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a b s t r a c t 

Fog computing is a new computational paradigm that emerged from the need to reduce network usage and la- 
tency in the Internet of Things (IoT). Fog can be considered as a continuum between the cloud layer and IoT users 
that allows the execution of applications or storage/processing of data in network infrastructure devices. The het- 
erogeneity and wider distribution of fog devices are the key differences between cloud and fog infrastructure. 
Genetic-based optimization is commonly used in distributed systems; however, the differentiating features of fog 
computing require new designs, studies, and experimentation. The growing research in the field of genetic-based 
fog resource optimization and the lack of previous analysis in this field have encouraged us to present a compre- 
hensive, exhaustive, and systematic review of the most recent research works. Resource optimization techniques 
in fog were examined and analyzed, with special emphasis on genetic-based solutions and their characteristics 
and design alternatives. We defined a taxonomy of the optimization scope in fog infrastructures and used this 
optimization taxonomy to classify the 70 papers in this survey. Subsequently, the papers were assessed in terms 
of genetic optimization design. Finally, the benefits and limitations of each surveyed work are outlined in this 
paper. Based on these previous analyses of the relevant literature, future research directions were identified. We 
concluded that more research efforts are needed to address the current challenges in data management, work- 
flow scheduling, and service placement. Additionally, there is still room for improved designs and deployments 
of parallel and hybrid genetic algorithms that leverage, and adapt to, the heterogeneity and distributed features 
of fog domains. 
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. Introduction 

Internet of Things (IoT) technologies emerge thanks to the increase
n the number of user devices as well as an increase in distributed pro-
essing capabilities. Additionally, the IoT technologies have evolved, re-
ulting in the emergence of new computing paradigms such as fog com-
uting. Fog computing is based on the idea of bringing computing and
torage resources closer to the point where they are requested or gen-
rated, i.e., closer to users. To achieve this, a computing continuum is
efined between the cloud and users, because computing resources are
ncorporated into the intermediate elements of the infrastructure (fog
evices). Thus, data can be stored in nearby devices, and services can
e executed in nodes closer to the user, reducing latency and network
oad, and fog devices provide data in motion capabilities [1] . 

In fog computing, resource management becomes more complex
ith an increase in the number of nodes involved, their heterogene-

ty, geographic dispersion, and the asymmetry in the interconnected
etworks [2] . An adequate resource management strategy should seek
he optimization of certain non-functional aspects of the architecture.
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owever, we are faced with an NP-complete and multi-objective prob-
em [3] that must be solved using an optimization method. The studies
ncluded in this systematic analysis showed that the use of genetic al-
orithms (GAs) is a common and adequate solution to implement these
esource management processes. Nevertheless, there are many research
venues open for improving GA-based solutions. 

We include an comprehensive analysis of the state of the art in this
eld: the use of GAs to optimize the resource management process of fog
rchitectures. This study offers a twofold analysis of the field of genetic
ptimization of fog resources: the optimization scope and the design of
he GA. Two taxonomies, one for each case, were created by analyzing
he papers, and they are organized in terms of these taxonomies. The
ain research challenges and direction for future research are identified

nd explained by analyzing the papers in terms of each element of the
axonomy. 

.1. Motivation behind the research 

Fog computing has emerged as a promising technology that over-
omes the limitations of cloud computing for real-time and data-massive
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Table 1 

Analysis of related surveys. 

Infrastructure domain Optimization scope Optimization technique 

Kashani et al. [35] fog load balancing no restrictions 
Kaur and Aron [36] fog load balancing no restrictions 
Santo et al. [37] container-based fog orchestration no restrictions 
Qu et al. [38] cloud, fog, edge quality of service no restrictions 
Yousafzai et al. [39] cloud resource allocation no restrictions 
Lahmar and Boukadi [40] fog resource allocation no restrictions 
Toczé and Nadjm-Tehrani [41] edge resource management no restrictions 
Ogundoyin and Kamil [18] fog resource management no restrictions 
Ghobaei-Arani et al. [42] fog resource management no restrictions 
Manvi and Krishna Shyam [43] iaas cloud resource management no restrictions 
Xu et al. [44] cloud, fog, edge resource provisioning no restrictions 
Rejiba et al. [45] fog, edge service migration no restrictions 
Raghavendra et al. [46] fog service placement no restrictions 
Mahmud et al. [47] fog service placement no restrictions 
Brogi et al. [48] fog service placement no restrictions 
Salaht et al. [49] fog, edge service placement no restrictions 
Houssein et al. [50] cloud task scheduling meta-heuristics 
Barros et al. [51] cloud, fog task scheduling no restrictions 
Abdulredha et al. [52] cloud, fog task scheduling meta-heuristics 
Varshney and Simmhan [53] cloud, fog, edge task scheduling no restrictions 
Sri Raghavendra and Chawla [54] fog task scheduling no restrictions 
Elavarasi and Silas [55] fog task scheduling no restrictions 
Alizadeh et al. [56] fog task scheduling no restrictions 
Hosseinioun et al. [57] fog task scheduling no restrictions 
Adhikari et al. [58] cloud, fog workflow scheduling no restrictions 
This work fog resource management GA 
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pplications. These applications require short response times and gen-
rate a large quantity of data that must be transmitted through the in-
rastructure. The processing and storage capacities of fog devices re-
uce the response time and network usage; however, new challenges
merge from the heterogeneity and geo-distribution of these devices
nd their interconnecting networks. Traditional solutions in the field of
loud computing must be revisited or adapted for suitable applications
n fog infrastructures. A large number of research papers have already
ddressed these new challenges and research problems by studying var-
ous optimization algorithms and methods. This volume of research jus-
ifies the analysis of their contributions to this literature review. 

GA is one of the most popular optimization techniques. It is a meta-
euristic inspired by natural selection. The optimization of a GA is based
n successive generations that combine (crossover operator) the best
olutions (selection operator and fitness) to create new solutions. Ran-
om changes (mutation operators) are also considered to avoid local
ptimization. GA is classified into the group of evolutionary algorithms
EA). The optimization algorithms included in EA differ in genetic rep-
esentation and other implementation details, as well as the nature of
he applied problem. We have limited the survey to papers that used
enetic approaches because extending the analysis to all types of EAs
ould significantly increase the number of papers presented. 

The systematic analysis in this study was motivated by the huge num-
er of contributions that applied GA to optimize fog infrastructure, and
he lack of previous analyses of using GA in infrastructure optimization.

Previous related surveys analyzed the state of the art by exploring
he challenges addressed by fog computing [2,4] , enabling architec-
ures/technologies [5–12] , application domains [1,6,7,11,13,14] , secu-
ity [5,8] , algorithms/tools [9–11] , and/or the network aspects [15] .
n addition, there is a set of specific surveys that analyze the use of
og computing in specific domains such as smart homes [16] or smart
ities [17] . 

Because our survey is focused on optimization techniques for fog
omputing, we analyzed previous related surveys focused on general
ptimization scopes. Table 1 shows a summary of all the surveys we an-
lyzed, considering the infrastructure domain, optimization scope, and
ptimization technique. Note that our study is the first to survey genetic-
ased optimizations in the fog infrastructure domain. 
2 
The most similar survey in Table 1 is the Ogundoyin and Kamil’s
18] . If we compare it with our study, by considering the list of analyzed
apers, our study includes 70 papers and Ogundoyin and Kamil’s study
ncludes 138 papers, but only 16 papers overlap between them [19–34] .

.2. Contributions 

The work presented in this paper is justified by the ongoing research
n the field of genetic-based fog resource optimization and the lack of
revious analysis in this field. To catch up with this growth, we present
 comprehensive, exhaustive, and systematic review of up-to-date re-
earch works. The contributions of this study can be summarized as fol-
ows. 

1. Resource optimization techniques in fog computing are examined
and analyzed, with a special emphasis on GA, its characteristics, and
design alternatives. 

2. A taxonomy for resource optimization in fog is presented, and studies
are analyzed in terms of this taxonomy. 

3. The genetic optimization design of existing approaches are assessed.
4. Benefits and limitations/weaknesses of each surveyed work are out-

lined. 
5. The current research challenges and future research directions are

presented. 

We believe that these contributions will provide researchers insight
nto the present research efforts and opportunities to explore the iden-
ified research challenges. 

.3. Organization of the paper 

The remainder of this paper is organized as follows. Section 2 pro-
ides a brief overview of the domains covered in this systematic review.
ection 3 describes the methodology used. The analyses of the papers in
erms of the optimization scope is presented in Section 4 . Section 5 in-
ludes an analysis from the perspective of GA design. Finally, future re-
earch directions obtained from the analysis are presented in Section 7 .
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. Brief overview of the research domain 

This section provides a brief overview of the context of this study.
mong the three main domains, resource optimization, fog computing,
nd GA, we consider that it is worthless to include a brief introduction
o GA because it is a well-known domain in the field of evolutionary
lgorithms and they are deeply explained in related literature [59] . The
ther two domains are briefly explained in the following subsections. 

.1. Resource optimization 

Resource optimization refers to the efficient management of avail-
ble resources with finite capacity. The optimization task does a
ecision-making process in which it will assign the requests to the re-
ources trying to optimize predetermined criteria. Often, these criteria
re opposed, causing that the improvement of one will mean that the
thers will worsen [60] . 

These types of problems are addressed through multi-objective opti-
ization. The solutions will satisfy the objectives in a balanced way,
ithout being dominated by other solutions. The improvement of a
iven objective in a multi-objective proposal is usually lower than the
ptimization of the single objective. 

A multi-criteria optimization is a 𝑛 -dimensional decision vector of
ariables �⃗� = { 𝑥 1 , … , 𝑥 𝑛 } that belong to the 𝑛 -dimensional space of so-
utions 𝑋 

𝑛 ⊂ ℝ 

𝑛 , �⃗� ∈ 𝑋 

𝑛 [60–62] . 
Not all solutions may be feasible. These can be, first of all, limited

y upper and lower limits, such that 𝑥 𝑙𝑜𝑤𝑒𝑟 
𝑖 

≤ 𝑥 𝑖 ≤ 𝑥 
𝑢𝑝𝑝𝑒𝑟 
𝑖 

, 𝑖 = 1 , … , 𝑛 . In
ddition, the solutions can be conditioned to meet a set of restrictions,
hese being both inequality constraints 𝑔 𝑘 ( ⃗𝑥 ) ≥ 0 , 𝑘 = 1 , … , 𝑜 and equal-
ty constraints, ℎ 𝑙 ( ⃗𝑥 ) = 0 , 𝑙 = 1 , … , 𝑝 . 

The set of solutions that satisfy these constraints and limits establish
he space of viable solutions, 𝑆 𝑛 ⊂ 𝑋 

𝑛 . 
Each of the �⃗� solutions of 𝑆 𝑛 are evaluated through an objective

unction for each of the 𝑚 optimization criteria, 𝑓 𝑗 ( ⃗𝑥 ) , 𝑗 = 1 , … , 𝑚 , giving
lace a vector 𝑧 belonging to the objective space 𝑚 -dimensional 𝑍 

𝑚 ⊂

 

𝑚 , 𝑧 ∈ 𝑍 

𝑚 , such that 𝑧 = { 𝑧 1 , … , 𝑧 𝑚 } where 𝑧 𝑗 = 𝑓 𝑗 ( ⃗𝑥 ) , 𝑙 = 1 , … , 𝑚 . In
his way, each solution ⃗𝑥 in the solution space is related to another point
⃗ in the objective space. 

Therefore, a multi-objective optimization problem is defined as: 

inimize/Maximize 𝑓 𝑗 ( ⃗𝑥 ) 𝑗 = 1 , … , 𝑚 ; 

subject to 𝑥 𝑙𝑜𝑤𝑒𝑟 
𝑖 

≤ 𝑥 𝑖 ≤ 𝑥 
𝑢𝑝𝑝𝑒𝑟 
𝑖 

𝑖 = 1 , … , 𝑛 ; 

𝑔 𝑘 ( ⃗𝑥 ) ≥ 0 𝑘 = 1 , … , 𝑜 ; 

ℎ 𝑙 ( ⃗𝑥 ) = 0 𝑙 = 1 , … , 𝑝. 

To compare the goodness of the solutions, it is necessary to estab-
ish an ordering relationship on the points of the objective space. In
he case of optimization problems with a single objective, a total or-
er relationship determined by the scalar values of the fitness function
s established. In multi-objective optimization problems, the individual
tness functions are defined for each objective to be minimized, as al-
eady commented above, thus having a vector of values of a size equal
o the number of objectives to optimize, 𝑧 = { 𝑧 1 , … , 𝑧 𝑚 } . 

If we want to establish a total ordering relationship on 𝑧 values,
ne of the simplest ways is by applying a transformation function with
eights ( ⃗𝜔 = { 𝜔 1 , … , 𝜔 𝑚 } ) to each of the values of the vector, so that an

asily comparable scalar value 𝑒 is obtained [63] : 

 = 𝜔 1 ⋅ 𝑧 1 + …+ 𝜔 𝑚 ⋅ 𝑧 𝑚 

Alternatively, the dominance concept can be used to order the so-
utions. A solution �⃗� 𝑎 dominates another solution �⃗� 𝑏 ( ⃗𝑥 𝑎 ≺= �⃗� 𝑏 ) if it is
etter or equal for all the objectives to be optimized, that is for all the
alues of the vector 𝑧 𝑎 being better in at least one of them. Thus, we
an consider the set of non-dominated solutions as the solutions that
re not dominated by any other solution in the solution space, i.e., the
ptimized (or best ) solutions. This set of solutions in a domain 𝑋 

𝑛 is
3 
nown as the Pareto set and its image in the objective space 𝑍 

𝑚 is often
alled the Pareto front [64] . 

Once the Pareto set is determined, the same process can be repeated
teratively, by removing the solutions in the Pareto set. Subsequently,
ets of non-dominated solutions would be obtained. This iterative pro-
ess would make it possible to establish an ordering of the solution space
ccording to the set which each solution is included in. 

In multi-objective optimization problems, a suitable Pareto front
ives more flexibility to select the solution with the best compromise
etween the optimization criteria. 

The generation of the Pareto set has a high computational cost be-
ause the complexity of the underlying system makes the application
f exact methods impossible. For this reason, in most cases, we find
P-complete problems, where, to obtain the optimum Pareto set, all

olutions of the space of decision variables would have to be evalu-
ted [65] . The most common dealing with these optimization problems
ill be through the use of meta-heuristics which, despite not guarantee-

ng the identification of the real Pareto set, are capable of achieving a
ront close to the optimum. Traditionally, evolutionary algorithms have
een one of the tools used to solve these types of problems, with genetic
lgorithms being one of the most popular. 

.2. Fog computing 

Fog computing is a computing paradigm that can be understood as an
xtension of cloud architecture, by including computational and storage
apacity in the in-network devices, located between the data center and
he clients. The intermediate infrastructure is the extension of the cloud
nfrastructure creating a continuum between the cloud and the users. 

In a fog computing architecture, the intermediate elements of the
nfrastructure, called fog nodes or fog devices, can store data or execute
ervices/applications. Fog devices reduce the latency between users and
pplication/data location. This improvement benefits those applications
ith critical response times. Fog devices are closer to users, and they are
eographically distributed. 

For a clear vision of the popularity growth of this technology, Fig. 1
hows the data obtained from Google Trends for the search term Fog

omputing . Likewise, Fig. 2 shows the total number of publications per
ear that are indexed in Google Scholar and Web of Science and that
ontain the term Fog computing in their titles or keywords. In both cases,
e can see how the years 2013 and 2014 mark the beginning of the

nterest in fog technologies, two years after the first proposal of fog
rchitecture [66,67] . 

The term Edge Computing is sometimes confused with fog comput-
ng, but there are clear differences between them [68] . Fog computing is
rganized in different hierarchical levels that allow the dynamic config-
ration and orchestration of generic applications. On the contrary, Edge
omputing executes specific applications in a specific location limited to
he devices at the peripheral level of the infrastructure. Edge computing
ystems are usually limited to computing and networking tasks, while
og environments also provide functionalities concerning data storage,
ontrol, and processing [69] . 

Fog infrastructures are usually split into three levels of abstraction
 Fig. 3 ). At the highest level, we would find traditional cloud systems, re-
ponsible for providing data processing or management services. At the
owest level would be all users or the IoT devices (things) that generate
ata, consume it, or request the execution of services/applications. And
he fog is the intermediate level, which is the extension of the cloud, of-
ering the same type of services as the latter. Whether the services/data
re in the nodes of the cloud system or on the fog level is transparent
or the user. 

In fog systems, as in any other distributed architecture, resource al-
ocation, workload distribution, and infrastructure organization have a
irect impact on the behavior of the system, applications, and users [70] .
he quality of service will be directly related to these decision-making
rocesses and will require optimization processes. 
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Fig. 1. Analysis of search terms related to fog computing classified by year (Source: Google Trends, April 2021). 

Fig. 2. Number of scientific publications on fog computing grouped by publi- 
cation year (Source: Web of Science and Google Scholar, March 2021). 

Table 2 

Differentiating features between fog computing and cloud computing architec- 
tures. 

Cloud Fog 

Hardware resources High Limited 
Hardware features Homogeneous Heterogeneous 
Location Limited and centralized Geographically distributed 

Static nodes Static and mobile nodes 
Network features Homogeneous Heterogeneous 

High speed, Low latency Cases of high latency 
Scale / number of nodes Thousands Millions 
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Although fog computing could be considered as a particular case of
loud computing, there are marked differences between them [71,72] .
he most important differences concern the scale, location, amount of
esources, and the interconnection of the nodes ( Table 2 ). 

These differentiating characteristics between cloud and fog make it
ecessary for a specific analysis of methodologies already adopted in
loud for the case of the fog, or the definition of new methodologies not
reviously applied. Therefore, with the definition of this new paradigm,
 whole series of research lines are also opened with specific challenges
4 
o face. In particular, challenges related to high scale, limited resource
vailability, component failures, and heterogeneity of the infrastructure.

Although the use of GAs in fog optimization has already been ex-
lored in some studies [19,48] , significant challenges remain open. In
articular, and given the characteristics of fog systems, the use of par-
llel GAs and the hybrid combination with other meta-heuristics are
erceived, a priory, as promising solutions. These expectations would
e clarified by new contributions from the research works carried out
n these lines. 

. Methodology 

This systematic literature research follows the common methodol-
gy used in the field of cloud or fog systems [18,51] . The methodology
stablishes the need to define the search strategy, definition of the re-
earch questions, and procedures for paper selection. 

In this study, papers were searched from two databases: Google
cholar (GS) and Web of Science (WoS). GS was selected because of
he large number of works it indexes and the short time between paper
ublication and GS indexing. This latter feature was considered to in-
lude the most recently published papers in the field. WoS was selected
ecause of high quality papers and its advanced search options. 

Papers were included based on these criteria: (1) the objective should
e to optimize resource management or service management, (2) the do-
ain should be focused fog computing, and (3) the optimization should

e performed using GAs. 
The search term for GS was adapted to limit the results to the scope

f fog computing. Many titles related to fog computing include only
he term fog . A search using this term would also include studies from
ther research areas, such as climatology. Consequently, the search term
as defined to obtain all the articles that included the terms fog in the

itle and fog computing in no less than one other part of the article. WoS
ncludes a search option that limits the results to a specific research field.
he previous adaptation was not required in the latter case. Table 3 lists
he search terms for both databases. 

Articles were searched at the beginning of April 2021, without limit
n the publication year. The search returned a total of 77 articles from
oS and 475 from GS. These initial articles were successively filtered at
Fig. 3. Basic architecture of fog computing. 
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Table 3 

Search terms for both databases. 

Database Search term 

Web of Science TS = (fog computing) AND ALL = (optimization OR 
scheduling OR management OR allocation OR placement) AND 
ALL = (genetic) 

Google Scholar 'genetic algorithm' AND 'fog computing' AND optimization 
AND intitle:fog 
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f  
ifferent stages by reading the title, abstract, introduction, conclusions,
nd full article. After filtering, we finally included 70 articles in the
ystematic review. 

The papers were analyzed to answer the following two research ques-
ions: 

• RQ1. Which resource optimization problems in fog environments
have been addressed with GA? In terms of the optimization scope,
what are open problems and research challenges? 

• RQ2. What types of genetic design and GA have been implemented
in fog resource optimization problems? What are the potential future
research directions for GA design? 

Consequently, the analysis of the papers is presented separately
y answering both research questions (RQ1 in Section 4 and RQ2 in
ection 5 ). Inclusion and exclusion criteria were defined considering
he research questions, that is, in terms of GA design and optimization
cope. 

Concerning the optimization scope, only articles that addressed the
ptimization of resource management or service management were in-
luded in the review. Papers that used fog architectures to optimize and
mprove processes (such as energy distribution, road traffic, and e-health
pplications...) are beyond the scope of this systematic review. Papers
n the domain of edge computing or mobile cloud computing were also
xcluded from the analysis. 

In relation to the design of GA, this systematic review only includes
tudies in which GA was a part of the paper’s contributions. By contrast,
apers were excluded when they only used GA as an experimental con-
rol group. Additionally, the papers were only included if GA was used
s an optimization algorithm [73] . Papers were excluded if they used
A as a complementary tool. For example, if GA was only used to as-

ign weights to an artificial neural network [74] , the papers were not
ncluded in the analysis. 

The filtering process included only articles that aligned with the pre-
ious inclusion and exclusion criteria. It also included articles from jour-
als or conferences written in English. Our analysis did not include other
iterature reviews or surveys. It is important to mention that none of the
2 surveys obtained from searching in both databases cover the case
onsidered in this analysis. Consequently, we can state that this is the
rst systematic review on the use of GAs for resource optimization in
he field of fog computing. Additionally, the usefulness of this paper is
ustified because the number of found, filtered, and analyzed papers is
ery high. 

The analysis of the 70 selected articles was divided into two dimen-
ions. First, they were organized according to the domain of the opti-
ization problem. Fig. 4 shows the taxonomy of the different types of

ptimization problems. Subsequently, the papers were analyzed accord-
ng to the GA design. Fig. 5 shows the taxonomy of the GA design. 

. Scope of the optimization 

Optimization and resource management problems are usually classi-
ed into scheduling, allocation, load balancing, and provisioning. It is

mportant to note that the boundary among different groups is not al-
ays clearly defined [39,43] , and some of these concepts are sometimes
sed interchangeably. 
5 
We adapted this basic optimization-domain taxonomy to our case,
hich emerged from the papers included in the systematic review.
ig. 4 shows the taxonomy used to group the papers. We used the opti-
ization field indicated in the paper or, if not indicated, we classify it as

he most appropriate group. Tables 4–7 show the general organization of
he works according to the optimization domain, and they also include
n additional column with an acronym that indicates the GA design for
ach case. 

.1. Scheduling 

In scheduling optimization, a job 𝐽 is defined as a set of tasks 𝑇 =
 𝑇 1 , … , 𝑇 𝑛 } . The scheduling algorithm determines the execution timing
f these tasks. A job can be defined as a set of independent tasks (task
cheduling) or by considering the dependencies between tasks (work-
ow scheduling) [58] . Task execution planning is also constrained by
he resources available in the computing devices 𝑅 = { 𝑅 1 , … , 𝑅 𝑚 } . 

In the case of workflow scheduling, execution dependencies are de-
ned as a directed acyclic graph (DAG) 𝐺( 𝑇 , 𝑃 ) , where nodes are tasks,
nd edges are temporal dependencies or precedence constraints 𝑃 be-
ween the tasks. Consequently, a graph 𝐽 = 𝐺( 𝑇 , 𝑃 ) represents the jobs
n the system. 

Scheduling optimization includes finding both tasks to be allocated
 to available computing resources, 𝑓 ∶ 𝑇 → 𝑅 , as well as the tempo-
al planning of task executions, 𝑔 ∶ 𝑇 → 𝑡 𝑐 𝑙𝑜𝑐 𝑘 , in such a way that the
iming constraints are fulfilled with the finite available computational
esources. 

Makespan is one of the common metrics studied in such problems.
akespan refers to the amount of time elapsed between the start of the
rst task and the end of the last task. Another commonly studied metric

s the resource usage execution cost. 
The following subsections include papers within the scope of

cheduling optimization ( Table 4 ). 

.1.1. Task scheduling 

As previously mentioned, in the particular case of independent task
lanning, the planning process does not consider dependencies between
asks 𝑇 = { 𝑇 1 , … , 𝑇 𝑛 } of job 𝐽 . 

Subramoney and Nyirenda [84] studied the task scheduling of re-
ources defined as virtual machines hosted in cloud and fog layers nodes.
hey used several algorithms based on the evolution of the population.
pecifically, they proposed optimizing the execution time, execution
ost, and energy consumption of the entire task. They used a single-
bjective optimization function calculated through a weighted transfor-
ation of these three criteria. They presented a hybrid GA that gener-

ted the first set of solutions using a classical GA, and a particle swarm
ptimization (PSO) that improves the solutions in that initial set. 

Binh et al. [24] , Ahmed et al. [79] similarly proposed a classic GA
or the scheduling of independent and parallel executed tasks, without
onsidering synchronization or communication between them. Tasks are
xecuted either on fog devices or clouds. First, Binh et al. [24] defined a
eight-based utility function that relates execution time and execution

ost and, in a successive study [25] , compared it with a PSO algorithm.
y contrast, Ahmed et al. [79] only optimized the energy consumption.

Nikoui et al. [27] also proposed using a classic GA. The main dif-
erence is that this proposal rejects task execution if the deadline is not
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Fig. 4. Taxonomy for the problem scope. 

Table 4 

Papers within the scope of scheduling optimization. 

Workflow scheduling Task scheduling Data workflow Vehicular Algorithm 

𝑎 

Baccarelli et al. [20] ∙ eGA 
De Maio and Kimovski [21] ∙ eNSGA2 
Kabirzadeh et al. [85] ∙ Hyb. 
Wang et al. [86] ∙ ∙ eGA 
Abbasi et al. [22] ∙ NSGA2 
Aburukba et al. [23] ∙ GA 
Ahmed et al. [79] ∙ GA 
Ali et al. [80] ∙ eNSGA2 
Binh et al. [24] , Nguyen et al. [25] ∙ GA 
Li et al. [81] ∙ eGA 
Liu et al. [82] ∙ eGA 
Ma et al. [83] ∙ eGA 
Nikoui et al. [27] ∙ GA 
Ren et al. [28] ∙ Hyb. 
Subramoney and Nyirenda [84] ∙ Hyb. 
Sun et al. [29] ∙ eNSGA2 
Liu et al. [87] ∙ GA 
Nguyen et al. [88] ∙ GA 
Hou et al. [91] ∙ eGA 
Li et al. [26] ∙ Hyb. 
Mekki et al. [89] ∙ NSGA2 
Ye et al. [90] ∙ GA 

a GA: classic genetic algorithm, eGA: enhanced GA, eNSGA2: enhanced NSGA-II, Hyb.: hybrid GA, Par.: parallel GA. 

6 



C. Guerrero, I. Lera and C. Juiz Swarm and Evolutionary Computation 72 (2022) 101094 

Fig. 5. Taxonomy for the genetic algorithm. 

Table 5 

Papers within the scope of optimizing service orchestration. 

Orchestration Algorithm 

𝑎 

Aoudia et al. [75] ∙ eGA 
Ranjan and Sahoo [76] ∙ GA 
Reddy et al. [30] ∙ Hyb. 
Yang et al. [77] , Wen et al. [78] ∙ Par. 

a GA: classic genetic algorithm, eGA: enhanced GA, eNSGA2: 
enhanced NSGA-II, Hyb.: hybrid GA, Par.: parallel GA. 
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7 
et. The objective function is the relationship between the monetary
ost and the percentage of tasks not executed within their execution
eadlines. 

Aburukba et al. [23] proposed a classical GA with a fitness function
alculated as the weighted average of the execution latency. Thus, the
unction assigns a greater weight to higher-priority tasks. 

Liu et al. [82] proposed to adapt crossover and mutation probabili-
ies throughout the execution of a GA. The probabilities are reduced as
he fitness function is improved. The fitness function considers execu-
ion time and communication cost. 

Sun et al. [29] proposed a two-tier solution for task planning. They
ssumed that the fog nodes were organized into groups called fog clus-
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Table 6 

Papers within the scope of resource allocation. 

General Service placement Tasks allocation Data allocation Migration Algorithm 

𝑎 

Aakizadeh and Aashi [92] ∙ Hyb. 
Akintoye and Bagula [93] ∙ GA 
Sami and Mourad [31] ∙ eGA 
Bellavista et al. [94] ∙ eGA 
Benamer et al. [95] ∙ Hyb. 
Bourhim et al. [96] ∙ GA 
Brogi et al. [97] ∙ Hyb. 
Djemai et al. [98] ∙ GA 
Guerrero et al. [19] ∙ GA NSGA2 MOEA/D 
Mehran et al. [99] ∙ NSGA2 
Mennes et al. [100] ∙ Par. 
Moallemi et al. [101] ∙ NSGA2 
Natesha and Guddeti [102] ∙ eGA 
Poltronieri et al. [103] ∙ eGA 
Scarpiniti et al. [73] ∙ Par. 
Skarlat et al. [104] , 105 ] ∙ GA 
Verba et al. [106] ∙ GA 
Wang et al. [32] ∙ GA 
Yadav et al. [33] ∙ Hyb. 
Eyckerman et al. [107] ∙ GA 
Jijin et al. [108] ∙ MOEA/D 
Shi et al. [109] , 109 ] ∙ eGA 
Canali and Lancellotti [34] , 110 ] ∙ GA 
Liang et al. [111] ∙ Hyb. 
Wang et al. [112] ∙ GA 
Martin et al. [113] ∙ GA 

a GA: classic genetic algorithm, eGA: enhanced GA, eNSGA2: enhanced NSGA-II, Hyb.: hybrid GA, Par.: parallel GA. 

Table 7 

Papers within the scope of fog infrastructure optimization. 

Physical location Topology Configuration Algorithm 

𝑎 

Hu et al. [114] ∙ eGA 
Zhang et al. [115] ∙ ∙ Hyb. 
Hussain et al. [116] ∙ NSGA2 
Lin and Yang [117] ∙ Hyb. 
Maiti et al. [118] ∙ GA 
Shamseddine et al. [119] ∙ Hyb. 
Sun et al. [120] ∙ NSGA2 
Vorobyev [121] , Vorobyev et al. [122] ∙ GA 
Yan et al. [123] ∙ NSGA2 
Barik et al. [124] ∙ GA 
Meyer et al. [125] , Wang et al. [126] ∙ GA 

a GA: classic genetic algorithm, eGA: enhanced GA, eNSGA2: enhanced NSGA-II, Hyb.: hybrid GA, Par.: parallel GA. 
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ers. First, the scheduling algorithm selects the fog cluster to execute the
ask, and then it chooses a fog device within the fog cluster. The opti-
ization criteria considered the execution time and task reliability. To

chieve this, they proposed the use of the non-dominated sorting genetic
lgorithm-II (NSGA-II) algorithm, with an improvement in the crowding
istance calculation function. 

Ali et al. [80] addressed the task scheduling problem using a mod-
fied NSGA-II algorithm with discrete encoding rather than a mapping
tructure between compute nodes and tasks. This encoding helps to save
omputing resources, particularly concerning the storage and processing
f solutions. 

Similarly, Shi et al. [109] proposed the use of a GA with real cod-
ng. The problem studied was focused on an industrial IoT environment,
nd the objective was to achieve a schedule that equally distributes the
ubtasks among all fog devices. 

Abbasi et al. [22] also considered a NSGA-II algorithm to study the
ase for multiple cloud providers, in which tasks can be executed in the
og devices or any cloud provider. The NSGA-II algorithm must balance
he power consumption with the execution time. In addition, the opti-
ization problem imposed restrictions on the load balancing, resource

apacity, total power consumption, and execution time of the entire sys-

em. t

8 
Ma et al. [83] modified the crossover operation to improve the diver-
ity of results. Thus, the crossover operation generates three solutions
ather than two. Typically, two solutions are generated by combining
arts of the parent chromosomes. The third solution is obtained as the
verage of the genes in the parent solutions. 

Li et al. [81] proposed to incorporate a penalty function in the GA
esign. This penalty function reduces the fitness of solutions that do not
eet the constraints of the problem. 

Ren et al. [28] proposed to solve the task scheduling problem in fog
nvironments by combining a GA and ant colony optimization (ACO).
hey designed a coordinated execution of both algorithms by exchang-

ng the best solutions between them, with the objective of minimizing
he total execution time and energy consumption of the fog system. 

.1.2. Workflow scheduling 

In workflow scheduling, the execution workflow is modeled by a
AG, 𝐺( 𝑇 , 𝑃 ) , where nodes represent tasks, 𝑇 = { 𝑇 1 , … , 𝑇 𝑛 } , and edges
orrespond to temporal dependencies or precedence constraints be-
ween them, 𝑃 . Therefore, the scheduler considers these precedence re-
ationships, and a task execution cannot begin until all preceding tasks
re completed. Within this problem scope, we found only three works
hat used GA. 
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De Maio and Kimovski [21] handled the problem of scheduling
ighly complex workflows. They considered dependencies between
asks and optimized makespan, execution cost, and reliability. They de-
igned an NSGA-II algorithm modified with a simulated binary crossover
peration (SBX) and a polynomial mutation. In addition, they consid-
red a second vector in the representation of the solutions. The vector
epresented the dependencies and synchronization points between tasks.
he evaluation of the solutions also considered the infrastructure topol-
gy and its influence on the workflow. 

Kabirzadeh et al. [85] addressed the problem of scheduling com-
lex execution workflows by using a hyper-heuristic algorithm. Hyper-
euristic algorithms combine a set of heuristics to compensate for the
isadvantages of each heuristic. More specifically, this work proposed
o combine GA, PSO, ACO, and simulated annealing (SA). The test-and-
elect strategy chooses the most appropriate solutions among the four
lgorithms. The goal is to optimize the energy consumption, runtime,
etwork usage, and total cost. In a recent study, the same authors ad-
ressed additional considerations related to security [127] . 

.1.3. Data processing scheduling 

Fog architectures address the reduction in the amount of data trans-
itted between the sensors and cloud. Data generators and data proces-

ors (or preprocessors) are located closer to each other. Consequently,
etwork usage is considerably reduced because of the lesser amount of
ransmitted data owing to its preprocessing. Therefore, specific studies
re required for partitioning and scheduling of the processing of these
ata [128] . 

Liu et al. [87] superficially addressed the problem of sensor data par-
itioning and the plan to process it. Without including the exact details,
hey proposed a GA to solve the scheduling problem and a Dirichlet dis-
ribution to generate a set of random vectors for the data partitioning
roblem. 

Nguyen et al. [88] proposed to optimize the energy consumption,
ervice latency, and total execution cost of the tasks that preprocess data
n the fog nodes. To achieve this, they evaluated a variety of algorithms,
ncluding a classic GA. These algorithms plan the tasks, considering both
he cloud level and fog devices. 

Baccarelli et al. [20] studied the workflow scheduling for data stream
pplications that process a continuous flow of data. They divided the
ptimization process into two steps. In the first step, resources are al-
ocated through a gradient-based adaptive process. In the second step,
ask scheduling is defined using a GA that applies the concept of elitism
o the evolution of generations. 

Wang et al. [86] targeted their proposal on the scope of large-
cale workflow problems. Specifically, they focused on addressing the
cheduling of large volumes of astronomical data (a generation rate of
00 GB per day with a total size of more than 125 TB). They proposed
he use of a classic GA that incorporates a local search operator to speed
p the optimization process. 

.1.4. Scheduling in vehicular domains 

Fog computing has resulted in a successful paradigm and in the emer-
ence of new extensions, such as vehicular fog computing (VFC). VFC
onceives vehicles as a collaborative architecture in which users incor-
orate computing and communication capabilities [129] . Through the
ynamic aggregation of vehicle resources, it is possible to improve the
uality of service offered by the fog architecture, which is characterized
y being highly dynamic. 

Mekki et al. [89] handled the scheduling of tasks in VFC environ-
ents. They proposed the use of an NSGA-II algorithm that selects ve-
icles to execute tasks, or they are assigned to other devices on the net-
ork. The goal is to balance the minimization of resource usage and
aximize the number of tasks executed in the vehicles. 

Ye et al. [90] handled a similar optimization problem in which vehi-
les correspond to public transport buses. These vehicles include the pro-
essing capacity to offer computer services to bus passengers. To achieve
9 
his, they proposed the use of a classical GA to minimize the cost of data
ransmission, limited by the constraints of satisfying a minimum quality
f service. 

Li et al. [26] addressed the problem of task offloading and its parti-
ion into independent subtasks. They proposed a hybrid algorithm that
ombines the characteristics of a GA with a beetle antennae search (BAS)
lgorithm. To achieve this, they incorporated a new step into the struc-
ure of classical GA, which evaluates the direction vectors of BAS. Thus,
he solutions evolve using a direction vector that offers the best result. 

Finally, Hou et al. [91] studied task scheduling in vehicular environ-
ents for swarms of drones. The main objective was to reduce energy

onsumption while minimizing latency and availability. For this, they
roposed the use of a GA with real coding. 

.2. Service orchestration 

In the domain of this survey, the term orchestration refers to the
rocess of selecting, integrating, and composing services to satisfy user
eeds. This process considers resource availability and network man-
gement, and it covers all levels in the infrastructure (cloud-fog-users)
130] . Cloud orchestration strategies cannot be applied without a pre-
ious evaluation in fog environments because of their different features,
uch as dynamism, scale, heterogeneity, and geographical distribution
131,132] . Table 5 lists the papers within this optimization domain. 

Ranjan and Sahoo [76] addressed the problem of selecting and com-
osing of fog services. They assumed a fog system with multiple in-
tances of services that are necessary to respond to user requests. Users
equest jobs that require the composition of a set of services. The services
ave multiple instances, and the algorithm needs to select one among
hem. They proposed a classic GA with a weighted fitness function that
onsiders execution time, economic cost, availability, and reliability as
he optimization criteria. 

Yang et al. [77] , Wen et al. [78] handled service orchestration and
orkflow composition in scenarios with a high number of services. They
roposed the use of a parallel version of the GA using Spark. The goal
as to improve the security and performance. 

Aoudia et al. [75] also addressed the problem of service composition
o improve seven metrics concerning the quality of service. To achieve
his, they proposed using a multi-population GA. These GAs subdivide
he population into different groups based on the values of the fitness
unction. Fitness was calculated through a weighted transformation of
he seven metrics considered. 

.3. Resource allocation 

Resource allocation is the process of selecting specific devices that
xecute the applications/store the data [40] . A set of constraints limits
his selection, and the portion of resources assigned to the agents. In fog
ystems, this process is even more important because of the limited re-
ources of the devices. This section includes papers in this optimization
omain ( Table 6 ). 

Jijin et al. [108] studied the task assignment problem for the partic-
lar case of opportunistic fog radio access network (OF-RANs) in which
ser devices can collaboratively create virtual fog access points (v-FAP)
ithin computational capacities. The objective is to reduce the energy

onsumption, execution time, and maximum use of resources while at-
empting to achieve a certain balance of the load with this last parame-
er. They studied the use of the MOEA/D algorithm. 

Akintoye and Bagula [93] jointly optimized the allocation of tasks to
irtual machines and the placement of the virtual machines into physical
esources. The optimization occurs at two different but related levels.
or task allocation, they proposed the use of a Hungarian algorithm.
or the placement of virtual machines, they used a GA. The GA uses a
lassic weighted sum for the optimization criteria. The objective was to
educe latency and network usage. 
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Aakizadeh and Aashi [92] used a GA to map virtual devices onto
hysical devices in a fog infrastructure. The GA minimizes the number of
hysical devices involved, while also reducing the communication time
etween these virtual devices. The proposed GA is a hybrid approach
n which a classical GA uses an initial population generated using a
lustering algorithm (K-means). 

Eyckerman et al. [107] presented a preliminary study comparing dif-
erent solutions for task allocation in fog devices. Among others, they
onsidered a classic GA modified to base the selection function in order-
ng the solutions rather than using the optimization values. 

Sami and Mourad [31] defined an architecture in which devices can
oluntarily offer their resources to deploy part of a fog infrastructure.
part from the architecture, they also proposed a memetic algorithm

or the dynamic allocation of fog resources. A memetic algorithm is an
xtension of GA, and it incorporates a local search process. In this study,
he memetic algorithm optimized the placement of virtual containers on
og resources. 

Reddy et al. [30] proposed a solution for allocating tasks to virtual
achines. The virtual machines were deployed in a fog architecture and

erve client task requests. They combined a classic GA with a reinforced
earning process that balances energy consumption and latency. 

.3.1. Service placement 

In fog systems, the placement of services/applications is a special
ase of the resource allocation problem. In the fog computing paradigm,
pplications are usually defined as services (unique or interrelated) exe-
uted on fog devices. These services can be scaled horizontally by creat-
ng different instances and allocating them to devices that best improve
 specific optimization criterion [48] . The sum of the resources allocated
o the services must be smaller than the available resources. 

Guerrero et al. [19] handled the placement and scaling of applica-
ions defined as a composition of interrelated services. The objective
as to reduce the latency between services with the same application
nd resource consumption. They studied and compared three solutions:
 classic GA and two multi-objective algorithms, NSGA-II, and MOEA/D.
he analysis also included the diversity of the resulting population. 

Yadav et al. [33] considered the case of placing services to virtual
achines hosted in the fog nodes of the infrastructure. Considering that

ervice execution time depends on the virtual machine on which it is
xecuted, they optimized the execution time of different services and
he energy consumed owing to the execution of the said services. To do
his, they proposed to combine the characteristics of a GA and PSO, using
A to first obtain new solutions from the combination of two others and,

hen, apply the PSO operators to the resulting solution, considering the
ovement of a particle (solution) toward the local and global optimum.

Brogi et al. [97] studied the case of a non-deterministic fog archi-
ecture. For this, they used a Monte Carlo method combined with a
A. The Monte Carlo method offers an exhaustive exploration of service
lacement solutions for stochastic architectures, and the GA reduces the
umber of solutions to be evaluated for each exploration step. This study
emonstrated how the combination of both algorithms can considerably
educe the computational cost of the problem, and consequently, the in-
lusion of GA allows for larger problems without losing diversity in the
olutions. 

Mehran et al. [99] handled the application placement problem for
nterconnected components (services), with the aim to optimize energy
onsumption (both of the network and the devices), economic cost, and
xecution time. They implemented the NSGA-II algorithm for the opti-
ization process. 

Poltronieri et al. [103] considered the allocation of monolithic ap-
lications. They proposed using the value of information (VoI) as the
ptimization criterion. VoI refers to the utility offered by a solution. Us-
ng this metric, they proposed the use of a GA with adaptive mutations.
ellavista et al. [94] proposed a similar solution to optimize the location
f services in a multi-layer routing environment. 
10 
Bourhim et al. [96] studied the problem of placing interrelated ser-
ices with a classic GA. They considered an infrastructure in which ser-
ices were encapsulated in virtual containers, and these containers were
laced in fog devices. The solution aims to minimize response time by
onsidering execution deadlines and resource usage. 

Djemai et al. [98] addressed the service placement problem in fog
nvironments, considering user mobility. They used a classic GA with a
robabilistic fitness function, which improved with users’ mobility in-
ormation. The optimization objectives were power consumption and
uality of service, measured as the percentage of requests that satisfy
he execution deadline. 

Wang et al. [32] also considered user mobility as a critical element
or optimizing fog infrastructures. They proposed a double-optimization
lgorithm. First, the algorithm chooses the services to be executed in
og devices, using the Gini coefficient. Subsequently, it decides specific
evice to place the service. In the second step, they used a classic GA. 

Benamer et al. [95] studied the service placement problem for the
pecific case of online gaming applications. In this problem, all users of
 game session must use the same service instance. Therefore, by con-
idering sets of users rather than independent users, they proposed min-
mizing the computational cost and service latency. They used a group-
ng GA (GGA) combined with a PSO algorithm. GGA selects the service
ocation, and PSO determines the resources allocated to the service. 

Scarpiniti et al. [73] implemented a simulator for the placement
f multi-component applications. The applications were modeled using
AGs. The simulator allows to choose between several placement poli-
ies, including a GA. The parallel design of the simulator leverages the
enefits of multi-core architectures. 

Natesha and Guddeti [102] addressed the service placement prob-
em in fog architecture by optimizing service time, cost, and energy.
hey designed an elitist GA that preserves the set of best solutions be-
ween the algorithm generations, avoiding altering them with crossover
r mutation operations. 

Mennes et al. [100] proposed a distributed GA to improve the alloca-
ion of interrelated services. The GA implements a pool-based GA [133] .
his design implements a centralized element (a MongoDB database)
hat stores all the solutions and assigns them to parallel processes that
enerate new solutions. 

As mentioned in the resource scheduling section, it is common to
rganize fog devices into groups that locally manage the infrastructure.
karlat et al. [ 104,105 ] defined the concept of fog colony, which is a
et of fog devices with a master node that orchestrate and manage the
ervice placement. Therefore, the problem of service location is divided
nto two decisions: first, finding the most suitable fog device colony and,
econd, selecting the colony device that will execute the service. They
sed a classic GA to implement the solution. 

Moallemi et al. [101] presented the service placement problem for
 fog-based IoT system that maximizes the number of sensors assigned
o each service. The coverage radius constrains the problem by limit-
ng the sensor that can be assigned to a service. They used an NSGA-II
lgorithm that maximized the coverage area and reduced the overlap
etween coverage areas. 

.3.2. Service migration 

Service migration is a specific case of service placement that con-
iders the previous location of a service. Decision making not only con-
iders a target placement but also an initial one. Migration is successful
hen the improvements compensate for the inherent migration costs

41] . Service migration is more critical in fog computing because of the
igh dynamicity and mobility of users. For example, some applications
equire migration, as user positions change with respect to the node that
rovides coverage [134] . 

Martin et al. [113] studied the migration problem for services en-
apsulated in virtualized containers. Therefore, the problem focused on
he migration of containers between fog nodes. A GA identifies a list of
andidate nodes for the migration of each container that needs to mi-
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the GA (labeled as parallel ). 
rate. The classic GA with a fitness function that minimizes migration
ime was used. 

.3.3. Data allocation 

Some fog domains handle a large number of sensors that collect
nd generate large-scale data. The need to reduce the data transmit-
ed throughout the network makes it necessary to preprocess the data
t levels close to the sensors themselves. Jobs are responsible for prepro-
essing this data to reduce the size of the transmitted data to the cloud
evel. The nodes on which these jobs run will have a direct influence on
ystem performance. 

Liang et al. [111] studied the case of data transmission from fog de-
ices to the Cloud, without data preprocessing. Therefore, the device
oad is determined by the amount of data to be transmitted. The opti-
ization process consists of assigning tasks to fog nodes of the system

uch that the total time to transmit data between the nodes and cloud
s minimized. In any case, the resulting resource allocation must satisfy
wo constraints: the limits of tasks allocated to a node and the power
onsumption. To solve this problem, they proposed to use the Hungar-
an algorithm to generate the initial population, and then to evolve this
opulation using a GA. 

Canali and Lancellotti [34] , 110 ] studied a case where fog devices
lter and partially aggregate data, and finally send it to the cloud to
omplete this data process. Their proposals were based on assigning data
ows generated from the sensors to the data preprocessing jobs. The
bjective was to reduce the total time required to send and process data
etween the sensors, fog, and cloud devices. In their initial work, they
mplemented a classic GA [110] . Subsequently, Canali and Lancellotti
34] performed a deeper analysis of the GA configuration parameters
y studying different crossover, mutation, and selection operators. 

Similarly, Wang et al. [112] studied the placement of tasks that pre-
rocess spatial data. This problem is unique in that data aggregation
as a direct relationship with the data collection area. Therefore, the
ocation of the aggregation tasks also defines the resolution level of the
ggregated spatial data. To solve this problem, they proposed the use of
 GA that optimizes the resolution obtained from data aggregation. 

.4. Infrastructure deployment 

Some studies were not included in the common domains of resource
anagement. We referred to decision-making problems that address the

ptimization of network topology, access point locations, network links,
r node features (dedicated bandwidth, installed processing capacity,
tc.). In this section, we present all the jobs that fall within this group
 Table 7 ). 

Meyer et al. [125] studied the configuration of movable base stations
MBS) in disaster events. To do this, they addressed the determination
f processing capacity and transmission bandwidth to avoid data trans-
ission degradation while minimizing the computing and transmission

osts. For this, they proposed the use of a classic GA with a weighted
bjective function. In a previous work [126] , the same authors partially
orked on the same problem from a similar perspective, in which the
bjective was to minimize the network communication time. 

Barik et al. [124] defined an architecture for the transmission, pro-
essing, and analysis of geospatial data based on a fog paradigm. They
roposed a GA that optimizes the infrastructure cost by considering the
ode features (quantity, capacity, and ratio). To do this, they defined a
lassic GA with a fitness function with weights for the different criteria.

Lin and Yang [117] presented a study for the deployment of a fog
nfrastructure in an industrial logistics center. This process determined
he physical location of the network components in the factory. The
bjective was to minimize the cost without loss of performance, latency,
nd coverage. To achieve this, they use a discrete monkey algorithm
DMA), combined with the operators of a GA to optimize a problem
ith binary decision variables. 
11 
Hu et al. [114] optimized the initial position of mobile sensors in a
og system. They proposed a classic GA with a fitness function evaluated
xternally using a trajectory simulator for the aforementioned mobile
ensors. 

Vorobyev [121] , Vorobyev et al. [122] proposed to define the infras-
ructure topology of a fog-cloud architecture by using a classic GA. Each
rticle presents the use of this solution in two different domains. 

Zhang et al. [115] optimized the geographical location of fog nodes
nd the features of the network links. Initially, they implemented the
SGA-II algorithm. In the preliminary results, they observed the algo-

ithm to be efficient; however, there was an uneven distribution of the
olution space. Therefore, they improved the solution by combining a
SO algorithm with NSGA-II. PSO was executed in an initial phase to
btain a suitable distribution of the solutions over the solution space,
nd subsequently, the NSGA-II improved the population. 

Verba et al. [106] proposed to consider the interdependence of the
pplications to improve the location of services in the lower nodes of
he fog architecture, thereby optimizing communication time and avail-
bility. They handled this problem using a classic GA. 

Sun et al. [120] proposed a general architecture that organizes IoT-
og-cloud architectures in functional domains. A functional domain is
 set of fog nodes independently managed by a coordinator node. The
SGA-II algorithm determines the coordinator using the betweenness
entrality. 

Similarly, Shamseddine et al. [119] also proposed the adaptive for-
ation of federated fog, considered as sets of independent and self-
anaged nodes. They determined the sets using a hybrid algorithm,
hich is a classic GA that uses machine learning to calculate fitness. 

Yan et al. [123] handled localization and vertical scaling of
og servers in an infrastructure dedicated to neuroimaging diagnosis
hrough a multimodal data fusion process. In this process type, the loca-
ion of the data fusion points is critical for system performance, and it is
mportant that these coincide with the physical location within the net-
ork infrastructure of the servers that perform the process. To do this,

hey proposed the use of an NSGA-II algorithm and compared its perfor-
ance with an NPGA-II algorithm (niched Pareto genetic algorithm II).
he goal of the multi-objective problem was to minimize the total data
usion time and maximize the success rate. 

Hussain et al. [116] studied how to optimize the physical location,
apacity, and the number of fog devices that incorporate computing and
torage. The objective was to minimize the response time and energy
onsumption of these elements. They initially implemented integer lin-
ar programming (ILP) to subsequently use an NSGA-II algorithm. 

Maiti et al. [118] improved latency, network traffic, cost, and re-
uired resources by optimizing the infrastructure deployment in fog do-
ains. The optimization uses a classical GA with a weighted fitness func-

ion. 

. Design of the genetic optimization 

We also present the works of this systematic review, grouping them
y genetic optimization design. This provides a general overview of GAs
hat are most common and continue to pose research challenges. 

Tables 8 and 9 show the articles according to the design of the GA: 

• Standard or classic design. Considering three cases: single-objective
GA, multi-criteria NSGA-II, or MOEA/D (labeled as classic GA, NSGA-

II , and MOEA/D ). 
• Enhanced or extended design. The base design of a classic GA is

extended or improved by including new proposals or modifications.
We divided the group into two cases: the classic single-objective GA
and the NSGA-II (labeled as enhanced GA and enhanced NSGA-II ). 

• Hybrid design. The GA is combined with another optimization tech-
nique or heuristic (labeled as Hybrid ). 

• Parallel implementation. Use of parallelization for the execution of
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Table 8 

Paper organization in terms of the algorithm design taxonomy. Subsets of articles including standard or classic designs. 

Classic GA NSGA-II MOEA/D Scope 𝑎 

Aburukba et al. [23] ∙ SC TS 
Ahmed et al. [79] ∙ SC TS 
Akintoye and Bagula [93] ∙ RA G 
Baccarelli et al. [20] ∙ SC DS 
Barik et al. [124] ∙ IN C 
Binh et al. [24] , Nguyen et al. [25] ∙ SC TS 
Bourhim et al. [96] ∙ RA SP 
Canali and Lancellotti [34] , 110 ] ∙ RA DA 
Djemai et al. [98] ∙ RA SP 
Eyckerman et al. [107] ∙ RA TA 
Liu et al. [87] ∙ SC DS 
Maiti et al. [118] ∙ IN T 
Martin et al. [113] ∙ RA M 

Meyer et al. [125] , Wang et al. [126] ∙ IN C 
Natesha and Guddeti [102] ∙ RA SP 
Nguyen et al. [88] ∙ SC DS 
Nikoui et al. [27] ∙ SC TS 
Ranjan and Sahoo [76] ∙ OR OR 
Skarlat et al. [104] , 105 ] ∙ RA SP 
Verba et al. [106] ∙ RA SP 
Vorobyev [121] , Vorobyev et al. [122] ∙ IN T 
Wang et al. [112] ∙ RA DA 
Wang et al. [32] ∙ RA SP 
Ye et al. [90] , ∙ SC V 
Abbasi et al. [22] ∙ SC TS 
Hussain et al. [116] ∙ IN T 
Mehran et al. [99] ∙ RA SP 
Mekki et al. [89] ∙ SC V 
Moallemi et al. [101] ∙ RA SP 
Sun et al. [120] ∙ IN T 
Yan et al. [123] ∙ IN T 
Guerrero et al. [19] ∙ ∙ ∙ RA ES 
Jijin et al. [108] ∙ RA TA 

a RA Resource Allocation : G General, SP Service Placement, TA Task allocation, DA Data allocation, M Migration; IN Infrastructure : 
C Configuration, T Topology, PL Physical location; SC Scheduling : WS Workflow scheduling, TS Task Scheduling, DS Data scheduling, 
V Vehicular; OR Orchestration . 
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The last column of these two tables includes acronyms that refer to
he scope of the problem in which the GAs have been applied (labeled as
cope ). Thus, the information in these tables can be linked to Tables 4–7 .

Additionally, we present a summarized description of the most im-
ortant advantages and limitations of each work in Tables 10 . 

.1. Classic single objective GA 

A simple GA design uses a single objective fitness function that re-
urns a scalar value that facilitates the ordering of the solutions. It also
ses some of the standard proposals for a set of operations: crossover,
utation, and selection [135] . A mathematical transformation is re-

uired when the optimization involves more than one optimization cri-
erion, for example, the use of a weighted sum. 

In terms of the evolution of the generations, some designs con-
ider that one generation completely replaces the entire set of previ-
us solutions. However, some designs incorporate the strategy known
s elitism, which refers to preserving the best solutions between gener-
tions. Elitism avoids losing good solutions and accelerates the conver-
ence of the algorithm [136] . Although elitism is an improvement of the
asic design of a GA, it is a standard in most of today implementations.
e have included papers with an elitism strategy under the category of

lassic GA [20,102] . 
Table 8 shows that the most common solution adopted for the op-

imization problems in fog computing is the classical approximation of
he GA, considering both single objective function and mathematical
ransformation. There are 27 papers within this group, which represents
pproximately 40% of the total. 
12 
.2. Standard multi-criteria GA 

One of the most popular solutions is the use of the NSGA-II algo-
ithm [137] . NSGA-II is probably the most popular GA for solving multi-
riteria optimization problems. In this case, the ordering is based on
ominance ( Section 2.1 ) rather than the fitness function. Specifically,
SGA-II orders solutions using the dominant fronts. Inside each front

et, the crowding distance is used for a partial order, prioritizing the
olutions that are further away from others. 

Table 9 reflects that the use of NSGA-II has also been studied in
 significant number of works. NSGA-II was used in nine jobs, which
epresents approximately 12% of the jobs. Nominally, a second common
ulti-criteria algorithm, MOEA/D, is also used in some studies, such as
uerrero et al. [19] and Jijin et al. [108] . 

.3. Extensions to standard GA 

In addition to the standard implementations of the GAs that we
ave already mentioned, it is common to find partial modifications of
hese standard GAs. The analysis of the articles shows extensions in two
locks: those based on the classical single-objective GAs and those that
se NSGA-II for multi-criteria problems. 

The number of papers proposing the use of a modified NSGA-II is
ery limited. De Maio and Kimovski [21] modified the crossover and
utation operations. Specifically, they implemented a version of NSGA-

I that uses the simulated binary crossover (SBX) [138] and a polynomial
utation [139] . Ali et al. [80] studied the use of a discrete representa-

ion for the solutions. Finally, Sun et al. [29] modified the crowding
istance calculation. These three works addressed scheduling optimiza-
ions. 
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Table 9 

Paper organization in terms of the algorithm design taxonomy. Subset of articles including extensions or improvements in classic designs. 

Enhanced NSGA-II Enhanced GA Hybrid Parallel Scope 𝑎 

Ali et al. [80] Discrete coded SC TS 
De Maio and Kimovski [21] Crossover/mutation SC WS 
Sun et al. [29] Crowding SC TS 
Aoudia et al. [75] Multi-population OR OR 
Bellavista et al. [94] Adaptative mutation RA SP 
Hou et al. [91] Real coded SC V 
Hu et al. [114] Fitness simulated IN PL 
Li et al. [81] Penalty SC TS 
Liu et al. [82] Adaptative mutation/crossover SC TS 
Ma et al. [83] Multi-crossover SC TS 
Poltronieri et al. [103] Adaptative mutation RA SP 
Sami and Mourad [31] Memetic RA G 
Shi et al. [109] Real coded RA TA 
Wang et al. [86] Local search SC DS 
Aakizadeh and Aashi [92] K-means → GA RA G 
Benamer et al. [95] GGA and PSO RA SP 
Brogi et al. [97] Montecarlo + GA RA SP 
Kabirzadeh et al. [85] , Rahbari et al. [127] GA, PSO, ACO, AS SC WS 
Li et al. [26] GA(BAS) SC V 
Liang et al. [111] Hungarian → GA RA DA 
Lin and Yang [117] DMA(GA) IN T 
Reddy et al. [30] GA + RL OR OR 
Ren et al. [28] GA ↔ ACO SC TS 
Shamseddine et al. [119] GA(ML) IN T 
Subramoney and Nyirenda [84] GA → PSO SC TS 
Yadav et al. [33] GA(PSO) RA SP 
Zhang et al. [115] PSO → NSGA-II IN T 
Mennes et al. [100] MongoDB RA SP 
Scarpiniti et al. [73] Multi-core RA SP 
Yang et al. [77] , Wen et al. [78] Spark OR OR 

a RA Resource Allocation : G General, SP Service Placement, TA Task allocation, DA Data allocation, M Migration; IN Infrastructure : 
C Configuration, T Topology, PL Physical location; SC Scheduling : WS Workflow scheduling, TS Task Scheduling, DS Data scheduling, V 

Vehicular; OR Orchestration. 
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By contrast, we found a larger number of classic GAs with improve-
ents. In these cases, the most common improvements are in the basic

perations (crossing, mutation, and selection) or in the inclusion of new
perations, such as local search operations. Basic improvement refers
o the probability of the operations being applied. Rather than having
 constant value, these algorithms modified the probability based on
he evolution of the solutions used, for example, fitness. This allows
or faster convergence [140] . Some studies in this survey used adaptive
robability for the mutation [94,103] or for both mutation and crossover
82] . 

Ma et al. [83] modified the crossover operation and, rather than gen-
rating two children, they also created a third child based on the mean
f the two parents’ values. The objective of this type of modification is
o increase the diversity of the solution space [141] . 

Real encoding is another alternative to the GA chromosome. Typi-
ally, GAs encode solutions in a binary form using arrays or matrices.
owever, this type of encoding has disadvantages, such as Hamming
liffs, which refers to the case in which the Hamming distances are long
or those encodings that represent very close solutions. For this reason,
eal number encoding results in a faster convergence to the optimum;
owever, crossover and mutation operations also require an adaptation
142] . Our analysis included the works of Hou et al. [91] , Shi et al.
109] that implement real coding, with both cases focusing on task plan-
ing. 

Regarding the population, another way to improve the GA behavior
s to create subsets of the solutions, also called multi-populations [143] .
his strategy consists of creating a split set of solutions that evolve in-
ependently. It is also possible to incorporate a process of exchanging
olutions between different subgroups. This type of strategy allows as-
igning specific regions of the solution space to each subset, thus inten-
ifying the optimization search in those areas. Similarly, they facilitate
he possibility of running the search process in parallel. Aoudia et al.
13 
75] proposed the use of this type of approach to address the problem
f orchestration and composition of services. 

Another common modification of GAs is the inclusion of a local
earch process in each algorithm iteration. The goal of these local
earches is to ensure faster solution convergence and stability. Memetic
lgorithms are solutions based on GAs that include local search pro-
esses to improve the performance of the optimization process [144] .
he work of Sami and Mourad [31] includes this local optimization to

mprove resource allocation. Wang et al. [86] presented another work
hat implements a local search to reschedule tasks to finish all of them
t the same time. 

Li et al. [81] extended the GA design by adding new operators.
pecifically, they incorporated a penalty function. This type of operation
s incorporated to better manage the restrictions posed by a problem on
he obtained solutions [145] . 

Some proposals incorporate alternatives for the fitness function, for
xample, in scenarios where it cannot be established analytically. Hu
t al. [114] used a simulator to evaluate the fitness of the solutions. The
imulator is configured using the solution proposed by the GA, and it
alculates the metrics that will be used to evaluate the solution. 

.4. Hybrid GA 

GAs allow improvements by defining or modifying operations, so-
ution coding, or solution organization, as well as by including other
ptimization techniques and heuristics. When a GA is combined with
ther techniques, it is considered a hybrid solution. This combination
ncorporates the advantages of each heuristic [146] . 

In general, strategies that combine different heuristics in an opti-
ization process can be classified using two criteria [147,148] . First,

hey are classified by the execution flow of the optimization process.
ased on this criterion, the first type is the solution executed in sequen-
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Table 10 

Summary of benefits and limitations of the surveyed papers (I). 

Benefits Limitations 

Aakizadeh and Aashi [92] Considering virtual devices for offloading. Only one optimization objective. 
Abbasi et al. [22] Multi-objective optimization. Limited evaluation considering other studies. 
Aburukba et al. [23] Experiments with large scale scenarios Single objective optimization. 
Ahmed et al. [79] Important improvements with a small number of generations. Single objective optimization. 
Akintoye and Bagula [93] Joint task allocation and virtual machine placement 

optimization. 
Experiments simulated with CloudSim instead of iFogSim. 

Ali et al. [80] Good state of the art analysis. Lack of real parametrization. 
Aoudia et al. [75] Good use of QoS requirements. Experiments with a small size scenario. 
Baccarelli et al. [20] A development of optimal-preserving decomposition into the 

cascade of resources. 
Need further considerations about 5G features. 

Barik et al. [124] Scalable solution. Performance study based only in server-side metrics. 
Bellavista et al. [94] A SDN model for Fog nodes. Absence of an overhead study. 
Benamer et al. [95] A comparison with 4 algorithms A small range of values in the setup of the study. 
Binh et al. [24] , Nguyen et al. [25] Extensive comparison with other optimization techniques. Definition of the experimentation with a small number of 

nodes. 
Bourhim et al. [96] Problem model considers the composition of containers. Small number of nodes in the experiments. 
Brogi et al. [97] A combination of Monte Carlo method and GA. Small number of scenarios. 
Canali and Lancellotti [34] , 110 ] Extensive evaluation of serveral designs of GAs. Experiments not including simulation/emulation. 
De Maio and Kimovski [21] Real time requirements and big volume of data. Lack of comparisons with other proposals. 
Djemai et al. [98] Optimization considering mobility of the nodes. Use of a simple genetic algorithm. Experimentation with a 

reduced number of nodes. 
Eyckerman et al. [107] Address highly dynamic networks considering node mobility 

and failure/disconnection. 
Difficulty to keep the network status up to date at all times. 

Guerrero et al. [19] Extensive evaluation of serveral designs of GAs. Experiments not including simulation/emulation. 
Hou et al. [91] Address real time requirements of the tasks. Lack of real data. 
Hu et al. [114] Including mobile sensors No use of real data. 
Hussain et al. [116] Deep study of all the solutions in the Pareto set. Experiments not including simulation/emulation. 
Jijin et al. [108] Define intermediate access points. A comparison with other techniques is missing. 
Kabirzadeh et al. [85] , Rahbari et al. 
[127] 

Including security considerations. Limited number of features in scenario. 

Li et al. [81] Wireless consideration using NOMA protocol. Lack of other aspects of NOMA. 
Li et al. [26] A combination of beetle antennae search algorithm and GA. Limited evaluation with other algorithms. 
Liang et al. [111] A distributed model with local information. No considering heterogeneity of the data. 
Lin and Yang [117] A combination of discrete monkey algorithm and GA. There is no variability in the experimentation. 
Liu et al. [82] A collaborative scheduling of tasks and fog resources. A discussion about the overhead of the proposal is missing. 
Liu et al. [87] Definition of a fog architecture along the resource optimization 

combined with reliability, fault tolerance, privacy. 
The design of the GA is slightly explained. 

Ma et al. [83] Use of Interference beaconing protocol (LIBP). Small size of the scenarios in the experiments. 
Maiti et al. [118] Experiments considering high scale scenarios. Multi-objective optimization implemented with a single 

objective GA. 
Martin et al. [113] Proposal of a conceptual framework along the optimization 

solution. 
No use of predictive mobility models. 

Mehran et al. [99] Simulated and real world evaluation. No fault tolerance for fog devices is considered. 
Mekki et al. [89] Multi-objective optimization considering mobility and dynamic 

resources. 
No study of the evolution of the solutions along the 
generations. 

Mennes et al. [100] Good scalability through distributed computing. It deals with a few resource features and has centralized 
storage. 

Meyer et al. [125] , Wang et al. [126] Experiments with realistic parameters for disaster events. Complex simulations are required for the adaptation of the 
bandwidth parameters. 

Moallemi et al. [101] Centralized and distributed orchestrator is considered. Proposals compared with a random solution. 
Natesha and Guddeti [102] Use of the Elitism-based genetic algorithm. Low variability of values in the experimentation. 
Nguyen et al. [88] Extensive experimental comparison with other proposed 

algorithms. High scale size of the experiments. 
Design of the GA slightly detailed. 

Nikoui et al. [27] Experimental results obtained by simulation. Dependencies between tasks are not considered. 
Poltronieri et al. [103] Definition of the concept of Volume of Information. Experiment with static environment. 
Ranjan and Sahoo [76] Analysis of the fitness function along the generations of the GA. Multi-objective optimization implemented with a single 

objective GA. 
Reddy et al. [30] Optimize the period of fog nodes’ duty cycle. Low variability in experimentation. 
Ren et al. [28] A combination of GA and Ant Colony Optimation. Few number of features in the criteria. 
Sami and Mourad [31] Memetic algorithm as search method. Few range of values in the features of the experimentation. 
Scarpiniti et al. [73] Allow dynamic joint optimization and tracking of the energy 

and delay performance of fog systems. 
Lack of scalability and performance studies. 

Shamseddine et al. [119] Define a fog federation formation mechanism. Lack of prediction tests for the data set. 
Shi et al. [109] Distributed model to obtain low latencies. No consideration of network failures. 
Skarlat et al. [104] , 105 ] Definition of fog colonies to simplify the complexity of the 

optimization. 
Limited experiment comparison with other optimization 
techniques. 

Subramoney and Nyirenda [84] Five EA in the experimentation. Slightly improvements with regard the control algorithms. 
Sun et al. [120] Solution considering user mobility and the topology of the 

infrastructure. 
Service reliability is not considered. 

Sun et al. [29] A design of resource scheduling. Low number of approaches in the evaluation. 
Verba et al. [106] Use Case scenario and parameters of interest based on Industry 

4.0 requirements. Performance and application profiles based 
on experimental data. 

No evaluation of migration of the applications. 

Vorobyev [121] , Vorobyev et al. 
[122] 

Definition of an analytical/mathematical model. Experiments not compared with other research studies. 

Wang et al. [86] Management of a large volume of data. Absence of analysis of other computer models in the state of 
the art. 

( continued on next page ) 14 
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Table 10 ( continued ) 

Benefits Limitations 

Wang et al. [32] Jointly optimization of resource usage and off-loading. Cost of migrations is not considered. 
Wang et al. [112] Two-layer data processing architecture for spatial big data 

clustering. Evaluation in real data set. 
Lack of evaluation of the computation time. 

Yadav et al. [33] Efficient implementation in C + of an hybrid algorithm using 
GA and PSO. 

Lack of completeness of cases and resource features in the 
experimentation. 

Yan et al. [123] Application to the field of neuroimaging. No evaluation of the optimization time. 
Yang et al. [77] , Wen et al. [78] Consider parallel computing in the treatment of the population. More exploration of opportunities for incremental replanning 

and tuning to improve performance. 
Ye et al. [90] Scalable solution for mobile domains. Validation performed only against non-offloading. 
Zhang et al. [115] Combine the convergence and searching efficiency of NSGA-II 

and SMPSO. 
The proposal does not improves all the criteria. 
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ial phases, called relays. In relay optimization, the result of the first op-
imization is the input of the second optimization; thus, the optimization
s sequential. The second set corresponds to those executed collabora-
ively. They are executed simultaneously and independently, however,
n a coordinated way, for example, by exchanging solutions throughout
he optimization process. 

Second, hybrid strategies are classified by a second criterion, the de-
ree of coordination between the heuristics. From this perspective, we
nd low-level or high-level strategies. In the first case, low-level strate-
ies are based on the integration of a meta-heuristic as an improvement
f a part or partial task of another meta-heuristic. Thus, one heuristic is
 subordinate component integrated into the master meta-heuristic. By
ontrast, in high-level strategies, the different meta-heuristics are self-
ontained and self-sufficient, and the coordination process is based on
he exchange of information between them. 

Hybrid strategies combine these two classification criteria, providing
our possible groups. However, there are very few general examples that
ombine the use of low-level strategies executed by relays [147] , and we
id not find any of these cases in this systematic review. 

For high-level relay strategies, the optimization process is divided
nto two self-contained phases. Each phase applies two different algo-
ithms, considering the population resulting from the first one as the
nitial population of the second algorithm. Several works in the field
f fog optimization combine heuristics in a high-level relay manner. For
xample, combining GA and PSO [84] , PSO and NSGA-II [115] , the Hun-
arian algorithm and GA [111] , and k-means and GA [92] , as the first
nd the second algorithms, respectively. 

For high-level collaborative strategies, optimization is performed si-
ultaneously and in a coordinated manner. The exchange of solutions
uring the optimization process is one of the most common coordination
trategies. For example, Ren et al. [28] proposed the exchange of solu-
ions between a GA and an ACO. Another coordination strategy is based
n executing parallel and independent optimization algorithms and sub-
equently choosing the most appropriate solutions from each solution.
or example, Kabirzadeh et al. [85] , Rahbari et al. [127] combined four
ifferent heuristics (GA, PSO, ACO, and AS) and used a test-and-select
trategy to choose the final solution. 

Collaborative low-level techniques involve a more complex integra-
ion of heuristics or algorithms. In these cases, the entire optimization
xecution flow is redesigned by integrating and interleaving the tasks
f each heuristic to be combined. For example, Li et al. [26] included
n additional intermediate task to the classic structure of a GA and the
volution operation of a BAS to improve the solutions obtained from se-
ection, crossing, and mutation. Similarly, Yadav et al. [33] used a GA to
ontrol the evolution of the population, however, integrated the particle
otion operations of a PSO to accelerate the evolution of solutions. By

ontrast, Lin and Yang [117] proposed a general optimization process
ontrolled by the DMA, which integrates genetic crossing and mutation
n the DMA. Finally, Shamseddine et al. [119] incorporated a machine
earning process to calculate fitness, which improved performance dur-
ng the optimization process. 
15 
A set of works can be defined as hybrid solutions by considering
he combination of different algorithms or heuristics to optimize differ-
nt aspects of a system, however, performed simultaneously and coor-
inately. For example, Benamer et al. [95] used a grouping GA (GGA)
or the location of services and a PSO that determines the resources
ssigned to the service in the fog device. This technique was also pro-
osed by Reddy et al. [30] , where a GA was used to assign resources
o virtual machines to be deployed in the fog architecture, and a rein-
orced learning process was used to predict the duty cycle of each of
hese virtual machines. Similarly, Brogi et al. [97] used the Monte Carlo
ethod to explore the possible conditions of a non-deterministic fog ar-

hitecture that includes variations in the characteristics of the network
nfrastructure. For each of the explored cases, the optimization process
as performed using a GA. 

.5. Parallel GA 

The execution time of GAs dramatically increases, for exam-
le, with bigger optimization problems, customized operators, higher
omputational-cost operators, larger datasets, or larger number of non-
inear restrictions [149] . The main advantage of parallel GAs (PGA) is
o overcome these limitations in terms of the execution times. GAs re-
uire the execution of the same operations (crossover and mutation op-
rators, fitness calculation, constraints validation) on multiple isolated
ubsets of data (individuals of the solution population) and this allows
he parallelization of their execution as islands or neighborhoods [150] .
ut PGAs are much more than just faster implementations [151] . PGAs
lso allow to implement new optimization models, techniques and op-
rators that can take advantage of parallel and heterogeneous plat-
orms [152,153] and they can cooperate with other search procedures
ore easily than sequential GAs [150] . Finally, PGAs also show better

earch, even if no parallel hardware is used, and higher efficiency and
fficacy than sequential GAs [150] . 

Only three paper, of the analyzed ones, adopted a parallel approach
or the execution of the algorithms; however, none of them leveraged
he distributed nature of the fog architecture. Particularly, two of them
roposed the use of tools of a parallel and distributed nature for execut-
ng the GA, MongoDB in the case of Mennes et al. [100] and Spark in
ang et al. [77] , Wen et al. [78] ; however, all of them used computing
esources external to the fog architecture. Finally, [73] implemented a
imulator that incorporates a GA, and this was programmed to leverage
he multi-core characteristics of the processors where it executes. 

. Swarm algorithms for the optimization of fog infrastructures 

Although this study focuses on the use of GAs in fog optimization, it
s also interesting to briefly analyse other references in the related field
f swarm computation. In particular, we want to present some other re-
earches proposing the use of Ant Colony Optimization(ACO), Particle
warm Optimization(PSO), Artificial Bee Colony Optimization(ABC),
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Table 11 

Swarm-based optimization for fog infrastructures. 

Algorithm 

Ant Colony Optimization [159,170,172,179–184] 
Particle Swarm Optimization [160,173–177,185] 
Artificial Bee Colony Optimization [162,163,166–169,186] 
Firefly Algorithm [158,178] 
Bat Algorithm [157,164,165] 
Flower Pollination Algorithm [156,161] 
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irefly Algorithm(FA), Bat Algorithm(BA), and Flower Pollination Algo-
ithm(FPA) [154] . The main differences of swarm algorithms are that:
hey rely on the collective behaviour of agents, they select the best so-
utions among all the available solutions, the solution time increases
inearly with the population size, and they have a high tendency to pre-
ature convergence [155] . 

It is important to note that the number of studies including swarm-
ased solutions is much smaller than those based on GAs. This is shown
n Table 11 , where the swarm-based solutions are organized in the terms
f the previously listed algorithms. All those works deal with different
ptimization scopes in the field of fog infrastructures, such as, resource
llocation [156–160] , load balancing [161–163] , infrastructure deploy-
ent [164] , scheduling [162,163,165–177] , service placement [178–
85] , or data placement [186] . 

. Research challenges 

The papers analyzed in this systematic review clearly showed that
 GA is a suitable solution for resource optimization problems in fog
rchitectures. Most of these solutions are based on standard GA designs,
pplying a single-objective GA or NSGA-II in the case of multi-criteria
ptimizations. This provides room for future research directions that
hould be pursued, and their challenges deserve special attention from
he scientific community. 

We first present the current challenges in terms of GA design. Sub-
equently, we analyze the optimization field, which requires additional
fforts to solve the remaining challenges. 

.1. Exploring additional standard genetic proposals 

There is a wide range of standard designs of GA that, to the best
f our knowledge, has not been considered for resource optimiza-
ion in fog. Among these algorithms, we find some as diverse as vec-
or evaluated genetic algorithm (VEGA), Fonseca and Fleming’s multi-
bjective genetic algorithm (MOGA), niched Pareto genetic algorithm
NPGA), non-dominated sorting genetic algorithm III (NSGA-III), Eli-
ist non-dominated sorting genetic algorithm (ENSGA), distance-based
areto genetic algorithm (DBPGA), and thermodynamic genetic algo-
ithm (TGA) [187] . 

Most of these genetic designs have been studied for the optimization
f cloud infrastructures, for example, in the scope of task scheduling us-
ng NPGA [188] or MOGA [189] and virtual machine placement with
SGA-III [190] . However, they should be revisited and reevaluated for

og infrastructures because there is not any algorithm that fits all the
ptimization problems, as the “No Free Lunch ” theorem states [191] .
loud and fog computing have important differences in terms of het-
rogeneity, limited and geographical distribution of the computational
esources, heterogeneity of the interconnection network, and scale level
f the infrastructure. Consequently, further researches are required in
he evaluation of all those genetic designs in the field of fog computing.

.2. Parallel designs 

The number of papers that have considered the use of parallel GAs
s limited, and they do not consider the use of standard parallel designs.
16 
he common types of parallel GAs considers three cases: a master/slave
ingle population scheme (the master performs the population evolu-
ion and the slaves calculate the objective functions), a fine-grained sin-
le population (with a single population, where each process performs
ll the genetic operations, requiring high coordination and a solution
artitioning scheme), and coarse-grained multi-populations (in which
ach process works with a population that evolves independently) [149–
51,192] . 

None of the analyzed works considered the use of fog device re-
ources to execute the optimization process. In this way, it would be
ossible to utilize the distributed characteristics of a fog system to par-
llelize the execution of the proposed GAs. Morell and Alba [193] per-
ormed a preliminary study on executing GAs for the optimization of
lassic problems in edge computing environments (with mobile devices
nd very heterogeneous characteristics). Their results are promising
nd, despite the differences with edge environments, their conclusions
an be transferred to fog infrastructures, particularly those related to the
eterogeneity of the devices. In any case, fog devices would offer more
xtensive resources than edge devices and would not be as dependent
n batteries and energy consumption, which are factors that seem to be
etermined according to the conclusions of the aforementioned study. 

For these reasons, it is worth exploring the possibilities of leverag-
ng the computational resources of fog architectures for executing the
ptimization process. This would be particularly interesting in the case
f parallel GAs from coarse-grained population subgroups. 

Finally, the definition of new genetic design should consider the in-
egration and deployment requirements of fog infrastructures. These
ew solutions need to be easily integrated into distributed and self-
rganizing orchestrators, brokers, and application managers [194,195] .
dditionally, new proposals should consider new fog paradigms, such
s osmotic computing [196] . 

.3. Hybrid proposals 

The principle of “No Free Lunch ” states that no algorithm can fully
atisfy all application scenarios [191] , requiring the combinations of
everal alternatives. This review includes several studies that consider
ybrid solutions. In any case, because of the multiple design possibilities
f this type of algorithm (high or low level, relay, or coordinated) and
he wide range of meta-heuristics to combine with [197] , the number
f possible cases to study is extremely high, and there is still room for
urther research. 

Optimization processes require both the exploration of the solution
pace, to guarantee the global optimum, and exploitation, to refine and
mprove a solution. Population-based heuristics, such as GAs, are effec-
ive for exploring; however, they are limited to exploitation. Therefore,
t is suitable to combine its use with trajectory-based meta-heuristics,
uch as hill-climbing, SA, and taboo search. This is precisely one of the
oints on which future research efforts should focus, particularly in the
ase of low-level hybrid techniques, which integrate other heuristics in
he optimization process of a GA in a subordinate manner. 

The combination of population-based meta-heuristics for the design
f high-level hybrid solutions, both for relay and coordinated models, is
n additional research direction to outperform genetic-based optimiza-
ions in fog. For example, PSO requires complex control parameter ad-
ustments that affect the effective particle speed. It can easily fall into lo-
al optima, with low convergence accuracy. Consequently, the benefits
f hybridization can outperform the performance of GA by combining
t with PSO and reducing the execution time and computing cost [198] .

Population-based optimization algorithms can benefit from ensem-
le strategies that offer the availability of diverse approaches at differ-
nt stages and reduce the efforts in the offline setting up of the algo-
ithms [199] . In addition, the algorithms can support each other during
he optimization process, such that their ensemble results in a versa-
ile and powerful population-based optimization algorithm. The basics
f these ensemble processes can perfectly fit the features of fog infras-
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ructure (heterogeneity and geographical distribution). This research
ine should be investigated by diversifying the set of configuration pa-
ameters, clustering structures, search operators, and algorithm designs
o create ensemble solutions handling different types of problems. But
hese future proposals should deal with the limitation of the ensemble
trategies [146] . First, they would require significant efforts in the de-
ign of local search because of its high influence on the search perfor-
ance of the optimization objective. Second, it is important to balance

he exploration and exploitation (global and local search) to solve global
ptimization problems. 

In addition, considering the previous section on parallel designs
 Section 7.2 ), it is extremely necessary to study the parallel implemen-
ations of these hybrid solutions [147] . To the best of our knowledge, no
revious study has considered a parallel version of a hybrid algorithm.
his is probably a future research line that would provide significant

mprovements, particularly for collaborative hybridization cases. 

.4. Scheduling 

The field of task scheduling has been extensively studied, and these
revious results cover optimization needs. By contrast, studies on work-
ow scheduling are a few, probably because of the complexity of con-
idering task dependency relationships. 

Future studies should focus on reducing latency, managing energy
onsumption, and resource usage, as these are the most critical elements
f this type of architecture [58] . The proposed solutions should explore
 wider range of possibilities for the use of GAs. 

.5. Orchestration 

Service orchestration requires the discovery, selection, and the com-
osition of services. In terms of orchestration, resource management
efers to the mechanisms that will optimize the process of selecting and
omposing services, considering their scalability and, in particular, the
eterogeneity of the nodes where they are executed. This is an important
ifference with cloud orchestration, where details of the node resources
re not considered because of their homogeneity. By contrast, fog or-
hestration needs to incorporate device details in the decision-making
rocess owing to device heterogeneity. 

.6. Service placement 

The number of articles related to the fog service placement problem
s relatively high compared to other optimization areas that were also
onsidered in this study. In any case, most of the proposed solutions are
ased on standard-weighted GAs or the use of NSGA-II. 

Although the three parallel GA proposals that have been found are
ocused on this optimization field, this type of GA still requires a more in-
epth and extensive study for each of the three types of defined parallel
As, particularly those that use multiple populations. 

Additionally, the problem of service scale can be considered part of
he placement problem because scalability can be considered as deter-
ining the position of the services and the number of instances. Scala-

ility has been studied in a limited number of studies, and more research
ffort is required. 

.7. Service migration 

Although service migration can be considered as a specific case of
ervice location, it differentiates in the fact that the previous position
f the service has an important influence on the optimization [134] .
ew studies have handled service migration in fog. This problem scope
s particularly important in cases in which services need to be located
s close as possible to users, and the service migrations follow the user
aths, even anticipating migration operations to the user movements
200] . 
17 
.8. Data management 

Computing and data optimization scopes have differentiating char-
cteristics, implying that not all the solutions proposed in one area are
pplicable to the other. For this reason, data management requires par-
icular and differentiated studies of computing optimization. It has been
bserved that this interest in data management is latent in the scientific
ommunity; however, the number of works is substantially lower than
hose that focus on computing services, not even reaching 10% of the
otal number of papers. Therefore, it is necessary to focus more on op-
imizing data management using GAs [6,201] . 

. Conclusions 

Fog computing was initially defined by Bonomi in 2011. His work
evealed the benefits of fog in environments with IoT devices that re-
uire managing a large volume of data and with real-time or low latency
equirements [66,67] . Since then, there has been a growing interest in
his new computing paradigm, and in recent years, a large number of
esearch papers related to this new technology have emerged. We have
argeted this literature review on the use of GAs for resource optimiza-
ion in fog architectures. 

The main contributions of this paper are as follows: 70 papers ob-
ained from GS and WoS were analyzed, two taxonomies were defined
o organize the papers in terms of the optimization scope and the GA
esign, and the main gaps in the current literature were analyzed to
dentify future research opportunities. 

Related to the first research question, the optimization scope, the
reas with the most research challenges are workflow scheduling, ser-
ice placement, service orchestration, and service migration. Addition-
lly, the interest in data management in fog architectures has resulted
n only a few papers in this field. Thus, there is a critical need for future
esearch on optimizations related to data management. 

In terms of the GA design, the second research question, most papers
mplemented a classic single-objective GA or NSGA-II. Thus, there is still
oom for future research that considers other standard GA proposals. 

Based on our survey findings, three directions are provided for fu-
ure research with the aim of improving research into fog computing
ptimization: 

• Designing parallel and distributed GA that can be easily deployed
in highly distributed and heterogeneous environments, such as fog
infrastructures. 

• Designing hybrid solutions to outperform the limitations of GA in
optimization of fog infrastructures. 

• Designing genetic-based optimizations that consider the emerging
evolutions of fog computing, such us osmotic computing and service
adaptation. 

These future research lines are complementary to the study of other
lternative meta-heuristics, such as swarm optimization or other evo-
utionary algorithms. The design of these other population-based al-
orithms could also take advantage of their fog architecture to deploy
hem in a distributed way, sharing the fog devices resources for service
xecution and optimization tasks. Even, the importance of these meta-
euristics in the optimization of distributed architectures would justify
 deep analysis of the current research proposals and the elaboration of
 systematic literature review, but due to the high number of studies in
his field, this is out of the scope of this paper and remains as future
ork. 
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