
Vol.:(0123456789)1 3

https://doi.org/10.1007/s11036-021-01837-y

An Adaptive IoT Network Security Situation Prediction Model

Hongyu Yang1  · Le Zhang1 · Xugao Zhang1 · Jiyong Zhang2

Accepted: 30 January 2021 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
With the rapid development of the Internet of things (IoT) technology, how to effectively predict the network security situ-
ation of the IoT has become particularly important. It is difficult to quantify the IoT network situation due to a large number 
of historical data dimensions, and there are also has the problem of low accuracy for IoT network security situation predic-
tion with multi-peak changes. To solve the above problems, this paper proposed an adaptive IoT network security situation 
prediction model, which makes the IoT network security situation prediction accuracy higher. Firstly, the paper used the 
entropy correlation method to calculate the network security situation value sequence in each quantization period according 
to Alarm Frequency (AF), Alarm Criticality (AC), and Alarm Severity (AS). Then, the security situation values arranged 
in time series are fragmented through the sliding window mechanism, and then the adaptive cubic exponential smoothing 
method is used to initially generate the IoT network security situation prediction results. Finally, the paper built the time-
varying weighted Markov chain to predict the error value and modify the initial predicted value based on the error state. 
The experimental results show that the model has a better fitting effect and higher prediction accuracy than other models, 
and this model’s determination coefficient is 0.811. Compared with the other two models, the sum of squared errors in this 
model is reduced by 78 %-82 %. The model can better reflect the changes in the IoT network security situation over a while.

Keywords Network security situation prediction · Internet of Things · Alarm element · Entropy correlation · Cubic 
exponential smoothing · Time-varying weighted Markov chain

1 Introduction

Today, although the Internet of things (IoT) has brought peo-
ple convenience, also brings people security problems, such 
as communication interruption, privacy disclosure, informa-
tion tampering, unsafe driving, etc. To solve these problems, 
Tang et al. [1] propose a new framework called Unmanned 
Aerial Vehicles (UAV) enabled social internet of vehicles. 
FLAUZAC et al. [2] proposed a network security framework 
for the IoT based on software-defined networking (SDN), 
which can well solve the security problems of wired and 
wireless networks. Therefore, how to effectively resolve the 
IoT security problems is necessary. To avoid losses in all 

aspects, the situation prediction of IoT network security is 
particularly important. According to network architecture, 
to complete the prediction and evaluation of the network 
security situation has become a research hotspot.

The IoT network security situation prediction forms a 
nonlinear time series through the factors affecting IoT net-
work security. According to historical data and network sta-
tus, the IoT security situation is predicted in a future period 
through a specific mathematical model, which facilitates 
network management personnel to detect threats in time and 
take corresponding protective measures.

The current IoT network security prediction methods 
include the gray prediction method, the prediction based on 
time series, and prediction based on the neural network [3]. 
Zhang et al. [4] proposed a network security situation predic-
tion model based on multi swarm chaotic particle optimiza-
tion. The key parameters of the grey neural network are opti-
mized by using multi-population chaotic particles to improve 
the prediction effect of network conditions. Xiao et al. [5] 
proposed a network security situation prediction method 
based on MEA-BP. The method uses the Mind Evolution 
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Algorithm (MEA) to optimize the weight and threshold of 
the BP neural network to improve the prediction accuracy 
and efficiency of the security situation, but the standardiza-
tion of historical data is not perfect. Sun et al. [6] proposed 
a Markov prediction model based on complex networks. The 
model constructs the transformation relationship of network 
security status into a complex network and uses the weighted 
Markov chain to predict the security situation, which can 
reflect the security status of the network to a certain extent, 
but the state transition probability matrix constructed by the 
multi-state network is too large. Zhou et al. [7] proposed 
a network multi-node security situation prediction model 
based on an improved G-K algorithm. The model extracts 
the main factors affecting network security by the grey 
entropy correlation method. Based on this, the Kalman fil-
ter is established to improve the accuracy of security situa-
tion prediction. Zhang et al. [8] reduced the training com-
plexity of the neural network situation prediction model by 
improving the convolutional neural network and improved 
the efficiency of network security situation prediction, but 
the quality of extracted features needs to be improved.

Because of the uneven quality of the historical data in 
the above-mentioned IoT network security situation predic-
tion methods, and the deficiency of the IoT network security 
situation prediction accuracy with multi-peak changes, this 
paper proposes an adaptive IoT network security situation 
prediction model to improve the accuracy of network secu-
rity situation prediction.

1.1  Proposed Approach

The network security situation prediction model for the IoT 
proposed in this paper is shown in Fig. 1.

The network security situation prediction for the IoT pro-
cess is designed as follows:

Step 1. Generating a non-linear time series of security 
situation values by using an entropy correlation method 
based on the network alarm information;
Step 2. Using a sliding window to divide the IoT network 
security situation value sequence segment, and each time 
an IoT network security situation value is updated, the 
sliding window slides backward by one unit;
Step 3. Establish a three-dimensional exponential 
smoothing prediction model based on the security situa-
tion sequence in the sliding window, and adaptively adjust 
the static smoothing coefficient α to improve the predic-
tion accuracy of the module;
Step 4. Calculate the error between the security situation 
predicted and the security situation actual value in the 
sliding window, and divide the error into n error intervals, 
which are recorded as n error states. Using a time-varying 

weighted Markov chain to predict the error value and cor-
rect the situation predictor;
Step 5. Check the error. If the threshold condition is not 
met, return to step 4 and divide the error state into n + 1; 
if the threshold condition is met, obtain the next cycle 
security situation value according to steps 1–4.

1.2  Contribution

The contribution of this paper is described as follows:

(1) The author uses the sliding window mechanism to 
limit the length of the historical data sequence on 
which the cubic exponential smoothing prediction is 
based, because of the failure problem of the exponential 
smoothing prediction method in the long time series;

(2) In this paper, the error between the predicted value and 
the actual value is divided. The time-varying weighted 
Markov chain is used to predict the error of the next 
cycle according to the known error state. The predicted 
value is corrected by the error obtained from the pre-
diction.

1.3  Organization

This paper is organized as follows. Section 2 describes the 
quantification of network security situation assessment for 
the IoT. Section 3 describes the network security situation 
prediction sub-module for the IoT. Section 4 describes the 
predictive value correction sub-module. Section 5 analyzes 
the experimental results. Section 6 describes the conclusion.
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Fig. 1  Network security situation prediction model
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2  Quantification of IoT Network Security 
Situation Assessment

Firstly, the alarm information is acquired based on the Snort 
intrusion detection system. Then, according to the entropy 
correlation method, the IoT network security situation value 
in each quantization period is calculated. The specific design 
method is as follows:

The IoT network security situation quantified value is 
determined by Alarm Frequency (AF), Alarm Criticality 
(AC), and Alarm Severity (AS). Referring to the alarming 
quality quantification method [9], the observation vector 
obtained by this method based on the alarming quality can 
effectively improve the data source and the evaluation accu-
racy. Therefore, the alarm with the highest quality quanti-
zation value is selected as the basis for quantifying the IoT 
network security situation in each cycle.

Assuming a total of T quantization periods, let the IoT 
network security situation quantization value of the ith cycle 
is Vi (i = 1, 2,…, T), and let the alarm with the highest quality 
quantization value of the ith cycle is Hi, then define Vi = Vi 
(AFHi, ACHi, ASHi) (i = 1, 2,…, T), where,

ACHi is the critical degree of the alarm Hi, indicating 
the possibility that the occurrence of the alarm Hi causes a 
change in the network security state. When ACHi is higher, 
it means that the IoT network security state is more likely 
to change. If the alarm ACHi is an alarm that has occurred 
in the period i, its priority is set to 1; If the alarm is gener-
ated in the period i-N to the period i-1, the priority is 2; If 
there is no alarm in the ACHi from period i-N to period i-1, 
the priority is set to 3. According to the intrusion detection 
alarm aggregation association algorithm [10], this paper 
takes N = 2.

ASHi is the severity of the alarm, indicating the negative 
impact of the alarm on the network. The greater the sever-
ity, the greater the impact of Hi on the IoT network security 
status. In this paper, the severity of the alarm is divided into 
low, general, and high, and the corresponding priority values 
are 1, 2, and 3.

To quantify the IoT network security situation of the 
period i, the comment support matrix P is set as shown in 
Table1. Let X1 = AFHi, X2 = ACHi, X3 = ASHi, then X1, X2, 

(1)AFHi =
Hi number of alarms in Ti

Number of all alarms in Ti

X3 correspond to the three quantitative indicators of the 
alarm Hi with the highest alarm quality in period i, namely 
alarm frequency, alarm criticality, and alarm severity; pij 
indicates the support degree of the ith index for the jth 
comment (i, j = 1, 2, 3)

To distinguish the severity of the network security 
threat from indicator X1, the alarm occurrence rate inter-
val cj is set as shown in Table 2. Calculate the correlation 
between X1 and the interval cj (j = 3,2,1) at the current time 
based on the distance between X1 and the endpoint of the 
alarm occurrence interval. This correlation is the correla-
tion between X1 and the evaluations in Table 1.

Let X1 = x, then formula (2) is used to calculate the sup-
port degree of the index for each comment:

where, aj and bj respectively correspond to the lower end-
point and the upper endpoint of the interval cj, j = 1, 2, 3.

The support for X2 and X3 for each comment is shown 
in Table 3.

In Table 3, the higher the priority, the greater the threat 
degree of the index. Therefore, when the correlation 
degree of high risk, medium risk and low risk is evalu-
ated with low priority, the correlation degree increases 
in turn. On the contrary, it decreases. When the priority 
of the indicator Xi (i = 2,3) is j, the correlation degree in 
the same row of Table 3 and j is taken as the correlation 
degree corresponding to Xi (i = 2,3) in Table 1. Use for-
mula (3) to calculate the absolute entropy of each indicator 
of the alarm:

when pi1= pi2=…= pin, Hmax=ln n, the relative entropy val-
ues of the alarm indicators are:

(2)Pij =
1 −

���x −
��
aj + bj

�
∕2

���� +
�
bj − aj

�
∕2

3∑
j=1

�
1 −

���x −
��
aj + bj

�
∕2

���� +
�
bj − aj

�
∕2

�

(3)Hi = −

n∑
j=1

pij ln pij

Table 1  Comment support 
matrix

Index Low General High

X1 P11 P12 P13

X2 P21 P22 P23

X3 P31 P32 P33

Table 2  X1 comment interval

Comment Low General High

Frequency interval cj [0,0.3) [0.3,0.7) [0.7,1]

Table 3  X2, X3 Comment 
support scale

Priority Low General High

1 0.5 0.333 0.167
2 0.25 0.5 0.25
3 0.167 0.333 0.5

373Mobile Networks and Applications (2022) 27:371–381



1 3

If the relative entropy value of an indicator is larger, it 
means that the indicator has less influence on the quantified 
value of the alarm. Let (1-µi) denote the weight of the cor-
responding indicator, namely:

Where, τi∈[0, 1] and τ1+…+τn = 1. τi is the entropy 
weight coefficient of the index Xi. The vector of the com-
ment weight is W = (wlow,wnormal,whigh) = (1/5,1/3,7/15)[11]. 
In the ith cycle, the quantitative result of network security 
situation is calculated[12] as follows:

Where µ is the correction factor. To facilitate data pro-
cessing, this paper takes µ = 10,000. If the situation quantita-
tive value is higher, the network security situation is worse.

3  Network Security Situation Prediction 
Sub‑module for the IoT

3.1  Sliding Window Mechanism

Given the failure of the exponential smoothing prediction 
method under long time series, this paper limits the length 
of historical data sequence based on the sliding window 
mechanism.

Let the sliding window width be L (L is a positive inte-
ger), and the current IoT network security situation values 
are arranged in chronological order as V1, V2,…, Vm (m is 
a positive integer), then the sliding window mechanism is 
designed as follows:

(1) If the number of security situation values in the sliding 
window is k (1 ≤ k ≤ m), the sequence of security situ-
ation values in the width of the sliding window is V1’, 
V2’,…, Vk’. If k + 1 ≤ L, the window does not move, pre-
dicting the m + 1th security situation value and waiting 
for a new security situation value to enter the window.

(2) If k + 1 > L, the sliding window moves forward by one 
unit when a new security situation value is added to the 
sequence. Based on the sequence value in the new win-
dow, the security situation value of the m + 1th cycle is 
predicted.

The schematic diagram of the sliding window mech-
anism is shown in Fig. 2. The mechanism ensures that 

(4)�i = −
1

ln n

n∑
j=1

pij ln pij

(5)�i =
1

n −
∑n

i=1
�i

�
1 − �i

�

(6)Vi = � ⋅ � ⋅ � ⋅�
T

the length of time series based on the cubic exponential 
smoothing method does not exceed L. When the new secu-
rity situation value is added to the historical sequence, the 
mechanism ensures that the cubic exponential smoothing 
method can still predict normally. It can improve the accu-
racy and dynamic of security situation value prediction.

3.2  Adaptive Cubic Exponential Smoothing Model

Let the IoT network security situation value of m period 
currently have V1, V2, …, Vm, and there are k security 
situation values in the sliding window width. If m ≤ L, 
then V1’=V1 and Vk’=Vm; if t > L, then V1’=Vm−L+1, and 
Vk’=Vm. The calculation steps of the model are as follows:

where the quantitative prediction result of the security situ-
ation of period t + T is V1

t + T. The prediction period advance 
quantity is T, and at, bt and ct are the prediction coefficients 
of the tth period.

where, st(1), st(2) and st(3) are the 1, 2, and 3 adjustment coef-
ficients of period t respectively.

Where, α∈[0, 1] is the static adjustment coefficient.
Let st−1

(1), st−1
(2) and st−1

(3) be the initial values of the 
first, second and third exponential smoothing of the tth 
period, then

(7)V1
t+T

= at + btT + ctT
2

(8)at = 3s
(1)
t − 3s

(2)
t + s

(3)
t

(9)
bt =

�

2(1 − �)2

[
(6 − 5�)s

(1)
t −

2(5 − 4�)s
(2)
t + (4 − 3�)s

(3)
t

]

(10)ct =
�2

2(1 − �)2

(
s
(1)
t − 2s

(2)
t + s

(3)
t

)

Fig. 2  The sliding window mechanism schema
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where Xt is the actual situation value of period t.
The initial value of the smoothing index is s0

(1) = s0
(2) = s0

(3) 
= (V1’+ V2’+ V3’)/3; α is the static smoothing coefficient, 
and α∈[0, 1]. Its value indirectly affects the final prediction 
accuracy.

Generally, when the actual value sequence shows a 
horizontal trend, α∈[0.05, 0.2]; when the actual value 
sequence fluctuates, but the long-term fluctuation is small, 
α∈[0.3,0.5]; When the actual value sequence fluctuates 
greatly, showing an obvious upward or downward trend, 
α∈[0.6,0.8]. The larger the value of α, the greater the impact 
of long-term data on the predicted value. In this paper, we 
propose to minimize the sum of absolute errors between 
predicted and actual values, and then obtain the optimal 
dynamic solution of α. The optimal dynamic solution pro-
cess α is designed as follows:

Step 1. It is assumed that the kth IoT network security situ-
ation actual values in the current sliding window constitute 
a vector V’= (V1’, V2’,…, Vk’). The initial value of static 
smoothing coefficient α is 0;
Step 2. It is known that s0

(1) = s0
(2) = s0

(3)= (V1’+ V2’+ 
V3’)/3, and X1 = V1’. From formulas (11)–(13), st(1), st(2) and 
st(3) (t = 0,1,…,k) are obtained. From the formulas (8)–(10) 
,at, bt and ct are obtained (t = 0, 1,…, k);
Step 3. In this step, t = 0, 1,…,k-1, and the prediction period 
T is 1. According to Eq. (7), the predicted value sequence 
V1=(V1

1, V2
1,…, Vk

1) based on the current static smoothing 
coefficient is obtained;
Step 4. The sum of the absolute values of the error of the 
predicted value sequence and the actual value sequence is
E=

∑k

i=1

���V1
i
− V �

i

��� , α = α + 0.001;
Step 5. Repeat steps 1–4 to α = 1, and record the absolute 
error generated by each cycle as Ej (j = 0, 1,…, 1000), and 
obtain min { Ej } (j = 0, 1,…, 1000) .The corresponding α 
value is taken as the optimal dynamic solution of the static 
smoothing coefficient under the current sliding window and 
is denoted as αbest;
Step 6. Let t = k = m, α = αbest, T = 1. The security situation 
value of the m + 1th cycle can be obtained by formula (7)–
(13).

(11)s
(1)
t = �Xt + (1 − �)s

(1)

t−1

(12)s
(2)
t = �s

(1)
t + (1 − �)s

(2)

t−1

(13)s
(3)
t = �s

(2)
t + (1 − �)s

(3)

t−1

4  Predictive Value Correction Sub‑module

Through investigation, it is found that trust plays an impor-
tant role in the security of the Internet of Things [13, 14]. 
Therefore, in order to make the predicted value more reli-
able, the error correction strategy is adopted in this paper. 
According to the theoretical analysis, there is an error 
between the known initial prediction value and the known 
security situation actual value in the same window. And 
the error is related to the fluctuation of the security situ-
ation in the sliding window. To reduce the error between 
the actual value and the predicted value of the situation, 
this paper proposes a time-varying weighted Markov cor-
rection model based on the error state.

4.1  Error State Division

The vulnerabilities and threats in the network at different 
times will change. The possible situations are as follows:

(1) In a short period of time, the network is attacked inten-
sively, which leads to the great fluctuation of its secu-
rity situation. The distance between the upper limit and 
lower limit of the error between the predicted value and 
the actual value of the security situation is large;

(2) The network is faced with conventional vulnerabilities, 
so its security situation sometimes will be relatively 
gentle or fluctuate slightly. The distance between the 
upper and lower limits of the error between the pre-
dicted value and the actual value of the security situa-
tion is small.

With the addition of new quantitative value of secu-
rity situation, the sliding window moves. The volatility 
of network security situation sequence contained in the 
window will change. The distance between the upper and 
lower limits of the error between the actual value and 
the predicted value will also change. There are k known 
security situation values in the current sliding window, 
taking V={Vi’|i = 1,2,3,…,k}, the corresponding security 
situation prediction value is V1={Vi

1|i = 1,2,3,…,k}, the 
lower limit of the error is FL=min{ Vi

1- Vi’| i = 1,2,3,…,k 
}, and the upper limit of the error is FU= max{ Vi

1- Vi’| 
i = 1,2,3,…,k }.The distance between the upper and lower 
limits of the error is denoted as FL = FU- FL. The process 
of dividing the error state is designed as follows:

Step 1. The upper and lower limits of the error are 
divided into n intervals. The interval length is FL/n 
.The interval range is [FL, FL + FL/n), [FL + FL/n, FL 
+ 2FL/n), …, FL +(n-1) • FL/n, FU];
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Step 2. The sequence of error values in the current sliding 
window is F= {Fi= Vi

1- Vi’|i = 2, 3,…,k}. If Fi∈[FL+ (j-
1) • FL/n, FL + j • FL/n), then the error Fi is in the error 
state j, where j∈{1, 2,…,n}. In particular, when Fi = FU, 
Fi is considered to be in state n;
Step 3. If the predicted value does not satisfy the thresh-
old test requirement after the error correction, the number 
of error states needs to be increased, that is, n = n + 1 to 
refine the error correction result.

4.2  Time‑varying Weighted Markov Chain Based 
on Error State

Based on the sequence of error states in the current sliding 
window, this paper uses the time-varying weighted Markov 
chain to predict the error value. The error prediction process 
is designed as follows:

Step 1. Determine an error state transition probability 
matrix. There are currently n error states. The current 
period is t. Let the error state of adjacent time be ft−1ft. 
If the error state after q cycles is recorded as ft+q, then.

Where pijr represents the error state of the period t-1 as i. 
The error state of the period t is j. The error state is r after q 
cycles. The probability is obtained by a statistical method. 
When the initial value of the error state number n is 3, the 
q-order error state transition probability matrix is

where, q = 1,2,…,β. In this paper, β0=[L/3], L is the sliding 
window width, and the β value adjustment is determined 
by step 3;

Step 2. Calculate the weight of each order error state tran-
sition probability matrix. First, calculate the correlation 
coefficient ηq between ft−1ft and ft+q

where, q = 1,2,…,β; yt−1, yt, yt−q respectively means the error 
value of period t-1, period t, and period t + q in the original 
error sequence in the current window. yrepresents the aver-
age of the original error sequence in the current window. 

pijr = p
{
ft+q = r|ft−1 = i, ft = j

}
, i, j, r ∈ {1, 2,… , n}.

(14)P
q

(n×n)×n
=

⎛⎜⎜⎜⎝

p111 p112 ⋯ p11n
p121 p122 ⋯ p12n
⋮ ⋮ ⋱ ⋮

pnn1 pnn2 ⋯ pnnn

⎞⎟⎟⎟⎠

(15)�q =

∑n−q

t=1
(yt−1 + yt − 2y)(yt+q − y)

�∑n−q

t=1
(yt−1 + yt − 2y)

2 ∑n−q

t=1
(yt+q − y)

2

Then the q-order error state transition probability matrix 
weight wq is

Step 3. Adjust the value of β. Check the value of wβ. 
The weight threshold of the error state transition prob-
ability matrix is 0.05[15]. If wβ <0.05, it is shown that 
the prediction effect of the A-Order error state transition 
probability matrix can be ignored. This step discards the 
matrix. Let β = β-1, this step recalculate the value of wβ 
until wβ≥0.05, at this time qmax = β;
Step 4. The error of the predicted value of the security 
situation in the current window is predicted. The prob-
ability that the error value of the period t + 1 is in the 
error state r (r = 1, 2, …, n) is pr(t+1)

where, q = 1,2,…, β;i,j∈{1,2,…,n},pijr(q) is taken from the 
q-order error state transition probability matrix Pq, which 
represents probability of the adjacent error state ft−q=i, 
ft−q+1=j steering error state ft+1=r. wq is the q-order error 
state transition probability matrix weight. The error state 
probability distribution vector of period t + 1 is Pr(t+1)={ 
p1(t+1), p2(t+1) ,…, pn(t+1) }.

Let the error median vector composed of the median val-
ues of each error interval be

Then the error prediction value operator at time t + 1 is

At the time of t + 1, the correction result of the predicted 
value is

where V(t+1)
1 is the uncorrected security situation prediction 

value based on the sub module of network security situation 
prediction.

4.3  Threshold Test

Firstly, the proximity between the actual value and the pre-
dicted value is analyzed. Then, it is judged whether the num-
ber of partition n of error state is enough. It is known that the 
sequence of corrected security situation predictors and the 
actual value sequence in a window is as shown in Table 4.

(16)w
q
=

��
q
�∑�

q=1
��

q
� , q = 1, 2, ... �

(17)pr(t+1) =
∑�

q=1
pijr

(q)
⋅ wq

���� = {[FL + (FL + FL∕n)]∕2, [FL + FL∕n+

(FL + 2FL∕n)]∕2,…, [FL + (n − 1) ⋅ FL∕n + FU]∕2}

(18)F�
t+1

= �r(t+1) ⋅ �mid

(19)Vc(t+1) = V1
(t+1)

− F�
(t+1)
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The methods for judging the accuracy of prediction in 
this paper are:

(1) Post-test difference test: The author records Ri as 
residual, which is the difference between the actual situ-
ation value Vi and the revised predicted situation value 
Vc(i) in a certain period of time. Ri=Vi-Vc(i), i = 2,3,…,k. 
The security situation value variance S1

2 in the current 
security situation sequence segment is

The residual sequence variance S2
2 is calculated by the 

formula (21):

Then, the posterior difference ratio c = S2/S1. The 
smaller the value of c, the better the prediction accuracy.

(2) Small probability test: A small probability test result 
P is obtained from formula (22). The larger the value of 
P, the better the prediction accuracy.

According to c and P, comparing with the prediction 
accuracy grade table (as shown in Table 5) to determine 
whether the number of error state divisions should be 
increased. If the prediction result of the model is first-level 
prediction accuracy or second-level prediction accuracy, 
there is no need to increase the number of error state divi-
sion. Otherwise, the number of error state division is n + 1.

(20)S1
2=

1

k

∑n

i=2
(Vi −

1

k

∑k

i=2
Vi)

2

(21)S2
2=

1

k

∑k

i=2
(Ri −

1

k

∑k

i=2
Ri)

2

(22)P = P(|Ri −
1

k

∑k

i=2
Ri| < 0.6745S1)

5  Experimental Results and Analysis

The predictive validity of the model is verified using Lincoln 
Laboratory’s standard dataset LL_DOS_1.0. This data set is 
the most comprehensive attack test data set, and also serves 
as the common and widely used benchmark data set in the 
research field. Therefore, the data set is relatively complete and 
rich, which is suitable for most networks. The LL_DOS_1.0 
attack process is:

1-70 min: The attacker installs the relevant attack software 
and scans the experimental network topology through IP 
Sweep to find the currently active host;
71-125 min: Use Sadmind Ping to find hosts with Sadmind 
vulnerabilities;
126-240 min: The attacker uses Sadmind Exploit to attack 
the three hosts locked in step 2, Pascal, Mill, and Locke 
until they invade each host system;
241-319 min: The attacker installs the DDOS Trojan on the 
three hosts that were attacked by the intruder;
After 320 min: The attacker launched a DDOS attack on 
the remote server.

5.1  Experimental Data Processing

Under the Ubuntu 16.04 operating system, the LL_DOS_1.0 
packet is replayed using the Tcpreplay technology. The Snort 
intrusion detection system is used to generate an alarm log 
for the replay traffic under the Windows 10 operating system.

According to Section 2, the IoT network security situation is 
quantified. The quantization period T is set to 4 min. 90 secu-
rity situation values in the interval [2800, 4000] are generated 
in 1-360 min. In this paper, 10 security situation values within 
1-40 min are taken as the actual security situation sequence. 
The actual value of 80 network security situation and the cor-
responding network security situation prediction were com-
pared in 41-360 min to test the prediction effect of the model.

The model prediction process is illustrated by taking 10 
security situation values within 40 min of 41-360 min.

The preferred alarm H, the alarm frequency AFH, the alarm 
criticality ACH level, and the alarm severity ASH level in a 
certain quantization period T = 4 min are shown in Table 6.

According to formula (2) and Tables 1, 2 and 3, a list of 
comment support matrices is obtained (as shown in Table 7)

The network security situation quantization value of the 
period calculated by the formulas (2)–(6) is: V = 3504. The 

Table 4  Sequence of predicted and actual values

Correction value VC(2) VC(3) … VC(k)

Actual value V2 V3 … Vk

Table 5  Rank of prediction 
accuracy

Prediction 
accuracy 
level

c P

First level < 0.35 > 0.95
Second level < 0.50 > 0.80
Third level < 0.65 > 0.70
Fourth level ≥ 0.70 ≥ 0.65

Table 6  Alert property sample

H AFH ACH ASH

Sensitive data Email address 0.25 3 2
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quantization process of other quantization periods will not 
be described here. The sequence of 10 security situations in 
the 40 min period is shown in Table 8.

5.2  Security Situation Value Prediction 
and Correction

According to the method in Secs. 4, the security situation 
value of T2-T10 is predicted. Let the width of the sliding 
window be L = 10, and the optimal solution of the static 
smoothing coefficient αbest under the current situation value 
sequence is 0.126. The initial predicted value and the actual 
value pair are as shown in Table 9. The value of V11

1 is 
calculated to be 3115. The T2-T10 period error sequence is 
shown in Table 10.

T h e  e r r o r  i n t e r v a l  [FL ,FU ]  i s  e q u a l  t o 
[-363.7,486.4]. According to the Sec.  4 situation 

value correction sub-module, when the number of 
divided error states n is equal to 8 and β is equal to 
4, the initial prediction value is modified, and its 
value can meet the posterior difference test and small 
probability test. The error status interval is shown in 
Table 11.

The corrected security situation predicted values in the 
T2-T10 interval are calculated by formulas (14)–(19). The 
error state initial probability distribution vector is deter-
mined by the security situation value of 10 quantization 
periods before the T1 period. The comparison between the 
corrected value of security situation prediction and the 
actual value is shown in Table 12.

The posterior difference ratio c is equal to 0.42. 
The value P of small probability test result is equal 
to 0.89. Therefore, the prediction accuracy of this 
paper is two-level. The threshold test condition is 
satisfied. The predicted security situation of T11 is 
Vc(11)=V11

1-F’(11)=3115 − 141.6 = 2973.4.
The relative error of the security situation value 

V11 = 2920 of this period in the original situation sequence 
is 1.8 %, indicating that the prediction accuracy is high. 

Table 7  Matrix of comment 
support

Index Low General High

AFH 0.41 0.37 0.22
ACH 0.167 0.333 0.5
ASH 0.25 0.5 0.25

Table 8  Security situation 
sequence

Ti T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Vi 3504 3485 3285 2919 3582 3306 2921 3070 3321 2926

Table 9  Comparison between 
the initial predicted value and 
actual value

Ti T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Vi 3504 3485 3285 2919 3582 3306 2921 3070 3321 2926
Vi1 - 3454.7 3469.9 3405.4 3218.3 3329.3 3310.1 3151.2 3089.7 3141.2

Table 10  Error sequence fi f2 f3 f4 f5 f6 f7 f8 f9 f10

Vi -30.3 184.9 486.4 -363.7 23.3 389.1 81.2 -231.3 215.2

Table 11  Error state interval 
partition

Error state i 1 2 3 4

Error value interval [-363.7,-257.4) [-257.4,-151.1) [-151.1,-44.8) [-44.8,61.5)
Error state i 5 6 7 8
Error value interval [61.5,167.8) [167.8,274.1) [274.1,380.4) [380.4,486.4]

Table 12  Comparison of 
predicted correction value and 
actual value

Ti T2 T3 T4 T5 T6 T7 T8 T9 T10

Vi 3485 3285 2919 3582 3306 2921 3070 3321 2926
Vc(i) 3467 3302.1 3142 3443.9 3320.6 3036 3099.7 3239.6 2993.3
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The prediction of the security situation values for other 
periods is the same as the procedure of Section 5.1 and 
Section 5.2. A total of 80 security situation prediction val-
ues are generated.

5.3  Sliding Window Width Selection Experiment

Different sliding window width L will have different influ-
ence on the final prediction results. In this paper, the slid-
ing window width is selected to generate a higher precision 
prediction value sequence before the prediction value is 
corrected. This can reduce the load of predictive value cor-
rection sub module. This paper takes L = 5,10,15, and the 
comparison between the predicted value of network security 
situation and the actual value is shown in Fig. 3.

It is known from Fig. 3 that when the sliding window 
width L = 10, the error between the security situation predic-
tive value generated by the network security situation predic-
tion sub-module and the original security situation value is 
smaller. This is because:

(1) When the width of the sliding window is short, the time 
span is small, and the forward data has less influence on 
the prediction of the security situation value than the 
recent data;

(2) When the width of the sliding window is large and one 
or several security situation values in the window fluc-
tuate greatly, the value of static smoothing coefficient α 
will be determined by other data with small fluctuation 
in the window. It will cause the situation prediction 
sub-module to reduce the adaptability to abnormal situ-
ation fluctuations;

(3) When the width of the sliding window is moderate, the 
effect of the recent data and the long-term data on the 
prediction result will be balanced. The difference in 

the number of situation values with large fluctuations 
and small fluctuations in the window will be reduced, 
and the accuracy of the preliminary prediction of the 
security situation is improved.

Therefore, the width of the sliding window is L = 10.

5.4  Experimental Comparison and Analysis

The experimental data set is the LL_DOS_1.0 data set. 
The model of this paper, the traditional Markov prediction 
model, and the improved Convolutional Neural Network 
(ICNN) prediction model [8] are used to obtain the network 
security situation prediction value. The results of the three 
methods are compared. Through experiments, the network 
security situation prediction value sequence of three meth-
ods (as shown in Fig. 4) and the security situation predic-
tion value absolute error sequence (as shown in Fig. 5) are 
obtained.

According to Figs. 4 and 5, Compared with other models, 
the network security situation prediction results obtained 
by this model have a better fitting degree with the original 
situation value. The reasons are as follows:

(1) The prediction of traditional Markov model depends 
on the state transition probability matrix, but the state 
transition probability matrix lacks dynamic adjustment 
after being determined. Therefore, the absolute error of 
the prediction results is large and the error presents a peri-
odic trend;
(2) Although increasing the depth of convolutional neural 
network can improve the accuracy of security situation 
prediction to a certain extent, the setting of super param-
eters in neural network model training is affected by prior 

Fig. 3  Comparison of predicted 
values at different window 
widths

379Mobile Networks and Applications (2022) 27:371–381



1 3

experience. This will lead to the deviation between the 
predicted result and the actual value;
(3) The model uses a sliding window mechanism to frag-
ment a long nonlinear time series. The security situation 
value in the window is continuously updated so that the 
correlation coefficient can be adjusted adaptively and, 
dynamically and the situation prediction value with 
higher precision is corrected, and the accuracy of the 
situation prediction is improved.

6  Conclusions

This paper proposes an adaptive IoT network security 
situation prediction model. The model quantifies the net-
work security situation values of several cycles by entropy 

correlation method and segments the security situation val-
ues arranged in time series based on the sliding window 
mechanism. The author uses the adaptive cubic exponential 
smoothing method to generate the initial prediction results. 
And the author uses the time-varying weighted Markov 
chain to predict the error and correct the security situation 
prediction value. Through the network situation prediction 
of the IoT, we can get the IoT network security situation for 
a period of time in the future, which will make people take 
corresponding protection measures for the system in time, 
and can effectively avoid certain property losses.

Because the relative importance of alert features varies 
in different network scenarios, future research will focus 
on the calculation and dynamic adjustment of alert feature 
weights. In addition, in order to improve the applicability of 
the prediction model to the abnormal fluctuations of network 

Fig. 4  Network security situa-
tion prediction value sequence

Fig. 5  Predicted value absolute 
error sequence
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security situation values, the linear correlation of network 
security situation values series will be mainly analyzed. 
Finally, the higher the trust of the data obtained from the 
IoT device [16], the more accurate the situation value is pre-
dicted by the reliable data. Therefore, future research will 
also focus on the influence of data trust on the experiment.
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