − ςC , τ2 = −2εξA + αδξD

(q∗, p∗) τ1 =
√

X∗Y∗, τ2 = −
√

X∗Y∗

Fig. 8: Application framework of our evolutionary privacy preser-
vation learning game.

3.5. Application framework

Based on the evolutionary privacy preservation
learning game, we present a specific data-sharing ar-
chitecture model as an application framework of our
game, which is divided into three parts, as shown in
Fig. 8. IoT devices choose to take a malicious re-
quest or a normal request and send their requests to
the corresponding edge nodes. After receiving these
requests, edge nodes then call the IDSaaS deployed
in the cloud to detect the requests, and the IDSaaS
returns the analysis report back to the edge nodes to
determine whether to grant or deny the IoT device re-
quests. If the edge nodes make a decision “grant", it
is transmitted to the cloud storage system. In the end,
IoT devices finally successfully access the data across
edge nodes. This completes a cycle. When a new
IoT device would like to access IoT data stored in the
cloud storage system, the above cycle starts again. In
our framework, attaining the optimal learning strategy
for preserving privacy while sharing data is the core,
which guides edge nodes to optimally choose the re-
sponse.

3.6. Evolutionary learning algorithm

Here, we develop an evolutionary learning algo-
rithm to obtain the optimal privacy preservation strat-
egy for edge nodes while sharing IoT data from the
perspective of practice. During the loop, the expected
revenue of IoT devices making malicious and nor-
mal requests is first calculated according to Eqs. (1)
and (2). Based on this, the average expected rev-
enue of IoT devices is obtained by Eq. (3), and then
the relevant replication dynamic equation is obtained
by Eq. (4). Similarly, the expected revenue of edge
nodes denying and granting IoT device requests are
calculated according to Eqs. (5) and (6). We next
acquire the expected revenue and the replication dy-
namic equations of edge nodes from Eqs. (7) and (8).
This process is not suspended until the difference be-
tween two probabilities of IoT devices making mali-
cious requests and the difference between two prob-
abilities of edge nodes denying IoT device requests
are both less than the predefined minimum boundary.
Thus, the optimal strategy of denying malicious IoT
device requests is eventually obtained, which can pro-
vide a potent foundation for IoT data-sharing privacy
preservation.

4. Experimental Performance Evaluations

We utilize MATLAB R2021a to conduct experi-
mental simulations and validate evolutionarily stable
strategies for privacy preservation while sharing IoT
data. We observe the evolutionary process of IoT de-
vices and edge nodes, as well as verify the correct-
ness of the above evolutionarily stable strategy analy-
ses. Furthermore, we investigate the influence of the
detection rate, successful diffusion rate, privacy risk
factor, and trust gain on the edge node evolution sta-
bility strategy and the influence of the false alarm rate
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Table 6. Stability of each equilibrium point in each case.

Equilibrium Point Case 1 Case 2 Result
τ1 τ2 stability τ1 τ2 stability

(0, 0) − − ESS − − ESS ESS
(0, 1) − + Saddle point + + Unstable Uncertain
(1, 0) + + Unstable + + Unstable Unstable
(1, 1) + − Saddle point − − ESS Uncertain

(q∗, p∗) + − Saddle point + − Saddle point Saddle point

Algorithm 1 Evolutionary learning algorithm to ob-
tain privacy preservation strategies for the edge-based
IoT data sharing scheme
Input: Game parameters α, β, γ, δ, ε, ξA, ξP, %, ξD,
ξC , ξS , ςD, ςC , ςS

Output: Optimal privacy preservation probability
q(t + 1)

1: Initialize game parameters α, β, γ, δ, ε, ξA, ξP, %,
ξD, ξC , ξS , ςD, ςC , ςS ;

2: t ← 0; p(0)← 0.5; q(0)← 0.5;
3: Construct the payoff matrix of the evolutionary

privacy preservation learning game;
4: while .True. do
5: M ← q(t)((1−α)δξD + εξA −αξS − ςD) + (1−

q(t))(δξD − αξS − ςD);
6: N ← q(t)(ξC +%−ςC) + (1−q(t))(ξC +%−ςC);
7: E(R)← p(t) ∗ M + (1 − p(t)) ∗ N;
8: q(t + 1)← q(t) + p(t) ∗ (M − E(R));
9: D ← p(t)(αξS + εξA − δξD − ςS ) + (1 −

p(t))(−βγ − ςS );
10: G ← p(t)(αξS − (1− α)δξD − εξA − ςS ) + (1−

p(t))(ξP − ςS );
11: E(D)← q(t) ∗G + (1 − q(t)) ∗ D;
12: p(t + 1)← p(t) + (1 − q(t)) ∗ (D − E(D));
13: if q(t + 1) − q(t) < σ and p(t + 1) − p(t) < σ

then // σ is the predefined minimum bound
14: EXIT;
15: t ← t + 1;
16: return the optimal privacy preservation probabil-

ity q(t + 1);

on the IoT device evolution stability strategy. The re-
sults provide experimental verification for the design
of an IoT data sharing privacy preservation scheme.

4.1. Verifying evolutionarily stable strategies of IoT
devices

For this experiment, we set initial parameters α =

0.85, β = 0.3, γ = 30, δ = 0.3, ε = 0.75, ξA = 70,
ξP = 80, % = 10, ξD = 20, ξC = 10, ξS = 40, ςD = 5,
ςC = 10, ςS = 20. It can be obtained that

q =
αξS + ςD + ξC + % − ςC − δξD

−αδξD + εξA

≈ 0.9072
(39)

Fig. 9: Evolution curves of IoT devices strategy selection when q <
αξS +ςD+ξC +%−ςC−δξD

−αδξD+εξA
.

Therefore, we next analyze the strategy selection of
IoT devices under two cases q < 0.9072 and q >
0.9072.

4.1.1. Case 1: Probability of edge nodes denying re-
quests is less than the value obtained by the ini-
tial parameters

In this case, the probability of IoT devices mak-
ing malicious requests is initially set as p = 0.8, and
the probabilities of the edge nodes denying IoT de-
vices requests q are set as 0.80, 0.88, and 0.90. It
shows a downward trend, as shown in Fig. 9. It
is notable that the lower the probability of the edge
nodes denying IoT device requests, the faster it con-
verges to 0, which means that the IoT devices tend
to choose normal requests. For instance, it sharply
decreases to 0 during the 2nd game when the prob-
ability of edge nodes denying IoT device requests is
0.8, whereas it comes to 0 in the 20th game when
the probability of edge nodes denying IoT device re-
quests is 0.9. It is indicated that the normal request is
the evolutionarily stable strategy of IoT devices when
q < αξS +ςD+ξC+%−ςC−δξD

−αδξD+εξA
.

4.1.2. Case 2: Probability of edge nodes denying re-
quests is greater than the value obtained by the
initial parameters.

Then, we set the probability of IoT devices mak-
ing malicious requests as p = 0.2 and the probabil-
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Fig. 10: Evolution curves of IoT devices strategy selection when
q > αξS +ςD+ξC +%−ςC−δξD

−αδξD+εξA
.

ities of the edge nodes denying IoT devices requests
q are set as 0.9072, 0.9100, and 0.9200. There is an
upward trend, as shown in Fig. 10. The probability
of IoT devices adopting a malicious request remains
stable when the probability of the edge nodes deny-
ing IoT device requests is 0.9072, meaning that there
is no evolution at that time. Furthermore, the higher
the probability of the edge nodes denying IoT device
requests, the faster it converges to 1, which means that
IoT devices tend to choose malicious requests. For
instance, it increases to 1 in the 15th game when the
probability of the edge nodes denying IoT device re-
quests is 0.92, while it increases to 1 during the 55th
game when the detection rate is 0.91. From the analy-
ses above, there is no evolutionarily stable strategy for
the edge nodes when q =

αξS +ςD+ξC+%−ςC−δξD
−αδξD+εξA

, and the
malicious request is the evolutionarily stable strategy
of IoT devices when q > αξS +ςD+ξC+%−ςC−δξD

−αδξD+εξA
.

4.2. Verifying evolutionarily stable strategies of edge
nodes

For this experiment, we set the initial parameters
α = 0.85, β = 0.3, γ = 30, δ = 0.3, ε = 0.75, ξA = 70,
ξP = 80, % = 10, ξD = 20, ξC = 10, ξS = 40, ςD = 5,
ςC = 10, ςS = 20. It can be obtained that

p =
βγ + ξP

2εξA − αδξD + βγ + ξP
≈ 0.4711 (40)

Therefore, we next analyze the strategy selection of
edge nodes under two cases p < 0.4711 and p >
0.4711.

4.2.1. Case 1: Probability of IoT devices making ma-
licious requests is less than the value obtained
by the initial parameters

In this case, the probability of edge nodes denying
IoT device requests is set as q = 0.7 and the prob-
abilities of IoT devices making malicious requests p
are set as 0.40, 0.43, and 0.46. There is a downward

Fig. 11: Evolution curves of edge nodes strategy selection when
p < βγ+ξP

2εξA−αδξD+βγ+ξP
.

trend, as shown in Fig. 11. Noticeably, the lower
the probability of IoT devices making malicious re-
quests, the faster it converges to 0, which means the
edge nodes tend to grant the requests. Taking p = 0.40
and p = 0.46 as examples, the former plunges to 0 in
approximately a half game, while the latter requires
the 3rd game to fall to 0. It is implied that the grant-
ing request is the evolutionarily stable strategy of edge
nodes when p < βγ+ξP

2εξA−αδξD+βγ+ξP
.

4.2.2. Case 2: Probability of IoT devices making ma-
licious requests is greater than the value ob-
tained by the initial parameters

Then, we set the probability of IoT devices mak-
ing malicious requests as q = 0.3, and the probabil-
ities of the edge nodes denying IoT devices requests
p are set as 0.4711, 0.4800, and 0.5200. It shows an
upward trend in Fig. 12. The probability of the edge
nodes denying requests stabilizes when the probability
of making malicious requests is 0.4711, meaning that
there is no evolution at that time. Moreover, the higher
the probability of IoT devices making malicious re-
quests, the faster it converges to 1, which means that
the edge nodes tend to deny the requests. A case in
point is that it shoots up to 1 in a half game when
the probability of IoT devices making malicious re-
quests is 0.52, while it comes to 1 in approximately
the 5th game when the probability of requesting mali-
ciously is 0.48. In short, there is no evolutionarily sta-
ble strategy for edge nodes when p =

βγ+ξP
2εξA−αδξD+βγ+ξP

,
and denying requests is an evolutionarily stable strat-
egy for edge nodes when p > βγ+ξP

2εξA−αδξD+βγ+ξP
.

4.3. Verifying evolutionarily stable strategies on both
sides

For this experiment, we set the initial parameters
α = 0.85, β = 0.3, γ = 30, δ = 0.3, ε = 0.75, ξA =

70, ξP = 80, % = 10, ξD = 20, ξC = 10, ξS = 40,
ςD = 5, ςC = 10, ςS = 20. We next analyze the
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Fig. 12: Evolution curves of edge nodes strategy selection when
p > βγ+ξP

2εξA−αδξD+βγ+ξP
.

Fig. 13: Evolutionarily stable strategies on both sides while ξC +%−
ςC < (1 − α)δξD + εξA − αξS − ςD.

strategy selection of IoT devices and edge nodes under
two cases ξC + % − ςC < (1 − α)δξD + εξA − αξS − ςD

and ξC + % − ςC > (1 − α)δξD + εξA − αξS − ςD.

4.3.1. Case 1: Revenue of IoT devices making normal
requests is more than that of making malicious
requests when the edge nodes grant IoT device
requests

According to Table 6, we can see that (0, 0) and
(1, 1) are evolutionarily stable points when ξC + % −
ςC < (1 − α)δξD + εξA − αξS − ςD. As shown in
Fig. 13, the game strategy eventually evolves into
(Request Normally, Detect & Grant) or (Request mali-
ciously, Detect & Deny), simultaneously verifying that
the analysis in Table 6 is true.

4.3.2. Case 2: Revenue of IoT devices making normal
requests is less than that of making malicious
requests when the edge nodes grant IoT device
requests.

Then, we reset ξC to 20. From Table 6, only (0, 0) is
an evolutionarily stable point when ξC + %− ςC > (1−

Fig. 14: Evolutionarily stable strategies on both sides while ξC +%−
ςC > (1 − α)δξD + εξA − αξS − ςD.

α)δξD +εξA−αξS −ςD, meaning that the game strategy
eventually evolves into (Request Normally, Detect &

Grant). As shown in Fig. 14, they all converge to 0,
illustrating that (0, 0) is the stable point, which verifies
that the analysis in Table 6 is true. In other words, the
edge nodes tend to choose granting requests, and IoT
devices tend to adopt requesting normally.

4.4. Influence of related parameters on IoT device
strategy selection

For this experiment, we set initial parameters α =

0.85, β = 0.3, γ = 30, δ = 0.3, ε = 0.75, ξA = 70,
ξP = 80, % = 10, ξD = 20, ξC = 10, ξS = 40, ςD = 5,
ςC = 45, ςS = 20. We next analyze the influence of the
detection rate, successful diffusion rate, trust gain, and
privacy risk factor on IoT device strategy selection.

4.4.1. Influence of detection rate α on the strategy se-
lection of IoT devices

To assess the effect of the detection rate on IoT de-
vice strategy selection, we set p = 0.5, q = 0.1, and
reset α to 0.7, 0.75, 0.8, and 0.9. According to Fig.
15, when the detection rate is low, IoT devices tend
to choose malicious requests. Meanwhile, the poorer
the detection rate is, the faster it converges to 1. For
instance, it almost reaches 1 in the 2nd game when
the detection rate is equal to 0.7, while it approaches
1 in the 6th game when the detection rate is equal to
0.75. In contrast, when the detection rate is high, IoT
devices tend to choose normal requests. Similarly, the
higher the detection rate is, the faster it converges to 0.
As a proof, it decreases to 0 in the 1st game when the
detection rate is equal to 0.8, while it reaches 0 in the
4th game when the detection rate is 0.9. It is demon-
strated that advancing the detection rate can decrease
the probability that IoT devices adopt the malicious
request strategy, which protects IoT data privacy.
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Fig. 15: Influence of the detection rate on IoT device strategy selec-
tion.

Fig. 16: Influence of the successful diffusion rate on IoT device
strategy selection.

4.4.2. The influence of the successful diffusion rate δ
on the strategy selection of IoT devices

To assess the effect of the diffusion rate on IoT de-
vice strategy selection, we set p = 0.5, q = 0.1 and
reset δ to 0.2, 0.4, 0.6, and 0.8, respectively. As seen
from Fig. 16, when the diffusion rate is low, IoT de-
vices tend to choose normal requests. Moreover, the
poorer the diffusion rate is, the faster it converges to
0. For example, it plunges to 0 in the 1st game when
the diffusion rate is 0.2, while it falls to 0 in the 4th
game when the detection rate is equal to 0.4. In con-
trast, when the diffusion rate is high, IoT devices tend
to choose malicious requests. The higher the diffu-
sion rate is, the faster it converges to 1. For δ = 0.6,
and δ = 0.8, , the former soars to 1 during the 1st
game, and the latter grows to 1 in approximately the
3rd game. It is illustrated that minimizing the diffu-
sion rate can decrease the probability that IoT devices
adopt the malicious request strategy, which protects
privacy while sharing IoT data.

Fig. 17: Influence of the trust gain on IoT device strategy selection.

4.4.3. Influence of trust gain % on the strategy selec-
tion of IoT devices

To assess the effect of trust gain on IoT device strat-
egy selection, we set p = 0.5, q = 0.1, and reset %
to 5, 7, and 9. As shown in Fig. 17, when the trust
gain is low, IoT devices tend to choose malicious re-
quests. For instance, it ascends to 1 in the 3rd game
when the trust gain is equal to 5. Conversely, when
the trust gain is high, IoT devices tend to choose nor-
mal requests. Noticeably, the higher the trust gain is,
the faster it converges to 0. A case in point is that it
drops to 0 in the almost 20th game when the trust gain
is 7, while it plummets to 0 in the 2nd game when the
trust gain is 9. It is proven that improving trust gain
can increase the probability that IoT devices adopt the
normal request strategy to protect privacy while shar-
ing IoT data.

4.4.4. Influence of the privacy risk factor ε on the
strategy selection of IoT devices

To assess the effect of the privacy risk factor on IoT
device strategy selection, we set p = 0.8, q = 0.1,
and reset ε to 0.05, 0.7, and 0.95. There is a down-
ward trend, as shown in Fig. 18. It is noteworthy that
the poorer the privacy risk factor is, the faster it con-
verges to 0. For ε = 0.05, ε = 0.7, and ε = 0.95,
they all decline to 0 in the 1st, 2nd, and 4th games,
respectively. It is verified that decreasing the privacy
risk factor can increase the probability that IoT devices
adopt the normal request strategy to protect IoT data-
sharing privacy.

4.5. Influence of false alarm rate β on the strategy se-
lection of the edge nodes

We next analyze the influence of the false alarm rate
on the edge node strategy. Thus, we set the initial pa-
rameters α = 0.85, γ = 10, δ = 0.3, ε = 0.75, ξA = 70,
ξP = 30, ξD = 20, ξS = 40, ςS = 20, p = 0.1, q = 0.8,
and set β to 0.03, 0.05, and 0.08. According to Fig.
19, it is noteworthy that changes in the false alarm rate
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Fig. 18: Influence of the privacy risk factor on IoT device strategy
selection.

Fig. 19: Influence of the false alarm rate on the edge node strategy
selection.

have little effect on the overall situation. They all con-
verge to 0 with the same trend, which means that in
this case, the edge nodes adopt the strategy of grant-
ing requests.

5. Conclusion and Future Work

In the current work, we have proposed an edge
computing-oriented and evolutionary game-based pri-
vacy preservation model to acquire the optimal learn-
ing strategy for IoT data sharing. In our scheme, the
edge nodes first assess whether the request is normal
or malicious and then react with action grants or de-
nies when data is released from the cloud storage sys-
tem. Under this circumstance, malicious requests can
be precisely identified and effectively prohibited from
the source. Furthermore, we have analyzed the sta-
bility of each equilibrium point via the replication dy-
namic equations and raised a framework and an algo-
rithm for this model, optimizing the expected gain and
receiving the best evolutionary strategy. Additionally,
the relevant experimental simulations verify that our

scheme is superior from the perspectives of reliability
and privacy preservation.

For future work, we will focus on other game mod-
els, such as signaling games and repeated games, to
handle privacy preservation during IoT data sharing.
In addition, we will take the privacy preservation of
a data sender into consideration instead of a data re-
ceiver, minimizing the probability of IoT nodes send-
ing malicious requests. Furthermore, it is highly likely
to incur malicious attacks in the process of merging
data from different IoT devices. Therefore, privacy
preservation under IoT data aggregation is another di-
rection with great promise.
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Appendix A. Proof of Theorem 1

We take the derivative of both sides of Eq. (4) and
obtain the equation as follows:

R′(p) = (1 − 2p) ∗ (q ∗ (−αδξD + εξA)
+ δξD − αξS − ςD − ξC − % + ςC)

(A.1)

To reach a stable state, it needs to satisfy R′(p) < 0.
Let p = 0 and p = 1; we obtain the equation as fol-
lows:

R′(0) = q ∗ (−αδξD + εξA) + δξD

− αξS − ςD − ξC − % + ςC > 0
(A.2)

and the equation as follows:

R′(1) = −(q ∗ (−αδξD + εξA) + δξD

− αξS − ςD − ξC − % + ςC) < 0
(A.3)

Obviously, p = 1 is the only point of convergence of
IoT devices selecting an action. This completes the
proof.
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Appendix B. Proof of Theorem 3

To reach a stable state, it needs to satisfy R′(p) < 0.
Let p = 0 and p = 1 in Eq. (A.1), we obtain the
equation as follows:

R′(0) = q ∗ (−αδξD + εξA) + δξD

− αξS − ςD − ξC − % + ςC < 0
(B.1)

and the equation as follows:

R′(1) = −(q ∗ (−αδξD + εξA) + δξD

− αξS − ςD − ξC − % + ςC) > 0
(B.2)

Obviously, p = 0 is the only point of convergence of
IoT devices selecting an action. This completes the
proof.

Appendix C. Proof of Theorem 4

We take the derivative of both sides of Eq. (8) and
obtain the equation as follows:

D′(q) = (1 − 2q) ∗ (p ∗ (2εξA − αδξD + βγ

+ ξP) − βγ − ξP)
(C.1)

To reach a stable state, it needs to satisfy D′(q) < 0.
Let q = 0 and q = 1; we obtain the equation as fol-
lows:

D′(0) = p ∗ (2εξA − αδξD + βγ + ξP)
− βγ − ξP > 0

(C.2)

and the equation as follows:

D′(1) = −(p ∗ (2εξA − αδξD + βγ + ξP)
− βγ − ξP) < 0

(C.3)

Obviously, q = 1 is the only point of convergence of
edge nodes selecting an action. This completes the
proof.

Appendix D. Proof of Theorem 6

To reach a stable state, it needs to satisfy D′(q) < 0.
Let q = 0 and q = 1 in Eq. (C.1). We obtain the
equation as follows:

D′(0) = p ∗ (2εξA − αδξD + βγ + ξP)
− βγ − ξP < 0

(D.1)

and the equation as follows:

D′(1) = −(p ∗ (2εξA − αδξD + βγ + ξP)
− βγ − ξP) > 0

(D.2)

Obviously, q = 0 is the only point of convergence of
edge nodes selecting an action. This completes the
proof.
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