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Abstract
Understanding the relationship between employment and inflation is of great interest 
to policymakers and market participants. This paper introduces a new global infla-
tion measure based on the principal component analysis (PCA) of the inflation rates 
of major US trade partners. We find that US domestic inflation correlates strongly 
with global inflation in the short- and long term. Moreover, global inflation leads the 
US inflation and accounts for 80% of the price discovery process. Additionally, we 
show that the Phillips curve equation improves in-sample and out-of-sample fore-
casting of US inflation rates by incorporating our spill-over-based global inflation 
(SGI) measure. Also, the utilization of the SGI in the Phillips equation increases the 
responsivity of the inflation rate data to the unemployment gap by 37%. In summary, 
the present results support the hypothesis that global inflation is a crucial determi-
nant of domestic (US) inflation. The paper’s main findings draw vital policy impli-
cations that emphasize the need for stronger cooperation among central banks to 
cope with the spill-over effect of global inflations on domestic economies.
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1  Introduction

Understanding the relationship between employment and inflation is of great inter-
est to policymakers and market participants. Recent studies have revealed a weak-
ening trend in the traditional relationship between unemployment and inflation 
wherein a strengthening economy with falling unemployment tends to increase 
consumer demand, thus causing prices to rise. Potential explanations for the weak-
ened relationship between inflation and economic slack discussed in the literature 
include non-linearity in the relationship between inflation and unemployment 
(Albuquerque and Baumann  2017), inaccurate measures of economic slack and 
inflation (Ball and Mazumder 2019), anchored inflationary expectations (Ball and 
Mazumder 2019), and globalization effects (Auer et al. 2019). Regardless of the 
underlying causes, flattening the Phillips curve has driven the US Federal Open 
Market Committee to re-evaluate its historical strategy of pre-emptive withdrawal 
of accommodation when unemployment rates drop a natural level.

Motivated by the theoretical models of Clarida et  al. (2002) and Martínez-
García and Wynne (2010, 2013), we examine the spill-over effect of global infla-
tion on US domestic inflation. First, we introduce a new measure for global infla-
tion based on a principal component analysis (PCA) of the inflation rates of major 
US trade partners, including China, Canada, Mexico, Japan, Germany, Korea, 
and the UK. We then test how well our spill-over-based global inflation measure 
(SGI) correlates with domestic inflation in the short and long term. Finally, we 
demonstrate how incorporating our SGI parameter into the Phillips curve affects 
in-sample forecasts, out-of-sample forecasts, and the Phillips curve slope.

The remainder of this paper is organized into Sections 2–5. Section 2 provides 
a theoretical review of the various explanations for the observed flattening of the 
slope of the Phillips curve. Section 3 estimates SGI and examines its contribution 
to the Phillips curve. In Section  4, we report how incorporating the SGI index 
into the Phillips curve equation affects out-of-sample predictions of the US infla-
tion rate. Finally, in Section 5, a conclusion and policy implications of the analy-
ses are given.

2 � Theoretical review

Decades of research have questioned the relationship’s stability between inflation 
and unemployment and its validity over time. These studies offer varying theo-
ries as to why this relationship may have changed. Some researchers attribute the 
weakened relationship to the nonlinear relationship between inflation and slack 
in the economy. Clark et  al. (1996) found that when firms have excess capac-
ity during periods of increasing demand, they have little pressure to raise prices. 
However, during periods of economic overheating when firms are operating close 
to their total capacity, strengthening demand triggers substantial price increases. 
Ball and Romer (1991) demonstrated that price rigidity plays a considerable role 
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in inflation dynamics. For example, when inflation is higher, firms need to adjust 
price levels more frequently, which is reflected in a steepening of the Phillips 
curve slope. However, firms are under less pressure to adjust their prices when 
inflation is low. Thus, weak inflation for prolonged periods obviates the need for 
frequent price adjustments. Akerlof et al. (1996) have shown that employers pre-
fer to lay off their least productive employees rather than enact wage cuts. Firm 
managers believe that even nominal wage cuts have a negative impact on morale, 
which disrupts labor efficiency. Thus, downward labor market adjustments are 
mediated primarily by unemployment rather than wage reductions. Because of 
wage rigidity, salary levels within a cycle are inversely related to the depth and 
length of short-term unemployment. For example, a more profound and extended 
period of high unemployment will suppress salary augmentation. Xu et al. (2015) 
observed an asymmetric, nonlinear Phillips curve with a roughly convex shape 
around the 75th quantile, with linearity maintained around the 25th quantile. In a 
subsequent study of the nonlinear behavior of inflation, Albuquerque and Bau-
mann (2017) concluded that the inclusion of nonlinear specifications when gener-
ating Phillip’s curve could improve the model’s performance relative to the stand-
ard linear model.

Beyond the nonlinearity of the Phillips curve, several additional concerns have 
been raised, including the need for more accurate measures of unemployment and 
economic slack and the effects of anchored inflation and globalization. For the Phil-
lips curve to provide valuable insights, policymakers must employ appropriate eco-
nomic measures. For example, according to Ball and Mazumder (2019), the impact 
of economic slack on the labor market in the Phillips equation is better captured 
with short-term unemployment data than with long-term unemployment data. They 
argue that those who have been unemployed for more than 27 weeks and are still 
looking for a job are not competitive or not seriously looking for a job after being 
unemployed for such a long time. Thus, labor supply may be best reflected by the 
percentage of short-term unemployed workers in the labor market. For example, 
during the great recession, inflation did not fall from 2009 to 2011 as had been pre-
dicted, partly because short-term unemployment rose less sharply than total unem-
ployment. Coibion and Gorodnichenko (2015) present an alternative explanation in 
which they explore the idea that firms’ inflation expectations are best proxied by 
household expectations. They posit that an expectations-augmented Phillips curve, 
following Friedman’s (1968) suggestion, utilizing household forecasts presents a 
more accurate representation of inflation events.

A third explanation for the apparent weakening relationship between employment 
level and inflation rate hangs on the Federal Reserve anchoring inflation expecta-
tions around its 2% target. As a result, inflation has become less responsive to fluc-
tuations in the unemployment gap and the state of the economy. Benati (2008), Gur-
kaynak et  al. (2010), Davis (2012), Davis (2014), and Bundick and Smith (2020) 
have confirmed that anchored inflation has flattened the slope of the Phillips curve 
by demonstrating the reduction in the responsiveness of inflation expectations to 
endogenous and exogenous domestic shocks. In addition, Jorgensen and Lansing 
(2019) have shown that accounting for anchored inflationary expectations within the 
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framework of the New Keynesian model improves both the stability of the Phillips 
curve slope and inflation forecasting substantially.

A fourth possible explanation, which was adopted as the focus of this research, 
addresses the impact of globalization. Theoretically, the workhorse of the New Open 
Economy Macro Model (NOEM) introduced by Clarida et al. (2002) and Martínez-
García and Wynne (2010, 2013) provides a solid ground for the integration of global 
inflation in the formation of local inflation. Clarida et al. (2002) derived a two-coun-
try open economy version of the dynamic New Keynesian model. The authors show 
that the reaction function of the central banks should include both domestic and for-
eign inflation. Further, they show that the magnitude of the response of the domes-
tic central bank to foreign inflation depends on the sign and the relative strength of 
the spillover of the foreign output gap on domestic marginal cost. Martínez-García 
and Wynne (2010) Extended Clarida’s model by allowing firms to set the prices of 
their good and services in the importing markets or what is referred to as the local 
currency pricing (LCP). The structure of their models incorporates three equations: 
open economy Phillips curve, open-economy IS, and domestic and foreign Taylor 
rule. Their workhorse New Open Economy Macro model (NOEM) has become the 
building stone of international macroeconomics. Martinez-Garcia and Wynne con-
cluded that the Phillips curve is getting flattered as the local economies become glo-
balized. Further, they show that the foreign output gap is an essential determinant in 
the Phillips curve equation. Following Martínez-García and Wynne (2014), Duncan 
and Martínez-garcía (2015) decompose the NOEM into two subsystems that divide 
local inflation into its components: global and differential inflation. Next, the authors 
established that local and international inflations are cointegrated.

The following papers further support the argument for including a measure of 
global inflation in our Phillips Curve equation. Bonello and Swartz (1978) provide 
a succinct overview of essays detailing the theory and economic challenges fiscal 
and monetary policy faces over time. Their summation highlights the notion that 
internationally, debt-ridden countries threaten to destabilize economies beyond their 
borders, thus the need to incorporate global measures when examining inflation and 
other indicators of domestic economic health. Black (1978) examines the impact 
of international historical shocks and economic disturbances on global economies. 
Frisch (1977) provides a comprehensive overview of inflationary theories and the 
Phillips curve for 1963–1975. Also, Bruno (1978) examines pricing dynamics and 
the price adjustment process and concludes that exchange rates and import prices 
significantly impact the pricing mechanism. Moreover, they directly note that a two-
dimensional Phillips Curve may not be sufficient in an open economy and should 
include alternative measures/dimensions. Also, Cebula and Frewer (1980) ana-
lyze, empirically, whether and to what extent there is an ‘imported’ component to 
domestic inflation. Specifically, they examine the ‘price effect’ and whether petro-
leum prices/imports have contributed significantly to domestic inflation. Finally, 
they conclude that exogenous, international forces increasingly impact economies of 
developed nations and that one-way inflation is imported is via petroleum prices and 
imports.

Recently, Obstfeld (2020) describes the impact of globalization on domestic 
inflation through the global competitive environment and import pricing channels. 
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Specifically, Obstfeld posits that the global competitive environment exerts down-
ward pressure on domestic inflation rates by discouraging firms from increasing 
their prices in response to a higher marginal cost of production. Meanwhile, accord-
ing to this view (Sbordone 2009), global competition facilitates the US economy’s 
access to global slack within emerging and developing countries, which weakens the 
bargaining power of the US domestic factor of production, thereby limiting negotia-
tions for higher compensation even when the domestic economy is operating above 
its potential output. Additionally, the availability of low-priced imported goods 
affects domestic inflation of both production and consumer goods.

Auer et al. (2017) have demonstrated that the growth of trade in intermediate goods 
and services has been the driving force of the increasing (decreasing) role of global 
(domestic) slack in the Phillips curve equation. They attribute this increased impor-
tance to expanding global value and supply chains in response to the broad worldwide 
integration of production processes. Auer et al. (2019) found that globalization could 
explain 51% of the variance in producer price inflation in a sample of 30 countries. 
Half of this variance was attributed to the cross-border propagation of cost shocks 
through international input–output linkages. Similarly, Ciccarelli and Mojon (2010) 
found that inflation in 22 OECD countries had a common factor accounting for 70% 
of these countries’ inflation variance from 1960 to 2008. Incorporating this common 
global factor in the inflation equation for the 22 OECD countries improves the out-of-
sample forecasting of inflation rates. A wide variety of variables have been incorpo-
rated into Phillips’ equation in efforts to capture the growing impact of globalization, 
including global commodity prices, global slack, exchange rates, import and oil prices, 
the global output gap, and nonlinear exchange rate pass-through (Borio and Filardo 
2007; Jašová et al. 2018; and Forbes 2019). These studies demonstrate the importance 
of globalization in explaining and forecasting domestic inflation while underscoring 
the diminishing role of domestic slack in explaining inflation rates.

In this paper, we explore the aforementioned inflation commonalities and hypoth-
esize and show that inflation should, at least in part, be modeled as a global rather 
than a local phenomenon. Our research focuses on the spillover effect of interna-
tional inflation on US inflation. Specifically, we examine whether incorporating 
global inflation data into Phillip’s curve would accurately represent the relationship 
between unemployment and inflation.

In sum, these papers lend further credence to our notion that, in a changing envi-
ronment where there is greater global interdependence, global measures may be crit-
ical in examining the inflationary environment.

3 � Estimation techniques and empirical results

3.1 � Data

3.1.1 � Global inflation

We collect quarterly Consumer Price Index (CPI) data on all items for the USA 
and its leading trade partners (China, Canada, Mexico, Japan, Germany, Korea, 
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and the UK) from 2003:Q1 to 2019:Q4. We then estimate each country’s inflation 
rate (percentage) from the previous year. Descriptive statistics for the annualized 
quarterly inflation rates are shown in Table  1, and US inflation rates are plot-
ted against the inflation rates of its main trade partners in Fig. 1. Average infla-
tion rates for US trade partners vary from 4.08% (Mexico) to 0.257% (Japan). 
Notably, China exhibits the most highly variant inflation rate, fluctuating between 
7.78% and -1.54%, with a standard deviation of 1.84%. Germany, which shows 
the second-lowest average inflation rate of 1.42%, has the most stable domestic 
prices with a standard deviation of only 0.68%. Jarque–Bera statistics show that 
inflation in China, Canada, Mexico, and Japan do not follow a normal distribu-
tion. The US inflation rate correlates strongly with inflation rates in Germany 
(r = 0.80), Canada (0.68), China (0.60), Korea (0.53), and UK (0.52), but not with 
inflation rates in Japan (0.17) and Mexico (0.03) (see Table 1 and Fig. 1).

Consistent with the work of Bernanke et al. (2005), we use PCA to create our 
SGI, an independent composite factor representing global inflation. We apply 
PCA to the inflation rates in China, Canada, Mexico, Japan, Germany, Korea, and 
the UK, keeping the first principal component as our proxy variable for global 
inflation and find that the US inflation rate and our global inflation index SGI are 
strongly correlated in the short run, with a correlation coefficient of 0.79 (Fig. 2).

We then test for long-term correlation and price discovery between domestic 
inflation and the global inflation index with Johansen’s (1988) cointegration test 
and Hasbrouck’s (1995) price discovery technique. Johansen (1988) introduced a 
full-information maximum likelihood technique that enables simultaneous esti-
mation of the long-run equilibrium relationship and short-term linkages, where 
the results do not depend on which variable is dependent. Following Johansen 
and Juselius (1990), let us consider a vector Xt of p non-stationary I(1) series. 
Such a series has the following vector autoregressive representation (VAR):

(1)Xt = A1Xt−1 +⋯ + AnXt−n + �Dt + �t, t = 1,… , T ,

Table 1   Descriptive statistics for CPI inflation rates (2003:Q1–2019:Q4)

All series are annualized quarterly inflation rates for the study period. The null hypothesis for the Jarque–
Bera (JB) test is that the data are normally distributed. The null hypotheses for mean, skew, and kurt are 
that the statistics are not statistically different from zero. *, **, *** denote significance at 10%, 5%, and 
1% levels, respectively. CPI, Consumer Price Index; SD, standard deviation

Nation Min Mean Max SD Skew Kurt JB Correlation with 
US rate

USA -1.6200 2.0683*** 5.1192 1.2079 -0.3563 1.0332* 4.4629 1.0
China -1.5429 2.5577*** 7.7855 1.8042 0.8283*** 1.3404** 12.8667*** 0.60
Canada 0.1758 1.6521*** 3.8766 0.7322 0.5058* 0.1445*** 2.9586*** 0.68
Mexico 2.2489 4.0810*** 6.3856 0.9288 0.5429* 0.1096*** 3.3749*** 0.03
Japan -2.2381 0.2578** 3.5378 1.0017 0.8942*** 2.4866*** 26.5818*** 0.17
Germany -0.2353 1.4205*** 3.0342 0.6874 -0.0028 0.3373 0.3223 0.80
Korea 0.0445 2.2777*** 5.3932 1.2138 0.3081 -0.5981 2.0895 0.53
UK 0.3333 2.0813*** 4.3826 0.8727 0.2285 0.2831 0.8186 0.52
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where Xt is a (p × 1) vector of I(1) non-stationary p time series, T is the number of 
observations, n is the number of lags, and Dt values are centered seasonal dummies 
that sum to zero over the entire sample period. If all of the time series in the VAR 
have a single unit root that can be removed by taking the first difference, then the 
VAR can be expressed as

Fig. 1   CPI of inflation for the USA and main US trade partners. Annualized quarterly inflation rates are 
shown from 2003:Q1 to 2019:Q4. The y axes represent inflation rate. The x axes represent time from 
2003 through 2019

Fig. 2   US inflation versus global inflation. The graph shows the US inflation and an index for global 
inflation based on the first principal component of the inflation rates in China, Canada, Mexico, Japan, 
Germany, Korea, and the UK. The left axis represents the inflation rate, the right y-axis represents the 
values of the index of global inflation, and the x-axis represents the time from 2003 through 2019
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where

In this framework, the cointegration hypothesis can be tested by evaluating the 
rank of the long-run impact matrix (Π). More specifically, the number of distinct 
cointegrating vectors, r, is equal to the rank of Π, or the number of characteristic 
roots of Π that are statistically different from zero. As stated by Juselius (2006), “If 
Xt is ~ I(1), then ∆Xt is stationary and can’t be written in terms of the non-stationary 
variable ΠXt−1. Therefore, Π can either be zero or it must have the reduced rank 
( �� �

) ”, where α and β are the p × r matrices of the speed of adjustment parameters 
and the cointegrating parameters respectively, and r is the number of cointegrating 
relationships (0 < r < p). Accordingly, Eq.  (2) can be written in terms of the error 
correction feature ( �� �

Xt−1) and the VAR to form the vector error correction model 
as follows:

Price discovery describes how the information for a particular asset is transmit-
ted among different markets in which the asset is traded. Generally, the efficient 
markets hypothesis requires that asset information be reflected quickly and fully 
in asset pricing. Moreover, since the introduction of modern portfolio theory in the 
1950s—wherein mean–variance analysis is used to assemble a portfolio designed 
to maximize return for a given level of risk—academics and practitioners have been 
keen to better understand price discovery and the co-movement of different types of 
assets in order to better predict the magnitudes of benefit for particular diversification 
schemes. Barkham and Geltner (1995) point out that price discovery can happen first 
in the unsecuritized market due to the larger market size and trading volumes. More 
informed and specialized investors conduct trades. The estimated speed of adjustment 
parameters,� , can then be utilized to examine price discovery in the different markets. 
For example, suppose all adjustment parameters are statistically significant with the 
correct sign for stability. In that case, none of the markets are weakly exogenous, and 
the adjustment process to restore equilibrium will take place in all the markets. In this 
case, the relative magnitude of the coefficients will determine which market leads in 
terms of price discovery. Conversely, suppose α is statistically significant only in the 
first market. In that case, the price discovery occurs in the other markets, and the first 
market adjusts to remove the disequilibrium in the long-term relationship.

In our paper, we utilize Hasbrouck’s (1995) technique to estimate the share of 
each market in price discovery. First, Hasbrouck presents ΔXt in Eq.  (3) by the 
following vector moving-average:

where Ψ(L) is a polynomial in the lag operator. When X attains its long-term equi-
librium value (X*), Eq. (3) can be written as follows:

(2)ΔXt = ΠXt−1 + Γ1ΔXt−1 +⋯ + Γn−1ΔXt−n+1 + �Dt + �t,

Π =
∑n

i=1
Ai − Ip and Γi = −

∑n

i=i+1
Ai.

(3)ΔXt = ��
�

Xt−1 + Γ1ΔXt−1 +⋯ + Γn−1ΔXt−n+1 + �Dt + �t,

(4)ΔXt = Ψ(L)�t,
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where 𝛽⊥𝛼′
⊥
𝜀
t
 is the long-term effect of the innovations of n markets. Additionally, 

the variance of �Ψ�t is ΨΣΨ� under the assumption that p markets respond identi-
cally to innovations in efficient prices in the long-run.

In accordance with the work of Hasbrouck (1995), we decompose Var(�Ψ�t ) 
into its n components ( v2

i
 ) attributable to each market and then derive a Cholesky 

decomposition of Σ in terms of F, where Σ = FF′ , and calculate V2

i
 as follows:

The share of each market in price discovery ( Si ) is then calculated by dividing 
V2

i
 by the total innovation variance as follows:

We commence empirical testing by examining the classical assumption of the 
non-stationarity of our series. To do so, we utilize the Dickey-Fuller unit root test, 
wherein the number of lags is determined by the Akaike information criterion. As 
illustrated by Table 2, we find that taking the first difference of each series results 
in the removal of one-unit root from US inflation and global inflation rates (5% 
significance level).

We then perform Johansen’s cointegration trace test between US inflation and 
global inflation. To determine the stability of the underlying long-term relationships 
among the series, we run Johansen’s test iteratively over the samples with forward 
estimation. The first subsample for forward estimation is from 2003:Q1 to 2013:Q1, 
and the last (full) sample runs from 2003:Q1 to 2019:Q4 (36 iterations). Finally, for 
each two-series set that is cointegrated, we run the Hasbrouck (1995) test and calcu-
late the contribution of each set to the process of price discovery.

The trace test for foreword interactions confirms a strong cointegration relationship 
between domestic and global inflation rates in forward-rolling estimates. The contribu-
tion of each inflation series to price discovery when two sets are cointegrated can be 

(5)X
∗ − X

t−1 = Ψ(1)[𝜀
t
] =

∑∞

i=0
Ψ

i
[𝜀

t
] = 𝜃Ψ

[

𝜀
t

]

= 𝛽⊥𝛼
�
⊥
[𝜀

t
],

(6)V2

i
= ([ΨF]i)

2

(7)Si =
V2

i

ΨΣΨ�
=

([ΨF]i)
2

ΨΣΨ�

Table 2   Dickey-Fuller unit root 
tests

Data reflect US inflation rate stationarity, the global inflation index, 
and their first difference. *, **, *** denote significance at 10%, 5%, 
and 1% levels, respectively. AIC, Akaike information criterion

Parameter Minimum AIC 
lags

Dickey-Fuller constant

US inflation rate
  Level 5 -2.5707
  First difference 7 -4.7584***

Global inflation index
  Level 8 -1.3980
  First difference 7 -5.4354***
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seen in Fig. 3, which shows cointegration of the two-time series in all the forward tests 
and illustrates the dominance of a global inflation index. Notably, the average statis-
tics for all forward-rolling estimates show that global inflation leads US inflation and 
accounts for 80% of price discovery. In summary, our analysis confirms strong short- 
and long-term relationships between global inflation and US domestic inflation.

3.1.2 � Phillips curve and global inflation

This section examines the impact of accounting for global inflation on the perfor-
mance of the Phillips curve equation. We follow Laubach and Williams’s specifica-
tions (2003) to estimate an augmented Phillips curve. However, we replace the core 
PCE with the CPI as our inflation rate measurements. The other determinants in the 
CPI inflation (�CPI) equation are the expected inflation (�e

CPI
 ), output Gap ( ̃y) , crude 

A) Trace test of cointegra�on

B) Hasbrouck test of contribu�ons to price discovery

Fig. 3   Forward rolling trace test and Hasbrouck test results. A. Forward rolling trace test for cointegra-
tion (y axis) between US inflation and global inflation (solid line); the 95% critical value is shown with a 
dotted line. B. Hasbrouck test outcome for subsamples starting on 2003:Q1 and ending from 2013:Q1 to 
2019:Q4. The y axis represents percent contribution to price discovery of US inflation (solid line curve) 
and of global inflation (broken line curve). Subsample end dates are shown on the horizontal axis
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imported oil inflation gap ( �oil − �e
PCE

), Core import (excluding petroleum, comput-
ers, and semiconductor), inflation gap ( �import − �e

PCE
), three moving average infla-

tion (MA3�CPI) , and five moving average inflation ( MA5�CPI ). We also use a time 
trend (D1) and a dummy that takes the value of one for 2008:Q1–2009:Q3 and zero 
elsewhere. Thus, the first specification of the Phillips curve can be stated as follows:

where the output gap is the difference between the unemployment rate (U3) and the 
natural rate of unemployment published by the congressional budget office. Mean-
while, the expected inflation at time t is the average of the four-step out-of-sample 
forecasts calculated from regressing inflation on a constant and three lags of the 
inflation rate. Next, we account for the spillover effect of global inflation by includ-
ing the first principal component of global inflation rates in the Phillips equation as 
follows:

We then apply the ordinary least squares technique to estimate the two spec-
ifications for the entire sample from 2003:Q1 to 2019:Q4 and then correct the 
ordinary least square regressions for autocorrelation and heteroscedasticity using 
the Newey and West (1987) method. Both regressions are reported in Table  3. 
Comparing the results that we obtain with and without augmentation of the 
Phillips equation with our global inflation index, namely SGI, reveals that the 

(8)

𝜋CPI,t = 𝛽1 + 𝛽2 ỹt−1 + 𝛽3𝜋
e
CPI,t

+ 𝛽4MA3𝜋CPI,t−2

+𝛽5MA5𝜋CPI,t−5 + 𝛽6(𝜋oil − 𝜋e
CPI

)
t−1

+𝛽7(𝜋import − 𝜋e
CPI

)
t−1

+ 𝛽8D1 + 𝛽9D2 + 𝜇1t

(9)

𝜋CPI,t = 𝛾1 + 𝛾2 ỹt−1 + 𝛾3𝜋
e
CPI,t

+ 𝛾4MA3𝜋CPI,t−2 + 𝛾5MA5𝜋CPI,t−5

+𝛾6(𝜋oil − 𝜋e
CPI

)
t−1

+ 𝛾7(𝜋import − 𝜋e
CPI

)
t−1

+ 𝛾8D1 + 𝛾9D2

+𝛾10(globalinflation)t−1 + 𝜇3t

Table 3   Regression results from 
reduced-form specifications of 
the Phillips curve

Regression results for the two specifications utilized in estimating 
the Phillips curve are shown with the adjusted R-squared statistic 
and estimated coefficients. *, **, *** denote significance at 10%, 
5%, and 1% levels, respectively, based on the Newey-West covari-
ance matrix

Dependent variable �CPI �CPI

R.2_adjusted 0.6191 0.7131
Constant 6.5487** 11.9694***

ỹt−1 -0.1913*** -0.2629***

�e
t

0.1666 -0.3194
MA3�t−2 -0.1274 -0.4788
MA5�t−5 -0.0240 -0.0002
(�oil − �e)t−1 0.0251** 0.0186**

(�import − �e)
t−1

0.0076 -0.2394**

D1 -0.0169* -0.0318***

D2 -0.4176 -0.8768***

Global_Inflationt-1 – 4.6509***

Journal of Economics and Finance (2022) 46:575–592 585



	

1 3

augmentation has three notable effects: (1) increasing the adjusted R2 value by 
15%, from 0.61 to 0.71; (2) increasing the absolute value of the slope of the Phil-
lips curve by 36.8%, from -0.19 to -0.26; and (3) global inflation spillover has a 
positive effect on US inflation significant at the 1% level.

To examine the stability of the superior performance of the second specifica-
tion, we calculate adjusted R2 values, in-sample stability, and estimated coeffi-
cients of global inflation, output gap, and their p-values over 27 forward-rolling 
subperiods starting on 2003:Q1 and ending from 2013:Q1 to 2019:Q4.

The results confirm the superior performance of the Phillips curve specification 
augmented by the global inflation index as shown in Figs.  4 and 5. Additionally, 
the slope of the Phillips curve is statistically significant at the 5% level between 
2014:Q4 and 2015:Q3 only when global inflation is incorporated in the Phillips 
equation. Notably, from 2014:Q4 to 2015:Q3, there is an observable divergence of 
the stronger economies in the USA and UK from the stagnant economies in Japan 
and Eurozone countries.

B) Output gap of es�mated coefficients by specifica�onA) Global infla�on es�mated coefficients

D) P-values of es�mated coefficient gapC) P-values of es�mated coefficients

Fig. 4   Forward rolling Phillips curve analysis. A. Graph of estimated coefficients of global inflation. B. 
Graph of p-values of the estimated coefficients in the graph shown in panel A. C. Graph of output gap 
values between the estimated coefficients for specification I (solid line) and specification II (dotted line). 
D. Graph of p-values from forward rolling tests of subsamples starting on 2003:Q1 and ending from 
2011:Q1 to 2019:Q4. In B and D, data for specification I and II are shown with broken and solid lines, 
respectively. In C and D, the dash-dot lines represent 1% (lower) and 5% (higher) significance levels
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The stagnant economies in the Eurozone and Japan decreased the inflation rates 
in these countries, which put downward pressure on the US inflation rate and weak-
ened its relationship with the output gap. In conclusion, accounting for the spillover 
effect of global inflation on US inflation in the Phillips equation stabilizes the slope 
of the Phillips curve, as captured by the second specification.

4 � Out‑of‑sample predictions and properties of the prediction errors

The accuracy of inflation forecasts is limited by inconsistencies across forecasting 
techniques and model specifications. In their review of forecasting models and com-
parative analysis of the performance of Phillips curve forecasting specifications, Stock 
and Watson (2010) find that a univariate forecasting model tends to outperform more 
complex multivariate models. Alvarez-Diaz and Gupta 2016 subsequently replicated 
this outcome. Abdelsalam (2017), who notes inherent specification issues that can 
impact the predictive power of Phillips curves and analyses of augmented versions 
of Phillips equations that incorporate time-varying coefficients, finds that augmenta-
tions can improve forecast accuracy. Gupta et al. (2017) have shown that a factor aug-
mented-qualitative VAR can outperform other augmented VAR models. Furthermore, 
Balcilar et  al. (2017) have demonstrated that the VARFIMA (vector autoregressive 
fractionally integrated moving average) model is superior to the standard model.

A quick review of the literature indicates that there may not be a one-size-fits-all 
model or specification. Stock and Watson (2010) make a valid argument that this 
variability in utility should not be surprising given the fluctuations in US inflation 
dynamics that have accompanied a transforming US economy and changes in mon-
etary policy regimes. To that end, Inoue et al. (2017) find significant evidence that 
a forecasting model’s performance can be sensitive to estimation window size. They 

A) Forward rolling adjusted R-squared values B) In-sample forecas�ng of infla�on

Fig. 5   Primary comparison of the performance of specifications I and II. A. Graph of adjusted R.2 val-
ues calculated from forward rolling regressions of specification I (dotted line), which is generated by a 
Phillips equation based on the US CPI, and of specification II (solid line), which is generated by a Phil-
lips equation based on the US CPI as well as an augmentation with the presently developed SGI index 
of global inflation. B. Graph of in-sample forecast data generated by specification I (dotted line) and 
specification II (solid line), together with a plot of the CPI (dashed line) for the same time period. In both 
graphs, subsamples start on 2003:01 and end from 2011:Q1 to 2019:Q4
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propose a methodology for determining an optimal estimation period that minimizes 
conditional mean square forecasting error (MSFE). They show that their window 
selection method deteriorates for models containing numerous predictors with param-
eters with differing time-varying patterns. They find that an unemployment-based 
Phillips curve has inflationary predictive power when optimal sizes are used.

To examine the effect of global inflation on an out-of-sample forecast of the US 
inflation rate, we conduct one-step predictions based on rolling window regressions. 
First, estimated coefficients from each regression are used to predict the inflation rate 
of the next quarter in the forward estimation period, with the first subsample being 
from 2003:Q1 to 2013:Q1, and the last (total) sample running from 2003:Q1 to 
2019:Q3. This process generates 27 out-of-sample predictions (Fig. 6) for each model.

Following Clapp and Giaccotto’s (2002) approach, we evaluate model perfor-
mance according to three criteria: the desirability of prediction error properties, 
the relative efficiency of predictions, and the informational efficiency of projec-
tions. A desirable property for forecasting errors is that they show a normal dis-
tribution around zero with constant variance. The tendency of a model to over-
predict (under-predict) can be detected by a left (right) skewed distribution with a 
statistically significant negative (positive) mean. Highly inaccurate forecasts can 
result in excessively negative kurtosis.

We test for relative efficiency by calculating Theil’s U2 value, mean forecasting 
error (MFE), mean absolute forecasting error (MAFE), and root means squared 
forecasting error (RMSFE) for 27 forecasts, as follows:

(10)

U2 = 1 −
∑27

i=1 (Inflationi−Inflation
e
i )

2

∑27

i=1

�

Inflationi−Inflation
�2 ,

MFE =
∑27

i=1

1

27
((Inflationi − Inflatione

i
),

MAFE =
∑27

i=1

1

27
((�Inflationi − Inflatione

i
�), and

RMSFE =

�

∑27

i=1

1

27
(Inflationi − Inflatione

i
)
2

Fig. 6   Graph of out-of-sample forecasts of the US inflation rate. The inflation rate forecasts (x axis) are 
calculated from the forward rolling regression of specification I (dotted line) and specification II (dashed 
line). The specification forecast plots are overlain on a plot of the US CPI (solid line). The subsamples 
start on 2003:01 and end from 2011:01 to 2019:04 (y axis is time). Specifications I and II are as defined 
as in Fig. 5
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where a Theil’s U2 value close to one indicates that the equation can effectively pre-
dict future values of the dependent variable, and a negative Theil’s U2 value suggests 
that the naive specification outperforms forecasts of the equation. To test whether 
our forecasts are informationally efficient, we first regress the inflation rate on its 
prediction and a constant term, as follows:

To explore the source of inefficiency or the forecast error, if any, we calculate 
the mean squared forecasting error (MSPE) based on our estimates from Eq. (11), 
as follows:

where ( inflatione − inflation)
2

 ) refers to the average actual and forecasted series, n 
is the number of observations, �̂i is the estimated coefficient, and ESS is the sum of 
squared forecasting errors. We then calculate Theil’s decomposition of the MSPE by 
dividing Eq. (12) by the MSPE, as follows:

where Ubias is a measure of the bias in �0 , Uregression is a measure of the bias in �1 , 
and Uerror is a measure of the portion of the forecast errors that can be attributed 
to equation residuals. Informational efficiency requires that �̂0 and �̂i be statistically 
consistent with zero and one, respectively. If so, the bias will be captured predomi-
nantly by Uerror, which should be close to one.

As reported in Table 4, the two models produce normally distributed forecast-
ing errors with means that are statistically different from zero at the 5% percent 
level. There are several parameters by which specification II (CPI with SGI index 
of global inflation) outperforms specification I (CPI). Relative to specification I, 
specification II yield a smaller standard deviation of forecasting errors, exhibits 
less overshooting with the minimum, and produces more accurate forecasts, as 
indicated by smaller MAFE, MAFE, and RMFSE values.

Note that a negative Theil’s U2 value is obtained for specification I, indicating that 
the specification fails to forecast its inflation rate (Table 4). Notably, the second spec-
ification has a positive Theil’s U2 value, which indicates that it outperforms the fore-
casts generated by the naïve model. Additionally, Theil’s decomposition of MSPE 
shows that 73% (47%) of the MSPE in specification I (Specification II) can be attrib-
uted to Ubias and Uregression. Thus, Theil’s decomposition confirms the superiority of 
specification II, with the component of the MSPE value being attributed to Uerror is 
53% for specification II but only 29% for specification I. The superior performance 
of specification II is further confirmed in the out-of-sample forecast plots shown 
in Fig. 5. Thus, our forecasts indicate that accounting for spillover effects of global 
inflation in the Phillips equation improves out-of-sample forecasting of the Phillips 
curve for the US inflation rate.

(11)Inflationi = �0 + �1Inflation
e
i
+ �i

(12)MSPE = (inflatione − inflation)
2

+
(

1 − �̂i

)2

VAR(inflatione) +
ESS

n

(13)MSPE

MSPE
=

(inflatione−inflation)
2

MSPE
+

(

1−�̂i

)2

VAR(inflatione)

MSPE
+

ESS

MSPE∗n

1 = Ubias + URegression + Uerror
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5 � Conclusion

This paper explores the effects of a new measure for global inflation on domestic infla-
tion in the USA. This new measure, termed SGI, is a PCA-based independent compos-
ite factor representing global inflation. The SGI exhibits stable and robust short- and 
long-term correlations with the domestic inflation rate in the USA. The global infla-
tion variable leads the US inflation rate and contributes on the average 80% to price 
discovery. Incorporating the SGI variable improves the in-sample overall fit by 14.5% 
and increases the Phillips curve slope by 37%. Furthermore, accounting for spillover 
effects from global inflation dynamics in the Phillips equation improves out-of-sample 
forecasting of the Phillips curve for the US inflation rate.

There are many policy implications of the current research. First, globalization 
can potentially explain the coincidence of solid growth and low inflation before the 
COVID-19 recession despite the US economy operating around its potential level. 
Thus, these results support the recent changes in the Federal Reserve’s Statement on 

Table 4   Desirable properties, relative efficiency, and informational efficiency of forecasting errors from 
CPI Phillips equations

The Table presents means, standard deviations, maximum, minimum, skewness, excess kurtosis, Jarque–
Bera normality test, Theil’s U2, mean forecasting error (MFE), mean absolute forecasting error (MAFE), 
and root mean squared forecasting error (RMSFE), and Theil’s Decomposition of MSPE of the 27 one-
step forecasting errors calculated from rolling window regressions. CPI, Consumer Price Index; SGI, 
spill-over based global inflation measure

Parameter Specification I:
CPI only

Specification II:
CPI and SGI

Desirable properties of forecasting errors
  Mean -0.4512*** -0.2849**

  Standard deviation 0.8097 0.6676
  Minimum -2.0871 -1.7268
  Maximum 0.9087 0.9794
  Skewness -0.5557 -0.1654
  Excess kurtosis -0.7752 -0.1822
  Jarque–Bera 2.0658 0.1604

Relative efficiency
  U.2 statistic -0.5429 0.0568
  MFE -0.4512 -0.2849
  MAFE 0.6640 0.5789
  RMFSE 0.9137 0.7144

Informational efficiency, Theil’s decomposition of MSPE
  U.bias 0.2870 0.1634
  U.regression 0.4280 0.3114
  U.error 0.2850 0.5252
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Longer-Run Goals and Strategy, which call for abandoning the longstanding prin-
ciple of reducing accommodation preemptively when the unemployment rate nears 
its natural rate. Second, the presently documented spillover phenomenon indicates 
that US monetary policy should respond to global inflation in the economies of its 
primary trade partners. Thus, strong coordination among major central banks is vital 
for local and international inflation stability. Third, the social and economic cost of 
restoring domestic inflation to its long-term goals could increase as the domestic 
economy is more responsive to global exogenous shocks.
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