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As the need for automatization of the electricity grid’s fault diagnosis schemes is rising, the application of
technologies such as the artificial intelligence (AI) can provide practical solutions to the problem. AI can
overcome the challenges that complex topologies like those of the low voltage (LV) smart grids pose and prove
to be a powerful tool in the development of advanced fault diagnosis methods. An important parameter for the
success of any Al-based method is the quality of data. Therefore, in this paper a data analysis is performed in
order to evaluate the type of data produced by a small LV grid and an representative Al algorithm’s response
to those. In the context of this analysis, the most important features and meters were identified. Furthermore,
as a response to the large volume of available data, a data management strategy is proposed. The strategy
combines original and reshaped features. For this purpose, five dimensionality reduction methods are tested
and compared. Truncated-SVD is deemed the most appropriate and is subsequently utilized for the reshaping
of the dataset that is introduced to the XGBoost fault location model. The integration of the dimensionality
reduction technique in the algorithm results in the decrease of the computational time and the dataset’s size
and in a higher generalizability of the algorithm. Thus, the application of the proposed method is not limited
by the grid’s topology. The method’s robustness was verified against various influencing parameters such as
the fault resistance, the size of the dataset, the loss of data and the photovoltaics’ penetration level. The overall
algorithm achieved a mean squared error of 13.26 and a training and test accuracy of more than 99% when
tested on the CIGRE LV benchmark grid.

1. Introduction result in automated fault isolation or early repair from the Operations
and Maintenance (O&M) technicians on the field and fast restoration of
The transformation of the traditional electricity grids into smart  power supply is an important factor in the evaluation of transmission
grids is well underway, mandating the redefinition of the grid opera-
tion principles. One of the vital operating parts of the grid requiring
redesign is the protection system and more specifically the fault di-
agnosis schemes, since the bidirectionality of power flows and the

intermittency of generation sources pose additional challenges. Fault

system operators’ (TSOs) and distribution system operators’ (DSOs)
quality of services. One of the main points, though, that differentiates
this research from other similar ones is the analyzed part of the grid.
Each part of the electricity grid presents distinct characteristics, mainly

diagnosis refers to the detection, classification and location of a fault.
Rapid and automatized fault diagnosis leads to increased reliability of
the electricity grid, aligned with the needs of the modern society. With
the vast changes in the grid’s topology, the traditional fault diagnosis
methods have become outdated and inefficient. Therefore, the necessity
for novel accurate and fast fault diagnosis methods has soared.

This study focuses on the fault location part of the process, as
it is considered the most challenging and can assist significantly the
minimization of power outage times. An accurate location of a fault can
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related to the grid topology, the loads, the line parameters and the
type of energy generation. Hence, different fault location approaches
are required, adjusted to the particularities of each voltage level. The
majority of the related studies have developed methods suited for high
voltage (HV) [1-3] and medium voltage (MV) grids [4-16]. Neverthe-
less, due to the smart grid-transition, the complexity as well as the
importance of the low voltage (LV) grid have risen, thus the focus of
this research is centered in on that part of the grid.
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Traditionally, the LV grid is characterized by its tree-shaped form,
the mix of types of conductors, the great variance in the grids’ lengths,
the residential loads and the multi-phase operation. In addition to
these, the latest advancements in the energy sector have led to the grad-
ual transformation of consumers to prosumers, in line with the growing
integration of electric vehicles, batteries and renewable energy sources
(RES), and to the improvement of the grid’s observation and control
devices and strategies. Therefore, the extensive available research on
the HV and MV grids either cannot be applied to the LV grid or needs
to be tailored to its particular properties.

1.1. State-of-the-art

The part of the grid presenting the most common characteristics
with the LV grid is the MV one. The main methodologies found in the
fault location methods developed for MV grids can be categorized as:
impedance-based [4-6], traveling-wave-based [7,8], sparse measure-
ments [9-11], artificial intelligence (AI) [12-14] and hybrid [15-17].
The first two were also the first to be developed and are still very
frequently applied as they clearly reflect the physical laws of electric
circuits. The impedance-based methods consist of analytical equations
based on the Kirchhoff and Ohm laws. Thus, they are considered
to be simpler to implement, nevertheless they can result in multi-
ple location estimation or inaccuracies in the presence of RES. The
traveling-wave-based methods locate the faulted point by interpreting
the waves’ reflections. They usually lead to accurate and fast fault lo-
cation, however, their implementation requires specialized equipment
and personnel. Furthermore, in grids with many lateral branches such
as the LV grid, the signal retrieval could prove challenging.

On the other hand, the broad installation of smart meters on the
grid, combined with their increasing capabilities, led to the develop-
ment of fault location methods relying on collected measurements. A
representative example is the sparse measurements methods that are
based on the comparison between the voltages recorded in multiple
points throughout the grid and the voltages collected from the simula-
tion of all possible faults. The case presenting the highest convergence
between the two indicates the fault location. Sparse measurements are
usually combined with an impedance-based method for the elimination
of the multiple location estimation problem. Such method combinations
lead to the formation of hybrid methods, that aim at maximizing the
accuracy and efficiency of the faulted point’s location. Because of their
nature, however, hybrid methods tend to be complex and demanding
schemes. The most popular hybrid methods so far are those combining
sparse measurements with impedance-based methods as well as those
utilizing wavelets as inputs to Al algorithms.

Al is another example of a method gaining popularity due to the
growing data availability. The applications of Al algorithms in the fault
diagnosis field have multiplied over the last years, providing innovative
and highly accurate solutions. The main drawbacks of Al are consid-
ered to be the data and computational requirements. Nevertheless,
the large volume of necessary training data can be minimized with
the use of dimensionality reduction or feature selection techniques,
while the technological progress gradually provides solutions to the
computational requirements. Overall, in the majority of cases the AI's
performance outweighs its drawbacks.

From the aforementioned methods, the ones finding applications in
the LV grid so far are the signal-based, the measurement-based, the
Al and some hybrid methods. In the signal-based methods, one of the
first developed was the time domain reflectometry (TDR). Examples of
its application can be found in [18] and the more elaborated method
of [19]. TDR’s results are considered reliable, however, it requires
specialized equipment and personnel in order to be implemented. In
the recent years, there have been further advancements on methods
utilizing signals for the location of faults. Some of them are based on
the introduction of a test signal to the grid [20], while others on the
analysis of vectors such as the Park’s vector [21].

International Journal of Electrical Power and Energy Systems 142 (2022) 108303

As commented earlier, the installation of smart meters and sensors
as well as the continuous investments in the grid’s O&M, have cre-
ated new opportunities for the development of novel methods taking
advantage of the collected data. Therefore, also in the case of LV
grids, an increase was observed in fault location methods relying on
smart devices. E.g. in [22], fault indicating devices are used to locate
the faulted section. In [23], the negative-sequence voltage variations
are recorded, however their utilization entails the establishment of
thresholds for each particular grid. Then, the proposal of [24] to
compare the current magnitude and angle between the sides of each
section in order to locate the faulted section is simple but implies
big infrastructure investments. The common vulnerability of the afore-
mentioned methods lies in their performance’s dependence on various
grid parameters that were, additionally, not taken into consideration
during the research. A technique with higher robustness is presented
in [25,26], were emphasis is being given to the local sensors and the
grid’s communication channels for an accurate and fast location of the
faulted branch. However, as in the rest of the aforementioned papers,
with the exception of [23], only the faulted section is located and not
the exact fault point.

Following the pattern observed in the MV grid fault location tech-
niques, there was also a development of hybrid methods utilizing the
versatile data that can be obtained by smart devices as inputs in
impedance-based methods in order to increase their accuracy. In [27]
novel devices operating in very high frequencies are employed for the
collection of data to be used in the location of arc faults. Then, in [28]
the obtained voltage measurements are compared with thresholds that
once again require adjustment based on the specific application. In an
effort to counterbalance this negative characteristic and increase the
flexibility of the method, the grid’s zone division was proposed.

Finally, Al has been applied lately as a solution to the fault location
problem in LV grids as well. In [29] a statistical approach of machine
learning (ML) is presented, that can locate the faulted point of the line
and not just the node closest to the fault. Even though this approach
tries to avoid the black-box side of Al, it lacks in accuracy and only
refers to three phase faults with a resistance up to 1 £. On the other
hand, in [30,31] two more widely known Al tools are utilized, that
both lead to high accuracy. More specifically, a gradient boosting tree
(GBT) model and a deep learning (DL) algorithm are implemented re-
spectively. The GBT requires less training data, has less computational
requirements, it is faster and its performance is not as depended on the
hyperparameter tuning as that of the DL. However the GBT was not
tested in the location of the exact point, only in the identification of
the faulted section, so it was used for classification and not regression
purposes. Apart from that, the two proposed methods follow a similar
logic, starting with the fault detection and continuing with the identi-
fication of the faulted branch. In that last part, the DL algorithm led to
better results than the GBT. Furthermore, the proposed DL algorithm is
also independent of the number of meters on the grid. Both methods,
showcase the robustness of Al methods, with the thorough sensitivity
analysis they include, however they exclusively refer to single phase
and three phase faults and have high data demands.

Based on the literature review, it is obvious that despite the abun-
dance of fault location methods, only a small portion of them is
addressing the particularities of the LV grid. Additionally, Al emerges
as a powerful tool also in the field of fault location, combining high
accuracy with practicality. The available Al data management and
analysis techniques counterbalance the most important limitations as-
sociated with its application while enabling the deeper understanding
of complex topologies such as those of LV grids. Moreover, many
new technological tools facilitate the practical implementation of Al
algorithms rendering its use even more appealing for both research and
commercial purposes.
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1.2. Contribution

The subject of the current study is the optimization of an Al al-
gorithm’s application for the location of shunt faults in LV grids. The
method includes an all-important analysis of the data collected from
the simulation of a small LV grid, in this case of a modified version of
the CIGRE European LV benchmark, and a study on the best data form
to be used as an input. Data analysis is crucial for the selection of the
most suitable methodology — and, in the case of Al the selection of the
fitting prediction model — as well as for the correct interpretation of the
results.

Furthermore, a data management strategy is presented in order
to optimize the data collected by the measurements devices. As the
measuring devices and available measurements are expected to mul-
tiply in the future, their efficient management is imperative for the
computational systems. The proposed strategy combines the utilization
of the most important measurements, as indicated by the data analysis,
with the dimentionality reduction of the less useful part of the data,
thus decreasing the computational time (CT) and complexity of the
algorithm. For this purpose, five dimensionality reduction algorithms
are compared in order to select the appropriate one for the application.
By reducing the size of the dataset, the algorithm becomes independent
of the number and the location of the measuring devices, hence,
generalizable. Thus, its overfitting to the specific grid data is decreased
and it can be applied to every grid regardless of its topology.

Finally, an eXtreme Gradient Boosting (XGBoost) ML regression
model is applied for the location of the faulted point. Tree-based al-
gorithms have proven to be highly efficient for and easily applicable to
problems with tabular data [32], such as the fault diagnosis. Hence, the
performance of a state-of-the-art tree model, i.e. the XGBoost prediction
model, is tested in the location of faults in active LV grids.

Counter to [30], in this paper the XGBoost model is used as a
regressor, for the location of the exact faulted point and not only the
faulted node. Moreover, this is the first ML-based method that is able
to locate all types of shunt faults in LV grids and the first method that
includes a data analysis and management strategy.

Overall, the contribution of the presented research can be summa-
rized in four main points:

A. Evaluation of the quality of data collected by a small scale LV
grid and analysis of the optimum dataset composition.

B. Development of an efficient data management strategy, indepen-
dent of the grid’s topology.

C. Minimization of the features’ dimensionality and, as a result, of
the CT, with a simultaneous increase of the method’s generaliz-
ability.

D. Application of an advanced ML model for the accurate location
of the faulted point in an active LV grid.

2. Fault location method

The presented fault location method refers to all types of shunt
faults and can be applied to all active LV distribution grids, regardless
of their topology. It is a ML-based method, thus, a prediction model
is trained for the location of the exact faulted point. In order to
increase the method’s accuracy emphasis is given to the data and their
management. Therefore, first the data are analyzed, based on that they
are appropriately processed and finally they are combined in a new
improved dataset. Following that, the model’s parameters are carefully
evaluated and tuned for optimum results.

Fig. 1 summarizes the outline of the proposed fault location method,
which will be thoroughly described in this section. The shaded boxes
represent the parts of the algorithm that are implemented only during
the development phase and are omitted during its application. More-
over, the red block corresponds to an important part of the algorithm,
the identification of the faulted branch, that is not being analyzed here

International Journal of Electrical Power and Energy Systems 142 (2022) 108303

W
:
==
i
g [
W

|

Data pre-processing ;

: Optimum No of i 4 ;

l | features analysis . Scaling :

i Method !

. . 5 . ' comparison !

Dimensionality reduction | —»! :
1| Feature importance

Grid simulation /

Measurement
collection

calculation

'
'
'
'

Dataset
3 reconstruction
' with a mix of the
: most important
: features and the
1\ reduced features
'

Fig. 1. Structural diagram of the proposed fault location method.

since an accurate model that performs this task was presented in [33].
The faulted branch classification is an indispensable part of the method
as it tackles the multiple location estimation problem, which occurs
when the calculated distance between the fault and the feeder points
to locations in more than one branches.

2.1. Data analysis tools

The performance of a ML method depends heavily on the proper
interpretation of the available data. Nevertheless, the importance of
data evaluation is not limited to the ML applications. It is imperative
for simulation data to be evaluated irregardless of the employed fault
location methodology; the reliability of a method’s test results depends
on the reliability of the test data. The majority of the existing fault
diagnosis methods rely on data generated by simulations, as there is a
general lack of real data, especially in relation to fault events in the
grid. Even though with the evolution of O&M solutions for electricity
grids the DSOs’ observability of the grid has significantly increased,
there is still a long way to go until real data become vastly available to
the research community. Hence, the evaluation of data generated from
benchmarks like the one used in this study are of great value.

Therefore, the first step in any research should be the data analysis.
In the case of ML methods, the data analysis should precede the model
selection as the latter could be affected by the data distribution. Even
though there are models such as the tree-based ones that are not
affected by the data distribution this can still reveal patterns that
could lead to the development of a custom model or to an appropriate
data transformation. Furthermore, the data analysis can point to the
features that are the most informative for the prediction of the target
as well as, in the case of electricity grids, the position of the most
important meters. Overall, the data analysis facilitates the researchers’
methodology-related decisions and the interpretation of the algorithms’
outcome, and it leads to the formation of an efficient dataset and the
development of an accurate model.

The associated parameters studied in this research are the data
normality, the correlation between the features and the target value,
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and the feature importance. The data normality was tested with the use
of the Shapiro-Wilk normality test [34]. This test originally assumes
that the provided data are normally distributed, then compares them
with an actual normal distribution and finally calculates the probability
of the provided data being similar to those belonging to a normal
distribution. If the probability is higher than 0.05 then the data is
categorized as normal.

Then, in order to test the data correlation three different approaches
were used. First, Pearson’s correlation coefficient r [35] was used for
the study of the linearity between the features and the target value.
The r coefficient is the fraction of the covariance of a random pair of
samples (x;, y;) and their respective standard deviations:

F= covxi, yi) 6h)
63‘1 Uyl'

Pearson’s correlation coefficient refers to Gaussian data. For non-
Gaussian data two ranking coefficients are mainly used. The first one is
Kendall’s correlation coefficient = [36], that is used for the comparison
of concordant and discordant pairs in the data set. This is calculated as
follows:

2

T=eTh ;j sgn(x; — x;)sgn(y; — ;) @
where (x;,y;) and (x;,y;) are two random pairs of observations and
n is the total amount of observations. The other ranking coefficient
is Spearman’s p correlation coefficient [37] which is used for the
calculation of the strength between two variables. More specifically, the
p coefficient examines the existence of a monotonic relation between
two variables, i.e. if one decreases/increases with the decrease/increase
of the other, and is defined as follows:

k(x;). rank(y,
. cov(rank(x;), rank(y;)) 3)

Urank(x, )Urank(y, )

It can be observed that the definition of the p coefficient is similar
to that of the r; their difference lies in the use of the variables’ values
rank in the calculation of p, instead of the actual sample values. Hence,
the Spearman correlation is less affected by outliers compared to the
Pearson correlation.

The data analysis is completed with the examination of the features’
importance. The features’ importance is an indication of each feature’s
contribution to the prediction of the target value. It is not another
approach for the evaluation the features’ correlation with the target
value but rather a measure of each feature’s influence on the model’s
decision-making process. Therefore, it can serve as a starting point
for the employment of feature selection or dimensionality reduction
techniques. Moreover, it provides information regarding the response
of the prediction model to the specific type of data, since the calculation
of the feature importance depends on the estimator fitted to the data. In
decision trees the feature importance indicates which values are mostly
used for the splitting of trees into branches. The method applied here
for the calculation of the features’ importance is the computation of the
mean and the standard deviation of the impurity decrease accumulation
in each tree. It was selected as an appropriate method as it is less
computationally expensive than other alternatives and its use is only
discouraged in the case of datasets containing high cardinality features.
This does not apply to the generated dataset, as it does not contain a
large number of unique values.

2.2. Prediction model

ML models are divided into classification and regression. Classi-
fication models predict categories, while regression models predict
continuous values. In the presented method both a classification and
a regression model are utilized; first a classification model is employed
for the prediction of the faulted branch, and then a regression model is
applied for the prediction of the fault’s exact distance from the main
feeder. Thus, the multiple location estimation problem that follows
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many fault location methods is resolved and an accurate solution is
proposed.

Both the classification and the regression models utilized are tree-
based. The classification of the faulted branch with the use of a Random
Forest (RF) has already been successfully validated in [33], therefore,
only the regression model will be analyzed in this study. Tree-based
prediction models offer high flexibility and efficiency, with reduced
computational demands [38] and have been proven accurate in fault
location problems for the MV [12]. Moreover, they have less pre-
processing and data requirements than the employment of other pop-
ular Al techniques such as the NN, and perform well with tabular
data, such as the ones used here. Apart from those basic advantages,
nevertheless, each individual tree-based model has its own additional
merits.

The tree-based models are named after their shape, which is similar
to that of a tree; they start from a single node and by making decisions
regarding an attribute of the dataset each node is split into two or more
new sub-nodes. The objective of the decisions leading to a tree’s split-
ting is the creation of homogeneous sub-nodes while the pruning that
follows aims at the minimization of overfitting by removing terminal
nodes that do not provide useful information related to the prediction
result. The first node of the tree contains all or a bootstrapped sample
of the available data, depending on the model. Based on indexes such as
the entropy and the information gain scores the node split is performed.
The process is repeated for each node and only for attributes that
have not been previously selected by the algorithm. The selection of
the attributes, the number of features considered in each split and
the number of splits differ for the different tree-based models and
their selection depends on the hyperparameter tuning which will be
discussed later and on complex algorithms that fall beyond the scope
of this research. The simplest tree model is the decision tree, illustrated
in Fig. 2, based on which the rest of the tree-based models were
developed.

The predictive capacity of the models is measured by the objective
function, which consists of the training loss and the regularization term:

obj(0) = L(6) + £2(0) @

where 0 is the vector of the weights added to each feature in order to
predict the target value. In tree-based models the predicted target value
can be expressed as follows:

K
9= 2 fulx) )
k=i

where f, € F is a function containing the tree structure and leaf scores
for all the possible trees, which form the functional space F. K is the
number of trees employed.
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Fig. 3. Illustration of the XGboost model’s sequential training and weight assignment.

Usually the training loss is calculated with the use of the mean
squared error (MSE) and can be expressed as:

LO)= Y =5 (6)

Thus, the form of the objective function for a tree-based model is
the following:

n K
0bj(6) = Dy = filx) + D 2(f) @)
i k=1

The goal of the models is the optimization of the objective function,
in this case of Eq. (7). Depending on the specific tree model the
objective function can have a slightly different form.

2.2.1. Regression model

After reviewing the positive results presented in [30] regarding
the use of gradient boosting in fault diagnosis in LV grids, as well as
other applications of gradient boosting models, the tree-based model
that was selected for the fault location’s prediction is an advanced
gradient boosting algorithm. In contrast with the aforementioned fault
diagnosis method, however, in this case the XGBoost model [39] is
not used for classification purposes but as a regressor. Thus, it is the
first algorithm utilizing XGBoost for the location of faults. XGBoost
combines the aforementioned advantages of the tree-based models with
high computational speed. Like the other tree-based models, it also
constitutes an ensemble model that is based on the combination of
multiple weak learners[40]; here the weak learners are the decision
trees. In this case though the weak learners are trained sequentially,
with each next weak learner trying to improve the accuracy in a part
of the data where the previous weak learner proved inaccurate. This is
achieved by assigning a weight to each learner’s results, as illustrated
in Fig. 3, where each letter corresponds to a numerical value. The
correctly predicted examples are given lower weights so that the weak
learner that follows focuses on the falsely predicted examples which in
turn are given higher weights.

So far XGBoost has not been applied to a fault location problem in
an electricity grid. Nevertheless, it presents multiple benefits showcased
in a variety of applications [41-43] and its multifarious characteristics
could provide a robust solution to a complex problem such as the fault
location. Among its noteworthy features that distinguish it from other
tree-based and boosting models are:

1. The regularization; it is the most important characteristic of the
XGBoost model as it decreases significantly overfitting.

2. The parallel processing; another important feature that reduces
notably the execution time needed to built each tree and there-
fore to train the model.

3. The backwards pruning; commencing the pruning process after
all splits have taken place optimizes the tree shaping.

4. The optimization possibilities; they exceed those offered by other
algorithms, expanding the model’s potential. Some examples of
that include the built-in cross-validation and handling of missing
values.

According to Eq. (5), the additive function of the boosting trees can
be expressed by the prediction model equation as follows:

0
5 =0

3= £16) =5+ fix)
®)

n
-1
5= 5+ f)
k=i
where n is a step of the prediction process. The objective function of
the model is formed in accordance with Eq. (7).

2.3. Data management strategy

The efficient management of collected data is crucial for any fault
location method that relies heavily on data, especially for Al-based
ones. As the data recording points in electricity grids are expected to
increase in the future due to the broader installation of smart devices,
their efficient management is of high importance; on one hand in order
to relieve the pressure on the computational systems and on the other
hand in order to extract all the available information.

The general norm in Al algorithms is that the larger the number of
the available features the more accurate the prediction of the model, as
long as these features are correlated with the target value. Nevertheless,
a large number of features can also lead to overfitting and a failure of
the algorithm to generalize to unseen datasets. This could deem any
method unreliable and inaccurate. Moreover, the majority of datasets
tend to contain a number of either uncorrelated features that add
noise to the model’s training or features that are too similar thus are
redundant. This is common in datasets with many collected features.

The data management approach proposed here has two main goals:
(a) the extraction of solely the useful features in order to optimize
the model’s performance and reduce the computational complexity and
time and (b) the conservation of the physical meaning of the grid’s most
informative measurements. Hence, in the constructed dataset, the most
informative measurements, as those were indicated by the features’
importance analysis, are maintained in their original form while the
rest of them are transformed according to the applied dimensionality
reduction method. Thus, the quantity of information in the final dataset
is enhanced while the generalizability of the algorithm remains high.
The time added by the dimensionality reduction process is insignificant
in comparison with the drop in the training time. This strategy is
independent of the number and location of the meters, thus it is
applicable to all grids regardless of their topology.
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2.3.1. Dimensionality reduction

There are various dimensionality reduction techniques. Some are
exclusively focused on the visualization of the dataset, thus they re-
duce the number of dimensions to a maximum of three, while others
allow the selection of the dimensions’ final number. In the present
study the main goal of the dimensionality reduction was the optimum
balancing of the minimum CT and the maximum accuracy. Hence, the
methodologies applied here are the ones favoring a higher dimension-
ality space. Specifically, the techniques tested and compared are the
Principal Component Analysis (PCA) [44], the Kernel PCA [45], the
Fast Independent Component Analysis (FastICA) [46], the Truncated
Singular Value Decomposition (T-SVD) [47] and the Isometric Feature
Mapping (ISOMAP) [48].

1. PCA
PCA is a well-known statistical method that aims at eliminating
the correlated features of a dataset that carry little information
and create a more compact one that is easier to analyze and
manage during the training of ML model. Due to its efficiency
it has been applied in numerous Al-based studies, including
fault location methods [49]. The theory behind PCA lies in
the projection of the data points onto a smaller feature space,
whose every axis is perpendicular to the rest, thus uncorrelated
with them. Each axis corresponds to one eigenvector, i.e. prin-
cipal component. The eigenvectors are sorted based on their
eigenvalues; in this case the higher the eigenvalue the more
important the eigenvector. The first principal component is the
vector representing the line with the minimum squared distance
from all the data points, hence is characterized by the highest
possible variance. Each new principal component aims at best
fitting the data points and is orthogonal to the rest of the princi-
pal components. The total number of the principal components
created by the PCA is the same as that of the original features,
however, the biggest amount of information is compressed into
the first components. Thus, the utilization of only the first few
components can lead to the successful training of the ML model.
Usually, the principal components selected are those with an
explained variance adding up to 80% of the original dataset’s.

2. Kernel PCA
Kernel PCA is a variation of the traditional PCA that, contrary to
the original method, is able to perform non-linear dimensionality
reduction. Thus, before the application of the PCA’s linear opera-
tions, the utilized kernels transform the dataset’s dimensions into
a space where it has a linear form. There are various available
kernels; the selection of the most suitable one depends on the
shape of the data. In this study the cosine kernel was used.

3. FastICA
ICA methods aim at isolating the independent components of the
dataset by finding the matrix that maximizes the non-gaussianity
of the original features. The non-gaussianity metric is a means of
measuring the statistical independence of the components. The
difference between the traditional ICA methods and the FastICA
lies in the calculation of the non-gaussianity. In the first case it
is calculated with the use of the kurtosis whereas in the second
case with the use of the negentropy. Hence, the FastICA is faster
and more reliable.

4. Truncated SVD
T-SVD is a dimensionality reduction method based on the fac-
torization of the data matrix. Its operating principle is similar
to that of the PCA with the exception that it does not center
the data before performing the computations. While PCA trans-
forms the covariance matrix, SVD transforms the data matrix.
Thus, the computational complexity and time of the T-SVD are
significantly lower. Furthermore, the truncating nature of the
method is the one allowing the dimensionality reduction and
differentiating it from the SVD method.

International Journal of Electrical Power and Energy Systems 142 (2022) 108303

5. ISOMAP

ISOMAP is another non-linear dimensionality reduction method.
It can be considered an extension of Kernel PCA. The main goal
of ISOMAP is the projection of the data into a lower-dimensional
space where the geodesic distances between the data points are
maintained unchanged. This is achieved with the application of
the nearest neighbors methodology in order to distinguish the
various manifolds of the dataset.

2.3.2. Measuring devices

As the only recorded data utilized by the algorithm are the three-
phase voltage and current waveforms at the data collection points
which are then transformed to the corresponding phasors, the method’s
data requirements are covered by the existing devices that provide
synchronized measurements or a time stamp. These can be either
measuring devices such as the Phasor Measurement Units or devices
such as the data concentrators. These devices can be found in multiple
points of the grid while the time stamp feature is expected to be
included in the measuring devices that are planned to be installed by
the DSOs. Therefore, the application of the method is considered to
require minimum installation investments. Regarding the transmission
of the data, the algorithm does not require the collection of data
in real time, therefore, the existing technology is also sufficient for
its application. Specifically, the algorithm was designed taking into
consideration a data transmission every 15 min. The algorithm would
locate the fault based on the last available measurements and there
would be enough time to retrain the model, in case this is necessary.

2.4. Data pre-processing

As ML algorithms are data centered, the correct data processing
before the model’s training is important for the success of the prediction
model. Data pre-processing consists of many steps and while some of
them are necessary in all applications, e.g. the splitting of the data,
others, e.g. the scaling of the data, depend on the employed model.

Splitting the data into smaller datasets is the first step that needs
to be taken before training a model. The dataset is split into training,
validation and test datasets. Some models such as the tree-based ones
perform internal cross-validation, therefore there is no need for a
separate validation dataset. Here the data were split with an 80/20
ratio between the training and test sets. Omitting the splitting leads
to unreliable testing results of the prediction model, since the model is
already fitted to the same data points that are used to test its accuracy.
Thus, even though there is a high prediction accuracy in the testing,
the model will be unable to perform well for new, unseen data. This
phenomenon, known as overfitting, is one of the most important factors
that require attention during the training of a prediction model. The
dataset split is one of the ways to minimize it, nevertheless, further
processing such as regularization may still be needed. Overall, the
overfitting of a model to the training data can be tested by comparing
the training and test accuracy of the model. A lack of similarity between
the two values is an indication of overfitting.

Another influencing parameter on the prediction model’s perfor-
mance is the scale of the features. Most models consider features
measured in larger units to be more important, therefore, these features
are weighed in more during the training and decision making process
than features measured in smaller units, resulting in biased prediction
results. An exception to this are the tree-based models that evaluate one
feature at a time thus the different scale of the features does not affect
the algorithm. Nevertheless, the effective training of most models as
well as the application of other ML processes such as feature selection
and dimensionality reduction rely on the scaling of the features to
comparable sizes. Even though only tree-based models were employed
in this study, the dimensionality reduction techniques applied to the
dataset required the scaling of the data. There are various scaling
methodologies, depending on the type of the data and the type of
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Table 1

Hyperparameter values.
No. of gradient boosting trees 700
Maximum tree depth
for base learners 7
Subsample ratio of
the training instance 0.7
Min sum of instance weight
needed in a child 3
Boosting learning rate 0.1
Subsample ratio of columns
when constructing each tree 0.7
Objective “reg:squarederror”

application. The scaler used in this case was the RobustScaler. It is
a scaler focused on the elimination of outliers. This is accomplished
by the scaling of the data based on the quantile range, i.e. the range
between the 1st and 3rd quartile, and not the whole range of values.
Furthermore, the RobustScaler places the mean of the data on point
zero. This is a prerequisite for dimensionality reduction methods such
as the PCA; point zero is the common cross point of all the linear
subspaces formed by the PCA.

2.5. Hyperparameter tuning

Each AI model is characterized by various parameters called hyper-
parameters which define its basic properties and as a result the shape
and performance of the model as well as the duration of the training
process. The tuning of the model’s hyperparameters is one of the biggest
challenges during the training process. The hyperparameter tuning does
not rely on any clearly defined rules but rather on the programmer’s
experience and intuition. The process has been partly optimized by the
appearance of algorithms that evaluate the possible combinations of the
hyperparameters’ potential values and return the set of hyperparameter
values that leads to the highest accuracy. Still, the designer is required
to select the hyperparameters to be tuned and provide the values to
be tested for each one of them. In the RF and XGBoost models the
most frequently tuned as well as crucial parameters for the model’s
performance are the number of decision trees, the maximum depth of
each tree, the number of features evaluated during each node split and
the amount of data comprising the bootstrapped dataset.

The potential and selected values of these parameters for the XG-
Boost model are presented in Table 1. For the selection of the fi-
nal values the RandomizedSearchCV meta-estimator was utilized. The
meta-estimator creates a grid with all the possible combinations of the
hyperparameter values given by the programmer. Then it randomly
selects a number of cases that is previously set by the programmer
to be tested and with the use of cross-validation it returns the hy-
perparameters leading to the model’s highest accuracy. Although this
meta-estimator does not validate the performance of all the possible
hyperparameter combinations, it is efficient and time saving. It should
be noted that due to the randomness of the process, these parameters
vary each time the code is run, nevertheless the changes are slight and
do not affect the overall accuracy of the algorithm.

3. Case study

As commented earlier there is a lack of real data regarding the
faulted behavior of LV grids. Therefore, for the validation of the pre-
sented fault location method, and thus, the training and testing of the AI
models, a modified version of the CIGRE European LV benchmark [50]
was simulated in Simulink in order to generate the required datasets.
The selected grid with the additions of photovoltaics (PVs) and meters
encloses the important characteristics of a real life small LV grid thus
providing useful test data. The grid’s topology is presented in Fig. 4.

The layout of the original grid’s elements is maintained, with three
PVs added in the first feeder, one in the second and two in the third. The
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Fig. 4. Modified CIGRE European LV benchmark.
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nominal power of the PVs is different in each feeder and equals 5 kW
for each PV on the first feeder, 13 kW for the PV on the second feeder
and 10 kW for each PV on the third. Furthermore, various meters are
placed throughout the grid, as indicated in Fig. 4 with the squared ‘M’
followed by a number. The meters were set in such a way as to cover
the full length of the grid and enable the data and sensitivity analyses
performed. Even though only 6 meters are the necessary ones, the data
obtained from the rest were also used in order to showcase the potential
and advantages of the proposed data management strategy. Finally, as
mentioned in Section 2.3.2, when it comes to the collected variables,
the algorithm has very low requirements that can be fulfilled by any
measuring device, thus the method can be applied to any LV grid and
it is not designed to accommodate specifically the particularities of this
case study.

3.1. Data generation

For the generation of a realistic and diverse dataset several scenarios
of the grid’s normal and faulty operation were simulated. The current
research focuses on the location of shunt faults in LV grids. Specifically,
the faults that are studied here are the single-phase, double-phase and
three-phase faults that occur either between the phases or between the
phases and the ground. The parameters modified during the simulations
include the PV generation, the fault resistance, the fault location and
the fault type. The ranges of the elements’ values are presented in Ta-
ble 2. During the simulations, the PVs were considered to be operating
in steady state while any transient phenomena related to them or the
converters’ operation were ignored.

The generated dataset comprises the aforementioned variables, the
node at the end of each faulted branch and the three phase current
and voltage phasor measurements before and after the fault. The post-
fault measurements were recorded within half cycle from the fault’s
occurrence, before the activation of the protection devices. Further-
more, prior to the fault the grid was set to operate in steady state
without transient phenomena. The number of simulation scenarios was
21250. The processor used during the simulations and the execution of
the algorithms was an Intel(R) Core(TM) i5-8250U CPU @ 1.60 GHz.

Finally, in order to create a dataset as close to a real life one as
possible, the generated dataset was sampled and some examples were
randomly discarded. Thus, the final dataset was non-homogeneous. For
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Table 2
Grid element values.
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PV generation levels

Fault resistance

Fault location Fault type

1st branch: 0, 800, 1700, 3000, 5000 W
2nd branch: 0, 4000, 7000, 10000, 13000 W  [0,40]2
3rd branch: 0, 2500, 5000, 7500, 10000 W

17 values in the range of

25 different locations
Distance from the feeder
[35,315]m

All 10 types of
shunt faults

Table 3
Voltage and current values in each analyzed dataset.

2nd dataset

1st dataset 3rd dataset

T b 74 _ T,

I, =1,<6 I, =15 <86 Alph_#

A o
)

Vo= Vﬂh <6

T a 7 a Vo

lph=1ph<6 Vo =Vo <0 AV,, = =

—a
V,,h = V;h <0

b: value measured before the fault, a: value measured after the fault, ph: each of the
three phases.

the evaluation of the data and the comparison of the dimensionality
reduction techniques studied here, the size of the sampled dataset was
randomly selected to be (10200, 176), where 10200 is the number of
examples and 176 is the number of features. For the fault location
part, the optimum dataset size is studied in Section 4.1 as part of the
sensitivity analysis of the algorithm.

3.2. Data evaluation and correlation

As previously discussed, the analysis of a research’s utilized data
is invaluable for the validation and the interpretation of the results.
Therefore, in order to verify the quality of the generated data, a statis-
tical analysis of the utilized data from the simulated modified CIGRE
grid was performed. This part of the study aims at providing useful
information regarding the behavior of the basic variables measured in
a small LV grid with RES and different kinds of loads. The presented
data analysis refers to the fault location algorithm, so the target value
is the distance between the fault and the main feeder. Regarding the
recorded variables, i.e. the voltage and current, these were split into
magnitude and angle values. The rest of the variables used as features
were the generated PV power, the fault resistance and the type of fault.

Three sets were formed from the collected data. The difference
between them is the current and voltage values. As shown in Table 3,
the first dataset contains the voltage and current before and after the
fault, the second only the values measured after the fault and the third
the ratio of each variable’s values before and after the fault A7, AV. The
variables’ names in the first two datasets contain the letters a or b in
the second position, with a denoting after and b before the fault. Then,
the letter in the third position corresponds to the measured phase. The
number contained in all the names points to the meter that performed
the measurement, while the letters m and a at the end refer to the
magnitude and angle of the measured value. In the case of the third
dataset, the letter referring to whether the value was collected before
or after the fault is missing, as the variables are the ratio of the two
values. Finally, due to the large amount of features contained in the
datasets, the plots illustrate only the features with the highest scores in
each part of the analysis.

The Shapiro normality test showed that the datasets do not follow
a Gaussian distribution. The probability of similarity for all of them
was smaller than 0.05, which is the general threshold set as a rule
of thumb. As commented earlier, for datasets that do not follow a
normal distribution the most frequent correlation calculation methods
are either the Kendall’s coefficient or the Spearman’s coefficient. The
Pearson’s correlation coefficient was also calculated, but only for vali-
dation purposes, as it assumes a normal data distribution. Figs. 5 and
6 confirm the theoretical observation that the Kendall’s coefficient is

smaller than that of the Spearman’s. Based on the same figures, it can
be concluded that there is a stronger correlation between the rank of
the features and the rank of the target value in the first dataset, i.e. the
variables of the first dataset show stronger monotonic relationships
with the target value. Nevertheless, the different types of faults lead
to an overall weak monotonic relationship between the features and
the target. Moreover, some of the features showing high correlation
with the target value, such as the currents before the fault cannot be
individually used for the prediction of the fault distance. In cases like
the ones studied here where the fault is a sudden event the values
before the fault do not have a direct physical relationship with the
fault’s location. Therefore, even though these variables seem to be
correlated, the respective features should be ignored during the dataset
selection.

Regarding Pearson’s correlation coefficient, as illustrated in Fig. 7,
in a small LV grid such as the one examined, the linear correlation
between the features and the target value is rather weak. This is to be
expected as the non-linearity of these relations is obvious already from
the analytical equations presented in the impedance-based methods and
is enhanced by the tree-shaped topology of LV grids and the RES added
to the grid.

An important metric that can provide a valuable insight to the
dataset and assist the successful development of an AI fault location
method is the examination of the features’ importance. In Fig. 8 it
can be observed that the features assisting the most in the split of
a tree-based predictive model are the ones measuring the difference
between the voltages and currents before and after the fault, which
are contained in the third dataset. The other two datasets also contain
features with high importance, but not as high as those in the third
dataset. Furthermore, both the correlation coefficients as well as the
features’ importance point to the same meters as the most informative
ones. These are the meters found in the beginning of each feeder and
a meter placed in the middle/end of the first feeder. This is a useful
observation for the installation of new meters and the collection and
analysis of only the necessary data. Finally, in the analyzed grid, the
data coming from the phase b of the grid appear to be the most
useful for the decision making process of the prediction model. This
is stemming from the unbalanced line impedance. Hence, in grids
with unbalances such as the one studied here the identification of the
prevailing phase could be useful for the optimum utilization of the
available measurements.

On one hand the results show the difficulty of conventional methods
to generalize the complex relations between the voltage /current values
and the fault location for different LV grids. On the other hand it
appears that tree-based ML models are capable of providing accurate
predictions for these datasets; this needs to be verified by the metrics
of the final model. In relation to the selected dataset, due to the com-
plexity of the problem, the decision was made based on the optimum
balance between the correlated variables, the features’ importance and
the actual physical meaning of the variables. Emphasis was given to the
last two factors since, as commented earlier, the correlation between
the features and the target value was rather weak for all the datasets.
Therefore, the third dataset was chosen as the most informative for
the prediction model. The aforementioned dataset contains all the
information regarding the state of the grid before and after the fault
in a compact form and leads to better tree splits, hence more accurate
results with less features.



P. Stefanidou-Voziki et al.

Location_m -
Vbb_1_a 4
Vab_1_ a-q

lab_1 a-q
Ibb_1_a 4
Vbb_9_m
Vbb_5_a A
lbob_8_m
Vab_5_m -
Vab_3_a-q
Vab_5_a -
Ibb_2_m A
Ibb_4_a
lab_4_a 4

lab_8_m

T T T
0.2 0.4 0.6 0.8 1.0
Correlation

o |
o

-0.4 -0.2

(a) First dataset

Location_m -
Vab_1_a-q
lab_1 a4
Vab_5_m |
Vab_3_a-q
Vab_5_a-q
lab_4_a -
lab_8_m -+
Vab_7_m-
lab_2_m A
Vab_4_aq
Vab_2_m -
Vab_7_a-q
lab_3_m 4
lab_8_a -

T T T
0.2 0.4 0.6 0.8 1.0
Correlation

o |
o

T T
-0.4 -0.2

—~

b) Second dataset

Location_m -
Dlb_5_m
DVb_7_a
Dlb_3_m

DIb_1_a-
DIb_4_a 4
DVb_4_a |
DVb_1_m 4
DVb_3_m -
DIb_10_a 4
Dla_3_m -
DVa_7_a-
Dlb_10_m
DVb_2_m -
DVb_6_m

T T T
.0 0.2 0.4 0.6 0.8 1.0
Correlation

|

T T
-0.4 -0.2

—

¢) Third dataset

Fig. 5. Kendall’s coefficient with the fault location.

3.3. Dimensionality reduction method selection

As part of the data management strategy described in Section 2.3,
a dimensionality reduction process was applied before the training of
the prediction model. The goal of this process was to increase the
algorithm’s accuracy with out-of-sample data, minimize the overfitting
and lower the CT and complexity. For the selection of the appropriate
dimensionality reduction technique five methods were compared, as
analyzed in Section 2.3.1. Their comparison was conducted on the basis
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Fig. 6. Spearman’s coefficient with the fault location.

of (a) the required CT for the dimensionality reduction, (b) the required
CT for the prediction of the final result with the use of the reduced
dataset, without taking into consideration the tuning of the hyperpa-
rameters, and (c) the prediction accuracy. The results for each method,
for a 30-dimensional space, are presented in Table 4. Both the number
of dimensions and the dimensionality reduction method were selected
based on the optimum trade-off between the CT and the accuracy. Fig. 9
illustrates the mean square error (MSE) in relation to the CT for the
T-SVD method for a range of [20, 90] dimensions. It can be observed
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Fig. 7. Pearson’s coefficient with the fault location. Fig. 8. Features’ importance.
Table 4
that there is an almost inversely exponential relation between the two Comparative table of the dimensionality reduction methods.

. . . . . . . . i i i 3 2
variables. According to the multi-objective optimization process that Method CT of dimensionality reduction (s) MSE (m*) Total CT (s)
was followed, the number of dimensions selected was 30. Moreover, PCA 0.38 119.25 10.08
based on the results presented in Table 4 the selected dimensionality KPCA 76.6 87.8 85.8

. FastICA 1.3 155.44 11.1
reduction methodology was the T-SVD. Even though Kernel PCA leads
8y 8 T-SVD 0.18 95.61 11.65

to the lowest MSE, T-SVD combines a similar error with a much lower ISOMAP 102.78 696.66 1117

execution time.
In accordance with the proposed data management strategy, in this
study 10 of the most important features were kept intact and the rest

10
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Fig. 9. The MSE in relation to the CT of the algorithm for a range of [20, 90]
dimensions with the use of T-SVD.
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Fig. 10. The MSE of the algorithm in relation to the dataset constitution.

were reduced to 30 dimensions, forming a new dataset with a total of
40 features. The most important features were selected according to
the features’ importance analysis presented in the previous section. As
illustrated in Fig. 10, the proposed technique is much more efficient
than the use of a higher number of dimensions in the dimensionality
reduction process and it manages to concentrate the most informative
parts of the original dataset in less than a third of its size.

3.4. Fault location

For the location of the faulted point an XGBoost regressor was
trained with the dataset created after the data pre-processing. The
performance of the prediction model was evaluated based on the MSE,
the mean absolute error (MAE), the mean percentage error (MPE)
and the CT. Additionally, the overfitting of the model was examined
by comparing the train and test accuracy, as calculated by the Ran-
domizedSearchCV meta-estimator with the use of the R?> metric. The
aforementioned metrics are defined as follows:

n
1 *
MSE= =% (%~ Y ©
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Table 5
Fault location prediction model results.

MSE (m?)

MAE (m)

CT without
hyperparameter tuning (s)
CT with hyperparameter
tuning (s)

Train accuracy (%)

Test accuracy (%)

13.26

1.69

11.89

735.99

99.9
99.8

Mean error (%)

150 200 250 300

Fault distance (m)

50 100

Fig. 11. MPE of the algorithm in relation to the fault’s distance from the feeder.

where Y is the real value of the fault distance, Y* is the predicted value,
Y = % >, Y, and n is the total number of examples.

Table 5 presents the results for the trained model. The use of the
processed dataset has lead to a radical decrease of the MSE and even
a further decrease of the algorithm’s CT. It should be also pointed out
here that the CT for the algorithm trained with the original dataset,
without the use of the dimensionality reduction but with the tuning
of the hyperparameters, leads to a CT of 1970,1s or 32 min. This is
more than twice the CT of the method after the use of dimentionality
reduction. Furthermore, the train and test accuracy are both high and
almost identical, thus indicating the lack of overfitting.

Finally, the exceptional performance of the developed method is
illustrated also in Fig. 11, as the MPE of the method is less than 6%
in all cases. The spikes in the plot correspond to the grid locations that
are within the same distance from the feeder but are placed on different
branches. The more branches with equally distant points from the
feeder, the higher the algorithm’s error. This is particularly noticeable
for shorter distances where the voltage values are similar in all the
branches.

4. Sensitivity analysis

For the verification of the algorithm’s robustness an analysis of its
sensitivity to a set of highly influencing parameters was performed.
These parameters are the number of examples included in the dataset,
the loss of measurements, the fault resistance and the injected power
from the PVs to the grid.

4.1. Dataset size

The volume of data required for the effective training of an AI model
constitutes one of the biggest concerns related to its application. It is
often believed that there is a need for vast data storage as a prerequisite
for the utilization of an Al model. Therefore, the dependence of the
proposed algorithm on the number of training and testing examples was
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Fig. 12. The MSE and CT of the algorithm in relation to the number of utilized
examples.

analyzed. The original dataset contained 21250 examples. In Fig. 12
the MSE and the training time in relation to the amount of examples
is presented. As expected, the more the utilized examples the lower
the MSE and the higher the CT. Even though the MSE is high for the
lower end of the data volume, it drops significantly for more than 6800
examples. Such an amount of data is easily collected and stored. Hence,
the presented algorithm combines high accuracy with low data and
storage requirements.

The optimum dataset size is approached another case of multi-
objective optimization, with the target being the balance point between
the lowest CT and the lowest MSE. Both parameters are considered
almost equally important with CT being given a slightly higher impor-
tance factor. Specifically, the weights selected were 1.1 for the CT and
0.9 for the MSE. The red line in Fig. 12 illustrates the weighted average
curve of the CT and the MSE in relation to the number of examples. The
minimum of the curve constitutes the optimum point and corresponds
to 11900 examples. This is the number of examples used for the training
and testing of the presented fault location algorithm.

4.2. Data loss

Another factor that could have an important impact on the per-
formance of a fault location method is the loss of data due to a
communication error or the malfunction of one or more measuring
devices. Specifically, the possibility that the measurements from one,
three or five of the grid’s meters could not be collected was studied.
The missing values were replaced with 0. For each of the three studied
cases five random combinations of failing meters were used and the
mean value of the method’s MSE was calculated. As this algorithm
relies more on certain measuring devices than others, three different
scenarios were tested regarding the meters that failed. The first sce-
nario explored the possibility that the failing devices were the ones
providing the more important data that were utilized by the algorithm
in their original form. These are characterized as primary devices. In
the second scenario it was considered that the missing values came
from the devices providing the less important data, thus characterized
as secondary devices. Finally, in the third the data loss originated from
both the primary and secondary devices. Meters 1, 4, 5, 9, 10 were
selected as the failing primary devices and meters 2, 6, 8, 13, 14 as the
failing secondary devices. In the case that three of both primary and
secondary devices failed, one of them was considered to be a primary
meter and two secondary meters. In the case of five failing meters the
ratio was two primary and three secondary meters.

As it can be seen in Fig. 13, the algorithm depends heavily on the
primary measuring devices and loss of data from them can result in high
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Fig. 13. The MSE of the algorithm in the case of data loss from one, three or five
meters.

errors in case three or more of them fail simultaneously. Nevertheless,
this is a very improbable scenario that does not characterize the perfor-
mance of the algorithm. In the more probable cases of failures, those
only in secondary meters or both kinds of meters, the MSE is almost
the same as that under normal conditions. Therefore, the algorithm is
considered to be robust against possible data loss.

4.3. Fault resistance

Fault resistance is a defining parameter for all fault diagnosis meth-
ods. Its effect on the fault current, a fundamental variable to related
calculations, can have a great impact on the method’s accuracy. Thus,
in this study a broad range of fault resistances was simulated in
order to identify the algorithm’s sensitivity to it. More specifically,
the tested fault resistances were in the range of [0, 40] Q. Higher
impedance faults are out of this research’s scope, therefore, this range
was selected as the most representative for detectable faults in LV
grids [51]. The magnitude of the fault resistance depends mainly on
the fault and ground type. Fig. 14 depicts the high accuracy of the
algorithm for the whole range of fault resistances. It can be observed
that the accuracy is lower for the lower values of the fault resistance.
The reason behind that is the greater variation of the current’s values in
this area of resistances, as it can be seen in Fig. 15 for measurements
obtained from meter 8. Hence, it is challenging for the algorithm to
distinguish between the different cases and predict the correct target
value. Nevertheless, the accuracy is constantly above 99% deeming the
effect of the fault resistance on the proposed algorithm negligible.

4.4. PV penetration level

Finally, a major parameter in the smart grids era is the integration
of RES. In fault location methods the power injected by the RES can
affect significantly the result’s accuracy. Therefore, in this study the
effect of five different PV power generation levels was analyzed. The
generation levels are presented in Table 2. As illustrated in Fig. 16 there
is no clear pattern between the generated power and the algorithm’s
accuracy. Nonetheless, the consistently high accuracy indicates that the
algorithm is practically unaffected by the various PV penetration levels.

5. Conclusions

In this study a novel artificial intelligence (AI) — based fault loca-
tion method for low voltage grids is presented. The transformation of
traditional electricity grids to smart grids has rendered most of the con-
ventional fault location methods obsolete, however, it has also offered
opportunities for innovation due to the increased observability over the
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grid. The measuring devices installed throughout the grid are expected
to multiply and allow the collection of large amounts of data. This
favors the implementation of AI methods but at the same time it raises
the need for appropriate data management. Al has proven to be highly
accurate in a variety of applications and, as a continuously developing
field, constitutes a flexible and sophisticated tool. Nevertheless, when
applied without proper data analysis and processing it can lead to high
computational times (CT), reduced accuracy or overfitting of the model.
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The proposed algorithm aims at solving these problems by optimiz-
ing the application of Al in a fault location method. This is achieved by
evaluating the collected data and developing a data management strat-
egy. More specifically, first, the data analysis results point to the form
with which the recorded variables should be included in the dataset.
The dataset is then processed following the data management strategy
proposed. This part of the algorithm reduces the data volume, and thus
the CT of the method, by transforming the least informative features
with the use of the Truncated-SVD technique while keeping the 10
most informative features in their original form. This step results in the
efficient exploitation of all the available data and, at the same time, the
generalization of the algorithm. The reduced dataset is used as an input
for the training of an XGBoost model, which combines low overfitting
with high computational speed and accuracy. The final algorithm is
characterized by superior performance, with a mean squared error of
13.26 and a training and testing accuracy above 99% when evaluated
with data generated from the simulation of the CIGRE European LV
benchmark.

Overall, the proposed method has low input data requirements, that
can be fulfilled by the existing measuring devices, hence it is easily
applicable. Additionally, the location of the measuring devices is not
taken into consideration in the data management scheme, therefore, the
method is independent of the grid’s topology and can be applied to all
LV grids. Furthermore, it is robust against parameters that could affect
its performance such as the fault resistance, the PV penetration levels
and the loss of data. Regarding the first two parameters, the accuracy of
the algorithm for the wide range of tested values remains above 99%.
Finally, in the case of lost data due to a malfunction in one or more
meters or a communication failure, it is highly improbable that such a
disruption will significantly affect the response of the algorithm.
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