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Abstract 

The data revolution has led to an increased interest in the practice of data analysis. 

While much has been written about statistical thinking, a complementary form of 

thinking that appears in the practice of data analysis is design thinking – the 

problem-solving process to understand the people for whom a solution is being 

designed. For a given problem, there can be significant or subtle differences in how 

a data analyst (or producer of a data analysis) constructs, creates, or designs a data 

analysis, including differences in the choice of methods, tooling, and workflow. 

These choices can affect the data analysis products themselves and the experience 

of the consumer of the data analysis. Therefore, the role of a producer can be 

thought of as designing the data analysis with a set of design principles. Here, we 

introduce design principles for data analysis and describe how they can be mapped 

to data analyses in a quantitative and informative manner. We also provide data 

showing variation of principles within and between producers of data analyses. Our 

work suggests a formal mechanism to describe data analyses based on design 

principles. These results provide guidance for future work in characterizing the data 

analytic process. 
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1 Introduction 

The data revolution has led to an increased interest in the practice of data analysis 

(Box, 1976; Chatfield, 1995; Tukey, 1962; Tukey and Wilk, 1966; Wild, 1994; Wild 

and Pfannkuch, 1999). In the practice of data analysis, one often uses statistical 

thinking (Wild and Pfannkuch, 1999), namely the vague but intuitive process of 

aiming to accurately describe or understand uncertainties in a complex world using 

foundations from mathematics, statistics, computer science, psychology, and other 

fields of study (Snee, 1990; Chance, 2002; Poldrack, 2021). Statistical thinking often 

manifests where, for a given question or decision that needs to be made, a producer 

of a data analysis makes analytic choices, such as which methods, algorithms, 

computational tools, languages, or workflows to use in a data analysis that most 

accurately capture or describe a complex world (Grolemund and 

Wickham, 2014; Donoho, 2017). For example, a data analysis can consist of simply 

calculating the sample mean for a given set of observations. Alternatively, the 

producer may choose to calculate a sample median if they suspect there are outliers 

in the observed data. A data analysis can also be more complicated consisting of, for 

example, importing, cleaning, transforming, and modeling data with a goal to build a 

machine learning algorithm to decide which product a company should sell. 

In addition to the goal of describing a complex world accurately through statistical 

thinking, complementary forms of thinking also appear in the practice of data 

analysis, including design thinking (Cross, 2011; Parker, 2017; Woods, 2019; Nolis 

and Robinson, 2020). This iterative, solutions-based, problem-solving process aims 

to understand and to deeply empathize with the people for whom a product is being 

designed (Cross, 2011). A common practice in design thinking is to employ divergent 

thinking, or the process of identifying and exploring many solutions (possible or 

impossible) (Cross, 2021). This is in contrast to convergent thinking, sometimes 

used in statistical thinking (Wild and Pfannkuch, 1999; Grolemund and 

Wickham, 2014; Watson and Callingham, 2003; Horton and Hardin, 2015). In 

convergent thinking the choices, which can be influenced by factors outside the 

control of the producer such as time or budget constraints (Peng and Parker, 2022) 



or the availability of appropriate data, are narrowed down to a final solution that is 

most accurate or correct for given a problem. 

In the practice of data analysis, one way divergent thinking often manifests is 

through a producer of an analysis exploring the design space of (i) how information 

from the data is extracted, summarized, and presented (Cook and 

Swayne, 2007; Parker, 2017), (ii) the degree to which evidence in the data is 

reported or is convincing or the degree to which alternative methods or approaches 

are considered (Wild and Pfannkuch, 1999; Breiman, 2001), and (iii) how 

reproducible the data analysis is (Knuth, 1984; Stodden and Miguez, 2014). 

Ultimately, these design choices for a given data analysis shape the final product 

that is produced (Nolis and Robinson, 2020). For example, a producer of a data 

analysis can choose to exhaustively check a set of assumptions of a specific method 

instead of making a more modest effort. While this design choice often leads to a 

longer data analysis, it can also lead to different results (or a different interpretation 

of results) if the assumptions of the method are found to not be supported by the 

data. Previous empirical studies have found that even when using the same data to 

investigate the same question, there can be significant variation in how producers 

build data analyses, which has been shown to influence the results of the analysis 

(Silberzahn et al., 2018). 

These design choices can not only induce variation in the data analyses themselves, 

but also can affect a consumer or ‘stakeholder’ (Nolis and Robinson, 2020) of the 

data analysis. Using the same example as above, when a producer chooses to 

exhaustively check a set of assumptions of a specific method, the experience of a 

consumer of the data analysis (who was expecting an exhaustive analysis) might 

also be changed from being less confident to more confident as the degree of 

exhaustively checking the assumptions increases. Alternatively, if a producer makes 

a design choice to summarize the results from a data analysis with only tables, then 

a consumer (who was expecting summaries with plots) might not understand the 

results without data visualizations, and therefore be skeptical of any results. 

We refer to factors or characteristics that are relevant to the production of a data 

analysis, as a whole or its individual components, as design principles for data 



analysis. Broadly, when building a data analysis, the role of a producer can be 

thought of as designing the data analysis with a set of data analytic principles to 

serve a larger purpose, such as to be able to extract meaningful information, answer 

an original question, support decision-making, or address the needs or expectations 

of data analysis consumers. Similar to principles of art or music (Lambert, 2014), the 

design principles for data analysis are not meant to be used to evaluate the quality of 

a data analysis, but rather they are meant to be characteristics about the data 

analysis that can be used to induce or describe variation between data analyses. 

Our primary focus in this manuscript is to (i) introduce a set of data analytic design 

principles (Section 2), (ii) describe an example of how the design principles can be 

used to measure different characteristics of a data analysis (Section 3), and (iii) 

present data on the variation in principles within and between producers of data 

analyses (Section 3). In the Discussion (Section 4), we discuss how these data 

analytic design principles can be implemented in practice, for example, how the 

design principles can be used in the classroom by practitioner-instructors (Kross and 

Guo, 2019) to build data analyses. 

2 Design principles for data analysis 

The design principles for data analysis are qualities or characteristics that are 

relevant to the analysis and can be observed or measured. Driven by statistical 

thinking and design thinking, a data analyst can use these principles to guide the 

choice of which data analytic elements to use, such as code, code comments, data 

visualization, non-data visualization, narrative text, summary statistics, tables, and 

statistical models or computational algorithms (Breiman, 2001), to build a data 

analysis. Briefly, the elements of an analysis are the individual basic components of 

the analysis that, when assembled together by the analyst, make up the entire 

analysis. A data analysis can be scored based on how well it adheres to each of 

these principles. The scoring is not meant to convey a value judgment with respect 

to the overall quality of the data analysis. Value judgments may be overlaid on to an 

analysis by the consumer based on how different principles are scored, but we do 

not consider such judgments universal characteristics. Next, we describe six 



principles that we hypothesize are informative for characterizing variation between 

data analyses. 

Data Matching. Data analyses with high data matching have data readily measured 

or available to the producer that directly match the data needed to investigate a 

question (Figure S1). In contrast, a question may concern quantities that cannot be 

directly measured or are not available to the producer. In this case, data matched to 

the question may be surrogates for covariates that measure the underlying data 

phenomena. While we consider the main question and the data to be contextual 

inputs to the data analysis, we consider this a design principle of data analysis 

because the producer selects methods, tooling, or workflows that are used to 

investigate the question, which depend on how well the data are matched. If the data 

are poorly matched, the producer will not only need to investigate the main question 

with one set of methods, but also will need to use additional methods that describe 

how well the surrogate data are related to the underlying data phenomena. 

It is important to note that questions can be more or less specific, which will impose 

strong or weak constraints on the range of data matching to the question. Highly 

specific questions tend to induce strong constraints to investigate which methods, 

tooling, or workflows are used. Less specific questions emit a large range of potential 

data to investigate the question. Data that can be readily measured or are available 

to the producer to directly address a specific question results in high data matching, 

but depending on the problem specificity, can result in a narrow or broad set of data 

to consider. 

Exhaustive. An analysis is exhaustive if specific questions are addressed using 

multiple, complementary methods, tooling, or workflows (Figure S2). For example, 

using a scatter plot and a correlation coefficient are two different tools that could be 

employed to investigate whether two predictors are associated. Analyses that are 

exhaustive use many methods to address the same question, knowing that each 

given tool reveals some aspects of the data, but obscures other aspects. As a result, 

the combination of tools and methods used may provide a more complete picture of 

the evidence in the data than any single tool would. For example, a non-randomized 

study comparing two groups may make the groups comparable using two different 



methods: matching and weighting. Matching often allows for a straightforward 

comparison for clinicians to understand, since it is easy to conceptualize; whole 

individuals are either included if they have a match in the opposite group, or they are 

not. A clinician seeing this may be more likely to “trust” the analysis because they 

can better understand the process by which individuals are either explicitly included 

or excluded. Weighting may benefit the statistically minded, such that there is 

efficiency as no subjects are excluded. An exhaustive analysis may include both 

methods. 

Skeptical. An analysis is skeptical if multiple, related questions are considered using 

the same data (Figure S3). Analyses, to varying extents, consider alternative 

explanations of observed phenomena and evaluate the consistency of the data with 

these alternative explanations. Analyses that do not consider alternate explanations 

have no skepticism. For example, to examine the relationship between a predictor X 

and an outcome Y, an analysis may choose to show results from different models 

containing different sets of predictors that might potentially confound that 

relationship. Each of these different models represents a different, but related, 

question about the X-Y relationship. A separate question that arises is whether the 

configuration of alternative explanations are relevant to the problem at hand. 

However, often that question can only be resolved using contextual information that 

is outside the data. 

The need for more or less skepticism in a data analysis is typically governed by 

outside circumstances and the context in which the analysis sits. Analyses that may 

have large impacts or result in significant monetary costs will typically be subject to 

detailed scrutiny. In July 2000, the Health Effects Institute (HEI) published a 

reanalysis of the Harvard Six Cities Study, a seminal air pollution study that showed 

significant associations between air pollution and mortality. Due to the potential 

regulatory impact of the study, HEI commissioned an independent set of 

investigators to reproduce the findings and conduct a series of sensitivity 

analyses (Krewski et al., 2000). The result was a nearly 300 page volume where the 

data and findings were subject to intense skepticism and every alternative 

hypothesis was examined. 



There are other instances when skepticism in the form of alternate explanations is 

not warranted in the analysis. For example, with an explicitly planned and rigorously-

conducted clinical trial, the reported analysis will typically reflect only what was pre-

specified in the trial protocol. Other data analytic elements or analyses may be 

presented in a paper, but they will be explicitly labeled as secondary. For example, in 

a large clinical trial studying the effect of a pest management intervention on asthma 

outcomes (Matsui et al., 2017), the reported analysis is ultimately a simple 

comparison of asthma symptoms in two groups. Some other secondary analyses are 

presented, but they do not directly address the primary question. Such an analysis is 

acceptable here due to the strict pre-specification of the analysis and due to the 

standards and practices that the community has developed regarding the reporting 

of clinical trials. 

Second-Order. An analysis is second-order if it includes methods, tooling, or 

workflows that do not directly address the primary question, but give important 

context or supporting information to the analysis (Figure S4). Any given analysis will 

contain, for example, data visualizations that directly contribute to the results or 

conclusions and serve as key pieces of evidence. However, many analyses will also 

contain other information or data that provide background or context or are needed 

for other reasons (Figure S1). Second-order analyses contain more of these 

background and contextual elements in the analysis, for better or for worse. For 

example, in presenting an analysis of data collected from a new type of machine, 

one may include details of who manufactured the machine, why it was built, or how it 

operates. Often, in studies where data are collected in the field, such as in people’s 

homes, field workers can relay important details about the circumstances under 

which the data were collected. Clinical studies might report information about patient 

intake forms. In each of these examples, these details may be of interest and provide 

useful background, but they are not considered primary data and may not directly 

influence the analysis itself. Rather, they may play a role in helping a consumer 

interpret the results and evaluate the strength of the evidence. 

An analysis that is highly second-order does not necessarily include many secondary 

analyses. For example, an analysis may employ a machine learning algorithm and 

include a secondary analysis that shows the sensitivity of the results to different 



tuning parameter settings. Such a secondary analysis may play a direct role in 

interpreting the strength of the evidence in the primary analysis. Second-order 

information is less directly connected to the primary analysis and likely will not use 

any of the data under consideration. That said, second-order information could end 

up playing an important role should a data analysis produce a result that is highly 

unexpected. For example, in a clinical study, an unexpected data analytic result 

could be related to the way a patient intake form is formatted. Hence, it can 

sometimes be useful to have such second-order information presented. Another 

example would be a paper that includes a table showing how different health 

outcomes were derived from diagnosis and procedure codes available in 

administrative data (Roumie et al., 2017). 

Clarity. Analyses with clarity summarize or visualize key pieces of evidence in the 

data that explain the most “variation” or are most influential to understanding the key 

results or conclusions (Figure S5). Clarity could be demonstrated by simply including 

one data visualization, or it could consist of multiple data visualizations. For example, 

having a data visualization that draws attention to the key message of the narrative 

of the analysis can focus the reader on how the data are connected to the results. 

Clarity can also be represented by presentations that highlight the data generation 

process and any uncertainties or biases introduced by that process. 

In a study of 8,111 people in six industrial cities in the midwestern United States, 

researchers found a strong association between ambient air pollution and 

mortality (Dockery et al., 1993). This study examined numerous individual-level 

factors, assembled large datasets, and employed complex modeling to estimate the 

key association. Ultimately, the relationship between fine particulate matter and 

mortality was summarized in a single plot containing six data points in a line, 

demonstrating a strong linear association between the two factors (Figure S6). 

Distilling the complexity of the analysis into a simple scatter plot incorporating all of 

the relevant information is a demonstration of clarity because it summarizes the main 

result of the paper, while also providing some indication of the strength of the 

evidence. 



Reproducible. An analysis is reproducible if someone who is not the original 

producer can take the published code and data and compute the same results as the 

original producer (Figure S7). Critical to reproducibility is the availability of a stable 

form for both the dataset and the analytic code. For example, an analysis might 

consist of interactively calculating a sample mean for a given set of observations in 

the console of a programming language. In this case, as there is no stable code 

because the analysis was performed interactively, it is not possible for another 

person to reproduce the analysis. These types of analyses that are not deliberately 

recorded happen frequently and do not necessarily imply a negative quality about 

the analysis. Rather such analyses are simply not reproducible. In contrast, analyses 

that integrate literate programming (Knuth, 1984) in an analytic compendium are 

more reproducible (Vassilev et al., 2016). Another consideration is that it may not be 

possible for businesses, such as those in the finance industry, to make available 

entire analytic compendia for proprietary or financial reasons. In contrast, analytic 

compendia that are integrated as part of the analytic product or analytic presentation 

are by definition more reproducible. Finally, much has been written about 

reproducibility and its inherent importance in science, so we do not repeat that 

here (Peng, 2011). We simply add that reproducibility (or lack thereof) is usually 

easily verified and is not dependent on the characteristics of the consumer of the 

analysis. Reproducibility also speaks to the coherence of the workflow in the analysis 

in that the workflow should show how the data are transformed to eventually become 

results. 

3 Results 

In this section, we describe two case studies exploring the variation in the principles 

across different data analyses. Our approach to this analysis was exploratory with 

the goal of summarizing the between person and within person variation across the 

design principles. These two case studies consist of longitudinal data collected at 

Wake Forest University and cross-sectional data collected at Johns Hopkins 

University. 

3.1 Wake Forest University Case Study 



The data for this case study were collected from 54 students enrolled in a Statistical 

Models course at Wake Forest University. This course is intended for students who 

have had at least one university-level statistics course. The study was approved by 

the Wake Forest University Institutional Review Board (IRB00023932). 

Participants were taught the 6 design principles of data analysis. Throughout the 

course, they were given 8 data analysis assignments. These assignments consisted 

of completing data analytic tasks in R and had varying degrees of adherence to each 

of the design principles (the assignments can be found in the Supplementary 

Material). On each of the 8 assignments, students were asked to self-rank the 

analysis they completed from 1 to 10 across each of the principles, with one 

indicating that the analysis did not adhere to the principle, and 10 indicating that it 

did. We also collected data on the participants’ current major. 

Figure 1 shows each individual’s score of the six principles across the 8 analyses. 

Two “profiles” are selected for demonstration purposes to illustrate both the 

variability in scores within a given individual across assignments and between 

principles, as well as the variability between individuals. For example, examining the 

exhaustive and skeptical principles, subjects 3 and 4 were relatively similar on 

assignments 2-7 and differed slightly on assignments 1 and 8. Subject 4 has less 

variability between assignments in both matching and reproducibility compared to 

subject 3, consistently giving scores of 10. On the other hand, subject 4 has more 

variability in clarity compared to subject 3. The second-order principle follows a 

similar pattern for both subjects across assignments, but at different levels. 

An interesting feature of Figure 1 is the between-subject variation present in some of 

the principles. One possible explanation for this variability in principle scores is that 

these principles are related to or influenced by an individual’s baseline 

characteristics. As an illustrative example, we examine the average principle score 

by the producers’ declared major (Figure 2). There appears to be some variation in 

the mean and variability of principles by major, suggesting that major may be 

relevant, however the sample size is too small to draw any meaningful conclusions. 

For example, looking at the clarity principle, students majoring in the social sciences 



all had high average scores, differing from the other majors where more variation 

was present. 

Figure 3 shows pairwise scatterplots between principles for one of the assignments; 

while some principle scores are more highly correlated than others, there appears to 

be appreciable variability, indicating that these principle scores measure different 

underlying characteristics of a data analysis. This can be better visualized by 

Supplemental Figure S8. The cumulative proportion of variance explained by 

principle components illustrates that not all principles are loaded in a single 

component, again suggesting that there is additional information added across the 

six principles. 

3.2 Johns Hopkins University Case Study 

Data from Johns Hopkins University were collected from 15 students enrolled in a 

graduate course titled Advanced Data Science. For a homework assignment, 

students were asked to score a data analysis completed by two separate authors 

(not any of the students in the course) using a score of 1 to 10 for each of the 

principles described in Section 2. The data analyses consisted of analyses of natural 

disasters in the United States and their economic impact. Each analysis was done by 

a different person, but the datasets and question addressed were the same. The 

students were given the output of the data analyses, but were not given the data and 

were not asked to analyze the data themselves. Stable links to the analyses the 

students were asked to evaluate are provided in the Supplementary Material. This 

study was approved by the Institutional Review Board of the Johns Hopkins 

Bloomberg School of Public Health (IRB 00012419). 

When considering data from the participants at Johns Hopkins University, we see 

some differences across the two analyses they were asked to score, as 

expected (Figure 4). The differences in the scores given by the students for the two 

analyses shown in Figure 4 indicate that while the two analyses are similar on some 

principles, such as skepticism, exhaustive, and clarity, they differ somewhat on 

reproducibility, second-order, and data matching, albeit with wide variation. This 



pattern suggests that there is some variation in the analyses attributable to the 

choices of the analyst, but in this case only among a subset of principles. 

3.3 Summary of Results 

The two case studies described above provide some evidence that the principle 

scores assigned to different data analyses exhibit variation across individuals and 

across data analyses. Data from Wake Forest suggest that variation across 

individuals is greater than variation within individuals and therefore exploring the 

sources of this variation would be of keen interest. Figure 2 suggests that this 

variation may be associated with a student’s major, but more in-depth work needs to 

be done to draw a connection between principle scores and individual 

characteristics. Figures 3 and S8 demonstrate that these principles are measuring 

distinct underlying characteristics of a data analysis. The data from Johns Hopkins 

indicate that the scoring of principles has some ability to distinguish between 

analyses done by independent analysts. While there was variability across 

individuals in the scoring, a subset of principle scores were distinctly different on 

average between the analyses. 

4 Discussion 

In this paper, we introduce a set of data analytic design principles with the goal of 

describing variation between data analyses. These principles are characteristics of 

the data analysis made by the producer considering the needs of the consumer used 

in the application of design thinking (and complementary to statistical thinking) in the 

practice of data analysis. We also illustrated the use of these data analytic principles 

in two classroom settings aimed at teaching data analysis. In our analysis of the 

classroom data, we found that the principles defined here appear to measure 

underlying quantities that are reasonably uncorrelated with each other (Figures 3-

S8). 

The data from the Wake Forest and Johns Hopkins studies presented in Section 3 

suggest that there is variation in principle scores across individuals working on the 

same data analysis task. While we would hypothesize that this variation in scores is 

attributable to the choices made by the individual analysts, the data suggest that an 



interesting avenue for future work would be to design studies to identify specific 

characteristics or qualities on the individuals that explain the variation in scores. The 

data on student majors in Figure 2 only hints at such an explanation. 

One significant consequence of using design thinking concepts in data analysis is 

that it allows for the explicit separation of producers and consumers of a data 

analysis. The benefit of conceptually separating producers from consumers is that 

such a separation serves to demonstrate potential differences in priorities between 

the two groups. Traditional descriptions of statistical thinking generally conceive of a 

single analyst building data analyses and obtaining feedback on their approach from 

the data. There is frequently an iterative process, by which the data available informs 

the question able to be answered. While the notion of a consumer for that analysis 

may be embedded in the idea of statistical thinking, it is often not well-specified. 

In general, consumers of data analyses will have certain expectations for what they 

see and data analysts (producers) can construct an analysis that either meets those 

expectations or not. One possible way to quantify a consumer’s expectations for a 

data analysis is to assign a priori weights to each of the design principles described 

here. The distance between a consumer’s weights on these principles and the 

scores assigned to the realized data analysis could indicate the extent to which the 

analysis meets the consumer’s expectations. Producers may also assign a priori 

weights to the different principles that can guide the construction of an analysis. If a 

producer’s and consumer’s weights are known to be substantially different from each 

other, then this would be an a priori indication that the analysis may not meet the 

consumer’s expectations. In such a situation, it may be valuable for the producer and 

the consumer to come to an agreement over the weighting of the principles before 

time is spent doing the analysis. Here, the design principles can provide a formal or 

informal articulation of how producer and consumer can agree (or disagree) on the 

ultimate outcome before seeing the data. 

Building an analysis that satisfies the wants and needs of a consumer is an 

important requirement for a data analysis and draws upon skills that are rarely 

discussed in the statistical literature. An analyst must assess the background and 

priorities of the consumer and tailor the analysis accordingly, all while maintaining 



rigor in the application of statistical methodology. Experience working with different 

people can guide the analyst to build a successful analysis for a given consumer. 

However, more discussion could be had surrounding the approaches to take when 

negotiating analytic priorities and how we can train new analysts to do this well. We 

hope to address this further in future work. 

The design thinking perspective on data analysis also has useful consequences for 

teaching data analysis in the classroom, where it is valuable to have a way to 

describe what makes data analyses differ from each other and why one type of 

analysis might be preferable in some circumstances to another type of analysis. In 

particular, in teaching about the divergent thinking phase of data analysis, it is 

common to encourage students to take different approaches to addressing a data 

analytic question. However, we often lack a structured basis for characterizing these 

different approaches for students. The data analytic design principles provide one 

way to separate different approaches and to guide students to explore various 

approaches to problem solving. Another useful consequence of bringing design 

thinking to the practice of data analysis is that it opens the door to bringing over 

many design concepts to the data analysis fields. Considering data analyses as 

designed objects raises questions about what their requirements are, whether they 

satisfy those requirements, and how we might build a framework for specifying and 

verifying data analyses. 

These principles allow us to more specifically describe a given analysis and how it 

differs from what one may ideally prefer. For example, during an initial distribution of 

a vaccine in a population, quantifying how effective the vaccine is at preventing 

hospitalization in practice is of interest to the scientific community and general public. 

In order to calculate this, one would need data from all exposed individuals including 

their vaccine status, characteristics that would make them more or less likely to be 

hospitalized at baseline, and whether they were hospitalized. In practice, hospitals 

do not have information on all exposed individuals; rather they only have data on 

those who are currently hospitalized. A data analysis completed by a hospital may 

report the percentage of all hospitalized individuals that were vaccinated. While this 

does not indicate how effective the vaccine is, an astute practitioner may be able to 

glean some useful information from this statistic by inferring the prevalence of 



vaccinations in the general population. Having terminology to describe why this 

analysis offered by the hospital, while trying to answer a specific question, may not 

be perfectly suited to answer a question about vaccine effectiveness, i.e. the extent 

to which the data match a question of interest, could be useful. 

Concepts from design thinking can serve as important complements to the traditional 

notion of statistical thinking. Together, these two forms of thinking provide a more 

complete road map for developing useful data analyses and present new ways to 

teach data analyses to novices. The specification of design principles for data 

analysis and how they may guide data analysis construction offers a rationale for 

negotiating qualities of a data analysis between producer and consumer before 

embarking on substantial data analytic work. An area for possible future work 

includes measuring to what extent manipulating the weighting of these principles can 

improve the quality of data analysis. 
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Fig. 1 Between and within person variation of principles across assignments. For

a given homework assignment (x-axis), individuals scored the assignment from 1 to 

10 for each data analytic principle (y-axis), with one indicating that the analysis did 

not adhere to the principle, and 10 indicating that it did. Two individuals (Subject ID 3 

and 4) are highlighted in green and orange to illustrate both the variability in scores 

within a given individual across assignments and between principles, as well as the 

variability between individuals. 



Fig. 2 Average principle scores by declared major. For a given major (y-axis), we

show the scores (averaged across analyses) from the data analytic principles from 

individuals who declared that major (x-axis). The average scores are shown as 

faceted plots by the six principles. The numbers of students in each major are 

communications (2), computer science (2), engineering (1), finance (1), history (2), 

math (4), math business (2), science (6), social science (8), statistics (9), 

undeclared (14). 



Fig. 3 Pairwise relationship between six data analytic principles. Using the Wake

Forest data, we subset to a single assignment (Assignment 3, n = 50) and for each 

pair of principles, we show a pairwise scatter plot to illustrate the (dis)agreement 

between each principle. 



Fig. 4 Differences in principle scores between two data analyses, by principle. The

score differences for the two data analyses (x-axis) for different principles (y-axis). In 

blue are the mean difference ± 1 standard deviation. 




