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Troubleshooting in SDN-based networks is still a cumbersome task that can overwhelm human
attention. Various anomalies, such as installation failure, disordered rules, and loops, remain unnoticed
even when the most recent detection methods are used. In this paper, we address the issue of verifying
SDN policies by actively probing the data plane. SDN Spotlight is presented as an anomaly detection
framework that tries to detect installation failures, rule conflicts, and loops. In contrast to recent
work, such as Monocle and Pronto, SDN Spotlight verifies a chain of rules using a single probing
packet. This approach also reduces the number of monitoring rules, which has a direct effect on
saving TCAM memory usage and minimizing the packet matching time. SDN Spotlight addresses two
problems: verifying rule installation and forwarding behavior verification. Within the SDN Spotlight
framework, we introduce two different approaches for forwarding anomaly detection: Hedge-SDN
Spotlight and Open-SDN Spotlight. Furthermore, we devise an efficient and fast probe generation
algorithm that generates one single probing packet per chain of rules. As opposed to other related
work, Hedge-SDN Spotlight does not yield false positives and false negatives when detecting loops
and forwarding failures. The results of the experiment demonstrate that SDN Spotlight is much faster
than the SDNProbe and SDN traceroute method, in some cases by a factor of up to seven times as fast.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Nowadays, more devices are interconnected, data centers are
xpanding, businesses encourage bring your own device (BYOD)
olicies, the Internet of Things (IoT) is on the rise, and end-users
pan over multiple consumer devices.
As a result of this growth, traditional networks have become

omplex, hard to manage, prone to errors and logical flaws [1],
esulting in time-consuming management and fault handling [2].
omputer network troubleshooting tends to be labor-intensive
nd requires intricate work. Network outages can seem almost
navoidable and are due to a number of reasons. Typical rea-
ons for an outage include, but are not limited to, human errors
uch as faulty configurations or malicious activity, equipment
alfunction, and force majeure events.
Therefore, networks require frequent reconfiguration in rout-

ng, QoS, firewall, etc. The speed and scale of these changes lead
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to network instability. For this reason, a programmable network
is needed to increase network flexibility and to keep the side-
effects caused by the changes to a minimum [3]. The advent of
Software-Defined Networking (SDN) and its layered architecture
has allowed for a dynamic approach to managing and config-
uring networks. Centralizing the control functionality enables
the programmability of network control functions and elements.
With the rise of SDN and its high level of abstraction, computer
networks are expected to enjoy an optimized dataflow, smarter
automation, and added flexibility. By utilizing the capabilities of
the OpenFlow protocol, verification of the overall network state
is achievable from the central point of view of controllers.

However, this new architecture is prone to errors [4] and
bugs [5]. In a broad survey, Kreutz et al. [1] divided common
errors into the following categories: controller logic bugs, race
conditions, and software bugs and performance disturbance. The
categories address problems such as reachability issues, events
being processed in different orders, and transient failures caused
by CPU spikes. The architectural change and the programmability
provided by SDN both allow and encourage the emergence of
new approaches to troubleshooting, re-thinking workflow, and
the development of new troubleshooting tools.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Researchers have discovered various flaws [6], ranging from
aulty protocol implementations to switches prematurely report-
ng rules as being installed [7]. Firmware errors [8], loss of rule-
pdate messages, or batch-level rule update acknowledgments
an result in missing rule faults [6], where rules in the data plane
re reported as being installed, or updated, while in fact they are
ot active or working.
Recently, a suite of research, including Monocle [9], SDNProbe

10], and Pronto [11], has focused on testing the data plane in SDN
sing probe generation. A probe or probing packet is a specific
est packet that can be monitored via the controller and is used
o test a specific route. Throughout the research, however, one
est rule is always inserted per OpenFlow entry. This leads to
n excessive increase in the size of the OpenFlow tables and,
nfortunately, wastage of the already scarce TCAM1 memory,
nd an increase in the packet matching time. Furthermore, these
ethods endeavor to modify the target rule for testing. SDNProbe
odifies the rules and copies rules to a new flow table to ensure

hat the normal packets are not affected. However, the above-
entioned research does not address the case of a group of
ctions in OpenFlow rules, such as Set, Queue, etc.
This paper aims to detect the forwarding failures and loops at

he data plane level. Verifying the presence of the installed rules
n network devices also falls under the aims of this paper. There-
ore, the proposed method does not only detect downlinks and
aulty ports, but also uncovers firmware failures. The Hedge-SDN
potlight and Open-SDN Spotlight verify policy violations and
oops using two different approaches. In this paper, we use the
erms Hedge-SDN Spotlight and Hedge, and Open-SDN Spotlight
nd Open interchangeably.
The proposed approaches are efficient since they only use
very small number of test packets and monitoring rules as

ompared to Monocle and Pronto, for which the number of tests
an be in the order of thousands, depending on the size of the
penFlow table. Moreover, the proposed framework is capable
f verifying rules with different actions, such as Go, Set, Forward,
rop, Queue, without causing any side-effects for regular network
raffic.

The primary contributions of this paper are as follows:

• The Hedge and Open approaches not only verify the for-
warding policies on a specific route, but are also able to
detect loops, a feature that is missing in Monocle and SD-
NProbe. Physical failures, such as a downlinks or physi-
cal port failure, can also be detected using our suggested
approach.
• SDN Spotlight framework adds a minimal number of mon-

itoring rules to the switches. In fact, only a handful of
monitoring rules, also called catch-rules, are installed to
track the probing packets. This leads to negligible overhead
in terms of test rules compared to existing approaches that
can deploy thousands of test rules per switch.
• A rapid probe generation algorithm is presented to improve

the probing performance compared to previous research.
The Hedge approach can verify a certain route that includes
rules with a drop value or rewrite the packet header as the
action field with high accuracy.
• The SDN Spotlight framework is able to simultaneously

check multiple rules using a single probing packet indepen-
dently of their actions.
• A single catch-rule is added per switch, which decreases

the negative effect on the matching time of the switch and,
consequently, on the network performance.

1 Ternary content-addressable memory (TCAM): high-speed memory capable
f searching its entire content in a single clock cycle.
365
• The Hedge methods does not lead to false positives and false
negatives in the detection process.

The remainder of the paper is organized as follows. Section 2
presents a brief background on the SDN concept and OpenFlow
protocol. In Section 3, we provide a comprehensive overview
of the state-of-the-art related to troubleshooting in SDN net-
works. Section 4 presents the SDN Spotlight architecture. In
Section 5, the forwarding failure method is discussed. The loop
detection method and accuracy analysis are presented in Sec-
tion 6 and Section 7, respectively. Finally, the evaluation results
are presented in Section Section 8.

2. Background

SDN is a new paradigm for network management that at-
tempts to control the network in a centralized manner via a pro-
grammable controller, which possesses a general view of the net-
work topology and statistics. The main goal of the SDN paradigm
is to enable the prompt and dynamic configuration of the network
in order to improve its performance and enable better moni-
toring. SDN architecture dissociates the control plane from the
data plane, and consists typically of a controller and switches.
The switches do not possess any form of intelligence, and just
implement the forwarding rules that are dictated to them by the
controller, who has an end to end overview of the paths. The
controller can manage the network flows dynamically and applies
new configurations based on the network condition [12].

The SDN concept offers three main advantages: centralized
control, network programmability, and easy integration of virtu-
alization [13]. The SDN idea became applicable since the Open-
Flow protocol [14] was standardized in 2009. OpenFlow gives
the user remote access to the switches and routers. The protocol
prepares a context for modifying the configuration of network
appliances remotely and in real-time.

OpenFlow is a standard protocol managing the forwarding
behaviors of SDN switches from multiple vendors. It facilitates
the SDN controller’s management and monitoring of the SDN
switches. The protocol programmatically and dynamically con-
trols the forwarding behaviors of SDN switches, and via OpenFlow
protocol it sends messages to switches to control the forwarding
behavior of a network. An OpenFlow switch can have more than
one flow table, which is called a chain. When a packet enters
an OpenFlow switch, the packet is checked with flow tables,
respectively. Rules in flow tables have three sections, including
priority, match field, and action. The priority field defines which
rule must be selected if the packet is matched with match fields
of several rules. The chosen rule applies the action to the packet
according to the corresponding choices: forwarding the packet to
a specific port, dropping, or modifying the packet header.

3. Related work

Verifying rule installation and policy verification is of the ut-
most importance to network administrators. A significant amount
of research has focused on this problem in the context of SDN. In
this section, we review some of the main research in this area.

Packet history-based monitoring. NetSight [15] tries to improve
network visibility by capturing what are known as packet histo-
ries. By transparently transposing the control channel between
the switches and the SDN controller, NetSight can listen in on
information from packets passing by and send the information
up to the application. Postcards are created at each node of the
packet’s journey and contain packet headers, the matching flow
table entry, and the output port of the corresponding switch.
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uleScope [16] is a method for accurately and efficiently inspect-
ng the forwarding process. The tool detects forwarding faults
n the data plane by looking at missing rules and priority faults
nd using customized probing packets. Probing with respect to
he dependencies and a calculated expected outcome paired with
ostcards of Netsight [15] will help find priority faults. SERVE [17]
omputes the desired behavior of a specific rule or switch, and
hen crafts and injects a probe into the network. The data plane is
onfigured to export the probes after processing. By using SERVE,
aster overall state verification is achieved as in other papers, such
s [9,18].

ag-based probes and monitoring rules. Monocle [9] verifies the
ewly installed rule by generating a distinct probing packet.
efore probes are injected into the data plane, catch rules are
nstalled on the switches in order to return the probes to the
ontroller. However, Monocle does not suggest any solutions
or testing rules with drop action or for the rules that forward
ackets to end clients. By tracing network packet trajectories,
DN traceroute [18] tries to verify a sequence of rules in switches
nd pinpoint forwarding problems in switch and controller logic.
o be able to trap the probes sent from the controller, SDN tracer-
ute first colors each switch using a graph color algorithm, and
hen inserts a small number of high-priority catch-rules into the
witches. The probing packets are specially crafted, as they make
se of the three 802.1p priority bits in the 802.1q tag in the frame
eader. SDNProbe [10] is another probe-based troubleshooting
ethod that reduces bandwidth usage by minimizing the number
f probing packets. Moreover, randomized test flows are used
o improve fault detection accuracy. Previous research, such as
TPG [5] and Pronto [11], have tried to minimize the number
f test packets by using a greedy approach, which is an NP-
omplete problem and leads to sub-optimal results. However,
DNProbe applies this optimization in polynomial time. Aryan
t al. [19] present a Per-rule approach based on the test packet
nd monitors rules to verify the existence of installed rules on the
penFlow switches. This paper applies the Per-rule approach in
he proposed method to localize the faulty rule.

roactive troubleshooting. VeriFlow [20] aims to provide verifi-
ation capabilities for network-wide invariants in real-time. The
ool tries to deal with faulty changes before they are applied to
he data plane. Being able to track the invariant state makes it
ossible to block a change if the outcome of the change breaks
he desired state. This is done by implementing a slim layer
etween the controller and the network. Instead of checking the
ntire network for each change as other research does, [21–23],
eriFlow uses a different method. VeriFlow relies on slicing the
etwork policy into so-called Equivalence Classes (EC), where
ach class consists of a set of packets affected by the same
orwarding actions throughout the network.

NEAt [24] also sits between the controller and the data layer
nd tries to check new policies and solve possible failures. It
ries to check the updates in real-time, repairs possible policy-
iolating updates on-the-fly, and installs the corrected updates
n the forwarding devices. Real-time policy checking requires
fast response, so NEAt uses ECs based on VeriFlow [20] to
uild a model of packet-forwarding behavior. Then, for each new
olicy or update, the affected ECs are computed and the checking
ethod is specifically applied.
In summary, the three families of approaches we discussed in

his section present a trade-off between detection accuracy and
ost. Packet history-based monitoring approaches not only detect
nomalies, but also localize them. However, in order to achieve
his objective, this type of approach has to generate massive

mounts of extra traffic via postcard packets.

366
Fig. 1. SDN Spotlight design.

Approaches using tag-based probes and monitoring rules limit
the number of probing packets to try and save the network
bandwidth. Nevertheless, this optimization usually results in an
increase in the rate of false negatives and false positives. The
proactive troubleshooting group of approaches verifies the new
policies before installing them on forwarding devices. This means
that anomalies can be prevented by predicting the side effect of a
rule before installation. On the other hand, the prediction method
cannot guarantee that all possible anomalies will be detected,
particularly when detecting anomalies that occur due to physical
failures. Moreover, this group of approaches focuses only on the
new rules, and it is not a practical choice when checking the
existing installed policies.

4. Intuition and overview of SDN Spotlight

SDN Spotlight attempts to detect policy violations, loops, phys-
ical faults, and firmware failures, while verifying rule installation
in the data layer. The detection procedure uses a probe-based
method to verify a chain of rules via a negligible number of
probing packets.

As outlined in Fig. 1, SDN Spotlight is designed as an API that
communicates with the controller. The expected path for each
specific flow is derived from the high-level policies. The policy ex-
tractor handles this process. Meanwhile, some monitoring rules,
called catch-rules, are designed to collect the probes. Catch-rules
are installed in two different ways in our proposed approaches:
the Open approach and the Hedge approach. These approaches
are explained in detail in Section 5. The probe is eventually
injected into the network, and if there is a violation or firmware
fault, then the probe will be caught by an unexpected catch-rule
and forwarded to the controller. By an unexpected catch-rule, we
mean a catch-rule belonging to a switch that it is not a member
of the expected route. These steps are managed by the match
checker and packet generator modules. Moreover, the controller
will receive a timeout alert in the event of a physical failure
or loop. The probe analyzer module keeps track of timeout and
performs the analysis of the returned probe.

This section discusses the main building blocks of the
SDNSpotlight framework.

4.1. Expected path for header spaces

In our previous work [25] we have presented a formal ap-
proach based on second-order logic in order to generate queries
with disjoint header spaces to test a policy. In this paper, we have
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sed the same formalism in order to describe rules and queries.
e refer the interested reader to paper [25] for more details.
Algorithm 1 aims to find a set of packets that exclusively

atch the target rule while not matching any of the rules with
higher priority value than the target rule. To achieve this, we

ollow the raining 2D-Box model logic [26] that we also used
n [25] for query generation. According to the raining 2D-Box
odel, in order to find a set of packets matching only the target

ule, we need to recursively exclude all the sets of packets from
he header space of the target rule that match one of the rules
bove it.
The complexity of Algorithm 1 can be expressed as the product

f the number of rules that have a higher priority value than the
arget rule (N), and cost of the subtracting process (s), that is
O(N × s). We assume that s is constant, then O(N).

Algorithm 1: Generating queries from the ingress switch
ules.

Input: RuleList
; /* RuleList represents flow table. */
Output: QueryList
; /* QueryList represents a list of packet header for each
target rule. */

1 foreach target_rule in RuleList do
2 foreach rule in RuleList do
3 if rule.Index < target_rule.Index then
4 target_rule = target_rule− rule;
5 end
6 end
7 QueryList ← target_rule
8 end
9 return QueryList;

The Tracing function [25] uses queries as input in order to
ap the expected path of each possible flow. The output consists
f a set of packets that traverse the same path and reach the
ame node at the end. In this sense, the Tracing function retrieves
ll expected flows through the specific switch(s) based on the
igh-level policies. The Tracing function is presented in [25]
nd, for the sake of completeness, we provide the algorithm in
lgorithm 2. According to the algorithm, the Tracing function
alculates which rules match the input query. Then it predicts
he following destinations based on the action of the match rules.
he tracing function continues this process recursively until the
ction resulting from the match rule is ‘drop’ or ‘end client’.
The complexity of Algorithm 2 can be expressed as a product

f the number of rules (N), and the sum of subtraction cost (s)
and cost of the matching process (m), that is O(N × (s+m)). We
can assume that s,m are constant, then O(N).

Algorithm 2: Tracing function
Input: Query, Starting_Node, Route
Output: All Nodes in the route, Sub-set query

1 Route ← Starting_Node;
2 Rules ← Starting_Node.Rules;
3 foreach rule in Rules do
4 if Query ∩rule.Condition then
5 Route ← rule.Action, Query ∩ rule.Condition;
6 if rule.Action = Client Or rule.Action = Drop then
7 return Route;
8 end
9 Query ← Query - rule.Condition

Tracing_Function(Query∩rule.Condition,rule.Action, Route);
10 end
11 end

At this juncture, we will use a simple example to present the
dea. Let us assume that the packet header space consists of two
367
Fig. 2. The effect of trace function on the packet header spaces.

items: source IP and destination IP. Fig. 2 illustrates this idea
using a geometric representation. According to Fig. 2, the header
space has two dimensions. Based on the order of rules in the
ingress switch, half of the header space (part A) is forwarded to
switch 1, while the rest of it (part B) is forwarded to switch 2.
As shown in Fig. 2 and according to the order of the rules for
switch 1 and switch 2, switch 3 receives just half of the header
space from switch 1 (part A′) and half of the header space from
switch 2 (part B′). Switch 4 also receives the rest of the header
space from switch 1 and switch 2 (parts A′′ and B′′). Therefore, the
Tracing function returns {ingress switch, switch 1, switch 3 } as an
output for A′ header space and {ingress switch, switch 2, switch 3}
for B′ header space. For the header space A′′ and B′′ the routes are
ingress switch, switch 1, switch 4} and {ingress switch, switch
, switch 4}, respectively. Parts A′, B′, A′′ and B′′ are disjoint and

the probing packets can be selected from these header spaces to
verify the order of rules and network slicing. This process is time-
consuming and inefficient due to the frequent changes in the flow
tables. For this reason, the incremental approach [27] is a fast
and efficient solution that can be used to cover the frequent rule
updates in SDN. This approach tries to only apply the reprocessing
of the path of flows to the updated rules and affected parts.

4.2. Generating the probing packets

In this paper, probing refers to the technique used to explore
or examine the functionality of rules in the data plane of SDN
architecture. In this process, a specific packet, which is called
a probing packet or probe, is sent to the data plane via the
controller. Based on the predicted path and the header space of
each flow, a specific probe is generated for the test.

According to Fig. 2, all members of each header space at
the end nodes are matched with the specific sequence of rules
that create an expected path. It is not feasible to generate a
probe for each member of the header space, since not only is it a
time-intensive process, but it also requires a substantial portion
of bandwidth. For this reason, only some marginal members of
header space, also known as the corner values [28], are used to
generate the probes. As Acharya and Gouda [28] demonstrate,
using the corner values can guarantee that the verification algo-
rithm has a low error probability (less than 0.06% and, in more
practically reasonable cases, as small as 0.01%).

The probing generation process operates on a 5-tuple set
consisting of the source and destination IP address, source and
destination port number, and the protocol. Please note that we



R. Aryan, A. Yazidi, F. Brattensborg et al. Future Generation Computer Systems 133 (2022) 364–377

a
p
D
D
o
f
a
a
t
D
p

4

V
c
a
t
h
W

f
b

Fig. 3. Installing catch-rules on the switches in the neighborhood of the
expected path.

can easily use a higher number of fields without having to change
the approach.

The probing packet is the same as normal traffic except for
unique value in the header value. This unique value is ap-
lied to distinguish the probing packet. For this reason, the 6-bit
ifferentiated Services Code Point (DSCP) [29] field in the 8-bit
ifferentiated Services (DS) field from the IP header is utilized. In
rder to increase the number of probing packets, we use the DSCP
ield with a VLAN priority value [30]. Since the probing process is
ssumed to have 5 tuples, the DSCP and VLAN values do not have
ny effect on normal network traffic. However, if the number of
uples in the probing packet is increased and includes VLAN or
SCP, we should assign a new field to distinguish the probing
acket from normal traffic.

.3. Generating the catch-rules

The probes can only be matched via catch-rules. The DSCP and
LAN priority fields are used together to allow matching between
atch-rules and probes. Therefore the catch-rules do not cause
ny side-effects for normal network traffic. As shown in Fig. 3,
hese rules should be installed on the top of the flow table as
igh priority rules in order to avoid the shadowing anomaly [25].
e use ‘‘OFPPCONTROLLER’’ as an action for the catch-rule that

forwards the probes to the controller. The OFPPCON-TROLLER
action is supported by OpenFlow V1.3 [31] and later versions.

4.4. Timeout computation

SDN Spotlight needs to have a traverse estimation time for
a probe packet that is handled by the Probe Analyzer module
( Fig. 1). This estimation is required to test the rules with drop
action, and also for loop investigation.

The timeout value for the loop detection process is computed
based on the delay value for each link in the expected path and is
provided by the controller. Moreover, the process time for each
switch in the expected path should be added to the timeout value.
Therefore, the timeout value is calculated as follows:

expected_delay =
∑
i∈path

(di + pi) (1)

That path refers to the expected path, and di represents the de-
lay value of the connection to switch i. Moreover, the processing
time for switch i is shown as pi. The link delay, di, is retrieved
rom OpenFlow link statistics while pi is usually estimated to

e constant (although it depends on the position of the rule

368
being matched). In our experiment, the timeout is chosen to be 3
times the expected delay along the path. In some rare cases, the
probing packet might have an ‘‘unexpected’’ delay that exceeds
the timeout. In such a case, the loop detection process starts after
the timeout, and, hopefully, is stopped as soon as the ’’delayed’’
probe is received by the controller.

5. Forwarding anomaly detection

In this paper, we aim to detect forwarding anomalies via the
probing method. The probing process attempts to examine the
specific flow to check whether or not it follows the expected path.
The target flow and its predicted path are generated based on
Algorithm 1 and Algorithm 2. Then the probing packets are cre-
ated from the corner values of the header space (see Section 4.1).
The catch rules are built and installed on the switches in the
neighborhood of the expected path. In addition, one catch-rule is
installed on the final node of the expected path and the controller
will receive the packet if no failure takes place. Therefore, the
probing packet will be sent to the controller via the catch-rules
in the neighborhood of the path if the probe does not follow
the expected path because of rule installation faults or rule order
failure.

The SDN Spotlight uses the Per-rule method which was pre-
sented by the authors of this paper in [19] to examine the instal-
lation of the specific rule. Moreover, to check the specific path
in the network, two approaches, called Hedge-SDN Spotlight and
Open-SDN Spotlight, are implemented. SDN Spotlight can also
detect multiple faulty rules in the data plane.

During the probing process, the probing packet traverses the
network just like normal network traffic. This operation is com-
patible with the various types of actions in OpenFlow rules such
as Go, Set, Forward, Drop, and Queue. Moreover, packet duplica-
tion can also be handled by the probing procedure and the cloned
probes can be caught by the catch-rules in the same way as they
are in the single probe scenario. Nevertheless, for the sake of
simplicity, in this paper we will just focus on forwarding rules
and scenarios with a random single faulty rule.

5.1. Hedge-SDN Spotlight approach

The Hedge approach can test the path based on the predefined
probe after defining the specific probe and its expected path.
Initially, the algorithm installs the uniform catch-rules on all
switches in the neighborhood of the expected path, in the same
way as the sample provided in Fig. 4. The Per-rule approach
verifies the installation of the catch-rules. It builds a boundary
around the path, which is why we call it the Hedge approach.
If the SDN Spotlight receives the probe from an unwanted node,
this means that there is a failure. If the last rule in the target path
a rule with a drop action or forwarding action to an end client,
then the last node should be checked using the Per-rule approach.
Therefore, the target path is checked until the final node. In order
to verify the target rule in the last node, the catch-rule in the
last node should be removed, and the Per-rule should be applied.
Moreover, the header of the received probe is checked with the
expected header to improve accuracy. More details are given in
Section Section 7.

The complexity of the Hedge approach can be presented as
O((M × c) + p + L) where M refers to the number of neighbors,
c indicates the cost of installing the catch-rules, p shows the cost
of generating the probes, and L refers to the length of the path.
We can assume that c and p are constants, thus the complexity
can be written as O(M+L). For instance, in Fig. 4, the target path
is SW_3, SW_4, and SW_5. Unified catch-rules are installed on

SW_1, SW_2, SW_6, and SW_7 as neighbor switches, and SW_5
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Fig. 4. An example illustrating the Hedge-SDN Spotlight.

s the final node. Then the probing packet is sent to SW_3 and
he timeout value is set based on the path (see Section 4.4). If the
ontroller receives the probe from SW_5, then we can conclude
hat there is no failure. However, if the probing packet is sent to
he controller by SW_2, this means that SW_4 is the faulty switch.
n another scenario, if SW_7 receives the probing packet, then
he algorithm cannot detect the faulty switch since SW_7 has a
onnection with SW_3 and SW_4. Then a new probe should be
ent via SW_4. If the new probe is received by SW_7, SW_4 is the
aulty one; otherwise SW_3 is the faulty switch. To find the faulty
ule, the Per-rule method should be run on the faulty switch via
he same probing packet.

.2. Open-SDN Spotlight approach

Like the Hedge approach, the Open approach tries to detect
he policy violation for the specific path, however it is based on
different idea. In contrast to the Hedge approach, the Open

pproach installs catch-rules with unique IDs on all network
witches. The idea behind using a unique ID is to allow the catch-
ules in the Open approach to only hook the probing packets with
he same ID. Just as the Hedge approach, the Per-rule approach
erifies the installation of the catch-rules. The Open approach
ses an iterative algorithm. In the first iteration, a probing packet
ith the ID of the last node in the expected path is sent through
he network and a timeout value is set based on the expected
ath (see Section 4.4). The next iteration starts if the target
witch cannot catch the probing packet. In the next iteration, the
revious node of the target switch of the last iteration is set as
he target node. This process is repeated until the target switch
ooks the probe. In this case, the target switch of the last iteration
s deemed to be the faulty node. Although the Open approach can
etect the faulty switch, we need an extra mechanism in order to
ocalize the exact faulty rule of that switch. The Per-rule approach
an be used for this purpose.
The complexity of the Open approach can be expressed as

((V × c) + p + L), where V shows the number of nodes in the
etwork, c presents the cost of installing catch-rules, p refers to
he cost of generating the probes, and L shows the length of the
ath. In this approach, we can assume that c and p are constants,
hen O(V + L).

As shown in Fig. 5, the expected path includes SW_3, SW_4,
and SW_5 and unique catch-rules are installed on all switches. In
the first iteration, a probe with ID (#5) is injected. If there is no
failure, the packet will be hooked by SW_5 before the timeout is
369
Fig. 5. An example illustrating the Open-SDN Spotlight.

over. Otherwise, there is at least one failure among SW_3, SW_4,
and SW_5. In the next iteration, SW_4 is set as the target switch
and a new probe with ID (#4) is created and sent, and a new
timeout value is set for this step. If the probing packet is not
caught by the catch-rule #4 the next iteration is started. In the
third iteration, the target switch is SW_3 and the new packet with
ID (#3) is sent and a new timeout set for this step. If the probing
packet is caught by catch-rule #3 this means that SW_4 is the
faulty switch. As mentioned previously, we can use the Per-rule
method to detect the faulty rule in SW_4.

The iterative approach uses one probing packet for each itera-
tion. However, it can be time-intensive if the length of the target
path is increased. To optimize performance, we have designed a
parallel approach. The parallel approach generates the probing
packet for each member of the target path and simultaneously
sends them through the network. Thus, the controller finds out
which packet is hooked by its switch and which one is not. As we
will see later in Section 8.4.3, although the detection processing
time decreased, the number of probing packets and bandwidth
usage increased.

6. Loop detection

Detecting the loops in complex networks is a challenging
problem. Detection accuracy and detection speed are the critical
criteria when analyzing the performance of the loop detection
procedure.

The loop detection process involves two steps, the first of
which is the probing process. When the probing starts, a timeout
value (see Section 4.4) is set for the procedure, which means that
after this time, if the controller does not receive the probe, then
there is a loop in the path. In some cases, an unexpected delay
causes the probe to be sent back to the controller after timeout
expiration. In this scenario, the second step is terminated right
after the controller receives the probe.

The second step tries to detect the root cause of the loop.
This step is implemented via different algorithms for the Hedge
approach, rather than the Open-SDN Spotlight. The details are
explained below.

6.1. The loop detection procedure in Hedge-SDN Spotlight

The loop detection algorithm for the Hedge approach clas-
sifies the loop scenarios into two groups. In the first group, a
loop involves nodes along the expected path and other nodes in
their neighborhood. As shown in Fig. 6, by virtue of the Hedge
approach, the probe is caught by the first neighbor switch and
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Fig. 6. Loop detection based on the Hedge-SDN Spotlight.

Fig. 7. Loop in the expected path.

orwarded to the controller. Then the probe analyzer module
nside the SDN Spotlight finds out whether an unexpected path
eceives the packet. If this is the case, then the Per-rule can find
he faulty rule by checking the previous switch. In this scenario,
he loop is detected during the probing process (first step) and it
s thus not necessary to check the timeout value.

The second group of loops can be considered to be the worst
ase scenario for the Hedge approach, as will be explained later.
s shown in Fig. 7, in this case the loop is exclusively located
nside the expected path. Therefore, the probe cannot be caught
y the switches in the neighborhood. In this scenario, the probing
rocess is finished due to timeout.
The second step is an iterative procedure to detect the root

ause of the loop, and it is launched after the timeout. As shown
n Fig. 8, a catch-rule is installed on the last node of the expected
ath, which is SW_5 in Fig. 8, and a new probing packet is sent.
f the new catch-rule does not receive the new probe, then a new
atch-rule is installed on the previous node, which is SW_4 in
ig. 8. This process will be continued until the probe is caught by
he last installed catch-rule. In this case, we will find out whether
he next node on the expected pass is the faulty node. In the
xample shown in Fig. 8, the catch-rule in SW_1 in the third
teration catches the probe, and thus we find out that the next
ode, SW_4, is the faulty one. To find the faulty rule, we check
he faulty switch using the Per-rule approach. To stop the probes
370
Fig. 8. Detecting the loop in the expected path via Hedge-SDN Spotlight.

that are in the loop during the detection procedure, the catch rule
of the faulty node is modified to collect these probes and send
them back to the controller.

6.2. The loop detection procedure in Open-SDN Spotlight

In the Open approach, in contrast to the Hedge approach, the
loops can be detected irrespective of where they are located. As
shown in Fig. 9, after reaching the timeout value, the iterative
detection algorithm is launched. First, the probe with the ID of the
last node on the expected path, which is SW_5 in this example,
is sent. If the probe is not caught, a new probe with the ID of
the previous node, which is SW_4 in this example, is sent. Since
the Open-SDN Spotlight approach installs a specific catch-rule for
each switch in the network, extra catch-rules are not required.
Thus, the iterative probing process can be implemented in parallel
and the detection performance can be optimized. When a node
receives the probe, this means that the node in the previous step
is the faulty one. Afterwards, the faulty rule is located via the
Per-rule approach. As in the Hedge approach, in order to stop the
probes in the loop during the detection procedure, the catch-rule
of the faulty node is modified to collect all probes and send them
back to the controller.

7. Detection accuracy analysis

In this paper, two main approaches are proposed to detect
the policy violation in the data plane. Misreporting a correct
policy as a root cause of failure, i.e., a false positive (FP), and the
mis-detection of an unexpected node or installation error, i.e., a
false negative (FN), are the critical challenges for the proposed
methods. Therefore, the possibility of an FP or FN is the main
criterion for evaluating the method’s accuracy. In this section, we
analyze the accuracy of the proposed methods and find out which
scenarios trigger an FP or FN.

7.1. Hedge-SDN spotlight approach

The Hedge approach tries to check the expected path for
specific network traffic. In this approach, all possible misrouted
probes will be hooked since catch-rules are installed on the
neighboring switches. Moreover, the root cause of the loop inside
the expected path can be identified, as explained in Section 6.1.
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Fig. 9. Detecting the loop in the expected path via Open-SDN Spotlight.

However, some scenarios pose challenges when it comes to
he accuracy of the method. For example, consider the case where
here is a rule that modifies the packet that has the same action as
he target rule. If a rule priority failure occurs, the probing packet
ill match the wrong rule instead of the target rule. Then the
robing packet will still be sent to the expected next node but
ith a new header value, i.e., a false negative. In the next step, a
ew probe will be matched with an unexpected rule and will be
edirected to the wrong node. So, the probe will be caught by the
atch-rule, resulting in a failure. Nevertheless, the wrong switch
ill be reported as the faulty node, i.e., a false positive.
For example, the expected path in Fig. 10 is SW_1, SW_2,

W_3, SW_4. To follow this path, the probe should be matched
ith the rule without header modification. If an order conflict
ccurs in SW_ 2 and the probe is matched with a modification
ction, then a false negative occurs, since the probe does not
eave the expected path. In SW_3, the probe with a new header
s matched with an unexpected rule and is forwarded to SW
instead of SW_4. In this step, the probe is hooked by the

nexpected node (SW_5) and SDN Spotlight reports the failure.
f the SDN Spotlight does not check the header of the probing
acket, it reports SW_3 as the faulty node, which results in a false
ositive because SW_2 is the faulty one. However, the Hedge-SDN
potlight not only checks the hooker switch of the probe against
he expected switch, but also compares the probe header with the
xpected one. So, the SDN Spotlight checks the previous nodes
hen the modified probing packet is sent via an unexpected
witch. Therefore, there are no false positives or false negatives
n the Hedge approach.

.2. Open-SDN Spotlight approach

The Open approach tries to verify the expected path by send-
ng a probing packet that targets the final node on the path.
henever the expected node receives the probe, we can conclude

hat there is no failure. However, the probing packet can reach
he final node without following the expected path. As shown
n Fig. 11, the expected path includes SW_3, SW_4, SW_5, and
he final node is SW_5. However, there is a failure in SW_3
nd, consequently, the probe is forwarded to SW_7 instead of
W_4. In the last step, the probe is forwarded to SW_5, which is
xpected, and the algorithm does not detect the failure, i.e., a false
egative. In contrast to the Open approach, the Hedge approach
371
Table 1
Comparisons of detection accuracy.

Forwarding
failure

Loop False
positive

False
negative

Per-Rule-SDNSpotlight [19] ✓ ✓ ✗ ✗

Hedge-SDNSpotlight ✓ ✓ ✗ ✗

Open-SDNSpotlight ✓ ✓ ✗ ✓

SDNProbe [10] ✓ ✗ ✗ ✓

SDNTraceroute [18] ✓ ✓ ✗ ✗

can detect the failure since there is a catch-rule in each switch in
the neighborhood of the expected path. As shown in Fig. 12, the
deviated probe is caught by SW_7 and the algorithm detects the
failure in the first step. The summary of the comparison between
the SDNSpotlight approaches and between SDN traceroute and
SDNProbe are presented in Table 1.

Most importantly, we observe that within the SDNSpotlight
framework, Per-rule-SDNSpotlight and Hedge-SDNSpotlight are
superior to Open-SDNSpotlight when it comes to different as-
pects of accuracy. In fact, both Per-rule-SDNSpotlight and Hedge-
SDNSpotlight do not yield false positive or false negative detec-
tion results, and at the same time are able to detect forwarding
failures and loops, while Open-SDNSpotlight suffers from possible
false positives.

8. Experimental results and evaluation

The SDN Spotlight is implemented using C++ and Python. The
API that has been developed for the probing operation is imple-
mented in the Ryu [32] controller in accordance with OpenFlow
V1.3 or a higher version.

SDN Spotlight generates a graph model based on the network
topology and the flow entries in switches. Then it calculates
all possible paths and sets of packets with the same forward-
ing behavior that might enter the network [25]. This part is
implemented in C++ to support parallelization and improve per-
formance. Frequent changes in network policies are handled via
the incremental approach presented in our previous work [27].
For troubleshooting purposes, SDN Spotlight crafts specific pack-
ets to test the corresponding path in the network. Then the
Python API in Ryu injects the probing packet into the network
and waits for the feedback.

For the experimental step, we have developed several test
networks with Mininet [33], which is a data plane emulator.
In this section, the performance of Hedge-SDN Spotlight and
Open-SDN Spotlight is evaluated. Moreover, the performance of
our SDN Spotlight framework is compared with SDN Traceroute,
SDNProbe, and Per-rule approach.

8.1. Real-life environment

To demonstrate the capability of SDN Spotlight in a realistic
environment, we mimic a real-life scenario using a generated
topology based on a real ISP configuration from the Rocketfuel
dataset [34]. Fat-tree networks, which are one of the standard
topologies for the large networks, data centers, etc., with 10
different configurations, are used to test the effect of network
size, length of the path, and the number of neighbors for each
path member on the performance of the different methods.

8.2. Evaluation metrics

We consider the processing time needed to generate the
model, the probing processing time, the number of the probing
packets, and the number of additional installed rules as metrics

for comparing the performance of SDN Spotlight with SDNProbe,
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Fig. 10. False negatives and False positives in same-time.
Fig. 11. False negative example in the Open-SDN Spotlight approach.

Fig. 12. The way that the Hedge-SDN Spotlight covers the false negatives in the
Open-SDN Spotlight approach.

Per-rule, and the SDN traceroute method. The aforementioned
metrics help us compare the overhead and the speed of methods.

Since the accuracy of the Hedge approach comes at the ex-
pense of dynamic updates and the installation of the catch-rules,
we also assess the installation time for the catch-rules in the
Hedge approach, which can be seen as the overhead for a solution
that is free of false positives and false negatives.

8.3. Validation

In this paper, we use the same topology and configuration to
compare the result of the SDNSpotlight with the SDNProbe, and
SDN traceroute. To this end, and in the same manner as some
noteworthy past research [9,10,18,20], we install a fixed set of
372
Fig. 13. Model generation processing time comparison.

OpenFlow rules on switches and then randomly remove one rule
at a time from the data plane, so as to generate a failure. Then we
validate the methods by comparing the output of each method.

8.4. Results

In this section, the effect of network size on different methods
is presented. The evaluation is divided into different steps: model
generation, installing additional rules, probing, loop detection,
and overhead analysis. We have explained each step and its
corresponding results in detail below.

8.4.1. Generating the model
The SDN Spotlight and SDNProbe methods in the first step rely

on generating a graph model based on the network policies and
topology. Then, all paths and testing packets are defined based
on this model. In this step, we compare the effect of different
network sizes on the modeling, calculating all valid paths and
defining the packet header for each path. The performance of
model generation in SDN Spotlight and SDNProbe is evaluated
via 5 networks that consist of 10, 20, 30, 40, and 50 switches,
respectively. All the switches consist of 50 rules. The result of the
comparison is shown in Fig. 13.

The results show that SDN Spotlight generates the network
model faster than SDNProbe. Moreover, SDN Spotlight uses an
incremental approach [27], which boosts the performance of
generating the new model after each policy modification.
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Table 2
Comparison between SDN Spotlight and SDNProbe approaches in catch-rule
installation.
Number of switches 10 20 30 40 50
Number of paths 471 880 1224 1513 1757
Number of neighbors 5 10 15 20 25
Number of catch-rules in SDNSpotlight 6 11 16 21 26
Number of catch-rules in SDNProbe 942 1760 2448 3026 3514

Fig. 14. Catch-Rule installation processing time.

.4.2. Installing additional rules
In this section, the number of newly installed rules via the

roposed method and the SDNProbe are compared for networks
f different sizes and topologies, and are presented in Table 2.
According to the SDNProbe approach, two new rules should

e installed for each path. Therefore, a significant amount of
ules should be installed if there are a large number of paths.
s described in Table 2, the number of paths is larger than the
umber of switches in the neighborhood. Therefore, installing
large number of catch-rules in the SDNProbe approach nega-

ively affects the processing time compared to the SDN Spotlight
pproach. For instance, the processing time required to install
dditional rules in the SDN Probe approach for 50 switches is
s. However, SDN Spotlight needs only 0.12 s to install the addi-

ional rules for 50 switches. Moreover, for the topology with 50
witches, SDNProbe installs 3514 catch-rules. However, SDNSpot-
ight installs 26 catch-rules for the same topology, which means
hat SDNSpotlight installs less than 0.8% of the installed rules in
DNProbe. This demonstrates that SDNSpotlight uses less mem-
ry in the switches and also uses less network bandwidth when
esting a routing policy.

Furthermore, we study the performance of SDN Spotlight for
different number of switches in the neighborhood of the test
ath. As presented in Fig. 14, the installation process shows
n almost linear pattern as we vary the number of neighboring
witches. Moreover, this process can be time-intensive when
sing the Hedge approach for a large number of neighbors that
ight exceed the number of test paths. The result shows that the
rocessing time for a large network with 25 neighbors for each
ode is 12 ms, which is fast.

.4.3. Probing
In this section, we evaluate and compare the processing time

or the probing step using the different methods.
373
Fig. 15. Comparison between the Hedge- and Open-SDN Spotlight.

We present two different approaches within the SDN Spotlight
framework. In this section, we evaluate these approaches based
on different path lengths. The assessment procedure includes
the worst case scenario, in addition to scenarios with no policy
failure. In the worst case scenario, there is one failure in the last
node, which makes the detection procedure slower.

Moreover, the parallel and sequential approaches of the Open-
SDN Spotlight method are evaluated. In the sequential approach,
the path members are checked one after another, however, all
the path members are checked simultaneously in the parallel
approach.

As illustrated in Fig. 15, the Open approach is fastest when-
ever there is no failure. However, if there is a failure, the Hedge
approach performs better. This Hedge approach has the same
processing time irrespective of whether there is a failure or not.
The Open method with the sequential approach has the slowest
processing time if there is a failure. Parallelizing the Open ap-
proach yields a higher performance as compared to the sequential
approach, but this requires a separate probing packet for each
path member.

Although the Open approach does not require separate catch-
rules to be installed for each new path, it is time-consuming to
have to find the root cause of the failure.

As mentioned in Table 1, the Per-rule and Hedge-SDN Spot-
light have high accuracy in comparison to the other aforemen-
tioned methods. For this reason, we have compared the perfor-
mance of these methods. A comparison between the Per-rule
method and Hedge-SDN Spotlight is shown in Fig. 16. As ex-
pected, the Per-rule approach is time-intensive as compared to
the Hedge-SDN Spotlight, since it tries to check every single rule.
In contrast, Hedge-SDN Spotlight tries to check rules that are on
the same path, using only one probe.

To evaluate the SDN Spotlight method, we compare the per-
formance of both the Hedge and Open approaches with the SD-
NProbe, which has similar functionality. Moreover, we imple-
mented the SDN traceroute [18] method for comparison pur-
poses. As shown in Fig. 17, the Hedge approach performs better
in scenarios where the number of neighboring switches is lower
that than the number of paths. However, SDNProbe and SDN
traceroute perform more slowly, since they have to install several
catch-rules.
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Fig. 16. Comparison between the Hedge-SDN Spotlight and Per-Rule probing
processing time.

Fig. 17. Probing processing time comparison.

.4.4. Loop detection
As mentioned in Section 6, a loop detection procedure has

een developed for the Hedge and Open-SDN Spotlight
pproaches. In this section, we evaluate the performance of the
oop detection procedure for the proposed methods and compare
hem. SDNProbe does not define a procedure for loop detection,
owever, SDN traceroute detects the loop during the probing
rocess by finding out whether the probe passed through a switch
or a second time. We compared the performance of the SDN
potlight and traceroute approaches for the worst case scenario
nd the result is presented in Fig. 18. The worst case scenario
efers to a scenario where the last node in the path is the root
ause of a loop. Moreover, for the Hedge approach, the loop is
nside the expected path. So, the detection procedure tries to
heck all of the test path members one by one, as explained in
reater detail in Section 6.
In regards to Fig. 18, SDN traceroute shows the slowest

erformance. However, it can detect the loop during the probing
rocess and does not need an extra procedure to detect the root
ause behind the failure. Open-SDN Spotlight with a sequential
374
Fig. 18. Loop detection processing time comparison.

Fig. 19. Overall processing time comparison.

approach performs more slowly than the Hedge approach. Al-
though the Hedge approach has high accuracy, it has a higher
processing time than the parallel approach of Open-SDN Spot-
light. As shown in Fig. 18, SDN traceroute performs better if the
length of the loop is greater than 20 nodes. In this case, SDN
traceroute is faster than Hedge-SDN Spotlight, although when
using the parallel approach, Open-SDN Spotlight still detects the
loop faster.

In Section 8, we present comparisons between the SDNSpot-
light approaches and some other approaches using different per-
formance metrics related to the different involved operations:
model generation, probing process, and loop detection process. A
comparison of the processing time between the proposed meth-
ods and other related work is given in Fig. 19. The result is
based on the scenario, which contains a loop and a forwarding
failure. The overall processing time includes generating a model,
installing catch-rules, creating and sending probing packets, and
analyzing the probes.

According to Fig. 19, SDNProbe is the slowest method for
the target length between 5 to 20 nodes in terms of the overall
processing time. In contrast, when it comes to probing and loop
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Fig. 20. The overhead comparison between different anomaly detection
ethods.

etection, the sequential Open approach is slower than SDNProbe
nd SDN traceroute for the target path that is longer than 15
odes. The overhead of checking each node of the target path
n the sequential Open approach causes a sharp increase in the
rocessing time for the longer routes.

.4.5. Overhead analysis
The overhead of the detection methods in the network is

ne of the important metrics for evaluation. In this section, the
verhead of the Hedge and Open approaches in the network is
nalyzed and compared with the SDN traceroute and SDNProbe
ethods. When we talk about overhead, we refer to the number
f packets that are generated in order to install the catch-rules
nd probing packets.
As shown in Fig. 20, SDNProbe has the biggest overhead in the

etwork since it generates additional rules for all possible flows
n order to verify a specific flow and detect the root cause of the
ailure.

SDN Traceroute needs two probing packets for each hop.
oreover, in each step it should update the catch-rules in the
eighbors of the target switch. Therefore, it has a higher over-
ead than the SDN Spotlight framework approaches. Since SDN
raceroute uses a hop-based approach, it has less overhead than
DNProbe.
The Hedge and Open approaches generate fewer probing pack-

ts than the SDN traceroute method. Moreover, the number of
atch-rules that the SDN Spotlight approaches install is notably
ower than the number of flows in the SDNProbe method. In
ontrast to SDN traceroute, the approaches in SDN Spotlight do
ot need to change the catch-rules frequently in the probing
cenario.
The Open approach entails less overhead in the network than

he Hedge approach, since it only installs catch-rules once and
oes not need to change them. On the other hand, the Open ap-
roach for detecting the root cause of failure needs more probing
ackets. This is why there is no significant difference between the
verheads of the Hedge and Open approaches.
Contrary to previous studies, the Hedge and Open approaches

ave a specific method to detect the root cause of loops. The
verhead of detecting the root cause of a loop via both approaches
n the worst case is compared in Fig. 21.
375
Fig. 21. The overhead comparison between the loop detection method of the
Hedge and the Open approaches in the worst case.

As shown in Fig. 21, the Open approach has less overhead in
the network than the Hedge approach. The Hedge approach will
install additional rules several times in the worst case scenario
to detect the root cause. The Open approach generates a similar
number of packets in both parallel and sequential methods. How-
ever, the parallel method sends all packets simultaneously, which
occupies more network bandwidth than the sequential method.

9. Conclusion

SDN policy verification and loop detection are important re-
search topics. Although several policy violation detection ap-
proaches exist in the literature, most of them try to detect vi-
olations among the rules that are installed on the forwarding
devices. Such approaches cannot detect failures of rule installa-
tion or physical port errors. Moreover, few recent studies have
attempted to address the anomaly detection issue by using the
common idea of installing a test rule per target rule. This leads
to an excessive increase in the size of OpenFlow tables and, un-
fortunately, to wastage of already scarce TCAM memory, and an
increase in the packet matching time. In this paper, we propose
an efficient probe-based detection framework that uses a negli-
gible number of test rules. Our method detects firmware Open-
Flow rule installation, forwarding anomalies, and loops. More-
over, physical failures such as port failure or unstable links can
be discovered by our suggested mechanism. We introduce the
concept of catch-rules to hook the probing packet and forward
it to the controller for analysis. Moreover, the proposed method
supports all types of rules: forward, drop, and set. Our framework
consists of two main methods: Hedge, and Open. The Hedge and
Open methods have the same goal and can be seen as alternative
methods that each have advantages and disadvantages. The Hedge
approach is both free of false positives and false negatives, but
this comes at the expense of an extra overhead in terms of
installing more catch rules, while the Open approach has a more
lightweight detection procedure, with a low likelihood of false-
positive and false-negative results. The results of the experiment
are very promising and show that this method can be used in
a production environment. As future work, we would like to
extend our method in order to not only detect the root cause of
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ailures, but also to resolve them while automatically taking the
etwork invariants into account. Moreover, we are working on
ptimizing the algorithm for parsing network nodes and using a
inary search approach to detect the root cause of a failure.
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