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Human capital is an important aspect of energy consumption, exerting crucial effects on economic growth,
technological progress, and economic restructuring. This paper presents an in-depth investigation of the effect
of human capital on energy consumption using an extended version of the Stochastic Impacts by Regression
on Population, Affluence, and Technology framework. The estimated results using a panel dataset covering
China ’ s 30 provincial regions during the period 1997–2018 and applying fixed effects with instrumental vari‐
ables and the generalized method of moments indicated that an increase in human capital significantly drove
energy consumption. A 1% increase in human capital increased energy consumption by approximately 0.3%.
A two-step channel analysis to test scale, technical, and structural effects revealed that the positive effect of
human capital on energy consumption is based primarily on the scale effect. However, highly educated human
capital alleviates the energy pressure of this effect. In contrast to the scale effect, both the technical and struc‐
tural effects of human capital reduced energy consumption, and this reduction is primarily correlated with en‐
terprises ’ utility-oriented technological progress. Finally, we present strategic energy control policy implica‐
tions related to human capital.

1. Introduction

The reliable provision of energy is an important driver of eco‐
nomic growth. Benefiting from the reform and opening up, China has
become the largest developing country and the second largest
economy in the world following four decades of rapid economic pros‐
perity since 1978. However, at the same time, the nation ’ s energy
consumption dramatically increased. As early as 2009, China sur‐
passed the U.S. as the world's largest energy consumer. Because China
is still undergoing industrialization and urbanization, energy con‐
sumption is expected to continue to increase. The nation's massive en‐
ergy consumption not only places considerable pressure on energy se‐
curity but also generates serious environmental pollution challenges
(Liddle, 2013; Dong et al., 2018; Huang et al., 2021b). Subsequently,
controlling energy consumption is of great significance for policymak‐
ers and has become an important goal of national economic macro‐
control (Ma et al., 2017), and is exemplified by the Strategy for Revo‐
lution in Energy Production and Consumption (2016–2030), declar‐
ing that the country ’ s total energy consumption will be controlled to
under 6 billion tons of standard coal equivalent by 2030.

A substantial body of literature investigates the driving factors of

energy consumption based on the impact, population, affluence, and
technology (IPAT) framework or its extended version—the Stochastic
Impacts by Regression on Population, Affluence, and Technology
(STIRPAT) model (Dietz and Rosa, 1997; York et al., 2003; Huang et
al., 2021a). Most researchers determine that economic growth, tech‐
nological progress, and industrialization have significantly contrib‐
uted to the overall increase in energy consumption. For instance,
based on the IPAT framework, Wang and Li (2016) calculated the ef‐
fects of population, affluence, and technology on energy consumption
in the world's two largest developing countries, attributing China ’ s in‐
creasing energy consumption to rapid income growth and the reversal
of a decline in technological progress. By contrast, for India, rapid
population increase, rather than income or technological progress, is
found to be the major cause of increasing energy consumption. Song
et al. (2011) found energy consumption to be driven primarily by the
rapidity of China ’ s economic growth using the IPAT model. Liddle
(2013) applied the STIRPAT model to examine how population, in‐
come, and population density influence energy consumption in pri‐
vate transport. With a large, city-level panel dataset, the researcher
demonstrates that population density is negatively and significantly
related with energy consumption in private transport. The insightful
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studies above uncover the driving forces of changing energy consump‐
tion.

In the past few decades, along with the rapid growth in the
economy and energy consumption in China, human capital has also
exhibited an increasing trend①, as shown in Figure 1②. Along with
technological progress and economic restructuring, human capital has
a substantial impact on economic growth, prompting the questions:
Has human capital significantly contributed to increased energy con‐
sumption in China? If so, how? This study attempts to answer these
compelling questions.

Human capital generates significant fluctuations in energy con‐
sumption. Its influence occurs primarily through three main channels.
First, according to neoclassical theory (Lucas, 1988) and endogenous
theory (Romer, 1990), economies grow from the accumulation of hu‐
man capital through education and learning-by-doing. Congruent
with economic development, resource consumption, an important ele‐
ment of production, also generally increases. Thereby, economic
growth, also referred to as the scale effect or income effect, is an im‐
portant mechanism for human capital ’ s influence on energy consump‐
tion. Along with increased environmental awareness and higher in‐
comes, higher-educated human capital is more inclined to choose
resource-saving appliances and consume less energy (Broadstock et
al., 2016). By contrast, higher income, lower-educated cohorts who
value the environment less can afford more energy and are more
likely to exhibit resource-oriented consumption behavior.

Second, in line with endogenous theory (Romer, 1990), human
capital can drive technological progress, which can lead to reductions
in the energy input required for a unit output by improving effi‐
ciency. Intuitively, human capital reduces energy consumption
through technological progress, and such technological progress con‐
ducted by different performers for various purposes has heteroge‐
neous impacts on energy mitigation. For example, compared with col‐
leges and research institutes, because enterprises access more effec‐
tive real-world information on energy consumption in production pro‐
cesses, enterprises ’ technological progress is more practical and
result-oriented. Consequently, human capital reduces energy con‐
sumption more probably through enterprises ’ technological progress.
Similarly, as utility-oriented technological progress has more practical
value, it is expected to have a stronger effect on energy mitigation
than invention-oriented technological progress.

Third, studies have demonstrated that industrial structure optimi‐
zation lowers energy consumption by degrees through the develop‐
ment of more energy-efficient industries and supporting tertiary in‐
dustries (Feng et al., 2009; Hu et al., 2011). Accordingly, structural ef‐
fects are another mechanism through which human capital affects en‐
ergy consumption.

As discussed above, human capital significantly affects energy
consumption through scale, structural, and technical effects. The scale
effect is generally positive, whereas a negative effect is demonstrated
for higher-educated human capital, and both technical and structural
effects are negative. We seek an answer to the question: Is the total ef‐
fect of human capital on energy consumption positive or negative?
The following discussions may clarify the drivers of energy consump‐
tion.

The primary research question of this study endeavors to an‐
swer how human capital influences energy consumption in China.
Unlike previous studies (Fang and Chang, 2016; Salim et al., 2017),
we do not employ average years of education as a proxy for human
capital. This proxy was favored in prior work because it is easy to
calculate and the data are readily available. However, this method
discounts important factors that affect human capital, such as train‐
ing quality or work experience, and therefore fails to comprehen‐
sively encompass the breadth of human capital. We introduce a
more suitable measurement for human capital following the China
Center for Human Capital and Labor Market Research (CHLR) and
applying the improved Jorgenson–Fraumeni method (J–F method)③
(Jorgenson and Fraumeni, 1992a, 1992b). Compared with conven‐
tional methods, our approach comprehensively considers educational
experience as well as work experience, health, and life cycle (Li,
2012). More notably, we selected this metric because it scientifically
and systematically reflects the circumstances regarding Chinese hu‐
man capital.

Moreover, considering the channels of scale, technical, and struc‐
tural effects, we apply two-step analysis to explore how human capi‐
tal influences energy consumption, referencing Nguyen and Phan
(2020). In the first step, we examine the direct relation between hu‐
man capital and the three effects. In the second step, we re-examine
the relationship between human capital and energy consumption in
the low and high terciles of the three effects. The advantage of this
method is its ability to clearly verify both the direct impact of the

①According to the Organisation for Economic Co-operation and Development (OECD,2001), human capital refers to the knowledge, skills, abilities, and qualities
that individuals possess to create personal, social, and economic well-being.
②The data for real average human capital are from the China Center for Human Capital and Labor Market Research (CHLR), and per capita energy consumption
is calculated by taking energy consumption as a percentage of the population data from China Provincial Statistical Yearbooks.
③Detailed information can be found at: http://humancapital.cufe.edu.cn/en/Human_Capital_Index_Project/Introduction.htm.

Figure 1. The trend of real average human capital in China (1997–2018)
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three effects on energy consumption and their indirect impact on hu‐
man capital and energy consumption, enabling an assessment of
whether the mechanism is evident in the subsamples at low and high
terciles.

Through quantitative analysis of energy consumption across
China's provinces, our primary contributions to the literature are
threefold. First, we focus on human capital, particularly its effect on
energy consumption through scale, technical, and structural effects.
Second, a distinctive two-step analysis is applied in our mechanism
analysis. With this method, we further demarcate the three effects to
obtain more detailed and comprehensive results. Third, to identify
the effect of human capital on energy consumption accurately, we em‐
ploy a comprehensive measurement for human capital following the
CHLR.

The remainder of this paper is structured into four sections. Sec‐
tion 2 presents the theoretical analysis and research hypotheses, Sec‐
tion 3 introduces the methodology, including the empirical models
and data, and Section 4 reports the empirical results, followed by the
conclusions and policy implications in Section 5.

2. Human capital effect on energy consumption: Conceptual
channels and research hypotheses

According to Grossman (1993), pollution is correlated with eco‐
nomic activity. Following this view, economic activities primarily in‐
fluence resource consumption through scale, structural, and technical
effects. In the following section, we demonstrate how human capital
influences energy consumption through these three effects.

2.1. Scale effect

Human capital may affect energy consumption through an eco‐
nomic growth effect, which is referred to as the scale effect. Many
studies use cointegration and causality analysis to investigate the rela‐
tionship between energy consumption and economic growth (Bloch et
al., 2015; Ozturk, 2010; Smyth and Narayan, 2015), but their conclu‐
sions are contradictory. For instance, some studies find that economic
growth accounts for energy consumption (Kraft and Kraft, 1978;
Zhang and Cheng, 2009; Fang and Wolski, 2021), whereas others de‐
termine causality in the opposite direction, from energy consumption
to growth (Bowden and Payne, 2009; Ho and Siu, 2007). Other stud‐
ies do not detect any causality (Payne, 2009; Soytas and Sari, 2009)
or bicausality (Bloch et al., 2015; Mahadevan and Asafu-Adjaye,
2007). Although no consensus has been reached regarding the eco‐
nomic growth– energy consumption relationship in current research,
extensive literature reviews suggest that energy consumption is posi‐
tively correlated with economic growth in most developing countries
(Smyth and Narayan, 2015; Ozturk, 2010).

Endogenous theory suggests that human capital determines the
speed of economic growth (Romer, 1990). Gregory et al. ’ s (1992)
augmented Solow model recognized the significance of human capital
for economic growth; some literature has also verified this signifi‐
cance. Using a panel of 100 counties from 1965 to 1995, Barro
(2001) found economic growth to be positively correlated to human
capital and to adult males with secondary school education and
above in particular. Similarly, Benos and Zotou (2014) applied a
meta-regression analysis, demonstrating that human capital is essen‐
tial to economic growth. Based on the above discussion, human capi‐
tal may increase energy consumption through the scale effect, leading
to the following hypothesis:

H1: Human capital increases energy consumption through the
scale effect.

The uncertain relationship between economic growth and re‐
source consumption depends on the position in the environmental
Kuznets curve (EKC) (Grossman and Krueger, 1995). The existence of
a conventional inverted U-shaped EKC and whether the turning point

has been reached are important indicators of the relationships be‐
tween income level, energy consumption, and environmental quality.
Generally, higher-educated human capital will reflect higher income
and will value the environment more (Broadstock et al., 2016). These
educated cohorts are more willing to buy environment-friendly prod‐
ucts, continuously advocate environmental protection, and accept
strict environmental regulations (Pachauri and Jiang, 2008; Broad‐
stock et al., 2016). Higher-educated human capital is more likely to
cross the turning point, occupy the downward sloping section of the
EKC, and consume less energy. Conversely, the lack of environmental
awareness results in less-educated human capital that improves their
ability to afford more energy with income growth, rarely exerting a
negative effect between the scale effect and resource consumption
similar to higher-educated human capital. Thus, we develop the fol‐
lowing hypotheses:

H1a: Higher-educated human capital reduces energy consump‐
tion through the scale effect.

H1b: Lower-educated human capital increases energy consump‐
tion through the scale effect.

2.2. Technical effect

In the energy field, technological progress (or the technical ef‐
fect) can reduce the energy input required for unit output by reduc‐
ing trade costs and improving production efficiency. Energy-saving
technology presents an important breakthrough in the quest to re‐
duce energy consumption (Li and Lin, 2016; Huang et al., 2020). A
considerable number of Chinese scholars focus on the impact of the
technical effect on energy consumption. For example, on the basis
of a provincial panel dataset covering 2000–2015 in China, Dong et
al. (2018) used research and development (R&D) investment as a
proxy for technological progress, finding that technological progress
could decrease energy consumption, but they also reveal differences
across China ’ s eastern, central, and western regions. From an indus‐
try perspective, Lin and Xie (2015) applied a cointegration model to
study long-term equilibrium relationships among energy consump‐
tion, energy price, and technological progress in China ’ s oil indus‐
try. Their results demonstrate that technological progress slows
down energy consumption. In the most recent study, Shen and Lin
(2020) focused on China ’ s manufacturing industry using the two-
stage least squares method. Their results also demonstrate that the
technical effect and its spillover effect can significantly lower en‐
ergy consumption.

Regarding the impact of human capital on the technical effect,
endogenous growth theory maintains that human capital can strongly
drive technological progress (Romer, 1990; Vandenbussche et al.,
2006; Barro, 2001), primarily promoting two forms of technological
progress, including independent innovation (direct form) and the imi‐
tation and absorption of technology from other regions (indirect
form). In terms of the direct form, human capital is shown to be of
great importance to creating new technology. Du et al. (2014) used a
panel dataset from 30 Chinese provinces from 2002 to 2010, demon‐
strating that human capital can promote self-innovation and can con‐
tribute to economic growth. Similarly, Liu et al. (2008) found that hu‐
man capital has a major influence on direct independent innovation.
Regarding the indirect form, human capital is assumed to improve ca‐
pacities for technological absorption, resulting in technology spill‐
overs of innovation to one area from other areas. Scholars have con‐
ducted valuable research on this topic. Lai et al. (2005) introduced
technology absorption capacity into the endogenous growth model,
establishing the positive role of human capital in technology spill‐
over, correlating to technology absorption capacity. Similarly, Zhao
and Wang (2006) verified the importance of human capital in technol‐
ogy absorption capacity from the perspective of import trade. Hence,
we propose our second hypothesis:

H2: Human capital reduces energy consumption through the tech‐
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nical effect.
Technical effect can be further categorized according to different

performers and purposes. The reason for this decomposition is that
not all technical effects driven by human capital can effectively influ‐
ence energy consumption. For example, in terms of technical perform‐
ers, Hart ’ s (1995) natural resource-based perspective suggests that en‐
terprises tend to leverage an environmentally conscious strategy that
includes green technology and products to maintain sustainable com‐
petitive advantage. As enterprises are fully aware of energy consump‐
tion in production processes, technological progress is more effective,
practical, and results-oriented to maximize profit. By contrast, col‐
leges and research institutes are unable to identify the real causes of
energy consumption in production accurately; more importantly, aca‐
demic research activities tend to be less practical than enterprises.
Thus, the impact of human capital on the technical effect achieved by
enterprises, rather than colleges and research institutes, is expected to
alleviate energy pressure. Regarding different purposes, technological
progress can be bifurcated into utility-oriented and invention-
oriented purposes. Similarly, compared with theoretically oriented in‐
ventions, utility-oriented technical effect driven by human capital has
more practical value, and it could be more efficient on energy mitiga‐
tion. To investigate this, we propose the following hypothesis:

H2a: The reduction of technical effect on energy consumption
driven by human capital primarily comes from enterprises, rather
than colleges and research institutes.

H2b: Compared with invention-oriented technical effect, the
utility-oriented technical effect of human capital alleviates energy
pressure.

2.3. Structural effect

As noted above, human capital is a significantly influential factor
of China ’ s industrial structure upgrading and optimization, driving
the evolution of energy consumption. Amid the flow of labor and capi‐
tal across sectors, the industrial structure is continuously adjusted
and optimized. In this process, energy resources are transferred from
sectors with high use to those with minimal resource use or
nonenergy-dependent sectors (such as consumer services), resulting in
a tendency toward decreased energy consumption (Luan et al., 2021).
The higher the education level of human capital is, the more condu‐
cive it is to industrial structural optimization. First, as a generator of
technology, human capital has a direct and positive role in improving
industrial sector production efficiency, which promotes industrial
structure upgrading and optimization. Second, with the increase in
human capital, which is treated as a production input, the economy
will also continue to accumulate physical capital. This accumulation
effect will generate comparative advantage for industrial sectors with
high human capital, thus promoting the transfer of factors of produc‐
tion among sectors and optimizing the industrial structure (Zhang et
al., 2011). Accordingly, there is a reasonable chance that human capi‐
tal affects energy conservation through the structural effect. The final
hypothesis of this study is as follows:

H3: Human capital reduces energy consumption through the
structural effect.

3. Methodology

3.1. Empirical models

We apply the STIRPAT model (Dietz and Rosa, 1997) to empiri‐
cally examine the effect of human capital on energy consumption.
The STIRPAT model is an extension of the IPAT method (Ehrlich and
Holdren, 1972) and offers a flexible framework for hypothesis testing
without imposing prior proportionality in the functional relationship
between variables (Yao et al., 2020). The conventional model is given
as follows:

I = aPb AcT de (1)
Where, I is the measure of resource consumption; P, A, and T indicate
the population, affluence (usually denoted by GDP), and technologi‐
cal progress, respectively; a represents a constant term; b, c, and d rep‐
resent the resource consumption elasticity of population, affluence,
and technological progress, respectively; and e is the random error
term. As noted in Section 2, apart from the population, the level of
human capital is also an essential factor for determining energy con‐
sumption. Furthermore, investigating the driving factor of energy con‐
sumption per capita, rather than total energy consumption, is more
practical for policymakers ’ understanding of the regional characteris‐
tics of future energy change. Consequently, we present an extension
of the STIRPAT framework by introducing the level of human capital
and using energy consumption per capita as the explained variable:
PEC = a ´RAHCb ´PGDPc ´ETPd·e (2)
Where, PEC denotes energy consumption per capita; RAHC represents
real average human capital; PGDP, which stands for GDP per capita,
is employed to reflect the scale effect on energy consumption; and
ETP denotes technological progress in the energy field.

Apart from these influencing factors of energy consumption per
capita, as shown in model (2), many other factors have important ef‐
fects on energy consumption. First, as noted in Section 2, we include
industrial structure optimization (defined as the Theil index) as a con‐
trol variable in the energy consumption per capita model, and we ex‐
pect to find that the higher the degree of industrial structure optimiza‐
tion is, the lower is the level of energy consumption.

Second, urbanization is regarded as an important driver of en‐
ergy consumption (Ma et al., 2017). A higher urbanization rate im‐
plies greater energy consumption to sustain economic development
and daily life. Therefore, referencing Huang et al. (2021a) and Zhang
et al. (2011), the ratio of urban population to total population is in‐
cluded on the right-hand side of our model, with a positive effect an‐
ticipated.

Third, since China entered the World Trade Organization in
2001, its global exports have experienced a huge leap, along with en‐
ergy growth. According to General Administration of Customs, in
2019, China ranked first in exports, which were estimated at US$2.5
trillion. It is clear that exports have become an important engine of
China ’ s economic development. Referencing Yao et al. (2020), we
add the proportion of exports to GDP as a control variable. Finally,
we integrate energy price into our model, which should relate to en‐
ergy consumption according to microeconomic theory (Hang and Tu,
2007).

Taking the logarithm of model (2), our main empirical specifica‐
tion is as follows:
ln PECit = δ + α1ln RAHCit + α2ln PGDPit + α3ln ETPit + α4ln TLLit

+α5ln URBit + α6ln EXit + α7ln EPit + εit

(3)

Where, subscripts i (i = 1, 2, 3,…, N) and t (t = 1, 2, 3,…, T) denote
provinces and years, respectively; TLL, URB, EX, and EP represent the
Theil index, urbanization, export, and energy price, respectively;
other variables are consistent with model (2); αm (m = 1, 2, 3,…, 7)
is the parameter to be estimated; and ε is the stochastic error term.

Considering that energy consumption has a strong time persis‐
tence, we add its lagged term into the right-hand side of the model so
that it has dynamic explanatory ability (Huang et al., 2020). The dy‐
namic model for energy consumption is as follows:
ln PECit = λ + β1ln PECit - 1 + β2ln RAHCit + β3ln PGDPit + β4ln ETPit

+β5ln TLLit + β6ln URBit + β7ln EXit + β8ln EPit + μit

(4)

Where, β1Î(01) represents the coefficient to be estimated on the
lagged dependent variable. Other variables mirror model (3).

As the dynamic panel model contains more information on the
evolution of energy consumption compared to a static panel model, it
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is used as the benchmark model in this study. Unfortunately, our
model may have severe endogeneity issues due to the introduction of
lagged terms of the explained variables. Energy consumption may
also have a bidirectional causality relationship with GDP (Fang and
Chang, 2016) and export (Li and Qi, 2011), further intensifying the
endogeneity. To address this, we use the conventional generalized
method of moments (GMM) and instrumental regression technique
(Arellano and Bond, 1991).

3.2. Data source and management

Data for Tibet, Hong Kong, Macao, and Taiwan are unavailable,
and Chongqing has been separated from the Sichuan province since
1997 and is now the youngest municipality directly under the central
government. Hence, a panel dataset of 30 provincial regions in the
Chinese mainland from 1997 to 2018 is included in our analyses.

We use the average energy consumption of the provinces' popula‐
tion as the explained variable. The data on energy consumption are
sourced from the China Energy Statistical Yearbooks, and the popula‐
tion data come from China Provincial Statistical Yearbooks (CPSY).

The J – F method, which was improved by the CHLR(Jorgenson
and Fraumeni, 1992a, 1992b; Li, 2012), is applied to measure human
capital. The J–F method uses the present value of lifetime income ex‐
pectancy to measure human capital. The advantage of this method is
that it more accurately and reasonably reflects long-run investments,
such as in education and health, which have a significant role in hu‐
man capital accumulation. Presently, the China Human Capital Report
from the CHLR presents the estimation results for real average human
capital in various Chinese provinces by year.④ Owing to data limita‐
tions, the sample data regarding population education are only avail‐
able from the China Statistical Yearbook. We assume the proportion
of the population with a college degree or above to the total popula‐
tion as higher-educated human capital and that of senior high school
degree or below as lower-educated human capital.

As for other variables, PGDP is converted into 1997 prices using
the GDP deflator index, which is calculated as real GDP divided by
the total population obtained from the CPSY. The structure of human
capital is also obtained from the CPSY. Considering technological in‐
novation is a difficult process that depends on many factors as not all
R&D inputs will succeed in generating new technology. Furthermore,
R&D can be adopted in some fields that are unrelated to energy.
Therefore, not all R&D efforts will contribute to energy use. Conse‐
quently, in contrast to existing literature, we use the number of
energy-saving patents as a proxy for energy technology. Because the
data on capital stock can better reflect energy technology than flow
data, we calculate the stock data of energy patents considering both
the diffusion and depreciation rate:

ETPit =∑j = 0

t Patentsit exp[-ν1 (t - j)]×{1 - exp[-ν2 (t - j)]}, (5)

Where, Patents (base period = 1990) denotes energy-saving patents
granted by the State Intellectual Property Office of China on the stan‐
dard filing date. The data on energy-saving patents are obtained by re‐
trieving the names of the provincial regions and the International Pat‐
ent Classification codes published by the World Intellectual Property
Organization. The data on different types of energy-saving patents are
obtained based on the standard application date. ν1 and ν2 represent
depreciation and diffusion rates and have values of 0.36 and 0.03, re‐
spectively, referencing Lin and Zhu (2019).

Referencing Cheng et al. (2017), we apply the Theil index to mea‐
sure the optimization of the industrial structure, primarily reflecting
the flow and reasonable allocation of essential production elements
among various sectors. As the Theil index considers the heterogeneity
among industries by introducing different weights for different indus‐

tries, it is suitable for determining industrial structure optimization
(Luan et al., 2021). Model (6) shows how it is calculated:

TLL =∑i = 1

n (
Yi

Y
)ln(

Yi

Li

/
Y
L

), (6)

Where, Y denotes the economic output; Yi(i = 1, 2, 3) represents pri‐
mary, secondary, and tertiary industries, respectively; and L is the
number of labor inputs. The Theil index is negatively correlated with
the level of industrial structure optimization (i.e., if TLL is equal to 0,
the industrial structure is extremely unbalanced). The data on Y and
L can be obtained from the CPSY.

The data on urbanization (UR) and export (EX) are defined as the
ratio of the urban population to the total population and exports as a
share of GDP, respectively. Both values are from the CPSY. Energy
price (EP) denotes the price index of purchasing fuel and power; 1997
is set as the base year (i.e., the EP index in 1997 is set as 100) and is
obtained from the Price Yearbook of China. Tables 1 and 2 present
the definitions of all variables and descriptive statistics of core vari‐
ables, respectively. We also provide a correlation coefficient matrix of
the variables in Table 3.

4. Results and discussion

Before conducting empirical analysis, it is necessary to assess the
effects of the spurious regression through unit root and cointegration
tests. We then apply a series of methods to investigate how human
capital influences energy consumption.

4.1. Primary test

In the first step, we perform a unit root test of the panel dataset
to determine the data stability of core variables. IPS (Im et al., 2003)
and Fisher tests are commonly applied to check for panel unit roots.
In Table 4, based on either the IPS test or the Fisher test, the presence
of a unit root cannot be rejected for most variables. Nevertheless, the
variables are stationary at first-order differencing in panel B, and
therefore, economic development may affect the integration of all
variables in our models over time. We apply the methods of Pedroni
(1999, 2004) and Kao (1999) to test for the presence of a cointegra‐
tion relationship in Table 5. We conduct cointegration tests on RAHC,
and all strongly reject the null hypothesis, indicating no cointegration
among the variables. Panels A and B demonstrate that the cointegra‐
tion relationship is verified with or without a homogenous long-run
variance when using the Pedroni (1999, 2004) method. The test
based on the Kao (1999) method also indicates a cointegration rela‐
tionship with our selected variables in panel C. As demonstrated by
the augmented Dickey–Fuller statistic, a strong long-run cointegration
relationship exists in our variables.

We conclude that there is a robust, long-term relationship be‐
tween human capital and energy consumption. In the following, we
examine the effect of human capital on energy consumption.

4.2. Effect of human capital on energy consumption

After confirming the existence of a cointegration relationship,
we estimate the coefficients of model (4). Fixed (FE) and random ef‐
fects models are commonly used for panel data. Our result at the bot‐
tom of Table 6 indicates that FE using the Hausman test is more ap‐
propriate for estimation. In Table 6, energy consumption fluctuations
through human capital are reported by the fixed effect (FE) method
in column (1). In column (2), we report the FE-IV results to prelimi‐
narily weaken the endogeneity by employing the first-order lagged
export and GDP values. Because the right-hand side of the model con‐
tains the lag term of the dependent variable and GDP and export are

④Available from: http://humancapital.cufe.edu.cn/en/Human_Capital_Index_Project.htm
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mutually causal with energy consumption, any serious endogeneity is‐
sues should be eliminated. Considering that the difference GMM
(DIFF-GMM) estimator effectively addresses endogeneity issues, col‐
umn (3) of Table 6 presents the corresponding estimates. In the DIFF-
GMM estimator, the second-order and subsequent lag terms of the en‐
dogenous variables and the first-order and subsequent lag terms of
the predetermined variables are regarded as our instrumental vari‐
ables.

As shown in Table 6, human capital has a significantly positive
impact on energy consumption. When human capital increases by
1%, energy consumption rises significantly by approximately 0.3%.
Energy technological progress had minimal statistical significance on
energy consumption. We find no evidence of a positive relationship of
per capita GDP with energy consumption. The relationship between

economic development and energy consumption remains mixed. The
coefficient of the Theil index is significantly positive, indicating that
economic structure optimization can influence the evolution of en‐
ergy consumption, consistent with our expectations. A 1% decrease in
the Theil index is associated with a 0.05% decrease in energy con‐
sumption.

Regarding other factors, urbanization increases energy consump‐
tion to meet daily life and production needs. If the urbanization level
rises by 1%, an increase of 0.08% in energy consumption is expected.
By contrast, we do not find an obvious correlation between export

Table 1
Definitionof all variables.
Variables
PEC
RAHC
HEHC
LEHC
ETP
ETPE
ETPR
ETPC
ETPI
ETPU
PGDP
TLL
URB
EX
EP
HES

Definition
Energy consumption divided by the total population
Real average human capital
The ratio of the population with college degree or above in total population
The ratio of population with senior high school degree or below in total population
The stock of energy-saving patents
The stock of energy-saving patents carried by enterprises
The stock of energy-saving patents carried by research institutions
The stock of energy-saving patents carried by colleges
The stock of invention-oriented energy-saving patents
The stock of utility-oriented energy-saving patents
GDP divided by the total people
Theil index
The ratio of urban population divided by total resident population
The ratio of export divided by GDP
The price index of purchasing fuel and power
The ratio of the original value of total assets in the most six high energy-consuming industries to that in the overall industrial sectors

Unit
TCE/person
RMB
%
%
-
-
-
-
-
-
RMB
-
%
%
-
%

Notes: TCE stands for the standard coal equivalent.

Table 2
Descriptive statistics of the core variables
Variables
ln PEC
ln RAHC
ln ETP
ln PGDP
ln TLL
ln URB
ln EX

Obs
660
660
660
660
660
660
660

Mean
0.8
12.006
0.031
9.676
3.011
3.807
2.182

Std. Dev.
0.609
0.619
3.523
0.785
0.737
0.366
0.983

Min
-0.726
10.515
-7.580
7.696
0.477
2.642
-0.328

Max
2.334
13.559
7.407
11.468
4.466
4.503
4.598

Table 3
Correlation matrix of the variables
Variables
ln PEC
ln RAHC
ln ETP
ln PGDP
ln TLL
ln URB
ln EX

ln PEC
1.000
0.686
0.610
0.726

-0.238
0.713
0.161

ln RAHC

1.000
0.896
0.931

-0.534
0.794
0.293

ln ETP

1.000
0.881

-0.337
0.670
0.152

ln PGDP

1.000
-0.568
0.838
0.387

ln TLL

1.000
-0.613
-0.582

ln URB

1.000
0.419

ln EX

1.000

Table 4
Panel unit root tests

Panel A: levels
ln PEC
ln RAHC
ln PGDP
ln ETP
ln URB
ln EX
ln TLL

Panel B: first difference
D.ln PEC
D.ln RAHC
D.ln PGDP
D.ln ETP
D.ln URB
D.ln EX
D.ln TLL

IPS test
T

-0.702
-1.019
1.832
1.317

-5.176∗∗∗

-1.810∗∗

2.081

-11.584∗∗∗

-13.490∗∗∗

-4.834∗∗∗

-11.735∗∗∗

-16.466∗∗∗

-18.534∗∗∗

-14.707∗∗∗

Fisher test
P

39.588
42.064
42.156
59.356

109.834∗∗∗

90.828∗∗∗

68.693

420.033∗∗∗

434.226∗∗∗

177.966∗∗∗

394.312∗∗∗

495.343∗∗∗

76.324∗∗∗

502.448∗∗∗

Z

1.981
2.956
5.214
0.711

-3.759∗∗∗

-1.277
-1.224

-16.054∗∗∗

-16.541∗∗∗

-7.611∗∗∗

-15.252∗∗∗

-18.256∗∗∗

-22.884∗∗∗

-18.417∗∗∗

L∗

1.873
3.202
5.237
0.852

-4.014∗∗∗

-1.646∗

-1.284

-21.128∗∗∗

-21.856∗∗∗

-8.289∗∗∗

-19.749∗∗∗

-24.885∗∗∗

-38.657∗∗∗

-25.346∗∗∗

Pm

-1.863
-1.637
-1.629
-0.059
4.549∗∗∗

2.814∗∗∗

0.794

32.866∗∗∗

34.162∗∗∗

10.769∗∗∗

30.518∗∗∗

39.741∗∗∗

64.478∗∗∗

40.390∗∗∗

Notes: ∗, ∗∗, ∗∗∗ respectively represent the 10%, 5% and 1% significance level.
For the IPS test the lag length is selected by minimizing Akaike Information
Criterion (AIC) and panel means and time trend are included. For the Fisher
test the lag order is set to be 1 and only panel means are included.
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and consumption in energy. This implies that the impact of exports
on energy consumption in China, which is determined by the types
of export-oriented products, technology spillover, and other factors,
remains uncertain. Moreover, EP appears to have a significant and
positive impact on energy consumption, suggesting that energy prices
fail to mitigate energy consumption because they are partially regu‐
lated by the government, and cannot accurately reflect the market
signal.

We present a series of relevant statistics at the bottom of Table
6. AR(1) and AR(2) represent the first- and second-order autocorrela‐
tion, which checks the sequence correlation in our estimators. All re‐
sults strongly accept the null hypothesis, suggesting that no second-
order autocorrelation is present in the model, and our results are vi‐
able. The result for the Hansen test, which is used to determine
whether an overidentification restriction exists, is also listed, con‐
firming that no overidentification restriction is present in our estima‐
tors.

4.3. The influencing mechanism of human capital in energy consumption

After confirming that human capital is a strong driver of energy
consumption, we next examine the three main channels of scale, tech‐
nical, and structural effects using (Nguyen and Phan, 2020) proposed
two-step analysis to determine whether mechanism effects exist. In
the first step, we run a regression of human capital on mechanism ef‐
fects. As expected, human capital has a positive impact on scale and
technical effects and a negative impact on the structural effect. We
next sort the mechanism effects from smallest to largest, dividing
them into five equal parts, taking the subsamples in the highest ter‐
cile (5th) and lowest tercile (1st) to re-estimate the impact of human
capital on energy consumption. If effects are present, the coefficients
of human capital will significantly differ between the two subsamples
because they represent a strong or weak channel effect.

4.3.1. The scale effect analysis
In Table 7, we first estimate the scale effect in columns (1)–(3),

followed by higher-educated human capital in columns (4) – (6) and
lower-educated human capital in columns (7) – (9). First, in column
(1), the positive and significant coefficient of human capital suggests
that human capital promotes economic growth. In columns (2) and
(3), the positive and strongly significant coefficient (0.006) of human
capital on energy consumption is shown in the highest tercile sub‐
sample (5th ln PGDP), whereas an insignificant coefficient (−0.017) is
observed in the lowest tercile subsample (1st lnPGDP). The chi-square
test at the bottom of Table 7 rejects the assumption of no difference
in subsample coefficient size, revealing a notable discrepancy be‐
tween the two tercile subsamples. Thus, the scale effect is an impor‐
tant mechanism between human capital and energy consumption; H1
holds. Second, although scale effect is generally positive for resource
consumption, higher-educated human capital values the environment
more and consumes less energy, as previously discussed in Section 2.
To address this, the impact of the scale effect and higher-educated hu‐
man capital on energy consumption is estimated in columns (4)–(6).
Higher-educated human capital significantly promotes the scale ef‐
fect, but there is a negative coefficient in the highest subsample, and
a significant disparity with the lowest subsample indicates that
higher-educated human capital consumes less energy through the
scale effect. It also implies that higher-educated human capital is
more environmentally conscious. H1a is verified. Finally, we test the
impact of lower-educated human capital on energy mitigation
through the scale effect. As expected, lower-educated human capital
expands economic scale and increases resource consumption, which is
consistent with H1b.

The relevant statistics at the bottom of Table 7 are similar to
those in Table 6.

Table 5
Panel co-integration tests
Panel A:Within-dimension (Pedroni,1999, 2004)

Panel v-Statistic
Panel rho-Statistic
Panel PP-Statistic

Panel ADF-Statistic
Panel B:Between-dimension (Pedroni,1999, 2004)

Group rho-Statistic
Group PP-Statistic

Group ADF-Statistic
Panel C: Kao (1999)

Modified DF-Statistic
DF-Statistic

ADF-Statistic
Unadjusted modified DF-Statistic

Unadjusted DF-Statistic

-7.765∗∗∗

5.302∗∗∗

-3.751∗∗∗

-4.252∗∗∗

7.347∗∗∗

-3.049∗∗∗

-4.124∗∗∗

-0.409
-0.765
-2.785∗∗∗

-0.307
-0.696

Notes: ∗∗∗ respectively represents the 1% significance level. For the within-
dimension and between-dimension test(Pedroni, 1999; 2004) the lagged
length is selected by minimizing AIC and panel means and time trend are in‐
cluded. For the Kao (1999) test the lagged order is set as 2 and only panel
means are included.

Table 6
The effect of human capital on energy consumption
No.
Method
L. ln PEC

ln RAHC

ln ETP

ln PGDP

ln TLL

ln URB

ln EX

ln EP

Constant

N
Hausman(P)
AR(1)-P
AR(2)-P
Hansen-P

(1)
FE
0.921∗∗∗

(0.023)
0.113∗

(0.061)
-0.004
(0.011)
-0.075
(0.058)
0.054∗∗∗

(0.017)
0.067∗∗

(0.029)
0.016
(0.011)
0.049∗

(0.024)
-1.218
(0.719)
630
58.21(0)

(2)
FE-IV
0.974∗∗∗

(0.030)
0.221∗∗∗

(0.068)
0.002
(0.011)
-0.219∗∗∗

(0.068)
0.055∗∗∗

(0.021)
0.046
(0.035)
0.007
(0.015)
0.036
(0.028)
-1.007
(0.665)
630
79.88(0)

(3)
DIFF-GMM
0.885∗∗∗

(0.046)
0.300∗∗∗

(0.083)
-0.023
(0.015)
-0.125
(0.089)
0.056∗∗

(0.026)
0.083∗∗

(0.032)
0.012
(0.013)
0.079∗∗

(0.031)

600

0.002
0.446
1

Notes: Values in parentheses denote the robust std.error for the coefficient. ∗,
∗∗, ∗∗∗ respectively represent 10%, 5% and 1% significance level. ln PGDP and
ln EX are treated as the endogenous variables in FE-IV and DIFF-GMM estima‐
tor and the instruments are selected by using the collapse sub-option.
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4.3.2. The technical effect analysis
Similarly, estimates of technical effects are presented in Table 8.

As previously applied, we first estimate the overall impact of human
capital on energy consumption through technical effect and then ex‐
amine what type of technical effects are the main mechanisms in de‐
tail. In columns (1)–(3), human capital has a positive effect on tech‐
nical effect, as indicated by a coefficient of 0.422 with a 5% signifi‐
cance level. The subsample regression results reveal that the coeffi‐
cient of human capital in the largest subsample (5th ln ETP) is
smaller than the smallest subsample (1st ln ETP) and the chi-square
test for coefficient difference is rejected. Technical effect plays a key
role in energy mitigation driven by human capital. H2 is also veri‐
fied.

To determine which technical effects are dominant, we next con‐
sider different performers and purposes. In this regard, technical ef‐
fect is divided into three different performers, namely, enterprises (ln
ETPE), colleges (ln ETPC), and research institutes (ln ETPR), and into
two purposes of invention-oriented (ln ETPI) and utility-oriented (ln
ETPU) innovation. First, columns (4)–(12) present the technical effect
carried by enterprises, research institutes, and colleges. As shown in
chi-square tests, although human capital promotes the threefold tech‐
nical effect, only the technical effect of enterprises is significant, com‐
pared with the results of research institutes and colleges. This implies
that technical effects on energy mitigation driven by human capital
are primarily contributed by enterprises, verifying H2a. Second, the
results of different purposes of technical effect are presented in col‐
umns (13) – (18), indicating that utility-oriented technical effect,
rather than invention-oriented technical effect, reduces energy con‐
sumption caused by human capital, confirming H2b.

The statistics at the bottom of Table 8 confirm the validity of our
results.

4.3.3. The structural effect analysis
Finally, the structural effect is analyzed in Table 9. The estimated

results suggest that human capital optimizes industrial structure and
consumes less energy by reducing the Theil index as the negative coef‐
ficient in the lowest (1st ln TLL, the strong structural effect) tercile
subsample demonstrates. Thus, the structural effect has a role, and
H3 is verified.

In summary, on the basis of the results in Tables 7–9, the positive
influence of human capital on energy consumption is primarily corre‐
lated with the scale effect. However, owing to valuing the environ‐
ment more highly, higher-educated human capital reduces energy
consumption through the scale effect, but lower-educated human capi‐
tal does not. Compared to the scale effect, both the technical and
structural effects of human capital reduce energy consumption. More‐
over, the technical effects generated by enterprises and utility-
oriented innovations have a dominant influence on energy mitigation
from human capital.

4.4. Robustness tests

To check the robustness of our models, various tests, including re‐
placement of control variables and eliminating crowding-out effects,
are applied below.

First, in economic structure measurement, shifting from high-
energy-intensive industries to high-tech industries is significant be‐
cause the energy required to produce one unit of GDP in some

Table 7
The scale effect analysis
No.
Dep=
Sample

L.ln PGDP

L.ln PEC

ln RAHC

ln HEHC

ln LEHC

ln ETP

ln TLL

ln URB

ln EX

ln EP

Chi-squared test(P)
N
AR (1)
AR (2)
Hansen-P

(1)
ln PGDP
Full

0.921∗∗∗
(0.022)

0.090∗∗
(0.036)

-0.006
(0.007)
0.023∗

(0.014)
0.006

(0.020)
0.007

(0.005)
0.066∗∗∗

(0.016)

600
0.017
0.328

1

(2)
ln PEC

5th ln PGDP

0.501∗∗∗
(0.126)

0.006∗∗
(0.003)

0.022∗∗
(0.012)
0.173∗

(0.091)
0.057

(0.056)
0.005

(0.024)
0.092

(0.058)
3.48(0.062)
600
0.087
0.981
0.692

(3)

1th ln PGDP

-0.017
(0.012)

(4)
ln PGDP
Full

0.885∗∗∗
(0.043)

0.126∗∗
(0.005)

0.239∗∗∗
(0.009)
0.028∗∗

(0.014)
-0.019
(0.013)
0.017∗∗

(0.007)
-0.002
(0.012)

600
0.001
0.883
0.057

(5)
ln PEC

5th ln PGDP

0.561∗∗∗
(0.054)

-0.038∗∗∗
(0.014)

0.052∗∗∗
(0.013)

0.013
(0.026)
-0.126
(0.151)
0.048∗∗∗
(0.018)
0.124∗∗∗
(0.041)

4.54(0.033)
600

0.004
0.116
0.742

(6)

1th ln PGDP

-0.004
(0.008)

(7)
ln PGDP
Full

0.900∗∗∗
(0.032)

0.087∗∗
(0.041)
0.014∗∗

(0.006)
0.064∗∗∗

(0.013)
-0.008
(0.020)
0.031∗∗∗

(0.006)
0.069∗∗∗

(0.017)

600
0.001
0.102

1

(8)
ln PEC

5th ln PGDP

0.470∗∗∗
(0.085)

0.012∗
(0.007)

0.027∗∗
(0.013)
0.041∗

(0.023)
-0.015
(0.056)
0.022

(0.024)
0.095∗∗∗
(0.035)

10.73(0.001)
600

0.047
0.326
0.790

(9)

1th ln PGDP

-0.073∗∗∗
(0.023)

Notes: Values in parentheses denote the robust std. error for the coefficient. ∗, ∗∗, ∗∗∗ respectively represent 10%, 5% and 1% significance level. lnPGDP and lnEX
are treated as the endogenous variables in DIFF-GMM estimator and the instruments are selected by using the collapse sub-option.
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energy-intensive industries is much higher than that in high-tech in‐
dustries (Li and Tao, 2017). We subsequently introduce the propor‐
tion of the original value of total assets in the six highest energy-
intensive industries to that of the overall industrial sectors (%) as a
proxy for economic structure⑤ . The DIFF-GMM estimators are used
to estimate model (4), and the corresponding results are reported in
column (1) of Table 10 and are consistent with the results in Table 6,
once again confirming that our empirical results are robust and effec‐
tive.

Second, energy consumption may have a crowding-out effect on
human capital, particularly for energy-intensive provinces, and may
influence our estimation technique and analysis scope. To address
this, in columns (2)–(4) of Table 10, the influence of energy consump‐
tion on human capital outflow is estimated. The results of FE, FE-IV,
and DIFF-GMM estimators reveal no significant evidence of energy
consumption being responsible for human capital outflow. To illus‐
trate this further, limiting our sample to the top 25% of provinces
with the highest energy consumption, we re-estimate the impact of
energy consumption on human capital in column (5). The negative co‐
efficient denotes that there is indeed a crowding-out effect on human
capital in energy-intensity provinces, but this effect is negligible and
hardly affects the empirical results.

At the bottom of Table 10, we present other relevant statistics,
similar to previous iterations.

5. Conclusions and policy implications

Facing the reality of enormous energy consumption, China ur‐
gently needs to identify its driving factors to implement accurate
energy-saving strategies. Unlike previous literature, this paper focuses

on the influence of human capital on energy consumption. The major
conclusions and policy implications are presented below.

5.1. Conclusions

On the basis of an extended version of the STIRPAT framework,
this study estimated the impact of human capital on energy consump‐
tion using a panel dataset of China's 30 provincial regions from 1997
to 2018. Our research demonstrated that human capital can increase
energy consumption. In particular, the positive effect of human capi‐
tal on energy consumption primarily stems from the scale effect, but
higher-educated human capital consumes less energy through the
scale effect. Moreover, both the technical and structural effects re‐
duce energy consumption driven by human capital, and the technical
effect contributed by enterprises and utility-oriented technical innova‐
tion have a dominant influence on energy mitigation from human
capital.

5.2. Policy implications

The conclusions above lead to some important implications for
policymakers. First, China should pay considerable attention to accu‐
mulating and expanding its stock of human capital. The real average
human capital presents an increasing trend on a national level during
the period of 1985 – 2018. However, although China's development
speed has been high, its human capital remains low compared to the
rest of the world. Consequently, the government of China should initi‐
ate active measures to improve the quality of human capital (e. g.,
through education, training, practical experience, and other feasible
approaches) as this also has a key role in energy consumption. Adjust‐

⑤On the basis of the National Development and Reform Commission in China, the six most high-energy-consuming industries are petroleum processing; coking;
nuclear fuel processing; production of raw chemical materials, chemical products, and nonmetallic mineral products; smelting and pressing of ferrous and nonfer‐
rous metals; and production and supply of electric and thermal power.

Table 8
The technical effect analysis.
No.
Dep=
Sample

ln RAHC

Control variables
Chi-squared test(P)
N
AR (1)
AR (2)
Hansen-P
No.
Dep=
Sample

ln RAHC

Control variables
Chi-squared test(P)
N
AR (1)
AR (2)
Hansen-P

(1)
ln ETP
Full
0.422∗∗
(0.172)
Yes

600
0.008
0.251
1
(10)
ln ETPC
Full
1.876∗
(1.102)
Yes

600
0.004
0.766
1

(2)
ln PEC

5th ln ETP
-0.006∗∗
(0.001)

Yes
3.59(0.058)

600
0.008
0.346

1
(11)

ln PEC
5th ln ETPC
-0.006∗∗∗
(0.001)

Yes
1.00(0.318)

600
0.002
0.385

1

(3)

1th ln ETP
-0.002∗∗
(0.001)

(12)

1th ln ETPC
-0.003
(0.002)

(4)
ln ETPE
Full
0.982∗
(0.580)
Yes

600
0.011
0.911
1
(13)
ln ETPI
Full
0.659∗∗
(0.275)
Yes

600
0.026
0.758
1

(5)
ln PEC

5th ln ETPE
-0.005∗∗∗
(0.001)

Yes
3.81(0.051)

600
0.007
0.193

1
(14)

ln PEC
5th ln ETPI
-0.009∗∗∗
(0.003)

Yes
1.82(0.177)

600
0.001
0.824

1

(6)

1th ln ETPE
-0.001
(0.002)

(15)

1th ln ETPI
-0.015∗∗∗
(0.003)

(7)
ln ETPR
Full
0.954∗
(0.576)
Yes

600
0.010
0.328
1
(16)
ln ETPU
Full
0.426∗∗
(0.179)
Yes

600
0.008
0.203
1

(8)
ln PEC

5th ln ETPR
-0.004∗∗∗
(0.001)

Yes
1.52(0.218)

600
0.003
0.395

1
(17)

ln PEC
5th ln ETPU
-0.012∗∗∗
(0.003)

Yes
4.08(0.043)

600
0.001
0.662
0.984

(9)

1th ln ETPR
-0.007∗∗∗
(0.002)

(18)

1th ln ETPU
-0.006∗∗∗
(0.001)

Notes: Values in parentheses denote the robust std. error for the coefficient. ∗, ∗∗, ∗∗∗ respectively represent 10%, 5% and 1% significance level. lnPGDP and lnEX
are treated as the endogenous variables in DIFF-GMM estimator and the instruments are selected by using the collapse sub-option. For brevity, control variables
contain all dependent variables lagging terms, lnPGDP, lnTLL, lnURB, lnEX and lnEP.
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ing the structure of human capital should also be emphasized, ratio‐
nalizing the distribution of human capital across regions to ensure
that people of all social strata have equal rights to education. In par‐
ticular, policies should focus on attracting high-quality human capital
to inland regions. Furthermore, China should increase national invest‐
ments in higher education to develop human capital, which will have
a leading influence on energy conservation, and compulsory educa‐
tion should apply to the majority of the population.

Second, because technological progress promotes energy conser‐
vation, it is important for China to increase funding for technological
R&D, particularly energy-saving innovation activities. Moreover, ow‐
ing to the significant impact on technological progress generated by
enterprises and utility-oriented innovation on energy mitigation, prac‐
tical enterprise technological innovation should be encouraged.

Third, updating and optimizing the economic structure should be
prioritized in the national development strategy, and it is essential for
China to accelerate the transformation of its industrial structure to ter‐
tiary industry. At the same time, through restructuring, innovation,
taxation, and other approaches, the production modes of energy-
consuming industries should be transformed and the structure of ex‐
portation adjusted. In the future, China should reduce its dependence
on energy for exportation, exporting high value-added and
technology-intensive products.

Finally, urbanization is one of the most remarkable processes in
China. Currently, over half of the total population resides in urban ar‐
eas, exerting tremendous pressure on China's control of energy con‐
sumption. Given that high education is correlated with environmental
concern, advocating an energy-saving urban lifestyle by increasing
the use of public transportation instead of private cars could be popu‐
lar.
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Table 9
The structural effect analysis.
No.
Dep=
Sample

L.ln TLL

L.ln PEC

ln RAHC

ln PGDP

ln ETP

ln URB

ln EX

ln EP

Chi-squared test(P)

N
AR (1)
AR (2)
Hansen-P

(1)
ln TLL
Full
0.333∗∗∗
(0.107)

-0.546∗
(0.325)
0.773∗∗
(0.395)
-0.115
(0.070)
-0.045
(0.101)
0.010
(0.043)
0.112
(0.070)

600
0.095
0.547
1

(2)
ln PEC

5th ln TLL

0.913∗∗∗
(0.024)

0.001
(0.001)

-0.071
(0.059)
0.006

(0.010)
0.138∗∗∗

(0.038)
0.026∗

(0.014)
0.069∗∗∗

(0.026)
8.82

(0.003)
600

0.001
0.327

1

(3)

1th ln TLL

-0.004∗∗∗
(0.001)

Notes: Values in parentheses denote the robust std. error for the coefficient. ∗,
∗∗ , ∗∗∗ respectively represent 10%, 5% and 1% significance level. lnPGDP and
lnEX are treated as the endogenous variables in DIFF-GMM estimator and the
instruments are selected by using the collapse sub-option.

Table 10
Robustness check
No.
Method
Dep=
L.ln PEC

L.ln RAHC

ln RAHC

ln PEC

ln PGDP

ln ETP

ln TLL

ln URB

ln EX

ln EP

ln HES

Constant

N
Hausman(P)
AR(1)-P
AR(2)-P
Hansen-P

(1)
DIFF-GMM
ln PEC

0.866∗∗∗

(0.047)

0.275∗∗∗
(0.082)

-0.097
(0.086)
-0.022
(0.015)
0.051∗∗

(0.025)
0.086∗∗

(0.033)
0.014

(0.013)
0.070∗∗

(0.031)
0.056

(0.042)

600

0.001
0.473

1

(2)
FE
ln RAHC

0.806∗∗∗

(0.018)

-0.009
(0.013)

0.096∗∗∗

(0.019)
0.006

(0.004)
0.011

(0.006)
0.025

(0.016)
0.003

(0.004)
0.008

(0.008)

1.295∗∗∗
(0.250)

630
152.20(0)

(3)
FE-IV
ln RAHC

0.805∗∗∗

(0.017)

-0.009
(0.012)

0.095∗∗∗

(0.016)
0.006∗

(0.004)
0.061

(0.044)
0.023

(0.016)
0.006

(0.004)
0.007

(0.008)

1.325∗∗∗
(0.241)

630
147.7(0)

(4)
DIFF-GMM
ln RAHC

0.509∗∗∗

(0.071)

-0.003
(0.068)

0.412∗∗∗

(0.153)
-0.016
(0.013)
-0.034
(0.029)
0.133

(0.126)
-0.020∗

(0.010)
-0.038∗∗

(0.016)

600

0.005
0.508
0.622

(5)
DIFF-GMM
ln RAHC

0.683∗

(0.405)

-1.747∗∗∗
(0.657)

2.890∗∗

(1.413)
-0.181
(0.115)
-0.314∗

(0.162)
-0.445
(0.453)
0.112∗

(0.059)
0.221∗

(0.134)

160

0.009
0.144

1
Notes: Values in parentheses denote the robust std. error for the coefficient. ∗,
∗∗, ∗∗∗ respectively represent 10%, 5% and 1% significance level. ln PGDP and
ln EX are treated as the endogenous variables in DIFF-GMM estimator and the
instruments are selected by using the collapse sub-option.
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