
Computer Networks 215 (2022) 109189

A
1

D

m

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Review article

Monitoring fog computing: A review, taxonomy and open challenges
Breno Costa ∗, João Bachiega Jr., Leonardo Rebouças Carvalho, Michel Rosa, Aleteia Araujo
epartment of Computer Science - University of Brasilia, Brazil

A R T I C L E I N F O

Keywords:
Monitoring
Orchestration
Fog computing
Taxonomy
Fog monitoring

A B S T R A C T

Fog computing is a distributed paradigm that provides computational resources in the users’ vicinity. Fog
orchestration is a set of functionalities that coordinate the dynamic infrastructure and manage the services to
guarantee the Service Level Agreements. Monitoring is an orchestration functionality of prime importance. It is
the basis for resource management actions, collecting status of resource and service and delivering updated data
to the orchestrator. There are several cloud monitoring solutions and tools, but none of them comply with fog
characteristics and challenges. Fog monitoring solutions are scarce, and they may not be prepared to compose
an orchestration service. This paper updates the knowledge base about fog monitoring, assessing recent subjects
in this context like observability, data standardization and instrumentation domains. We propose a novel
taxonomy of fog monitoring solutions, supported by a systematic review of the literature. Fog monitoring
proposals are analyzed and categorized by this new taxonomy, offering researchers a comprehensive overview.
This work also highlights the main challenges and open research questions.
1. Introduction

Fog computing is a computational paradigm that complements
cloud computing, providing computational resources on the network
edge, closer to the users. As a distributed infrastructure, fog computing
must deal with heterogeneity of network links and processing capacity
of its composing nodes [1]. These characteristics bring complexity to
fog management, and it is addressed by the orchestration of services
and resources. Orchestration is a management function, composed of
several complementary functionalities. It is responsible for dealing with
infrastructure dynamicity, for taking timely actions and for assuring
that Service Level Agreements (SLAs) are respected [2]. There are
several proposals of fog service orchestration in the literature, although
most of them, only conceptual.

Monitoring is a functionality of prime importance and it is crucial
to properly orchestrate fog services [3]. It collects updated status
information about fog nodes and communication links and send them to
the orchestrator. With an updated view of fog infrastructure and service
execution, the orchestrator can take proper actions to guarantee the
SLAs, e.g., offloading a service to a resource richer node and optimizing
service placement according to historic data about node failures [4].
Besides the heterogeneity of nodes being monitored, there are other
related concerns about frequency, topology, and communication model.
There is a trade-off between the frequency of information updates and
the overhead to the nodes and to the orchestrator related to generating,

∗ Corresponding author.
E-mail addresses: brenogscosta@gmail.com (B. Costa), joao.bachiega.jr@gmail.com (J. Bachiega Jr.), leouesb@gmail.com (L.R. Carvalho),

icheljunioferreira@gmail.com (M. Rosa), aleteia@unb.br (A. Araujo).

transmitting and processing status data. In such a dynamic scenario,
adaptability of monitoring parameters can play an important role. In
our previous work [4], we did a systematic literature review of fog
service orchestration and analyzed 50 proposals. Most of them (40 out
of 50) highlighted monitoring as a relevant process, but they frequently
assumed that a fog monitoring solution would be available to deliver
the information they needed, without presenting either implementation
methods or insightful information on the subject.

Monitoring is not only about reporting availability, i.e. the capacity
to answer the question of whether a node or a service is online
and working properly. It is also about the capacity to explain why a
node or service stopped working properly. The former is achieved by
monitoring metrics, e.g. service response time. The latter is achieved by
monitoring logs, i.e. unstructured strings of text, and traces, i.e. records
of requests made by an user in a service. Metrics, logs and traces form
what is called Instrumentation Domains of monitoring [5]. Different
instrumentation domains can be used simultaneously by a monitoring
solution to get different perspectives of a service. In such a scenario,
there would be more capacity for decision-making on the server-side,
but at the cost of increasing the complexity of monitoring, since their
specific characteristics (e.g. life-cycle, data volume) would be managed
accordingly. Another emergent concept that is being applied to mon-
itoring microservices is Observability. It is referenced as a superset
of monitoring that uses data analytics techniques on the collected
vailable online 19 July 2022
389-1286/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2022.109189
Received 5 April 2022; Received in revised form 16 June 2022; Accepted 13 July 2
022

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:brenogscosta@gmail.com
mailto:joao.bachiega.jr@gmail.com
mailto:leouesb@gmail.com
mailto:micheljunioferreira@gmail.com
mailto:aleteia@unb.br
https://doi.org/10.1016/j.comnet.2022.109189
https://doi.org/10.1016/j.comnet.2022.109189
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2022.109189&domain=pdf


Computer Networks 215 (2022) 109189B. Costa et al.

t
p
i

monitoring data aiming to shorten the time it takes to know why
something is not working as it should [6].

Some works analyzed cloud monitoring solutions and verified that
none of them is suitable for use in fog environments [7–10]. As far as
we know, only one work [9] analyzed fog monitoring solutions and that
analysis included only two proposals. In addition, none of these cited
works has touched upon observability, instrumentation domains or the
monitoring needs of fog service orchestration.

In order to address these limitations, a comprehensive review of fog
monitoring is required. This work analyzes fog computing literature
and proposes a novel taxonomy of fog monitoring solutions, in line with
the ongoing research in this field. By using this taxonomy, researchers
can verify whether a new monitoring proposal is suitable for use in the
context of fog computing. Also, developers of specific fog monitoring
solutions can use it as an updated and comprehensive guide to the
most important characteristics and features of such a solution. The main
contributions of this work are:

• An updated and comprehensive discussion about fog computing
monitoring characteristics and composing features;

• A fog computing monitoring taxonomy, describing its main do-
mains and categories;

• A categorization of fog monitoring solutions found in the litera-
ture using the proposed taxonomy;

• A discussion about challenges of fog monitoring solutions.

The rest of this paper is organized in the following way: Sec-
ion 2 contextualizes service orchestration in fog computing and related
aradigms. Section 3 presents requirements and challenges of fog mon-
toring and describes the review methodology used. Section 4 describes

the domains and categories that compose a fog monitoring solution
taxonomy. Fog monitoring proposals found in the literature are cat-
egorized by the proposed taxonomy in Section 5. Related works are
presented and compared with this work in Section 6. The challenges
inherent to fog computing monitoring are presented in Section 7.
Finally, Section 8 shows conclusions and future work.

2. Service orchestration in fog computing

This section presents the main characteristics of fog computing and
other related distributed paradigms. Also, it contextualizes fog service
orchestration showing the relevance of monitoring in this context.

Fog computing is a distributed computing paradigm that provides
resources for computing, storage, and connectivity at the network edge.
It can be considered an extension of cloud computing towards the
users’ locality. It provides computing resources for applications that
cannot perform properly with the high latency provided by cloud-only
environments. It resides in between the cloud and users, and the cloud
will do long-term storage and non-latency-dependent processing [11].

The layered (or hierarchical) representation of fog computing is the
most widely used approach [11]. In this context, a three-tiered architec-
ture is the common representation of fog computing environment [12]:
IoT Layer, Fog Layer and Cloud Layer. In this architecture, both the
Cloud and Fog layers can be implemented through federations. When
forwarding a request for resources due to the lack of them in the fog
environment, the fog management system can send the request to a
Sky Computing, a federation of cloud providers [13], which in turn
will fulfill the request selecting one available cloud provider. The fog
management system itself may also be dealing with multiple federated
fog infrastructures. The main characteristics of fog computing are [14,
15]: it better deals with low latency needs of services; in contrast
to cloud, fog services require widely geo-distributed deployments; on
fog, data collection and processing run on different platforms and are
delivered by many types of networks; its components should be able
to interoperate internally and federate between domains; fog services
2

involve real-time interactions, rather than batch processing, and it
supports scalability of needed resources and dynamicity of network and
device conditions.

Along with fog computing, there are other distributed paradigms
that provide resources on the network edge, but with different archi-
tectures and characteristics. Fog computing is often confused with Edge
computing, despite key differences between them. Fog has a general-
purpose, multi-layer architecture, while Edge runs specific applications
in a fixed logical location. Edge tends to be limited in number of de-
vices [14], whereas fog could scale to a huge number of them. Besides
edge computing, there are other proposed distributed paradigms in
literature. Mobile Edge Computing (MEC), Mobile Cloud Computing
(MCC), Mobile Ad Hoc Cloud Computing (MACC), Mist Computing,
Cloudlet Computing, and Dew Computing are examples of them. In
any case, all of them might fall under the same ‘umbrella’ [16] and
eventually solutions proposed for one of them could be applicable to the
others under certain conditions and scenarios. In the academy there are
publications focused on the presentation and comparison of all these
paradigms, such as [11,17–19]. Fig. 1 shows the layered representation
of fog computing and relative position of other related paradigms.

The characteristics of fog computing and related paradigms bring
an additional level of uncertainty when compared to cloud computing.
This motivates the need for orchestrating fog resources to provide
services to users while complying to SLA and Quality of Service (QoS)
requirements [20]. Orchestration is a management function responsible
for service life-cycle. To provide requested services to the user and
assure the SLAs, it must monitor the underlying infrastructure, react
timely to its changes, and comply with privacy and security rules [4].

Bonomi et al. [21] proposed a software architecture for running fog
services. This architecture is presented in Fig. 2. It shows a fog orches-
tration layer, structured as a Monitor–Analyze–Plan–Execute (MAPE)
control loop that is responsible for providing life-cycle management
of fog services in a distributed manner. To illustrate the control loop
applied to fog computing, we can start at Monitor phase. In this phase,
orchestration must collect updated status about each managed resource
and running services. From the Analysis of monitoring data, it can build
an updated and comprehensive view of fog environment and Plan the
changes needed to maintain the services inside SLAs and QoS limits,
as well as provide new requested services. Executing those planned
changes will indeed release and allocate proper resources, providing
services near end-users. The authors of [22] used a similar control
loop (MAPE-K with K meaning Knowledge) in MEC. They proposed
a deep learning approach to improve the decision-making about of-
floading computation intensive requests aiming guarantee the SLAs.
But the Monitoring phase of that loop is responsible to process the
requests made by IoT layer and the collection of resource metrics is
of responsibility of Knowledge module, where there is a subcomponent
called Resource DB. Despite the divergence on the names used, the
autonomous computation offloading strategy proposed acts like an
orchestrator as depicted in Fig. 3, delivering part of the functionalities
assigned to Admission Control, Resource Management (offloading),
Monitoring (updated Resource DB), Service Management (SLA man-
agement) with the data that support them stored in a Repository
(Knowledge Module).

There are several challenges that fog orchestration must overcome
to guarantee the accomplishment of its goals [23–25]:

• Churn — fog resources are inherently volatile. So, orchestration
must be aware of resources apparitions and vanishings [25] as
soon as possible to take the proper actions to guarantee the SLAs;

• Heterogeneity — not only the devices are heterogeneous. Also,
the execution environment can be diverse and occur simultane-
ously on the same device [26], f.i. a fog node with Virtual Ma-
chines (VM) and containers concurrently supporting independent

services at the same time;



Computer Networks 215 (2022) 109189B. Costa et al.
Fig. 1. Layered architecture of fog computing and related paradigms.
Fig. 2. Fog orchestration layer.
• Dynamism — fog computing is focused on low latency needs.
The information about resources and services statuses must be
updated to permit an effective decision making about failover
and offloading action. Besides, orchestrator must implement its
actions within the proper time frame to not impact low latency
needs [27];

• Large(r)-scale and Fine(r) Grain — fog characteristics incur on
solutions with smaller code bases and more fragmented state [23].
This increases the complexity of service orchestration, that may
have to be aware of a distributed service composition [25];

• Security and Privacy — fog nodes are distributed, resource-
restricted and heterogeneous. These characteristics increase the
3

complexity of keeping them secure. The distribution can poten-
tially comprehend several domains and they can have different
requirements about the privacy of stored data [25]. The hetero-
geneity and resource-restriction may demand different implemen-
tation of security enforcement tools and algorithms;

• Interoperability — heterogeneity of resources, access networks
and virtualization platforms (VM, container, unikernel [28]) in a
fog environment can restrict the interoperability among the or-
chestrator and the fog nodes; standard communication interfaces,
an additional layer for message translation and the implementa-
tion of multiple protocols can help overcome this challenge while



Computer Networks 215 (2022) 109189B. Costa et al.
Fig. 3. A generic fog computing orchestration architecture [4].
increasing the requirements a node or the orchestrator must meet
to participate;

• Resilience — an orchestrator must have a global view about the
status of the infrastructure and about the services being provided
to the users. By timely instantiating, replicating, and migrating
services it can promptly react to the changes and minimize their
negative impact in the service availability;

• Optimization — predicting a critical scenario’s change and an-
ticipating actions to better deal with it (e.g., a node failure or
resource exhaustion), can remarkably impact service’s overall per-
formance and availability. But prediction needs Machine Learning
(ML) algorithms and datasets that describe the previous behavior
of subjects of concern. The amount of data being stored and
transmitted in the network to the orchestrator and the proper ML
algorithms to be used are challenges to overcome towards the use
of optimization;

• Authentication, Access, and Account (AAA) — the interaction
between the orchestrator and each fog node can be modeled into
the steps of an AAA framework. Authentication queries node’s
credentials and validate whether it is allowed to participate on
that fog infrastructure or not. After node’s authentication, the
orchestrator can access local execution environment, run com-
mands and services, and collect node’s metrics values. Finally,
the account records resource usage and this data can be used
to reward node’s owner and/or bill the users who consumed the
services;

• Fine-grained Locality — orchestration must manage fog nodes’
resources in a way that does not overburden them.

To overcome the aforementioned challenges, fog service orchestra-
tion delivers several complementary functionalities [2,29]:

• Admission Control of Incoming Requests — the interface with the
end-user. Receives the requests, assesses the requester’s creden-
tials and decides where it will be served (fog/cloud).

• Service Management — manages service life-cycle, i.e., service
registration, service images to the different virtualization plat-
forms, service constraints, and requirements. Uses monitoring
4

data to verify the need for taking actions aiming to guarantee the
SLAs.

• Resource Management — manages resource life-cycle, i.e., dis-
covers new nodes, allocates resources to fulfill accepted requests
or a need for offloading, deallocate resources; Monitoring data is
responsible for maintain updated the resource inventory.

• Monitoring — updates status of availability, records the usage of
resources and services, and also manages logs and traces.

• Optimization — processes available data with the use of algo-
rithms and techniques to minimize some metrics and/or maximize
others; e.g., the authors of [30] proposed an optimization process
using an evolutionary algorithm and ML techniques to clusterize
services according to their SLAs, improving resource provisioning.
Its benefits are a potential decrease in cost and response time; and
an increase in CPU use and in elasticity.

• Communication Management — uses protocols and standards to
cope with heterogeneity of nodes and communication links of a
fog infrastructure.

• Node Agent — a local agent that manages the execution environ-
ment of a fog node, performing the actions required by service
manager, e.g., replicate a service, download a new service image,
collect monitoring data.

• Security — is responsible for the enforcement of security and
privacy policies.

Fig. 3 depicts the interactions those functionalities have by means
of a generic architecture created from the analysis and consolidation of
50 fog orchestration works available in the literature [4].

3. Monitoring fog computing

This section describes the main characteristics of monitoring
(e.g. sub-processes, system components) and introduces emergent con-
cepts in this field (e.g. observability, instrumentation domains), gath-
ering state-of-the-art knowledge in the area of fog computing. It also
provides an analysis of the role of monitoring in the context of fog
service orchestration, regarding requirements and challenges of fog



Computer Networks 215 (2022) 109189B. Costa et al.

t
t

monitoring. Finally, the section presents the methodology used in the
systematic literature review.

Considering the characteristics of fog, systems running in this en-
vironment will have a high distribution of their components, variable
and unpredictable load, caused by the heterogeneity of devices, com-
munication links, and failures. This scenario makes it challenging to
predict how these systems will behave over time [31]. Infrastructure
monitoring is the basis to support several goals: make efficient use of
resources, measure resource and service performance, generate accu-
rate bills [32], and implement fault tolerance processes. The previous
section showed the importance of monitoring features for supporting
proper orchestration of resources and services in a fog computing
environment.

A monitoring service can be structured as a composition of three
different functions: 1. observation of monitored resources and services;
2. data processing; and 3. data exposition [7,33]. Observation means
the acquisition of updated statuses of resource usage (e.g., CPU load
and latency) or service performance (e.g., response time). Processing
is related to the necessary adjustments and transformation required
on data, such as filtering and aggregation, creation and management
of events, and notifications derived from pre-configured rules and
thresholds. Exposition is related to where the generated data is stored
(e.g., in a local database, JSON files) and how it can be accessed by
a management system (e.g., visualization through dashboards, other
functionalities consuming the data directly).

3.1. Instrumentation domains

Monitoring has three instrumentation domains: metrics, logs, and
traces [5]. Each domain has its own characteristics and supports dif-
ferent decision-making processes, which can occur before, during and
after the start of data collection of a particular monitored object. A
metric is a measurement at a particular point in time. It is represented
by a name, a value (the measure), a timestamp, and other associ-
ated (optional) context data. A log is a collection of unstructured or
semi-structured strings. They bring detailed information and additional
context. A trace is the representation of a single operation, e.g., a
request from an user inside a service, showing the entire execution path
taken from the beginning to the end of the request [5].

More recently OpenMetrics [34] has been published, and it is in-
tended to be primarily a standardized format for metrics exposure,
independent of any specific transport. Currently, there are dozens of
agents that can export metrics using this standard and several of them
have characteristics suitable for use in fog [34]. OpenTelemetry [35]
is the standard for representing and communicating traces. The use
of such data format standards facilitates the composition of solutions
based on several independent monitoring elements. On the other hand,
OpenTelemetry suffers from a lack of tools for managing monitoring
data and still does not allow automated analysis due to not having a
strict enough specification [36].

Using terminology created in the software testing domain, mon-
itoring can be divided into black-box and white-box. Black-box is
the monitoring done from the public interface of the object being
monitored and aims to answer whether or not the object is avail-
able/working, i.e., it identifies if there is a problem. White-box is
based on the collection of detailed information on the functioning
of the object’s internal processes and aims to answer why the object
is not available or functioning properly, i.e., it allows a root cause
analysis [37]. Metrics are more related to black-box monitoring, while
both logs and traces are more related to white-box monitoring.

There are dozens of metrics that can be collected from the moni-
tored subject, no matter if it is a physical or virtual device (e.g., % of
CPU usage, % of free memory, etc.), a container management system
like Kubernetes [38] (number of containers, number of requests by con-
ainer [39]) or a (micro)service running on a fog node (e.g., response
5

ime etc.). The literature defines the golden signals of monitoring. It
is a minimal set of telemetry data (i.e., instrumentation data) that
provides essential information for proper black-box monitoring of in-
frastructure, platforms, and services. They are: latency, traffic, errors
and saturation [37].

The choice of which metrics should be collected to better represent
an asset’s status is a challenging issue in monitoring context in fog
computing. Increasing the number of metrics can mean more overhead
in the collection and more data to transmit, analyze and store. On the
other hand, valuable information must flow in the monitoring process,
allowing proper decision making to happen and helping other orches-
tration functionalities to reach their goals. There should be flexibility
in selecting the set of metrics that are sufficient to accurately inform
monitored object status and to make decisions timely, according to fog
computing requirements.

3.2. Observability

Observability is a term borrowed from control theory. In computer
science, it is defined as a characteristic of software and systems related
to the information they generate that allows them to be monitored and
understood more comprehensively, including at runtime. In addition
to a simple black-box monitoring, Observability can provide a greater
understanding of the correctness and performance of services. One
of its goals is to shorten the time it takes to know why something
is not working as it should. It is an inherently data-intensive and
time-sensitive process [5].

Observability is an emergent concept that has been used to reference
advanced monitoring functions in the context of microservice-based
applications. Observability is sometimes considered to be a superset of
monitoring, since it aims to fulfill the same purposes and additional
ones, by extending monitoring concept and applying data analytics
techniques on the monitoring data [40]. Observability is more related
to white-box monitoring, and to the generation and consumption of
traces as the main basis of information and decision-making.

In this work, we will use only the term ‘‘monitoring’’ to name
the process of collecting information (metrics, logs and traces) from
monitored objects (hardware, virtualized environments and services),
take actions based on the collected information, and store it for further
analysis or for long retention.

3.3. Monitoring system’s components

The monitored subject needs to provide access to its metric values.
This is usually implemented using operating system calls made by a
local monitoring agent that collects the data in a predefined recurrent
period and make them available for processing. The same agent, or
another specialized process, can regularly check if the data collected
reach some predefined threshold and, if it does, take proper monitoring
actions, like creating an event or notifying the monitoring personnel. Fi-
nally, the monitoring server is accountable for storing monitoring data
and make them available for other management processes. Although
described as three independent components, they can also be located
in the same execution environment, implemented as different functions
of the same service.

Fig. 4 shows an in-depth view of the Fog Orchestration layer already
shown in Fig. 2. In Fig. 4, the Monitor phase is detailed to expose mon-
itoring functions, monitoring system components, and the instrumen-
tation domains. The orchestration’s functionalities (Section 2) that are
responsible for implementing the phases Analyze, Plan, and Execute,

are also shown.



Computer Networks 215 (2022) 109189B. Costa et al.

3

a
m
a
a

c

Fig. 4. Fog orchestration layer detailing monitoring functions, instrumentation domains, and system’s components.
.4. Fog monitoring requirements and challenges

To properly deal with fog characteristics, e.g., resource-restricted,
nd heterogeneous devices, variety and instability of connections, fog
onitoring solutions must meet novel requirements that are not avail-

ble on cloud monitoring solutions in place [7], thus requesting specific
pproaches. According to Abderrahim et al. [7], the solutions for

monitoring fog infrastructures must have the following properties:

• Scalability — to deal with the increased number of fog nodes;
• Resilience to Node Apparitions/Removals — mobility is a poten-

tial characteristic of a fog node;
• Resilience to Network Changes/Failures — since this is a fog

characteristic;
• Modularity — there must be room for adaptation or parameteri-

zation as there are different scenarios of service execution in fog
environments according to each specific use case, e.g., resource
capacity and network stability can be so much different among
Industrial IoT (IIoT) and vehicular traffic management use cases;

• Locality — the monitoring must be as nearest as possible to the
resources and services being monitored.

According to Taherizadeh et al. [8], monitoring solutions within fog
omputing have several challenges:

1. Data Management — collection, processing, and transmission
of instrumentation data can overburden the network in a large
scale environment. There is little research on the storage and
management of logs and traces [5].

2. Coordinated Decentralization — when the control topology is
hierarchical or distributed there is a risk of desynchronization
of management actions and loss of effort and time to resync
the distributed components (managing consensus and synchro-
6

nizing replicated data) [8]; Centralized topologies are already
addressed by enough research attention from the academia and
there are many solutions proposed;

3. Fault Tolerance — the service could continue to operate under
a faulty event [41], e.g., when the node lost the connection
to the orchestrator, but the requester is consuming the service
normally. Off-line detection and recovery mechanisms should
be necessary to reintegrate the node to the infrastructure and
acquire the generated data;

4. Mobility Management — a moving end-user device can have
a variation on the network parameters of the connection to
the fog node, rapidly changing service’s Quality of Experience
(QoE) [42]; Depending on the configurations of data collection,
this information can reach decision-making module with a delay
that can impede timely actions to preserve the SLA and QoE
inside the range;

5. Scalability and Resource Availability on the Edge — although
there is a resource restriction on fog nodes, when a service
is executed, it should accommodate certain demand increase
at the risk of causing service unavailability due to the lack of
resources [42];

6. Prior Knowledge — it is necessary previous knowledge about
underlying infrastructure and distribution of service components
to guarantee a node comply to QoS requirements [43];

7. Interoperability and Avoiding Vendor Lock-in: vendor lock-in
is a cloud disadvantage [44]. EdgeX Foundry [45], Open Edge
Computing [46] and OpenFog RA [15] are projects that aim to
standardize a framework for fog computing;

8. Optimal Resource Scheduling Among Fog Nodes — Resource
scheduling should be aware of dynamicity of execution en-
vironment concerning user’s mobility, and variation on con-
nection QoS. It should guarantee fast responses under these
conditions [47];



Computer Networks 215 (2022) 109189B. Costa et al.
9. Proactive Computing — to anticipate critical events, and trigger
actions and decisions to deal with them proactively, time con-
straints must be considered, and this demands large amounts of
historical data [48];

10. Replication of Services — service replication is a strategy to
increase service performance, availability, and fault tolerance.
But it also increases the management complexity, demanding
synchronization checks [49];

11. Container Security — the use of containers as execution environ-
ments, although they are considered adequate to fog computing,
can pose new security threats [50]; along with this risk, there are
plenty of suitable tools and techniques that can lower the attack
surface of containers.

Together, these monitoring requirements and challenges present an-
other perspective for highlighting the main differences between cloud
monitoring and fog monitoring. Heterogeneity of fog nodes and larger
distribution require that the fog monitoring solution be platform agnos-
tic, interoperate with a variety of virtualization environments and be
prepared to bursts on the number of devices and in the data volume.
A way to achieve this is being modular and scalable. The expected
low-latency of fog applications require that collected information be
available timely to decision-making, but a balance is needed to tackle
resource-restriction of fog nodes, unstable connections and device mo-
bility. It is fundamental to be closer to the items being monitored,
provide different strategies to collect the data (bulk collection, push vs
pull, adaptive rate, adaptive metric set etc.), and be resilient by means
of fault tolerance management.

3.5. Monitoring as a function that makes up fog orchestration

Monitoring is a functionality of prime importance in fog orches-
tration, responsible for collecting instrumentation data, e.g., CPU us-
age, service response time etc., and to maintain updated the status
of resources and services. This information can be useful for deci-
sion making about service placement and offloading, scalability issues,
SLA and QoS management, actions and strategies related to other
complementary fog computing orchestration functionalities seen on
Fig. 3. Monitoring can be seen as a glue that bounds orchestration’s
functionalities together.

Despite being an important functionality, an orchestrator’s moni-
toring module must focus on its specific goals: collect data on resource
usage and performance, generate events when pre-configured thresh-
olds are reached, transmit the events, notifications and collected data
to a decision-maker module. Being focused means monitoring solutions
that address the needs of a fog orchestrator should not implement
functions associated with other orchestration’s functionalities. There
would be no value if the collected monitoring data and generated
events were not used for decision making about resource and service
life-cycle management. But Service Management and Resource Manage-
ment modules are the ones accountable for making these decisions. And
they do so using the orchestrator’s broader view of fog infrastructure
and services delivered, besides end-user relationship with fog and cloud
provider.

Orchestration demands that complementary functionalities act to-
gether, but each one doing its specific job. Several fog orchestration
challenges (seen on Section 2) like heterogeneity, dynamism, resilience,
AAA, and fine-grained locality point out to lightweight implementa-
tions of each module aiming that orchestration overhead be as negli-
gible as possible in fog environment. Monitoring solutions (and this is
valid also to other functionalities of an orchestrator) that incorporate
tools and functions of other modules, although could be used as a
stand-alone fog service, are not proper to compose an orchestrator due
to potential resource-wasting and high overhead of having replicated
functionalities.

In previous subsection, only the first three monitoring challenges
7

(data management, coordinated decentralization and fault tolerance)
presented by Taherizadeh et al. [8] are specific of a monitoring module
that composes a fog orchestrator. The remaining challenges are primary
concern of other functionalities as Service Management (Items 4, 5, 6
and 10), Resource Management (Items 5, 6 and 8), Optimization (Items
4 and 9), Security (Item 11), Communication Management (Item 7).

For example, in the challenge of Mobility Management (Item 4),
monitoring is collecting and recording infrastructure and service met-
rics in the same way that if the end-user was still. But, if one of
the metrics collected is directly related to QoE, e.g., service response
time, as soon as this information is available to the orchestrator,
Service Management can verify if response time is within the agreed
range and act if it is not. The action could be to replicate the service
closer to the end-user’s current location. To accomplish this, it can
call Resource Manager and pass, as parameters, service information
and requirements. Resource Manager will allocate a new fog node (or
return informing none is available and forward the requisition to the
cloud) looking into resource inventory and place the service replica. So,
Mobility Management is not a specific fog monitoring challenge, but a
fog orchestration one.

This specialization is important not only to save resources and to
comply with low latency needs, but also because fog can add value to
several use cases with different requirements of connectivity, mobility
etc. To be useful in different scenarios, a fog orchestrator should be im-
plemented on a modular way and this property [7] should be expanded
to its functionalities. Each orchestration functionality should permit
parameterization and adaptation, so it can meet the requirements of
specific use case in place. The more focused a monitoring solution
is, taking care of only the monitoring process, events, and data, the
easier it is to switch it, when needed, to another that could be more
appropriate in a different scenario (e.g., inside a proprietary device).

3.6. Research selection method

This subsection describes the method used to systematically review
the literature on Fog Monitoring. The review was inspired by the works
of [51,52]. The steps taken were: 1. define the research questions (RQ);
2. choose the research databases; 3. create a search string made of
relevant keywords; 4. gather all results; 5. apply inclusion and exclusion
criteria; 6. filter the studies based on keywords, title and abstract, and
7. read and analyze remaining studies.

We defined the following research questions to guide the systematic
review:

• RQ1 — What are the relevant characteristics of a suitable fog
monitoring solution? The answer to this question will be consol-
idated as a novel taxonomy and it will help the researchers to
identify what relevant features a fog monitoring solution should
have;

• RQ2 — What monitoring solutions are prepared to compose a fog
service orchestrator? The answer to this question will come using
the taxonomy to categorize the state-of-the-art proposals selected
by this systematic review of the literature;

• RQ3 — What are the challenges that still need attention from the
academia? The answer to this question can be used by researchers
as a guide for future works in this area.

For this article, Scopus,1 Web of Science,2 ACM Digital Library3

and IEEE Xplore Library4 databases were used as research sources.
The basic search string created was ‘‘(Fog OR Edge) AND (Monitor*
OR Observability)’’. Complementary searches were made using other

1 scopus.com
2 webofknowledge.com
3 dl.acm.org
4
 ieeexplore.ieee.org



Computer Networks 215 (2022) 109189B. Costa et al.
distributed paradigms’ names (e.g. MEC, Cloudlet etc, as listed in Sec-
tion 2). Inclusion criteria were: peer-reviewed primary works; written
in English; publication date starting in 2012 (year of first fog com-
puting publication [1]); and works that present solutions, architectural
models, techniques or methods applied to monitoring in fog computing.
After running the searches and gathering all the results, the duplicates
were removed and the 791 remaining studies were filtered based on
keywords, titles and abstracts. The resultant set was composed of 75
works. Finally, after reading and analyzing the full text of the remaining
studies, we selected the 10 works that are detailed in this paper and by
this means collected the necessary knowledge to answer to the research
questions.

4. Taxonomy of monitoring characteristics in a fog orchestration
scenario

This section presents a novel taxonomy of fog monitoring solutions,
created from the systematic review of the literature. The taxonomy
consolidates domains and categories that are relevant in a state-of-
the-art fog monitoring solution. The content provided by this section
answer the first research question: ‘‘RQ1 — What are the relevant
characteristics of a suitable fog monitoring solution?’’.

Several works proposed taxonomies of cloud computing monitoring
solutions [32,53–55]. They classified available cloud monitoring tools
using taxonomies. Using the process described by Usman et al. [56], we
created a taxonomy to categorize fog computing monitoring solutions.
Despite the differences between cloud and fog, some domains and
categories of cloud monitoring solutions are applicable in fog mon-
itoring solutions, e.g., topology and frequency of data transmission,
while others are not applicable (e.g., types of cloud: private/public).
But even those domains that are applicable need to be reviewed, and
eventually adapted, to reflect the novel requirements and scenarios of
fog computing.

We analyzed cloud taxonomies and reviewed the literature about
monitoring fog environments and services. Based on the challenges of
fog computing orchestration (Section 2), on the characteristics of fog
monitoring solutions (Section 3), and on several works selected from
the literature, we identified domains and categories that are relevant in
this context. They are summarized in Fig. 5 and a detailed description
of them is presented in the following subsections.

4.1. Monitoring purposes

This domain defines the goals of a fog monitoring solution. The most
frequent ones found in the literature are track resource/service usage
and performance monitoring. From the data collected to reach these
goals, fault tolerance and billing processes can also be supported [10].

A fog orchestrator, or other management system, must have updated
information about its managed resources to make informed decisions.
Each resource type (e.g., CPU and network) will have a specific set of
metrics that inform their status: e.g., percentage of free CPU and per-
centage of package loss, respectively. According to a static or dynamic
configuration, a monitoring solution must collect metric values that are
relevant to the other management processes, store them locally, when
there is enough room, and transmit them timely to persistent storage
and analysis.

Fog computing is a more distributed paradigm, and its nodes
and communication channels (physical and virtual) are potentially
resource-restricted and unstable, due to heterogeneity and mobility.
In such a risky scenario, performance monitoring can leverage SLA
management made by the fog orchestrator. Performance monitoring
can be done in different levels or service models and each of them can
have its own performance indicators. Performance of a communication
channel can be measured by the throughput in bytes per second.
8

Performance of a database can be measured by the throughput in
transactions per second, and performance of a service can be measured
by response time.

Another role of a fog monitoring solution is the support for fault
tolerance processes. To verify a node availability, a heartbeat message
can be sent from the node to the orchestrator in a timely fashion. After
a given period without such message, the node is considered offline,
and the service orchestrator can make decisions about allocating sim-
ilar available resources, about migrating services to other nodes, and
communicating the users. A fog monitoring solution can be accountable
by implementing this keep-alive process and by generating the events
of unavailability to the management system.

Although the business model of fog computing is not defined yet,
the records of resource usage and allocation are the basis to describe
a user’s consumption and generate accurate and verifiable bills when
needed [32]. Billing records can be reported in a different granularity
when compared to resource usage and performance.

A fog monitoring solution that has several purposes could need
different communication models (see Section 4.3) and parameterization
to reach them properly.

4.2. Monitoring topology

Monitoring topology describes how the monitoring system is struc-
tured in terms of distribution of its components and data flow. Masip
et al. [57] described three control topologies that can be used in fog
environments and were adapted to describe monitoring topologies:
centralized, with only one monitoring server; hierarchical, where a set
of resources/nodes have a local monitoring server and these servers act
somehow on the data (filtering, storing, etc.) and collaborate among
them in a pre-defined way; distributed, where a monitoring component
is localized on each fog node and all components interact to share their
view of monitored resources and together maintain the view of the
whole environment updated. We have adopted ‘hierarchical’ instead of
‘decentralized’, as named by Masip et al. [57], because it seems more
meaningful in this context.

In a centralized monitoring topology, there is only one monitoring
server. This server receives all the instrumentation data sent by the
agents deployed on monitored nodes, or the server itself queries each
node about the data of interest. This topology is easier to implement,
making the monitoring agents simpler, but has some disadvantages.
Firstly, there is the Single Point of Failure (SPOF) issue, where a server
failure may interrupt monitoring updates of the whole fog environment
and harm decision making; secondly, the server must run in a resource-
rich node to cope with data flow and storing. A possible solution to this
issue is to put the server in a cluster of fog nodes or in the cloud and
use different communication models and data priority policies to cope
with fog–cloud communication latency; lastly, server network channels
can become overloaded with monitoring data flow.

In a hierarchical monitoring topology, there is at least one more
additional data staging layer between the monitored node and the
monitoring server. The nodes are categorized by locality, and assigned
to a local monitoring server. This intermediary component may func-
tion to those nodes as a centralized server, to where all monitoring
data is transferred and stored by a longer time than the monitored
node could. Also, it is possible to filter and aggregate the data before
sending the data to support decision making. But this local server
may not be the final destination of monitored data. The monitoring
server can be an independent component in the system, receiving and
managing a high-level view of monitoring data and integrating to the
service orchestrator. Otherwise, monitoring server can be implemented
as a Peer-to-Peer (P2P) network of local servers and the hierarchical
topology will function as a hybrid topology between centralized and
distributed ones.

In a distributed monitoring topology, the monitoring server is im-
plemented as a P2P network of components that are distributed in all

nodes. The collected monitoring data must be shared (replicated) with



Computer Networks 215 (2022) 109189B. Costa et al.
Fig. 5. Taxonomy of a fog monitoring solution.
all the peers that need them and eventually with the service orchestra-
tor for decision making about resource and service management. This
topology is referred by Abderrahim [7] as being the best option for fog
environments. It has the benefits of overcoming issues of monitoring
server found on Centralized topology (f.i. SPOF, runs only on resource
rich nodes, network congestion). Nevertheless, distribute this relevant
function by some unreliable nodes can lead to outdated data on re-
source statuses. Also, the bigger the P2P network of distributed servers,
the higher the risk of desynchronization of replicated monitoring data.

4.3. Communication model

A fog monitoring solution should collect instrumentation data from
a monitored node, resource or service and make this data available
timely to the service orchestrator to support decision making and data
analysis. The data can be sent by a monitoring agent to the monitoring
server periodically, and this category of communication model is called
Push. The monitoring server can ask for data in an event-driven man-
ner, and this is called Pull. The mix of both models create the Hybrid
category. Lastly, the Stream model describes a continuous data flow
between the agent and the server.

In Push model, the monitoring agent is responsible for initiate the
transmission of collected data to the monitoring server. The agent
needs to know previously the server address. This information is sent
to the agent in the bootstrap process and can be updated while it is
running, based in server’s events (e.g., server is overloaded) or based
in monitored node’s events (e.g., running out of energy).

In the Pull model, the monitoring server is responsible for initiate
data transmission and needs to request the data to the monitored nodes.
Only after a proper request, the data is sent by the agent. In this
model, the server can select the information needed at the moment,
sending parameters inside the request. This could help to implement a
strategy where the server asks for high priority monitoring info when it
is overloaded and asks for bulk info when it can cope with the burden.
9

A Hybrid model is a more flexible way of dealing with dynamic sit-
uations and with heterogeneous monitored infrastructure and services.
Based on resource capacity of the nodes, e.g., nodes running out of data
storage can use push model as a way of not losing data. Nodes that are
resource-richer can use push model only when selected metrics reach a
predefined threshold, e.g., every 10% increase or decrease of free CPU.
In other situations these high capacity nodes can store monitored data
and wait for a bulk request sent by monitoring server. There are other
combinations of Pull and Push models that can be configured to satisfy
specific requirements or scenarios where the use of only one model is
not sufficient.

In a Stream model, the agent creates a data flow with the server and
transmit monitored data continuously. This is a model appropriated to
transmitting small volume of priority data, as heartbeat messages and
high priority notifications.

4.4. Monitoring frequency

On orchestration, an effective decision-making is supported by up-
dated information about resources and services. The higher the fre-
quency of updates, e.g., every change in a metric value being delivered
immediately to the monitoring server, the lower the risk of dealing
with outdated information. But a high frequency of updates can cause
computational overhead and network congestion mainly when dealing
with a high number of monitored devices. The monitoring frequency
must be balanced with computational capacity and network overhead.
There are different frequency approaches for monitoring:

• Continuous — once started, monitoring data flows to the server
continuously;

• Periodic — where a recurrent period can be configured and data
is sent at every time instance;

• Event Based — where data exchange is triggered by the detection
of an event on the node or by answering an explicit request by

the server.



Computer Networks 215 (2022) 109189B. Costa et al.
4.5. Monitored layers

A fog environment is composed mainly of fog nodes, physical or
virtual devices that execute fog services [26]. To provide requested
services to the end-users, a fog orchestrator should manage the re-
sources and service distribution. Due to the heterogeneity of fog nodes,
a service can run on their bare metal, or on the virtualization platform
available on the node (VM, container, unikernel), considering that
Service Management (Section 2) has specific service image to each of
them.

A monitoring system should collect metric values from several
layers inside the nodes, each one potentially demanding specific probes
and generating specific events and notifications as they are independent
from each other. Metrics associated to the hardware, such as free CPU
and RAM, are normally collected from the operating system, although
they also can be provided by the virtualization software (Docker, f.i.).
Metrics associated to the virtualization platform may also be of interest,
as well as, metrics associated with the service, such as response time.
Monitoring agent on the node (or outside the node) must collect these
metric values by using specific probes and using configured protocols
and ports. This domain indicates to which layers a monitoring solution
is prepared to collect metric values: infrastructure, platform or service
layers.

4.6. Instrumentation domains

As seen in Section 3.1, there are three instrumentation domains for
monitoring distributed systems: metrics, logs and traces. The use of
metrics is well-known and there is support for it in several monitoring
solutions. It allows a black-box monitoring, collecting data from the op-
erating system, container management solution or other virtualization
environment, without the need to modify the system being monitored.
Metrics are lightweight when compared to logs and traces. Due to these
characteristics, metrics are well fitted for fog environments, made of
resource-restricted and potentially mobile devices, and connected by
unstable communication channels.

On the other hand, logs and traces permit analysis from system’s
internals, enabling discovery of the causes of bad service performance,
and predicting future issues that could be caused by a current misbe-
havior. Logs and traces can make use of the data flow management
established to cope with metrics data. However, due to the need for a
higher resource availability, its impact on the service’s SLA must be
evaluated prior its use and a dynamic way of turning it on and off
should be provided.

4.7. Data processing

A fog monitoring solution should process collected data (e.g., fil-
tering, aggregating, transforming) as part of processing function [7].
There is a trade-off in this domain. As much data processing features
are available in a monitoring solution, a lower volume of monitoring
data may flow to the monitoring server, reducing network load. Nev-
ertheless, to run these features properly a resource-richer node must
be available. In the category of events management, collected data
could trigger an event and the event can generate actions on the node
itself (e.g., stopping collection when exhausting the CPU) or on the
monitoring server (e.g., sending a notification).

According to data management strategy in place, as soon as the data
is collected from the data source (e.g., an end device, a platform like
kubernetes or a deployed service) it can be filtered, aggregated or suffer
other kind of modification before it is stored and transmitted to the
monitoring server.

Some fine-grained metric values can be stored in-place for a short
period of time. This can allow the generation of alerts for specific pre-
configured situations and the recovering of detailed data when needed
in that time window. Also, device’s resource limits can be respected.
10
A coarse-grained view of this data can be generated periodically by
aggregation and transmitted to the monitoring server. Filtering is a dif-
ferent function applied to the data, where only the values of interest are
selected to transmission. Other different functions can be implemented
on the collected data.

4.8. Intrusiveness

Resource and service monitoring can be performed through differ-
ent levels of intrusiveness. The monitoring solutions can be classified as
active or passive, according to the interference they inject on the met-
rics being monitored [58], e.g., if the process of collecting metric values
changes the system load, this process is called as active. Otherwise, it
is a passive process.

Different metrics can have different level of intrusiveness. Running
a local agent to collect CPU metric values can interfere on the value
collected, since the local agent itself will use CPU cycles to perform its
actions. Otherwise, StatsD [59], a network protocol, permit the collec-
tion of network metrics passively without interfering in the system’s
network load.

4.9. Scalability

Scalability is a non-functional requirement [60] that guarantees a
fog monitoring solution can scale to absorb an increase on the quantity
of monitored nodes without relevant degradation in the overall system
performance. The architectural choices, such as topology, monitoring
probes, communication protocols, database for local and long-term
storage are relevant to determine scalability capacity of a fog mon-
itoring solution. The proposed taxonomy defines as ‘‘Scalable’’ each
monitoring solution that was evaluated for scalability and presented
evidences that the proposed system scales when needed. Otherwise, the
proposal was classified as ‘‘Not Scalable’’.

4.10. Monitoring overhead

In order to collect instrumentation data from the monitored sub-
jects, transmit and store them in the orchestrator, it is expected that
this process consumes part of environment’s computing capacity and
network bandwidth. Thus, the monitoring itself can be a source of
resource contention, particularly in virtualized environments, where
agents and applications running in the same execution environment
compete for shared resources [61]. The higher is the amount of data
being collected, the higher is the overhead caused by the monitoring
process [62]. While delivering monitoring data and functionalities to
the fog service orchestrator, a proper fog monitoring solution should
maintain communication and processing overhead as low as possible.
The proposed taxonomy defines as ‘‘Low Overhead’’ a fog monitoring
solution that was evaluated about the overhead it injects in the system
and presented the results and the evaluation scenario.

4.11. Adaptability

Fog infrastructure is composed of heterogeneous, resource-restricted
devices connected by potentially unstable communication channels.
Besides, mobility is an expected characteristic of both fog nodes and
end-user devices. In such a scenario, an adaptive monitoring process
is of great value. According to the overall load in the system, in the
monitored node or in the monitoring server, some choices can be made
to diminish the impact of the monitoring process. This adaptive behav-
ior can be applied to the frequency of instrumentation data collection,
the volume and type (instrumentation domain) of data to transmit, and
to the communication model. The goal is to restrict or postpone some
actions while the load in the system is high, and try to resume them as
soon as possible.



Computer Networks 215 (2022) 109189B. Costa et al.

a

a
c
O

5

t
s
t
f
d
i
a
e
J
r
i
c
a
T
a
T

5

m
w
s
i

4.12. Integration

This domain verifies if the fog monitoring solution adheres to some
standardized data format. Some solutions use XML or JSON files as
a basic standardized data format. In recent years OpenMetrics [34]
was published to try to standardize the exchanging of metric data
among monitoring solutions. In the same way, OpenTelemetry [35] was
proposed, based on two former standards: OpenCensus [63] and Open-
Tracing [64]. Other standards like OpenXTrace [65] were proposed,
although they did not get much attention from academia and industry.
The benefit of using such standards is to ease the data exchange
and integration of different monitoring components. These components
could be from different vendors, and could be on different layers of Fog
Architecture (Section 2).

4.13. Address orchestration needs

Fog service orchestration needs monitoring data to implement a
proper decision-making and to integrate the several functionalities that
comprises it (Section 3.5). A fog monitoring solution that is Ready to
ddress orchestration needs is one that is:

1. lightweight (e.g., implemented with a small code footprint) and
multi-platform (e.g., it provides different versions of its agents
to comply with resource-restriction and heterogeneity of fog
nodes);

2. Focused on monitoring — this means it does not implement
other orchestrating functionalities or at least allow to turn them
off, causing a minor overhead and management effort;

3. Adaptive — being flexible enough to change its behavior on
the fly, according to configuration changes delivered by the
fog service orchestrator, a coordination and management system
that has a broader and comprehensive view of fog infrastructure
and running services.

If a monitoring solution meets at least two of these requirements
nd can be adapted with a reasonable effort to meet the third, it is
onsidered as being Partially Ready to address orchestration needs.
therwise, it is considered Not Ready.

. Analysis of fog monitoring tools based on proposed taxonomy

In this section we present a categorization of fog monitoring solu-
ions based on the domains and categories defined in the taxonomy
o researchers and developers can easily learn about the characteris-
ics of these solutions. Due the relevant differences among cloud and
og computing, there was no guarantee that a monitoring solution
eveloped to the cloud would function properly in a fog comput-
ng environment [66]. To confirm this, some recent works analyzed
nd tested open source and commercial cloud monitoring solutions,
.g., Nagios [67], Zabbix [68], DARGOS [69], PCMONS [70] and
Catascopia [71]. These solutions were confronted to fog computing
equirements and challenges, and the result was that none of them
s suitable for fog environments [7–10]. To overcome the monitoring
hallenges, some authors proposed specific monitoring solutions and
rchitectures to fog computing environments and related paradigms.
he next subsections describe each of them, approaching their char-
cteristics according to the domains and categories that compose the
axonomy presented in the last section.

.1. PyMon

The work of Großmann and Klug [72] proposes PyMon, a resource
onitoring framework for ARM based single board computers (SBC),
hich aims to provide host and container utilization data in order to

upport a more efficient orchestration of containerized services. PyMon
11

s built as an extension of Monit [73], a monitoring tool capable of
inspecting Docker containers. Monit is a lightweight open-source tool
that is developed for monitoring Unix based systems. It is delivered
by Docker images and they run on architectures supporting Docker,
namely x86_64, ARM and AARCH64.

Pymon has the purpose of performance monitoring. The solution
uses a centralized topology to collect metric values from IoT devices
at a periodic rate using push communication model. It is prepared to
monitor infrastructure and platform layers and implements the aggre-
gation of monitoring data. The received data is stored in a PostgreSQL
database and can be displayed through a web interface.

Pymon is a simple, lightweight and multi-platform fog monitoring
solution with low overhead of resource consumption and developed to
run on SBCs. Although focused on monitoring, its feature set is not
enough to meet the requirements listed on Section 3.4, supporting only
Locality, as it has a local agent to collect metrics. It is not adaptive,
since presents low flexibility in terms of available communication mod-
els, data transmission frequency and on-the-fly configuration changing,
limiting the monitoring scenarios that are supported by it. Besides,
scalability of PyMon was not evaluated. Due to these limitations,
PyMon does not address orchestration needs. PyMon is available on
Github [74].

5.2. FMonE

Brandón et al. [33] proposed FMonE as a solution that meet the fog
monitoring requirements they have described in their work. FMonE is
based on Marathon [75], a well-known container orchestration solu-
tion, although the paper points that another container solution could
be used if it meets the requirements.

FMonE has the purposes of performance monitoring and of support-
ing fault tolerance. The solution uses a centralized and hierarchical
topologies to collect metric values at a periodic rate using pull and
push communication models. It is prepared to monitor infrastructure,
platform and service layers and implements the filtering of monitoring
data.

The authors used Grid5000 testbed [76] to simulate a fog infrastruc-
ture, using 78 VMs and setting bandwidth and latency among them.
They have evaluated the service performance in operations per second
in the nodes, comparing centralized versus hierarchical architectures
with the use of FMonE. The results shown the solution is scalable and
had a little overhead of resource consumption, running same service
with and without the FMonE agent installed on the nodes.

This solution is offered as a standalone independent monitoring
framework, in which the end user directly interacts and creates mon-
itoring workflows. In a fog service orchestration scenario, the input
parameters will be provided by the Service Management module (Sec-
tion 2), according to service requirements and user needs at requesting
time. Also, it is not focused on monitoring, since it is responsible to
detect new nodes to monitor. Nevertheless, these two issues can be
adapted with reasonable effort. It is lightweight and multi-platform, but
as it is not adaptive, it does not address orchestration needs. FMonE is
available on Github [77].

5.3. Prometheus stack

Prometheus [78] stack is a monitoring system built with the inte-
gration of Prometheus server and other complementary open-source
components, like metric exporters and dashboards. For collection of
monitoring data, its developers provide the tool Node Exporter, which
collects metrics on Unix based systems. For container monitoring,
CAdvisor [79], developed by Google, is the chosen tool. It provides
information about resource usage of host and running containers on
a single machine.

Prometheus stack has the purpose of performance monitoring. The
solution uses a centralized topology to collect metric values at a peri-

odic rate using pull communication model. It is prepared to monitor



Computer Networks 215 (2022) 109189B. Costa et al.
infrastructure and platform layers and implements the aggregation of
monitoring data.

According to Großmann and Klug [66], Prometheus stack showed
a good adaptability supported by a loose coupling of its software
components. Thus, it is not a complex task to modify parts of the
framework to better adapt it to new scenarios. Besides, the Prometheus
server has compatibility to many exporters and this can be used to
collect metrics from databases, web servers and services.

The default communication model used in Prometheus is Pull, but
it also supports Push through an already implemented gateway [80].
Metric exchange format defined by Prometheus was the basis to create
OpenMetrics [34]. So, Prometheus stack is a scalable, focused, stan-
dardized, adaptive and comprehensive monitoring solution. Although,
there is no evaluation about its overall overhead on the system, its
flexibility and high modularity guarantee that it is possible to configure
and use it in a scenario of low overhead. So, Prometheus Stack is
classified as totally addressing the orchestration needs. Prometheus
Stack is available on GitHub [81].

5.4. Osmotic monitoring

Souza et al. [82] proposed a tool to monitor microservices deployed
in an Osmotic computing environment, i.e., a fog–cloud environment
that allows a bidirectional flow of microservices. It is an extension of
CLAMBS [83], a microservice multi-cloud performance monitoring tool.

Osmotic Monitoring has the purpose of performance monitoring.
The solution uses a centralized topology to collect metric values at
a periodic rate using push communication model. It is prepared to
monitor only the infrastructure layers and do not implement any data
processing feature.

The solution requires an agent on each IoT device that send data to
the Manager, a component that runs in the cloud. The evaluations were
about CPU, latency, and memory usage in six different scenarios: three
on the cloud and three on the fog. Among the scenarios, variations on
using only one container to hold more than one microservice and one
container by microservice were compared. Although Osmotic comput-
ing allows a bidirectional migration of microservices between cloud and
fog, the experiments were made with them standing on fixed positions.

The work neither approach the overhead or the scalability of the
proposal. It is specific to the scenario of Osmotic Computing and it is
not adaptive. Its server is located on the cloud and service management
and resource management are not fully separated from the monitoring
functionality so it does not address the needs of a fog orchestrator.

5.5. Monitoring for fog and mobile cloud

The authors of [84] proposed a MCC/Cloudlet-based architecture,
composed of distributed cloudlets within multiple locations to support
mobile devices using cloud services. Despite the differences between
cloudlets and fog nodes, where the former has a higher computing
capacity and is called cloud-in-a-box, the proposed architecture and
monitoring tools chosen can be used in a fog environment with small
adaptations and under certain conditions, e.g., in an IIoT use case
where the fog nodes are resource richer. The cloudlets are connected
to a monitoring system and their solution is based on IEEE 1451 to
communicate the sensors in a Wireless Sensor Network (WSN) and the
cloudlets. It uses Virtual Device Representation (VDR), a ‘‘digital twin’’
of a device that is localized on the cloudlet. Sensu [85], a flexible
monitoring framework, is used to implement monitoring functions and
Graphite and Grafana to data storage and visualization, respectively.

The solution has the purpose of performance monitoring. It uses
a centralized topology to collect metric values and logs at a periodic
rate, using push communication model. It is prepared to monitor in-
frastructure, platform and service layers and implements data filtering
and aggregation.
12
No evaluation was made about the overhead the proposal causes
on the system, but its scalability is a proven characteristic of Sensu.
Sensu delivers a comprehensive framework for monitoring data pro-
cessing, besides event management. Due to be standardized and adap-
tive, providing high customization possibility and several platform
implementations, this solution addresses the fog service orchestration
needs.

5.6. Switch

Taherizadeh et al. [86] presented a capillary distributed com-
puting architecture. It follows a reference model for autonomic ser-
vices called Monitor–Analyze–Plan–Execute over a shared Knowledge
(MAPE-K) [87]. The proposed architecture includes a monitoring sys-
tem, named Switch [88],

Switch has the purpose of performance monitoring. The solution
uses a centralized topology to collect metric values at a periodic rate
using push communication model. It is prepared to monitor infrastruc-
ture, platform and service layers and implements event management
upon monitoring data.

The collector agents are developed using the non-intrusive StatsD
protocol [59]. The server stores received data in Cassandra [89], a free,
open-source time series database (TSDB). The monitoring system uses
Docker containers, being a lightweight and multi-platform option.

Monitoring agents, server and other components like an alarm-
trigger, responsible for analyzing monitoring data and creating events
and notifications, were proposed in authors’ previous work [90]. Al-
though it is a solution that offers low flexibility in terms of commu-
nication models and frequency of data collection, it is lightweight,
multi-platform, focused on monitoring and adaptive. Thus it addresses
fog service orchestration needs. Switch monitoring system is available
on GitHub [88].

5.7. Support and confidence (SCB) based monitoring

The work [10] proposed a Support and Confidence (SCB) based
technique, aiming to optimize the resource usage in the resource moni-
toring service. SCB is based on predicting confidence of each fog device,
based on its historical data. Adapting from cloud propositions, the work
proposed algorithms to develop Push, Pull and Hybrid communication
models, evaluated these models on a prototype build on java and
compared them to the SCB based approach.

SCB has the purpose of performance monitoring. The solution uses
a hierarchical topology to collect metric values at a periodic rate
or triggered by events, using push, pull and hybrid communication
models. It is prepared to monitor only the infrastructure layers and do
not implement any data processing feature.

Its performance is evaluated by analyzing a real-time traffic use
case in a fog emulator and the results are compared with traditional
distributed computing techniques. Results show that the proposed tech-
nique consumes fewer resources when compared to conventional re-
source monitoring approaches, resulting in a low system overhead and
good scalability. It is adaptive and considers that other service man-
agement and resource management processes exist and are dependent
of monitoring data and features. Thus, this proposal addresses fog
orchestration needs.

5.8. Rule based

The authors of [91] proposed a monitoring system targeted to
systems based on container technology. It leverages the use of rules
for evaluating the importance of metrics. It is composed of workers
and master nodes. The worker node is composed of three modules:
Metrics collector, Rules updater, and Analyzer. Analyzer is responsible
for processing the data collected by the Metrics Collector and evaluate
them according to the current rules set. This evaluation will support the



Computer Networks 215 (2022) 109189B. Costa et al.
Table 1
Comparative analysis of fog monitoring solutions.

Paper PyMon FMonE Prometheus Osmotic Mobile Switch SCB Rule based TEEMon FogMon

Purposes Performance Performance
Fault
tolerance

Performance Performance Performance
Resource usage

Performance Performance
Resource usage
Fault tolerance

Performance Performance Performance
Fault tolerance

Topology Centralized Centralized
Hierarchical

Centralized Centralized Centralized Centralized Hierarchical Centralized Centralized Hierarchical

Communication
model

Push Push/Pull Pull Push Push Push Push/Pull/Hybrid Push Pull Push/Pull

Frequency Periodic Periodic Periodic Periodic Periodic Periodic Event Periodic Event
Periodic

Event
Periodic

Periodic

Monitoring
layers

Infra
Platform

Infra
Platform
Service

Infra
Platform

Infra
Platform

Infra Platform
Service

Infra
Platform
Service

Infra Infra
Platform

Infra Infra

Instrumentation
domains

Metrics Metrics Metrics Metrics Metrics Logs Metrics Metrics Metrics Metrics Metrics

Data processing Aggregation Filtering Aggregation ✗ Filtering
Aggregation

Events
Management

✗ Filtering Filtering
Aggregation

Aggregation

Intrusiveness Active Active Active Active Active Active
Passive

✗ Active Active Active Passive

Scalability ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓

Monitoring
Overhead

✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

Adaptability ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓

Standardized ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗

Orchestration
needs

✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ 𝜕 𝜕

✓ denotes that the item is implemented/addressed.
𝜕 denotes the item is partially addressed.

✗ denotes that the item is not implemented/addressed.
decision if that metrics set should be transmitted to the master node, for
further processing and storage. Rules Updater is responsible to manage
the set of rules that are updated according to the scenarios observed
by the master node when analyzing the metrics sent by several workers
nodes.

Rule based monitoring has the purpose of performance monitoring.
The solution uses a centralized topology to collect metric values at
a periodic rate or triggered by events, using push communication
model. It is prepared to monitor infrastructure and platform layers and
implements filtering of monitoring data.

This proposal was neither evaluated for scalability or the overhead
it injects in the system. Although very simplistic in terms of monitoring
functionalities, it is lightweight, multi-platform, focused on monitoring
and adaptive. Thus it addresses fog service orchestration needs.

5.9. TEEMon

Trusted Execution Environment (TEE) is a promising approach to
address security challenges in distributed environments, like fog com-
puting. TEEs improves the confidentiality and integrity of application
code and data even against privileged attackers with root and physical
access by providing an isolated secure memory area.

TEEMon [92] is a continuous performance monitoring and anal-
ysis tool for TEE-based applications. It provides performance metrics
during runtime and assists the analysis of identifying causes of perfor-
mance issues. It integrates with Prometheus and Grafana, well-known
monitoring open-source tools, aiming for a holistic monitoring so-
lution, particularly optimized for systems deployed through Docker
containers or Kubernetes [38]. TEEMon consists of four core compo-
nents: 1—Performance metrics exporters; 2—Performance metrics ag-
gregator; 3—Performance metrics analyzer, and 4—Performance metric
visualizer.

TEEMon has the purpose of performance monitoring. The solution
uses a centralized topology to collect metric values at a periodic rate
or triggered by events, using pull communication model. It is prepared
13
to monitor only the infrastructure layer and implements filtering and
aggregation of monitoring data.

It is lightweight and multi-platform, since can work with TEEs
from many vendors and can monitor Docker-based applications. It is
scalable, standardized, presents low overhead, and it is focused on
monitoring. But as it is not adaptive, it was classified as partially
addressing fog service orchestration needs. TEEMon is available on
GitHub [93].

5.10. FogMon

The works [3,94] proposed FogMon, a lightweight hierarchical P2P
monitoring tool, based on an agent that runs on every fog node, measur-
ing and reporting about the use of hardware resources and end-to-end
network QoS between those nodes. It also detects automatically IoT
devices attached to the nodes. FogMon adaptively and automatically
modifies its P2P overlay based on current network conditions to main-
tain monitoring accuracy and scalability invariants. It can handle nodes
that leave and join the network and relies on differential monitoring
updates to reduce the overall network overhead.

FogMon has the purposes of performance monitoring and of sup-
porting fault tolerance. The solution uses a hierarchical topology to
collect metric values at a periodic rate using pull and push commu-
nication models. It is prepared to monitor only the infrastructure layer
and implements the aggregation of monitoring data.

The authors have developed a prototype that was evaluated in a
real testbed [95]. The evaluation measured FogMon’s footprint (us-
age of CPU/RAM and network by the FogMon agent) verifying it is
lightweight, non-intrusive and scalable. System adaptation based on
configuration changing was also confirmed. Due to not being focused
only in monitoring, this solution is classified as partially addressing fog
service orchestration needs. FogMon is available on Github [96].

A most recent work, named Adaptive FogMon [97], added an-
other layer of adaptivity to FogMon [96]. The authors implemented
a lightweight rule-base expert system that exploits the monitoring
collected data in order to adjust node’s behavior. It aims to reduce
resource usage and power consumption on the node. It implemented



Computer Networks 215 (2022) 109189B. Costa et al.
two countermeasures that are activated based on the rule system when
needed: i) Indicators Selection, which reduces the number of metrics
being collected and ii) Rate, which modifies the frequency of metric
delivering. When compared to FogMon, Adaptive FogMon saved energy
and resources at a cost of a larger memory usage. As it is based on
FogMon, which already has an adaptivity feature, only FogMon will
compose Table 1. Adaptive FogMon is also available on Github [98].

5.11. Discussion

To allow researchers easily find the characteristics of each ana-
lyzed fog monitoring proposal, a detailed classification based on the
previously defined taxonomy is presented in Table 1. The papers are
presented in the same order they have appeared in this Section. By ana-
lyzing Table 1 it is possible to see that the most common characteristics
of available fog monitoring solutions are for purpose of performance
monitoring, a centralized topology with the monitoring agent collect-
ing infrastructure metric values, in an active manner, sending them
periodically to monitoring server using push communication model and
partially addressing fog service orchestration needs.

There are possible billing models such as consumption-based, where
users are billed per usage, or subscription-based, where users pay a
fixed monthly rate and can use the fog on a network-wide basis [99].
But pricing and billing remain a challenge in terms of sustaining a
commercial ecosystem of value-added services, as the business model
is still not clear [100], and due to the lack of fog providers [12]. These
arguments can explain why none of the works had the purpose of
generating accurate bills, although monitoring plays an important role
in this area.

Although centralized is the most used control topology among ana-
lyzed papers, some of them did not verify solution’s scalability [72,82,
86] and this can increase the risk of failure by resource exhaustion on
the monitoring server in case of huge volume of monitored nodes or in
case of a bursty scenario. Fog computing is a distributed paradigm. One
may think that the proper control topology would also be a distributed
scheme, but this assumption is not confirmed by the available fog mon-
itoring proposals. According to Ward et al. [54], distributed topologies
have inherent scalability improvements over centralized ones. But it
brings along a set of different challenges including system initializa-
tion (bootstrap problem), node lookup process and data replication.
Monitoring solutions with distributed topologies should first overcome
these challenges and risks, but they may become slower and more
cumbersome than centralized solutions.

Most of the analyzed works collect monitoring data periodically,
and amongst them, some proposals use only the Push method as
communication model [82,84,86,91]. This combination may lead to
scenarios where a large amount of data can be injected into the system,
depending on the number of devices and services being monitored. In
those scenarios, communication channels and monitoring server can
become overloaded, potentially causing inefficacy, data loss or even
unavailability of monitoring system [92]. It is fundamental to verify
if those proposals are scalable and if the overhead they inject into
the system is the lowest possible to permit them to cope with the
aforementioned scenarios.

Observability and the management of instrumentation domains
(Section 3) other than metrics are recent themes in the monitoring
context. Only one out of ten analyzed proposals collect logs [84].
None of them collect traces. Logs and traces are related to white-box
monitoring and can help assess the internals of the services, aiming
anticipating malfunctioning, debugging of already detected problems
and double-checking that everything is working properly in specific
moments, e.g., after updating the service with a new version [101].
Unify the data life-cycle management of instrumentation domains
(metrics, logs and traces) can lower the effort of maintaining multiple
data pipelines [5]. On the other hand, it is critical to consider the
14

heterogeneous nature of instrumentation data in terms of frequency of
generation, data volume and consumption (what determines the kind
of storage and user queries), balancing the benefits of using a same
data management engine with the risks of a more complex and fragile
monitoring system [37].

Regarding the needs of a fog service orchestrator, whose require-
ments were described on Section 3.5, some analyzed proposals have
fully met them: [10,78,84,86,91]. This is the answer to the second re-
search question of our review: ‘‘RQ2 — What monitoring solutions are
prepared to compose a fog service orchestrator?’’. These proposals are
lightweight and multi-platform, focused on monitoring and accept on-
the-fly configuration changing, allowing the management from the fog
service orchestrator. Nevertheless, TEEMon [92] and FogMon [3,94,
97], although categorized as partially addressing orchestration needs,
should be considered and be monitored since they can evolve and easily
change their categorization.

In order to help the researchers easily find the strengths and weak-
nesses found in each analyzed solution, we summarize this information
in Table 2.

6. Related work

This Section analyzes other surveys and works that proposed moni-
toring taxonomies in the areas of cloud computing, fog computing and
related paradigms and compares them with this work.

Some papers have presented monitoring taxonomies on cloud com-
puting [32,53–55]. In the work of Ward and Baker [54] the authors sur-
veyed monitoring tools and derived a taxonomy to classify them. They
defined the following domains: architecture, communication mech-
anism, collection mechanism, environment monitored and use-case.
The work also enumerate the challenges of cloud monitoring and the
requirements a proper tool must have to deal with them. Finally they
classified each tool by the domains and described how each one deal
with the challenges presented and whether they meet the requirements.

Syed et al. [32] surveyed the literature and created a cloud mon-
itoring taxonomy with the following domains: monitoring purposes,
communication models, overhead of monitoring system, scalability and
architectural design. They included yet domains related to the business
and operational models, e.g., monitoring perspective (user 𝑥 provider),
type of cloud (public 𝑥 private) and license (open-source 𝑥 commercial).

In [55], the authors combined system monitoring, resource manage-
ment and load prediction, which they named as global management
view. They argued that the three areas have a high correlation regard-
ing the performance of enterprise systems. They proposed a taxonomy
for each area independently, but discussed about their interconnec-
tions. They categorized only cloud and on-premises proposals with the
defined taxonomy.

Despite the relevant differences between cloud computing and fog
computing, some domains remain valid and are referenced on fog
computing proposals. In the paper [7], the authors described what
key properties a fog monitoring system must have to better deal with
fog characteristics. Besides, it categorized monitoring architectures
according to their topology – centralized, hierarchical and P2P – and
to their functional decomposition granularity (no decomposition, basic
decomposition and fine-grained decomposition). The authors analyzed
several cloud and on-premises monitoring solutions from the literature
and categorized them according to the properties and architectures
described in the work.

In the work of Taherizadeh et al. [8], the authors depicted fog
monitoring process as being a solution that has to deal with four
levels: VMs, containers, network connections and applications. The
paper reviewed the literature, described and compared proposals found
that have addressed each monitoring level. The authors proposed a tax-
onomy of functional and non-functional requirements of fog monitoring
solution and compared cloud monitoring tools to the requirements.
They concluded that none of the existing solutions fully attend the

fog monitoring requirements, so it is necessary to adapt the existing



Computer Networks 215 (2022) 109189B. Costa et al.

s
p

l
P
b
p
e
P
N
s
a

o
g
s
m
t
s
A
o
g
k
s

7

‘
a
c
s

f
d

Table 2
Strengths and weaknesses of analyzed fog monitoring solutions.

Paper Year Open-source Strengths Weaknesses

Pymon 2017 Yes Simple, focused on monitoring, lightweighted Low feature set

FMonE 2018 Yes Modularity, flexible architecture, real testbed Not adaptive, specific for Marathon

Prometheus 2018 Yes Multiple evaluations, full featured, modularity, standardized

Osmotic 2018 No Limited feature set, osmotic only, may not scale

Mobile 2018 No Derived from Sensu Require resource-rich nodes, may not scale

Switch 2018 Yes Focused on monitoring, lightweighted Low feature set, may not scale

SCB 2019 No Simple, focused on monitoring, lightweighted Infrastructure only, no data processing

Rule Based 2019 No Adaptivity, flexible configuration Low feature set, may not scale

TEEMon 2020 Yes Same as Prometheus May not scale

Fogmon 2022 Yes Adaptivity, close to be ready for orchestration Infrastructure only
Table 3

Related work comparison.

Paper Year Focus on fog
computing

Number of fog
solutions
analyzed

Proposed
taxonomy

Addressed
orchestration
challenges

Addressed observability
and instrumentation
domains

[53] 2013 ✗ 0 ✓ ✗ ✗

[54] 2014 ✗ 0 ✓ ✗ ✗

[32] 2017 ✗ 0 ✓ ✗ ✗

[7] 2017 ✓ 0 ✗ ✗ ✗

[8] 2018 ✓ 0 ✓ 𝜕 ✗

[55] 2019 ✗ 0 ✓ ✗ ✗

[9] 2021 ✓ 2 ✓ 𝜕 ✗

This work 2022 ✓ 10 ✓ ✓ ✓

✓denotes comprehensive discussion about the item.
𝜕 denotes partial or superficial discussion about the item.

✗ denotes that the item is not implemented/addressed.
olutions or develop a new one. No implementation nor evaluation is
rovided.

Abreha et al. [9] presented a taxonomy of fog monitoring so-
utions with three domains: Architecture, Requirements and Design
arameters. Architecture is divided into the same categories defined
y Abderrahim et al. [7]: Architectural Models and Functional Decom-
osition. Requirements is divided similarly to the work of Taherizadeh
t al. [8]: Functional and Non-functional requirements. Lastly, Design
arameters is divided into Topology, Data, Frequency Sampling and
etwork Bandwidth. The authors analyzed mainly cloud monitoring

olutions, concluding they are not suitable for fog environments. They
nalyzed only two specific fog monitoring solutions.

Unlike the previously described works, this paper created a taxon-
my of fog monitoring solutions covering more domains and categories,
iving a more detailed view of their properties and behavior. Recent
ubjects were brought to the light, like the Observability and Instru-
entation domains, updating the discussion in the field. In addition,

his work also addressed the orchestration needs that a fog monitoring
olution must provide to properly compose a fog management system.
lso, due to the relevant differences between cloud and fog paradigms,
nly fog proposals were considered and this work analyzed ten of them,
iving the researchers access to a more updated and comprehensive
nowledge base. Table 3 compares the related work presented in this
ection with the goals of this paper.

. Open challenges

This Section answer the third research question of this review:
‘RQ3 — What are the challenges that still need attention from the
cademia?’’. In the next paragraphs we discuss about some of these
hallenges, relate them to the categories in the taxonomy and present
ome possible directions to overcome them.

This work contextualized the high importance of monitoring in an
og service orchestration scenario. Although there are in the literature
ozens of fog orchestration’s proposals [4], most of them have assumed
15
that a monitoring process was already available and did not detail its re-
quirements, architecture, tools and technical properties [10]. To fill this
gap, this work analyzed fog monitoring solutions to identify their main
characteristics and to verify whether they address the orchestration’s
needs. As a last result from this research, we identified some challenges
in this scenario and present and discuss them in this section, as follow:

• Security and Privacy — Although fog service orchestrator should
deliver a Security functionality, as seen on Fig. 3, it will take
care of architectural security, e.g., available security standards
concerning cryptography and communication channels. But as
fog nodes are potentially resource-restricted, this characteristic
may limit security tools and techniques that could be used, and
this can make easier to an attacker to hack into the client soft-
ware. So, access control, data encryption, contextual integrity
and isolation mechanisms over sensitive data should be analyzed
to prevent security breaches [102]. Viejo et al. [103] proposed
a two-protocol process of securing transmission of monitored
data in a centralized topology with push communication model.
First protocol identifies the node hierarchy from the client to the
server and the second secure the data stream with a lightweight
symmetric cryptographic protocol.

• Management of Stored Monitoring Data [32] — Deliver all moni-
toring collected data may congest the network and overburden
the server. Store all data locally is unfeasible due to storage
restrictions and the orchestrator’s necessity for fast access to these
data for decision-making [66]. So different strategies should be
used to balance risks and benefits. Internet of things as a service
(iTaaS) [102] is a framework that supports data handling with
low bandwidth usage. Data filtering, local data caching, post-
poned data uploading and data synchronization with the server
are available strategies. Although developed to cloud scenario,
the techniques used can be applied to fog monitoring solutions.

Another strategy is the reduction in amount of metrics being mon-



Computer Networks 215 (2022) 109189B. Costa et al.
itored without loss of accuracy related to performance monitoring
of resources and services. With the use of linear correlation and
hierarchical clustering analysis, the authors of [104] proposed
an approach that automatically calculates correlations between
available metrics, allowing the reduction of monitoring data di-
mensionality. Besides reducing data management effort, a local
mechanism to decide when it is the appropriate time to mitigate
risks is of great value. Anagnostopoulos and Kolomvatsos [105]
proposed such a mechanism, with the use of Optimal Stopping
Theory [106], to permit that the monitoring tool on the fog node
track QoS measurements and signalize orchestrator that an action
is needed.

• Heterogeneity and High Distribution — SBCs (e.g., Raspberry Pi,
Beagle board, etc.) are cheap, flexible and easy to use and inte-
grate to a fog environment [72], but as there is no standardized
hardware to fog computing, software stacks may not be sup-
ported in all devices [107]. If a monitoring agent (or any service
managed by the orchestrator) is available as Docker images, this
demands that fog nodes have Docker runtime installed previously.
A possible approach is the use of over-the-air (OTA) [108] tech-
nique to make the bootstrap process, and to install execution
environment and required software modules on the device on-the-
fly, as needed. In a high distribution of fog nodes, the devices may
span through different domains, and challenges like devices’ clock
synchronization [84,109] must be addressed to prevent wrong
results on monitoring data aggregation. Yet, monitoring federated
domains can be challenging due to security, privacy and legal
issues [9,107].

• Integration of Fog monitoring with Cloud Monitoring — This
work focused on creating a comprehensive taxonomy to eval-
uate and categorize fog monitoring solutions, since there are
relevant differences between fog and cloud that prevent cloud
proposals from being used properly in fog [7–10]. With the use
of standardized data formats, such as those defined by Open-
Telemetry [35] and OpenMetrics [34], there is a possible path
for the integration between the systems used in fog and in the
cloud. The authors of [5] proposed that different components
of the monitoring system be used in a distributed way among
the layers of the environment. This structure could accommo-
date the specifics of collection and processing in the fog, with
data generation on resource-limited devices, rapid transmission of
alerts, and the minimum set of monitoring data that allows rapid
decision-making at the edge of the network. Other processes,
such as optimization (Section 2), will request a greater volume
of information (logs, traces), when possible, respecting the limits
established by the SM so that SLAs are not compromised. From
the storage of this data in fog, it is possible to share it with the
cloud, thus integrating the systems of both layers. This approach
is consistent with the recommendation made by [37]: ‘‘maintain-
ing distinct systems with clear, simple, loosely coupled points of
integration is a better strategy’’.

• Lack of Comprehensive Simulation Tools to Support the Develop-
ment of a State-of-the-art Fog Monitoring Solution — Fog comput-
ing simulators are systems that try to imitate the functioning of a
fog environment, providing component and behavior modeling.
There are dozens of fog simulators and iFogSim [110] is the
most referenced one. Most of these simulators support only some
basic categories of the monitoring taxonomy defined in Section 4,
e.g., topology, communication model, frequency, and scalability,
according to a survey put forward by Markus and Kertesz [111].
The authors did a detailed introduction and analysis of cloud,
IoT and fog simulators and provided a comprehensive comparison
of capacities and models, highlighting the different available
versions and the links to the open-source repositories. To validate
the features that are not supported by a single simulator, the
16

developers will need to use more than one simulator, which is
time and effort-consuming, or develop their own extensions to
better validate their use cases. Recently, Alwasel et al. [112]
have proposed a fog simulator that models Osmotic Computing
and Mahmud et al. [113] proposed iFogSim2, a modular simu-
lator that models service migration, dynamic distributed cluster
formation, and microservice orchestration, based on real datasets.

8. Conclusions

Fog computing extends cloud computing to the edge of the network,
properly dealing with low-latency and real-time use cases. To provide
services to the end-users and guarantee that SLA and QoE are respected,
fog service orchestration coordinates the environment. Orchestration is
a composition of several complementary functionalities, including Mon-
itoring, that is specifically accountable for collecting updated status
about resources and services, and for delivering them timely to support
decision-making.

This paper digs deeply into the role of fog monitoring in the
orchestration of a fog environment. Fog monitoring characteristics,
components and requirements were presented and analyzed, and a
discussion about its integration with other orchestration functionalities
was presented, aiming to increase the knowledge base about this novel
field of monitoring.

A taxonomy of fog monitoring solutions was created from the most
relevant domains and categories in the area. To validate the taxonomy
and to offer researchers a comprehensive analysis of available fog moni-
toring proposals, they were analyzed and categorized by the taxonomy,
showing its usefulness. Due to the relevant differences between cloud
and fog computing, and based on the evidences that cloud monitoring
proposals evaluated in the literature are not proper for use in the
fog environment, this paper only analyzed fog monitoring proposals.
Lastly, the challenges of monitoring fog infrastructures were presented,
bringing some future directions of the research in this area.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code
001. We also want to thank Fundação de Apoio à Pesquisa do Distrito
Federal (FAPDF) for support and partnership.

References

[1] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role in the
internet of things, in: Proceedings of the First Edition of the MCC Workshop
on Mobile Cloud Computing, MCC ’12, ACM, New York, NY, USA, 2012, pp.
13–16, http://dx.doi.org/10.1145/2342509.2342513.

[2] K. Velasquez, D.P. Abreu, D. Goncalves, L. Bittencourt, M. Curado, E. Monteiro,
E. Madeira, Service orchestration in fog environments, in: Proceedings - 2017
IEEE 5th International Conference on Future Internet of Things and Cloud,
FiCloud 2017, vol. 2017-Janua, 2017, pp. 329–336, http://dx.doi.org/10.1109/
FiCloud.2017.49.

[3] S. Forti, M. Gaglianese, A. Brogi, Lightweight self-organising distributed
monitoring of Fog infrastructures, Future Gener. Comput. Syst. 114 (2021)
605–618.

[4] B. Costa, J. Bachiega, L.R.c. de Carvalho, A.P.F. Araujo, Orchestration in fog
computing: A comprehensive survey, ACM Comput. Surv. 55 (2022) http:

//dx.doi.org/10.1145/3486221.

http://dx.doi.org/10.1145/2342509.2342513
http://dx.doi.org/10.1109/FiCloud.2017.49
http://dx.doi.org/10.1109/FiCloud.2017.49
http://dx.doi.org/10.1109/FiCloud.2017.49
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb3
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb3
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb3
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb3
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb3
http://dx.doi.org/10.1145/3486221
http://dx.doi.org/10.1145/3486221
http://dx.doi.org/10.1145/3486221


Computer Networks 215 (2022) 109189B. Costa et al.
[5] S. Karumuri, F. Solleza, S. Zdonik, N. Tatbul, Towards observability data
management at scale, ACM SIGMOD Record 49 (2021) 18–23.

[6] N. Marie-Magdelaine, Observability and Resources Managements in Cloud-
Native Environnements, (Ph.D. thesis), Université de Bordeaux, 2021.

[7] M. Abderrahim, M. Ouzzif, K. Guillouard, J. Francois, A. Lebre, A holistic
monitoring service for fog/edge infrastructures: a foresight study, in: 2017 IEEE
5th International Conference on Future Internet of Things and Cloud, FiCloud,
IEEE, 2017, pp. 337–344.

[8] S. Taherizadeh, A.C. Jones, I. Taylor, Z. Zhao, V. Stankovski, Monitoring self-
adaptive applications within edge computing frameworks: A state-of-the-art
review, J. Syst. Softw. 136 (2018) 19–38.

[9] H.G. Abreha, C.J. Bernardos, A.D.L. Oliva, L. Cominardi, A. Azcorra, Monitoring
in fog computing: state-of-the-art and research challenges, Int. J. Ad Hoc
Ubiquitous Comput. 36 (2021) 114–130.

[10] S.K. Battula, S. Garg, J. Montgomery, B. Kang, An efficient resource monitoring
service for fog computing environments, IEEE Trans. Serv. Comput. 13 (2019)
709–722.

[11] R.K. Naha, S. Garg, D. Georgakopoulos, P.P. Jayaraman, L. Gao, Y. Xiang,
R. Ranjan, Fog computing: Survey of trends, architectures, requirements, and
research directions, IEEE Access 6 (2018) 47980–48009.

[12] R. Mahmud, R. Kotagiri, R. Buyya, Fog computing: A taxonomy, survey and
future directions, in: Internet of Everything, Springer, 2018, pp. 103–130.

[13] K. Keahey, M. Tsugawa, A. Matsunaga, J.A.B. Fortes, Sky computing, in: IEEE
Internet Computing, IEEE Computer Society, 2009, pp. 43–51.

[14] M. Iorga, L. Feldman, R. Barton, M. Martin, N. Goren, C. Mahmoudi, The NIST
Definition of Fog Computing, Technical Report, National Institute of Standards
and Technology, 2018.

[15] OpenFog, OpenFog reference architecture for Fog computing, in: OpenFog
Consortium Architecture Working Group, OpenFog, 2017, pp. 1—162.

[16] I. Stojmenovic, Fog computing: A cloud to the ground support for smart things
and machine-to-machine networks, in: 2014 Australasian Telecommunication
Networks and Applications Conference, ATNAC, IEEE, 2014, pp. 117–122.

[17] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji, J.
Kong, J.P. Jue, All one needs to know about fog computing and related edge
computing paradigms: A complete survey, J. Syst. Archit. (2019).

[18] M. Mukherjee, L. Shu, D. Wang, Survey of fog computing: Fundamental,
network applications, and research challenges, IEEE Commun. Surv. Tutor. 20
(2018) 1826–1857.

[19] J.a. Bachiega Jr., B. Costa, L. Carvalho, V.H. Oliveira, W. Santos, M.C.c.S.
de Castro, A. Araujo, From the sky to the ground: Comparing fog computing
with related distributed paradigms, in: Proceedings of the 12th International
Conference on Cloud Computing and Services Science, CLOSER, 2022, pp.
158–169, http://dx.doi.org/10.5220/0011033300003200.

[20] E. Kalyvianaki, Resource Provisioning for Virtualized Server Applications,
Technical Report, University of Cambridge, Computer Laboratory, 2009.

[21] F. Bonomi, R. Milito, P. Natarajan, J. Zhu, Fog computing: A platform for
internet of things and analytics, in: Big Data and Internet of Things: A Roadmap
for Smart Environments, Springer, 2014, pp. 169–186.

[22] A. Shakarami, A. Shahidinejad, M. Ghobaei-Arani, An autonomous computation
offloading strategy in mobile edge computing: A deep learning-based hybrid
approach, J. Netw. Comput. Appl. 178 (2021) 102974.

[23] L.M. Vaquero, F. Cuadrado, Y. Elkhatib, J. Bernal-Bernabe, S.N. Srirama, M.F.
Zhani, Research challenges in nextgen service orchestration, Future Gener.
Comput. Syst. 90 (2019) 20–38.

[24] K. Velasquez, D.P. Abreu, M.R. Assis, C. Senna, D.F. Aranha, L.F. Bittencourt,
N. Laranjeiro, M. Curado, M. Vieira, E. Monteiro, et al., Fog orchestration for
the internet of everything: state-of-the-art and research challenges, J. Internet
Serv. Appl. 9 (2018) 1–23.

[25] Y. Jiang, Z. Huang, D.H. Tsang, Challenges and solutions in fog computing
orchestration, IEEE Netw. 32 (2017) 122–129.

[26] J. ao Bachiega, B.G.S. Costa, A.P.F. Araújo, Computational perspective of the
fog node, in: 2021 World Congress in Computer Science, Computer Engineering,
& Applied Computing, CSCE’21, 2021, http://dx.doi.org/10.48550/arXiv.2203.
07425.

[27] S. Yi, Z. Hao, Z. Qin, Q. Li, Fog computing: Platform and applications, in:
2015 Third IEEE Workshop on Hot Topics in Web Systems and Technologies,
HotWeb, IEEE, 2015, pp. 73–78.

[28] A. Madhavapeddy, D.J. Scott, Unikernels: the rise of the virtual library
operating system, Commun. ACM 57 (2014) 61–69.

[29] Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, M. Rovatsos, Fog orchestration
for internet of things services, IEEE Internet Comput. 21 (2017) 16–24, http:
//dx.doi.org/10.1109/MIC.2017.36.

[30] A. Shahidinejad, M. Ghobaei-Arani, M. Masdari, Resource provisioning using
workload clustering in cloud computing environment: a hybrid approach,
Cluster Comput. 24 (2021) 319–342.

[31] R.H. Arpaci-Dusseau, A. Arpaci-Dusseau, V. Venkataramani, {Cloud-native} file
systems, in: 10th USENIX Workshop on Hot Topics in Cloud Computing,
HotCloud 18, 2018.
17
[32] H.J. Syed, A. Gani, R.W. Ahmad, M.K. Khan, A.I.A. Ahmed, Cloud monitoring: A
review, taxonomy, and open research issues, J. Netw. Comput. Appl. 98 (2017)
11–26.

[33] A. Brandón, M.S. Pérez, J. Montes, A. Sanchez, Fmone: A flexible monitoring
solution at the edge, Wireless Commun. Mob. Comput. 2018 (2018).

[34] OpenMetrics, OpenMetrics, 2022, URL: https://openmetrics.io/ (Accessed 28
February 2022).

[35] OpenTelemetry, OpenTelemetry, 2022, URL: https://opentelemetry.io/ (Ac-
cessed 28 February 2022).

[36] A. Bento, J. Correia, R. Filipe, F. Araujo, J. Cardoso, Automated analysis of
distributed tracing: Challenges and research directions, J. Grid Comput. 19
(2021) 1–15.

[37] R. Ewaschuk, B. Beyer, Monitoring distributed systems. Site reliability
engineering: How google runs production systems, chapter 6, 2016.

[38] Kubernetes, A container orchestration tool, 2022, URL: https://kubernetes.io/
(Accessed 28 February 2022).

[39] S. Ifrah, Getting Started with Containers in Google Cloud Platform, Springer,
2021, pp. 221–258, (Chapter 8).

[40] N. Marie-Magdelaine, T. Ahmed, G. Astruc-Amato, Demonstration of an ob-
servability framework for cloud native microservices, in: 2019 IFIP/IEEE
Symposium on Integrated Network and Service Management, IM, IEEE, 2019,
pp. 722–724.

[41] H.-T. Chang, Y.-M. Chang, S.-Y. Hsiao, Scalable network file systems with
load balancing and fault tolerance for web services, J. Syst. Softw. 93 (2014)
102–109.

[42] A. Ahmed, E. Ahmed, A survey on mobile edge computing, in: 2016 10th
International Conference on Intelligent Systems and Control, ISCO, 2016, pp.
1–8, http://dx.doi.org/10.1109/ISCO.2016.7727082.

[43] Z. Xiao, P. Liang, Z. Tong, K. Li, S.U. Khan, K. Li, Self-adaptation and mutual
adaptation for distributed scheduling in benevolent clouds, Concurr. Comput.:
Pract. Exper. 29 (2017) e3939.

[44] A.N. Toosi, R.N. Calheiros, R. Buyya, Interconnected cloud computing envi-
ronments: Challenges, taxonomy, and survey, ACM Comput. Surv. 47 (2014)
1–47.

[45] EdgeXFoundry, EdgeXFoundry, 2022, URL: https://www.edgexfoundry.org/
(Accessed 28 February 2022).

[46] OpenEdge, OpenEdge computing, 2022, URL: http://openedgecomputing.org/
(Accessed 28 February 2022).

[47] I. Lee, K. Lee, The internet of things (IoT): Applications, investments, and
challenges for enterprises, Business Horizons 58 (2015) 431–440.

[48] F. Fournier, A. Kofman, I. Skarbovsky, A. Skarlatidis, Extending event-driven
architecture for proactive systems, in: EDBT/ICDT Workshops, 2015, pp.
104–110.

[49] I. Farris, T. Taleb, M. Bagaa, H. Flick, Optimizing service replication for mobile
delay-sensitive applications in 5G edge network, in: 2017 IEEE International
Conference on Communications, ICC, IEEE, 2017, pp. 1–6.

[50] S. Sultan, I. Ahmad, T. Dimitriou, Container security: Issues, challenges, and
the road ahead, IEEE Access 7 (2019) 52976–52996.

[51] B. Kitchenham, O.P. Brereton, D. Budgen, M. Turner, J. Bailey, S. Linkman,
Systematic literature reviews in software engineering–a systematic literature
review, Inf. Softw. Technol. 51 (2009) 7–15.

[52] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic mapping studies in
software engineering, in: Ease, vol. 8, 2008, pp. 68–77.

[53] G. Aceto, A. Botta, W. De Donato, A. Pescapè, Cloud monitoring: A survey,
Comput. Netw. 57 (2013) 2093–2115.

[54] J.S. Ward, A. Barker, Observing the clouds: a survey and taxonomy of cloud
monitoring, J. Cloud Comput. 3 (2014) 1–30.

[55] R. da Rosa Righi, M. Lehmann, M.M. Gomes, J.C. Nobre, C.A. da Costa, S.J.
Rigo, M. Lena, R.F. Mohr, L.R.B. de Oliveira, A survey on global management
view: toward combining system monitoring, resource management, and load
prediction, J. Grid Comput. 17 (2019) 473–502.

[56] M. Usman, R. Britto, J. Börstler, E. Mendes, Taxonomies in software engineer-
ing: A systematic mapping study and a revised taxonomy development method,
Inf. Softw. Technol. 85 (2017) 43–59.

[57] X. Masip, E. Marín, J. Garcia, S. Sànchez, Collaborative mechanism for hybrid
fog-cloud scenarios, Fog and Fogonomics (2020) 7–60.

[58] A. Morton, Active and passive metrics and methods (with hybrid types in-
between), Internet Eng. Task Force, Marina Del Rey, CA, USA, RFC 7799
(2016).

[59] StatsD, StatsD protocol, 2022, URL: https://github.com/etsy/statsd/wiki
(Accessed 28 February 2022).

[60] S. Taherizadeh, V. Stankovski, Auto-scaling applications in edge computing:
Taxonomy and challenges, in: Proceedings of the International Conference on
Big Data and Internet of Thing, 2017, pp. 158–163.

[61] P.F. Popiolek, O.M. Mendizabal, Monitoring and analysis of performance impact
in virtualized environments, J. Appl. Comput. Res. 2 (2012) 75–82.

http://refhub.elsevier.com/S1389-1286(22)00284-5/sb5
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb5
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb5
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb6
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb6
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb6
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb7
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb7
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb7
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb7
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb7
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb7
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb7
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb8
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb8
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb8
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb8
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb8
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb9
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb9
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb9
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb9
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb9
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb10
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb10
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb10
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb10
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb10
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb11
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb11
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb11
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb11
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb11
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb12
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb12
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb12
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb13
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb13
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb13
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb14
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb14
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb14
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb14
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb14
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb15
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb15
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb15
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb16
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb16
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb16
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb16
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb16
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb17
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb17
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb17
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb17
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb17
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb18
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb18
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb18
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb18
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb18
http://dx.doi.org/10.5220/0011033300003200
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb20
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb20
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb20
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb21
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb21
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb21
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb21
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb21
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb22
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb22
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb22
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb22
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb22
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb23
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb23
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb23
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb23
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb23
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb24
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb24
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb24
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb24
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb24
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb24
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb24
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb25
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb25
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb25
http://dx.doi.org/10.48550/arXiv.2203.07425
http://dx.doi.org/10.48550/arXiv.2203.07425
http://dx.doi.org/10.48550/arXiv.2203.07425
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb27
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb27
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb27
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb27
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb27
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb28
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb28
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb28
http://dx.doi.org/10.1109/MIC.2017.36
http://dx.doi.org/10.1109/MIC.2017.36
http://dx.doi.org/10.1109/MIC.2017.36
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb30
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb30
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb30
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb30
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb30
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb32
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb32
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb32
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb32
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb32
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb33
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb33
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb33
https://openmetrics.io/
https://opentelemetry.io/
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb36
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb36
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb36
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb36
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb36
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb37
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb37
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb37
https://kubernetes.io/
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb39
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb39
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb39
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb40
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb40
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb40
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb40
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb40
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb40
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb40
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb41
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb41
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb41
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb41
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb41
http://dx.doi.org/10.1109/ISCO.2016.7727082
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb43
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb43
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb43
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb43
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb43
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb44
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb44
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb44
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb44
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb44
https://www.edgexfoundry.org/
http://openedgecomputing.org/
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb47
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb47
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb47
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb49
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb49
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb49
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb49
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb49
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb50
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb50
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb50
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb51
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb51
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb51
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb51
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb51
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb52
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb52
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb52
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb53
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb53
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb53
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb54
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb54
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb54
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb55
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb55
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb55
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb55
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb55
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb55
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb55
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb56
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb56
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb56
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb56
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb56
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb57
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb57
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb57
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb58
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb58
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb58
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb58
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb58
https://github.com/etsy/statsd/wiki
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb60
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb60
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb60
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb60
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb60
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb61
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb61
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb61


Computer Networks 215 (2022) 109189B. Costa et al.
[62] P.F. Popiolek, K.S. Machado, O.M. Mendizabal, Reducing monitoring overhead
in virtualized environments through feature selection, in: Anais Do XXXVI
SimpÓSio Brasileiro de Redes de Computadores E Sistemas DistribuíDos, SBC,
2018, pp. 15–28.

[63] OpenCensus, OpenCensus, 2022, URL: https://opencensus.io/ (Accessed 28
February 2022).

[64] OpenTracing, OpenTracing, 2022, URL: https://github.com/opentracing/
specification (Accessed 28 February 2022).

[65] D. Okanović, A.v. Hoorn, C. Heger, A. Wert, S. Siegl, Towards performance
tooling interoperability: An open format for representing execution traces, in:
European Workshop on Performance Engineering, Springer, 2016, pp. 94–108.

[66] M. Grossmann, C. Schenk, A comparison of monitoring approaches for virtual-
ized services at the network edge, in: 2018 International Conference on Internet
of Things, Embedded Systems and Communications, IINTEC, IEEE, 2018, pp.
85–90.

[67] Nagios, Nagios, 2022, URL: http://www.nagios.org/ (Accessed 28 February
2022).

[68] Zabbix, Zabbix, 2022, URL: http://www.zabbix.com/ (Accessed 28 February
2022).

[69] J. Povedano-Molina, J.M. Lopez-Vega, J.M. Lopez-Soler, A. Corradi, L. Fos-
chini, DARGOS: A highly adaptable and scalable monitoring architecture for
multi-tenant clouds, Future Gener. Comput. Syst. 29 (2013) 2041–2056.

[70] S.A. De Chaves, R.B. Uriarte, C.B. Westphall, Toward an architecture for
monitoring private clouds, IEEE Commun. Mag. 49 (2011) 130–137.

[71] D. Trihinas, G. Pallis, M.D. Dikaiakos, Jcatascopia: Monitoring elastically
adaptive applications in the cloud, in: 2014 14th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, IEEE, 2014, pp. 226–235.

[72] M. Groß mann, C. Klug, Monitoring container services at the network edge, in:
2017 29th International Teletraffic Congress, ITC 29, vol. 1, IEEE, 2017, pp.
130–133.

[73] Monit, Monit, 2022, URL: https://mmonit.com/monit/ (Accessed 28 February
2022).

[74] PyMon, PyMon online, 2017, URL: https://github.com/whatever4711/PyMon
(Accessed June 2022).

[75] Marathon, Marathon: A container orchestration platform for Mesos and DC/OS,
2022, URL: https://mesosphere.github.io/marathon/ (Accessed 28 February
2022).

[76] D. Balouek, A.C. Amarie, G. Charrier, F. Desprez, E. Jeannot, E. Jeanvoine,
A. Lèbre, D. Margery, N. Niclausse, L. Nussbaum, et al., Adding virtualization
capabilities to the Grid’5000 testbed, in: International Conference on Cloud
Computing and Services Science, Springer, 2012, pp. 3–20.

[77] FMonE, FMonE online, 2018, URL: https://github.com/Brandonage/execo-
utilities-g5k (Accessed June 2022).

[78] Prometheus, Prometheus, 2022, URL: https://prometheus.io/ (Accessed 28
February 2022).

[79] CAdvisor, CAdvisor, 2022, URL: https://github.com/google/cadvisor (Accessed
28 February 2022).

[80] P. Trakadas, P. Karkazis, H.-C. Leligou, T. Zahariadis, W. Tavernier, T. Soenen,
S. Van Rossem, L. Miguel Contreras Murillo, Scalable monitoring for multiple
virtualized infrastructures for 5g services, in: SoftNetworking 2018, the Interna-
tional Symposium on Advances in Software Defined Networking and Network
Functions Virtualization, 2018, pp. 1–4.

[81] Prometheus Stack, Prometheus stack online, 2018, URL: https://github.com/
uniba-ktr/docker-swarm-monitor (Accessed June 2022).

[82] A. Souza, N. Cacho, A. Noor, P.P. Jayaraman, A. Romanovsky, R. Ranjan,
Osmotic monitoring of microservices between the edge and cloud, in: 2018
IEEE 20th International Conference on High Performance Computing and
Communications; IEEE 16th International Conference on Smart City; IEEE 4th
International Conference on Data Science and Systems, HPCC/SmartCity/DSS,
IEEE, 2018, pp. 758–765.

[83] K. Alhamazani, R. Ranjan, P.P. Jayaraman, K. Mitra, C. Liu, F. Rabhi, D.
Georgakopoulos, L. Wang, Cross-layer multi-cloud real-time application QoS
monitoring and benchmarking as-a-service framework, IEEE Trans. Cloud
Comput. 7 (2015) 48–61.

[84] F. Mourlin, C. Mahmoudi, Monitoring architecture for fog and mobile cloud,
in: 2018 17th International Symposium on Parallel and Distributed Computing,
ISPDC, IEEE, 2018, pp. 109–117.

[85] S. Porter, Sensu and the art of monitoring, 2016, URL: https://github.com/
sensu/ (Accessed 28 February 2022).

[86] S. Taherizadeh, V. Stankovski, M. Grobelnik, A capillary computing architecture
for dynamic internet of things: Orchestration of microservices from edge devices
to fog and cloud providers, Sensors 18 (2018) 2938.

[87] P. Arcaini, E. Riccobene, P. Scandurra, Modeling and analyzing MAPE-K
feedback loops for self-adaptation, in: 2015 IEEE/ACM 10th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems,
IEEE, 2015, pp. 13–23.

[88] Switch, The switch monitoring system, 2018, URL: https://github.com/salmant/
ASAP/tree/master/SWITCH-Monitoring-System (Accessed February 2022).
18
[89] Apache, Apache Cassandra, 2022, URL: http://cassandra.apache.org/ (Accessed
28 February 2022).

[90] S. Taherizadeh, V. Stankovski, Dynamic multi-level auto-scaling rules for
containerized applications, Comput. J. 62 (2019) 174–197.

[91] A. Bali, A. Gherbi, Rule based lightweight approach for resources monitoring
on IoT edge devices, in: Proceedings of the 5th International Workshop on
Container Technologies and Container Clouds, 2019, pp. 43–48.

[92] R. Krahn, D. Dragoti, F. Gregor, D.L. Quoc, V. Schiavoni, P. Felber, C. Souza, A.
Brito, C. Fetzer, TEEMon: A continuous performance monitoring framework for
TEEs, in: Proceedings of the 21st International Middleware Conference, 2020,
pp. 178–192.

[93] TEEMon, TEEMon online, 2020, URL: https://sconedocs.github.io/teemon/
(Accessed June 2022).

[94] A. Brogi, S. Forti, M. Gaglianese, Measuring the fog, gently, in: International
Conference on Service-Oriented Computing, Springer, 2019, pp. 523–538.

[95] M. Gaglianese, S. Forti, F. Paganelli, A. Brogi, Lightweight self-adaptive
cloud-iot monitoring across fed4fire+ testbeds, in: IEEE INFOCOM 2022-IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS),
IEEE, 2022, pp. 1–6.

[96] FogMon, FogMon online, 2020, URL: https://github.com/di-unipi-socc/FogMon
(Accessed June 2022).

[97] V. Colombo, A. Tundo, M. Ciavotta, L. Mariani, Towards self-adaptive peer-
to-peer monitoring for fog environments, in: 17th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems (SEAMS
’22), IEEE, PITTSBURGH, PA, USA., 2022, p. 11, http://dx.doi.org/10.1145/
3524844.3528055.

[98] Adaptive FogMon, Adaptive FogMon online, 2022, URL: https://github.com/
veracoo/FogMon/tree/adaptive-fogmon (Accessed June 2022).

[99] L.F. Bittencourt, M.M. Lopes, I. Petri, O.F. Rana, Towards virtual machine
migration in fog computing, in: 2015 10th International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing, 3PGCIC, IEEE, 2015, pp. 1–8.

[100] S. Yi, C. Li, Q. Li, A survey of fog computing, in: Proceedings of the 2015
Workshop on Mobile Big Data - Mobidata ’15, 2015, pp. 37–42, URL: http:
//dl.acm.org/citation.cfm?doid=2757384.2757397.

[101] J. Kaldor, J. Mace, M. Bejda, E. Gao, W. Kuropatwa, J. O’Neill, K.W. Ong, B.
Schaller, P. Shan, B. Viscomi, et al., Canopy: An end-to-end performance tracing
and analysis system, in: Proceedings of the 26th Symposium on Operating
Systems Principles, 2017, pp. 34–50.

[102] E.G. Petrakis, S. Sotiriadis, T. Soultanopoulos, P.T. Renta, R. Buyya, N. Bessis,
Internet of things as a service (itaas): Challenges and solutions for management
of sensor data on the cloud and the fog, Internet of Things 3 (2018) 156–174.

[103] A. Viejo, D. Sánchez, Secure monitoring in IoT-based services via fog
orchestration, Future Gener. Comput. Syst. 107 (2020) 443–457.

[104] P.F. Popiolek, K. dos Santos Machado, O.M. Mendizabal, Low overhead per-
formance monitoring for shared infrastructures, Expert Syst. Appl. 171 (2021)
114558.

[105] C. Anagnostopoulos, K. Kolomvatsos, An intelligent, time-optimized monitoring
scheme for edge nodes, J. Netw. Comput. Appl. 148 (2019) 102458.

[106] G. Peskir, A. Shiryaev, Optimal Stopping and Free-Boundary Problems, Springer,
2006.

[107] R. Babu, K. Jayashree, R. Abirami, Fog computing Qos review and open
challenges, in: Research Anthology on Architectures, Frameworks, and Inte-
gration Strategies for Distributed and Cloud Computing, IGI Global, 2021, pp.
1147–1157.

[108] M. Al Maruf, A. Singh, A. Azim, N. Auluck, Faster fog computing based over-the-
air vehicular updates: A transfer learning approach, IEEE Trans. Serv. Comput.
(2021).

[109] M. Mansouri-Samani, M. Sloman, Monitoring Distributed Systems: A Survey,
Citeseer, 1992.

[110] H. Gupta, A. Vahid Dastjerdi, S.K. Ghosh, R. Buyya, iFogSim: A toolkit for
modeling and simulation of resource management techniques in the Internet of
Things, edge and Fog computing environments, Softw. - Pract. Exp. 47 (2017)
1275–1296.

[111] A. Markus, A. Kertesz, A survey and taxonomy of simulation environments
modelling fog computing, Simul. Model. Pract. Theory 101 (2020) 102042.

[112] K. Alwasel, D.N. Jha, F. Habeeb, U. Demirbaga, O. Rana, T. Baker, S. Dustdar,
M. Villari, P. James, E. Solaiman, et al., Iotsim-osmosis: a framework for
modeling and simulating iot applications over an edge-cloud continuum, J. Syst.
Archit. 116 (2021) 101956.

[113] R. Mahmud, S. Pallewatta, M. Goudarzi, R. Buyya, Ifogsim2: An extended
ifogsim simulator for mobility, clustering, and microservice management in
edge and fog computing environments, J. Syst. Softw. 190 (2022) 111351.

http://refhub.elsevier.com/S1389-1286(22)00284-5/sb62
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb62
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb62
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb62
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb62
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb62
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb62
https://opencensus.io/
https://github.com/opentracing/specification
https://github.com/opentracing/specification
https://github.com/opentracing/specification
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb66
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb66
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb66
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb66
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb66
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb66
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb66
http://www.nagios.org/
http://www.zabbix.com/
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb69
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb69
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb69
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb69
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb69
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb70
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb70
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb70
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb71
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb71
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb71
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb71
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb71
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb72
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb72
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb72
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb72
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb72
https://mmonit.com/monit/
https://github.com/whatever4711/PyMon
https://mesosphere.github.io/marathon/
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb76
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb76
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb76
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb76
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb76
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb76
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb76
https://github.com/Brandonage/execo-utilities-g5k
https://github.com/Brandonage/execo-utilities-g5k
https://github.com/Brandonage/execo-utilities-g5k
https://prometheus.io/
https://github.com/google/cadvisor
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb80
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb80
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb80
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb80
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb80
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb80
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb80
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb80
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb80
https://github.com/uniba-ktr/docker-swarm-monitor
https://github.com/uniba-ktr/docker-swarm-monitor
https://github.com/uniba-ktr/docker-swarm-monitor
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb82
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb82
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb82
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb82
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb82
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb82
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb82
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb82
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb82
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb82
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb82
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb83
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb83
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb83
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb83
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb83
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb83
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb83
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb84
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb84
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb84
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb84
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb84
https://github.com/sensu/
https://github.com/sensu/
https://github.com/sensu/
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb86
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb86
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb86
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb86
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb86
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb87
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb87
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb87
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb87
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb87
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb87
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb87
https://github.com/salmant/ASAP/tree/master/SWITCH-Monitoring-System
https://github.com/salmant/ASAP/tree/master/SWITCH-Monitoring-System
https://github.com/salmant/ASAP/tree/master/SWITCH-Monitoring-System
http://cassandra.apache.org/
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb90
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb90
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb90
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb91
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb91
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb91
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb91
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb91
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb92
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb92
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb92
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb92
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb92
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb92
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb92
https://sconedocs.github.io/teemon/
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb94
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb94
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb94
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb95
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb95
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb95
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb95
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb95
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb95
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb95
https://github.com/di-unipi-socc/FogMon
http://dx.doi.org/10.1145/3524844.3528055
http://dx.doi.org/10.1145/3524844.3528055
http://dx.doi.org/10.1145/3524844.3528055
https://github.com/veracoo/FogMon/tree/adaptive-fogmon
https://github.com/veracoo/FogMon/tree/adaptive-fogmon
https://github.com/veracoo/FogMon/tree/adaptive-fogmon
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb99
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb99
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb99
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb99
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb99
http://dl.acm.org/citation.cfm?doid=2757384.2757397
http://dl.acm.org/citation.cfm?doid=2757384.2757397
http://dl.acm.org/citation.cfm?doid=2757384.2757397
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb101
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb101
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb101
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb101
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb101
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb101
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb101
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb102
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb102
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb102
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb102
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb102
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb103
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb103
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb103
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb104
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb104
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb104
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb104
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb104
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb105
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb105
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb105
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb106
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb106
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb106
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb107
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb107
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb107
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb107
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb107
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb107
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb107
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb108
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb108
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb108
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb108
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb108
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb109
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb109
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb109
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb110
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb110
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb110
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb110
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb110
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb110
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb110
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb111
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb111
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb111
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb112
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb112
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb112
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb112
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb112
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb112
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb112
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb113
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb113
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb113
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb113
http://refhub.elsevier.com/S1389-1286(22)00284-5/sb113


Computer Networks 215 (2022) 109189B. Costa et al.
Breno Costa has a master’s degree in Applied Computing by
University of Brasilia, Brazil in 2018. He is a Ph.D. student
in Informatics at the same institution. He has worked profes-
sionally in Computer Science in several private and public
companies. He has experience in Project Management, Cloud
computing and Fog computing.

Joao Bachiega Jr. received the M.S. degree in Informatics
by University of Brasilia, Brazil, in 2018. Currently, he is a
Ph.D. student in Informatics in University of Brasilia, Brazil.
His current research interests include Fog computing, Cloud
Computing, and computational resource provisioning.

Leonardo R. Carvalho is a Cloud Computing Ph.D. student
from University of Brasília, Brazil and is a Cloud Automation
Manager at a Brazilian government agency. His research
area focus is Hyper Performance Computing and Cloud Com-
puting. He also has experience in Computing Science with
emphasis on Software Engineering, Artificial Intelligence,
Business Intelligence, Project Management and Automatic
Configuration Management. He conducts scientific research
and applied innovation concepts in these areas.
19
Michel J.F. Rosa holds a master’s degree in Computer Sci-
ence from the University of Brasília, Brazil, and a bachelor’s
degree in Information Systems from the Federal University
of Viçosa, Brazil. He is currently a doctoral student in
the graduate program in informatics at the University of
Brasília, professor, and coordinator of the undergraduate
course in Information Systems at the EuroAmerican Univer-
sity Center (Unieuro) in Brasília. He is a technical advisor to
the United Nations Development Program (UNDP) and has a
background in computer science with an emphasis on cloud
computing, combinatorial optimization, and metaheuristics.

Aleteia Araujo holds a Ph.D. in Computer Science from
the Pontifical Catholic University of Rio de Janeiro, Brazil
and a master’s degree in Computer Science and Computa-
tional Mathematics from the University of Sao Paulo, Brazil.
She is currently an Associate Professor at the Dept. of
Computer Science, University of Brasilia, Brazil. She has
experience in Computer Science with emphasis on parallel
processing, distributed systems, combinatorial optimization,
and metaheuristics, working mainly on computational cloud,
fog, and parallel and distributed algorithms. She has pub-
lished several research papers in international journals and
conferences.


	Monitoring fog computing: A review, taxonomy and open challenges
	Introduction
	Service orchestration in fog computing
	Monitoring fog computing
	Instrumentation domains
	Observability
	Monitoring system's components
	Fog monitoring requirements and challenges
	Monitoring as a function that makes up fog orchestration
	Research selection method

	Taxonomy of monitoring characteristics in a fog orchestration scenario
	Monitoring purposes
	Monitoring topology
	Communication model
	Monitoring frequency
	Monitored layers
	Instrumentation domains
	Data processing
	Intrusiveness
	Scalability
	Monitoring overhead
	Adaptability
	Integration
	Address orchestration needs

	Analysis of fog monitoring tools based on proposed taxonomy
	PyMon
	FMonE
	Prometheus stack
	Osmotic monitoring
	Monitoring for fog and mobile cloud
	Switch
	Support and confidence (SCB) based monitoring
	Rule based
	TEEMon
	FogMon
	Discussion

	Related work
	Open challenges
	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


