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A B S T R A C T

In recent years, automated vehicles have attracted much attention all over the world. This paper 
focuses on the freeway-exiting position decision problem of automated vehicles (AVs). Specif-
ically, the paper addresses the determination of the lane-changing initiation location in the 
process of exiting the freeway. The location of the freeway-exiting decision point has a significant 
impact on the safety and efficiency of automated vehicles. If the lane-changing location is too 
close to the off-ramp, the AV may not succeed in exiting and may even collide with other vehicles. 
If the decision point is too far from the off-ramp, the AV will enter into the slower lane too early, 
increasing the travel time. However, the freeway-exiting lane-changing position problem of AVs 
has not been investigated thoroughly in the existing literature. This paper proposes a freeway- 
exiting position decision model to find the optimal freeway-exiting decision position to balance 
the efficiency and safety in the freeway-existing process. Field data is collected to validate the 
proposed model, and simulations are also conducted to analyze the variations of the exiting 
success probability (ESP) and the optimal exiting decision (OED) position under various traffic 
conditions. The results show that the proposed model can predict the value of ESP with high 
performance (MAPE is less than 13%) and help an automated vehicle to generate an appropriate 
freeway-exiting decision point to ensure a high ESP without sacrificing efficiency. An AV can 
increase its ESP by decreasing or increasing its speed to meet more safe lane-changing gaps on the 
target lane, and the speed-decreasing method has a more significant effect than the speed- 
increasing method. The speed difference between the two adjacent lanes greatly influences ESP 
and the OED point, and maintaining the speed difference in an appropriate range can increase 
ESP.   

1. Introduction

In recent years, autonomous driving has become a hot topic and attracts worldwide attention (Zhou et al., 2020/02/01, Luo et al.,
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2019/11/01, Yu et al., 2019). Automated vehicles (AVs) are considered to have a huge potential to enhance traffic safety (Ma et al., 
2017), ease traffic congestion (Sun, Zheng and Sun, 2020), improve traffic flow stability (Zhou and Ahn, 2019), and reduce traffic 
pollution (Li and Li, 2019). AVs have now been intensively tested on real-world roadway networks, such as Waymo (Nourinejad, 
Bahrami and Roorda, 2018), (Mobileye et al., 2020), and nuTonomy (Mattioli, 2018, Cui et al., 2018), and the industry and research 
community believe that AVs may develop rapidly in the future decades (Berger and Rumpe, 2014, Shladover, 2018). 

This paper focuses on a critical decision problem of AVs, called the freeway-exiting position decision problem. The freeway-exiting 
position decision refers to that an AV decides where to leave the freeway by the closest off-ramp. When the AV arrives at the freeway- 
exiting position decision point, the AV will start to move to the outmost lane from the current lane. Since the freeway-exiting decision 
position is the starting point of the freeway-exiting process of AVs, it has a significant impact on the subsequent freeway-exiting 
trajectory Fig. 1. illustrates an example of the freeway-exiting process of an AV. In the figure, the AV locates on the leftmost lane 
(Lane 3) at first and intends to leave the freeway by the off-ramp. To reach the off-ramp, the AV needs to change to Lane 2 first and then 
change to Lane 1. The dashed red lines in Fig. 1 represent the freeway-exiting trajectories corresponding to the two different freeway- 
exiting decision points A and B, and point B is much closer to the off-ramp than point A. Starting the freeway-exiting process from point 
A needs to consume more time than point B, because in this case, the AV will enter into the slower lanes earlier. However, starting the 
exiting process from point B will decrease the success probability of exiting the freeway because the time left for the two lane- 
changings from Lane 3 to Lane 1 is much shorter. Especially when the chosen freeway-exiting decision point is too close to the off- 
ramp, the AV may not be able to succeed to exit the freeway by the off-ramp or crash with the vehicles on Lane 1 if it tries to force 
a lane-changing. Therefore, the freeway-exiting decision point has a significant impact on the efficiency and safety of AVs in the 
freeway-exiting process, and choosing an appropriate decision point is critical to AVs. However, finding an optimal exiting lane- 
changing location is a complex problem, especially when an automated vehicle has multiple lanes to cross to reach the off-ramp. 

This paper investigates the freeway-exiting position decision problem to determine the appropriate freeway-exiting decision po-
sition for AVs that can ensure a high successful freeway-exiting probability without sacrificing too much travel time in the freeway- 
exiting process. In the existing studies (Ardelt, Coester and Kaempchen, 2012, Ali et al., 2019, Tarko, Shamo and Wasson, 1999, Saad 
et al., 2018), two areas are related to the freeway-exiting position decision problem. The first one is the mandatory lane-changing 
decision of AVs, which tries to decide whether the target lane is safe for a lane-changing, when/where to execute a lane-changing, 
and the gap on the target lane can be accepted, which is part of the freeway-exiting position decision problem. The second one is 
the lane-changing advisory for human drivers in the weaving segment on freeways, aiming to reduce traffic delay by suggesting a 
lane-changing position to drivers, which aims to control all vehicles to improve traffic efficiency but not make a lane-changing decision 
for an individual vehicle. Although the two topics are similar to the problems in this paper, they have significant differences, and the 
proposed methods in the existing studies cannot be applied to solve the freeway-exiting decision position problem of AVs. This paper 
explores the relationship between the exiting success probability (ESP) and the freeway-exiting decision position and developed an 
optimal exiting decision (OED) model to ensure safety and efficiency. Field data were collected to validate the proposed model, and 
numerical simulations were used to analyze the critical impact factors, such as the average speed of traffic flow, the speed difference 
between adjacent lanes, etc., on ESP and the OED point. 

The rest of the paper is organized as follows Section 2. reviews the existing studies relevant to the freeway-exiting position decision 
problem Section 3. proposes the ESP models for both the two-lane and multi-lane scenarios, and then an optimal exiting decision model 
is proposed Section 4. is model calibration and validation Section 5. explores the characteristics of the proposed model by simulations, 
and Section 6 concludes this paper and discusses the future work. 

2. Literature review

In this section, three topics of literature related to this study are reviewed. The first topic is on the mandatory lane-changing
decision of AVs since the freeway-exiting maneuver is a type of mandatory lane-changing. The second topic is the lane-changing 
advisory for human drivers in the merge segments of freeways. The third topic is the lane-changing decision before an off-ramp for 
human drivers. 

Fig. 1. Freeway-exiting position decision scenario of an automated vehicle on a freeway  
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2.1. Mandatory lane-changing decision of automated vehicles 

The existing models of the mandatory lane-changing (MLC) decision of automated vehicles include rule-based models, utility-based 
models, and artificial intelligence models. 

The rule-based models try to formulate the lane-changing decision by setting some rules for AVs. Ardelt et al. (Ardelt, Coester and 
Kaempchen, 2012) proposed a lane-changing decision model for AVs. Several rules were introduced to judge the necessity and 
feasibility of lane-changing considering the target place and the surrounding traffic conditions. Kumar et al. (Kumar et al., 2018) 
proposed a motion planning framework for the merging maneuver of AVs. The framework was a rule-based two-layer structure that 
could guarantee collision-free merging even in dense traffic. Hu and Sun (Hu and Sun, 2019) developed a set of control rules for a 
multi-lane freeway merging system. The cooperative lane-changing and merging were optimized separately and then combined to 
form a complete control system. Dong et al. (Dong et al., 2020) developed a five-step process for the mandatory lane-changing decision 
of AVs, including environment perception, safe gap computation, measured gap ranking, measured gap classification, and gap 
selection. 

The main idea of the utility-based models is to choose from following or lane-changing for AVs by evaluating the driving gain of 
each choice. Ali et al. (Ali et al., 2019) proposed a game theory-based mandatory lane-changing decision model for AVs in the con-
nected environment. The model was assessed using the data collected in a connected environment where drivers made decisions with 
the help of driving aids. Awal et al. (Awal, Murshed and Ali, 2015) proposed an efficient cooperative lane-changing decision algorithm 
for AVs to reduce the lane-changing bottlenecks and minimize on-ramp merging time on freeways. The lane-changing location was 
determined based on the comparison of the utility and risk of different lanes. Cao et al. (Cao et al., 2017) proposed an optimal 
mandatory lane-changing decision model with the objective function as the minimum travel time, which determined the optimal 
position to change lanes when the AV approached the intersection on urban arterials. 

The artificial intelligence models use algorithms, such as neural networks, decision trees, and Bayesian classification, to model the 
lane-changing location selection for AVs by training the models using human lane-changing data, providing a human-like control 
model for AVs. Hou et al. (Hou, Edara and Sun, 2014) developed a lane-changing assistance system that could advise drivers to 
maintain safe gaps in mandatory lane-changing using Bayes classifier and decision tree methods. Hart et al. (Hart, Rychly and Knoll, 
2019) proposed a stochastic policy-based reinforcement learning method to solve the merging problem of AVs, which was iteratively 
executed to generate a guiding reference lane-changing trajectory. Dou et al. (Dou et al., 2018) proposed a gated branch neural 
network for the lane-changing decision of AVs driving on on-ramps, and their results showed that the proposed algorithm out-
performed other traditional binary classifiers and was more lightweight than AlexNet which is a widely used deep Convolutional 
Neural Networks (CNN) algorithm proposed by Krizhevsky et al. (Krizhevsky, Sutskever and Hinton, 2017). 

2.2. Lane-changing advisory for human drivers 

The studies on the lane-changing advisory models attempt to lead human drivers to change lanes at optimal positions on freeways. 
The existing models can be divided into two categories, rule-based models and data analysis-based models. 

The rule-based models apply rules to construct a dynamic merging segment to guide drivers in the merging process. The Indiana 
Department of Transportation and Purdue University (Tarko, Shamo and Wasson, 1999) proposed a traffic control system (Indiana 
Lane Merge System) of merging advisory before a work zone for human drivers. In the system, a dynamic traffic sign of “DO NOT PASS” 
was set up before the work zone, whose position was modeled as a power function of the length of the congested portion. The system 
adopts a simple rule that the sign was activated when traffic density exceeds a certain threshold. The Indiana Department of Trans-
portation (Datta et al., 2004) designed a merging traffic control system named DELMTCS (Dynamic Early Lane Merge Traffic Control 
System), which was similar to the Indiana Lane Merge System (Tarko, Shamo and Wasson, 1999). Park and Smith (Park and Smith, 
2012) developed a lane-changing advisory algorithm to address merging conflicts in the merging segment of the on-ramp by adopting 
the IntelliDrive technology, which encouraged vehicles on the mainline to change lanes to create more space for the merging vehicles. 
Schakel and Arem (Schakel and Arem, 2014) presented an in-vehicle lane-changing advisory system. The lane-changing advisory based 
on a series of advice rules was provided, aiming for obtaining the optimal distribution of vehicles on different lanes to reduce travel 
time. Mai et al. (Mai, Jiang and Chung, 2016) developed some lane-changing advisory rules in a weaving segment based on C-ITS 
(Cooperative Intelligent Transport Systems). They divided all vehicles into four groups by assigning random numbers (each group has a 
different lane-changing area). The results indicated that the proposed rules could significantly reduce traffic delays. Zhang et al. 
(Zhang et al., 2019) proposed dividing the weaving segment into N subsegments and transmitting lane-changing advisories to drivers 
who just reached the subsegment. Their results indicated that the proposed strategy could reduce traffic congestion and improve traffic 
efficiency. McCoy and Patrick (McCoy and Pesti, 2001) put forward a rule called the dynamic late merge to give the lane-changing 
position advisory to drivers to reduce accidents and increase the capacity of the weaving segment. Leclercq et al. (Leclercq, Laval 
and Chiabaut, 2011) proposed an analytical model that extended the Newell-Daganzo model by relating the capacity drop to the 
merging process, in which two cases were investigated depending on the traffic states on the on-ramp, and the model properties were 
analyzed and a sensitivity analysis was performed to quantify the relative contribution of each parameter in the capacity drop. 

The data analysis-based models give lane-changing advisories to drivers in a weaving segment with a fixed length based on 
empirical or simulation data analysis. In the models, the starting position of a merge segment is considered the location to set a traffic 
sign to send a lane-changing advisory. Saad et al. (Saad et al., 2018) developed a log-linear model to explore the relationships between 
the merging conflict frequency and the length of the weaving segment. They found that a length of 305 m per lane-changing was the 
optimal length of the weaving segment before an off-ramp. He et al. (He et al., 2020) investigated the relationship between the average 
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travel time and the lane-changing advisory position before an accident site by simulations, which aimed to avoid secondary accidents 
and reduce traffic congestion when there was a lane-closure problem due to the accident. Yuan et al. (Yuan et al., 2019) analyzed the 
effect of the length of the weaving segment on driver lane-changing behavior based on experimental data, which revealed that an 
optimal length of the weaving segment existed. Gong and Du (Gong and Du, 2016) proposed a mathematical model to calculate the 
optimal location of lane-changing advisory before an off-ramp. In the paper, the delay and fluctuation caused by lane-changing were 
analyzed from a macro perspective. An optimization model to minimize traffic delay was proposed to search for the optimal location to 
start a freeway-exiting preparation. However, their study was based on macroscopic analysis and did not consider the characteristics of 
individual drivers. 

2.3. Lane-changing decision before an off-ramp for human drivers 

Some studies focused on how human drivers make a lane-changing decision before an off-ramp. Yang and Koutsopoulos (Yang and 
Koutsopoulos, 1996) presented a microscopic traffic simulator (MITSIM), in which the mandatory lane-changing decision before an 
off-ramp was investigated, and a fixed distance to the off-ramp was chosen as the freeway-exiting starting point. Zhang et al. (Zhang 
et al., 2018) investigated the lane-changing decision before an off-ramp by modeling the utility for each alternative lane considering 
driving route information, traffic environment, and driver characteristics, and the decision of choosing the left lane or right lane was 
made by evaluating which one had the largest utility. Hao et al. (Hao et al., 2020) studied the relationship between the lane-changing 
intention of a driver before an off-ramp and the drivers’ MLC pressure that was a linear function of the vehicle position, the number of 
lanes that need to be crossed, and the average arrival rate of vehicles. Vechione et al. (Vechione, Balal and Cheu, 2018) investigated the 
key factors that had a significant impact on the MLC decision before an off-ramp based on the empirical data analysis. 

2.4. Summary 

The reviews on the existing studies related to this paper are summarized as follows,  

(1) The existing studies on the mandatory lane-changing of AVs made full use of the AV’s perception ability and its controllability to 
propose the mandatory lane-changing model on the microscopic level, aiming to decide whether the target lane is safe for a 

Fig. 2. Framework of the proposed methodology  
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lane-changing, when/where to execute a lane-changing, and the gap on the target lane can be accepted. However, they did not 
provide directly mathematical methods and models for the OED problem this paper focused on.  

(2) The existing studies on the lane-changing advisory models adopted simple control rules or empirical experience to guide the 
whole or part of the traffic flow to merge at a fixed point, aiming to reduce traffic delay. These methods are not precise enough 
to conduct individual vehicle control for AVs.  

(3) The existing studies on the lane-changing decision before an off-ramp for human drivers still belonged to the traditional MLC 
decision of human drivers and tried to help drivers to increase the success possibility in an MLC process. The studies did not try 
to find an optimal point to start the freeway-exiting process. 

Therefore, both the related studies for AVs and human drivers did not provide directly transferrable methods and models for the 
targeted research problem in this paper, and the novel model should be proposed. 

Table 1 
Variables and notations  

Variables Descriptions 

J cost function 
J1 driving efficiency 
J2 unsuccess probability of the freeway-exiting 
ω weight value in the cost function 
T travel time of the AV in the freeway-exiting process 
Tmax maximum value of T 
P ESP of the AV 
P0 minimum value of ESP 
N lane number that the AV is located at first 
n n-th lane on the freeway, and 1 < n ≤ N 
Γss n time of searching for a safe lane-changing gap on Lane n 
Γse n time of executing a lane-changing from Lane n to Lane n-1 
Γcf time of driving on Lane 1 
Γn time that the AV can use to find an acceptable lane-changing gap on Lane n 
Sn longitudinal distance that the AV can use to search for an acceptable lane-changing gap on Lane n (n>1) 
S1 longitudinal distance that the AV drives on Lane 1 
SAn longitudinal distance from the freeway-exiting decision position to LLP on Lane n 
SEn total longitudinal distance of the lane-changing trajectories from Lane N to Lane n 
SSn total longitudinal distance of searching for acceptable gaps from Lane N to Lane n 
S’n relative displacement between the AV on Lane n and the traffic flow on Lane n-1 
sen longitudinal distance of the lane-changing trajectory from Lane n to Lane n-1 
ssn longitudinal distance of searching for an acceptable gap on Lane n-1 
y lateral position of the AV during a lane-changing 
x longitudinal position of the AV during a lane-changing 
ai coefficients of the polynomial function of the lane-changing trajectory 
yend lateral position of the endpoint of the lane-changing trajectory 
xend longitudinal position of the endpoint of the lane-changing trajectory 
xmax end maximum longitudinal distance of lane-changings in all trajectories 
JLC cost function in a lane-changing trajectory planning process 
ξ weight value in the cost function in a lane-changing trajectory process 
as end side acceleration at the final position of the lane-changing trajectory 
as max maximum safe side acceleration of the lane-changing trajectory 
tLC time used to finish the lane-changing execution 
tLC max maximum lane-changing time 
vend speed of the AV at the final position of the lane-changing trajectory 
K(x) curvature function of the lane-changing trajectory concerning for the longitudinal position 
y’(x) first derivative of the lane-changing trajectory function 
y’’(x) second derivative of the lane-changing trajectory function 
vn speed of the AV on Lane n 
v’n speed of the AV changing from Lane n to Lane n-1 
vn average speed of the vehicles on Lane n 
mn the mn-th gap on Lane n 
hmn− 1 the m-th gap on Lane n-1 
En(h) expectation of the headway values on Lane n 
pn probability that the gap on Lane n -1 can satisfy the lane-changing safety requirement 
fn(h) time headway distribution on Lane n 
Fn(h) cumulative distribution function of the time headway distribution on Lane n 
Hsafe safe lane-changing time gap 
Mn number of gaps that the AV can meet on Lane n before LLP (latest lane-changing point) 
En (h) expected value of the time headways of the vehicles on Lane n 
pmn− 1 probability that the m-th gap on Lane n-1 is accepted 
Γn time that the AV can use to find an acceptable lane-changing gap on Lane n-1  
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3. Methodology

The methodology is proposed in this section. The framework of the optimal exiting position decision model is proposed first.
Following that, the two key variables in the OED model, the travel time and ESP, are modeled respectively. Moreover, the mathe-
matical solution of the proposed model is analyzed, and the two-lane scenario is taken as an example to demonstrate the existence and 
uniqueness of the solution. 

3.1. Optimal exiting decision point model 

A further freeway-exiting decision position can increase the success probability and safety but will decrease the driving efficiency of 
the AV due to its earlier entering into a slower lane. Thus, an optimal freeway-exiting decision position exists for the AV in a freeway- 
exiting process, which should be able to balance the success probability and driving efficiency. The framework of the proposed 
methodology to solve the problem of the freeway-exiting decision position is displayed in Fig. 2. In the proposed methodology, an 
objective function is constructed to comprehensively evaluate the total cost of the AV in a freeway-existing process. By minimizing the 
cost function, the OED point can be derived. In the cost function, the two key variables, the travel time used to leave the freeway and 
the exiting success probability (ESP), need to be obtained for a specific exiting decision point. Thus, the two models to calculate the 
travel time and ESP are proposed respectively. The travel time in a freeway-exiting process consists of the gap-searching time on the 
current lane, the lane-changing time from the current lane to the target lane, and the car-following time on the outmost lane. ESP can 
be obtained by evaluating the probability that each gap on the right lane can be accepted and the probabilities of all the feasible lane- 
changing gap sequences on the right lanes. Variables appeared in the proposed methodology and their descriptions are summarized in 
Table 1. 

Finding the optimal freeway-exiting decision point can be summarized as an optimization problem in which the objective function 
is the total cost of the AV in the freeway-exiting process, weighting the success probability and efficiency, as follows, 

minJ = ωJ1 + (1 − ω)J2 (1)  

where J denotes the cost function, J1 denotes the driving efficiency, J2 denotes the unsuccess probability of freeway-exiting, and ω 
denotes the weight value. 

In the cost function, the travel time is used to represent efficiency, and ESP is used to represent safety. The two parts of the cost 
function are calculated as follows, 

J1 = T /Tmax (2)  

J2 = 1 − P (3)  

where T denotes the travel time of the AV in the freeway-exiting process, Tmax denotes the maximum value of T, and P denotes the ESP. 
The constraints for the optimization problem are as follows, 

P0 ≤ P < 1 (4)  

0 ≤ ω ≤ 1 (5)  

where P0 denotes the minimum value of the ESP. 
The OED point can be derived by minimizing the cost function with the constraints. In the optimization problem, the efficiency 

decreases with the increment of the distance to the ramp, but the success probability has the opposite trend, so an optimal solution exit 
for the problem. The two variables in the objective function, the travel time and success probability, will be modeled and calculated in 

Fig. 3. Detailed freeway-exiting process of an AV  
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the following subsections. 

3.2. Estimation for the travel time in the freeway-exiting process 

The relationship between the travel time and the position of the exiting decision point is analyzed and modeled in this subsection 
Fig. 3. illustrates the detailed freeway-exiting process of an AV, in which the AV is located at position A at first and has to arrive at point 
C before entering into the off-ramp. Assuming that the AV makes a freeway-exiting decision at point D, SA1 between points C and D will 
be the space that can be used to conduct the freeway-leaving process for the AV. The whole freeway-exiting process consists of a series 
of “gap-searching & lane-changing” processes from Lane N to Lane 2 and a car-following process on Lane 1. If an acceptable gap is 
found at point E, the AV will change a lane and move to point F. Following that, the AV repeats the “gap-searching & lane-changing” 
until the AV reaches Lane 1 and then moves to point C to exit the freeway. It should be noted that the gap-searching period (ssi) can be 
zero in the process, which means point E can overlap with point D if an acceptable gap is found immediately once the AV generates a 
freeway-exiting intention. 

Since the lane-changing process needs a longitudinal space, there is the latest position on Lane 2 to execute a lane-changing for the 
AV to make sure it can reach Lane 1 before point C and leave the freeway successfully. point B is defined as the latest lane-changing 
point (LLP) for the AV on Lane 2. Similarly, on Lane 3 and Lane 4, the LLPs also exit for the AV. In Fig. 3, LB, LG, and LH (the curve from 
point B to point C) represent three continuous lane-changing trajectories of the AV, which is a connection of the three latest lane- 
changing trajectories. If the AV starts changing a lane after point B, it will be impossible for the AV to exit the freeway. Thus, point 
B is the latest position to start the freeway-exiting process in this case, and the longitudinal distance from D to B (S4 in Fig. 3) is the 
theoretical space that the AV can use to make a freeway-exiting decision. 

According to the above analysis on the freeway-exiting process, the travel time of the AV in the freeway-exiting process can be 
calculated as follows, 

T =
∑N

k=2
Γss

k +
∑N

k=2
Γse

k + Γcf (6)  

where N denotes the lane number that the AV is located at first, which is 4 in Fig. 3, Γss k denotes the time of searching for a safe lane- 
changing gap on Lane k, Γse k denotes the time of executing a lane-changing from Lane k to Lane k-1, and Γcf denotes the time of driving 
on Lane 1. 

The travel times in the gap-searching, lane-changing, and car-following processes are calculated as follows, 

Γss
k =

ssk

vk
(7)  

Γse
k =

sek

v′

k
(8)  

Γcf =
S1

v1
(9)  

where ssk denotes the longitudinal distance of searching for an acceptable gap on Lane k-1, vk denotes the speed of the AV on Lane n, sek 
denotes the longitudinal distance of the lane-changing trajectory from Lane k to Lane k-1, v’k denotes the speed of the AV when 
changing from Lane k to Lane k-1, and S1 denotes the longitudinal distance that the AV drives on Lane 1. 

According to Fig. 3, the longitudinal distance Sn that the AV can use to search for an acceptable time gap on Lane n (n>1) can be 
calculated as follows, 

Sn = SAn − SEn − SSn (10)  

where SAn denotes the longitudinal distance from the freeway-exiting decision position to LLP on Lane n, SEn denotes the total lon-
gitudinal distance of the lane-changing trajectories from Lane N to Lane n, and SSn denotes the total longitudinal distance of searching 
for an acceptable gap from Lane N to Lane n. 

In Eq. (10), SEn and SSn can be calculated as follows, 

SEn =
∑N

k=n+1
sek (11)  

SSn =
∑N

k=n+1
ssk (12) 

The relative displacement Sn’ between the AV on Lane n and traffic flow on Lane n-1 in time Γss n can be derived as follows, 

S
′

n = |vn− 1 − vn| ⋅ Γss
n = |vn− 1 − vn| ⋅

ssn

vn
(13) 
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where vn denotes the average speed of the vehicles on Lane n. 
When the AV travels on Lane n, assuming the mn-1-th gap on Lane n-1 is accepted by the AV, Sn

′ can be calculated as follows, 

S′

n = mn− 1 ⋅ [(h1 + h2 + h3 +⋯hmn− 1 ) /mn− 1] ⋅ vn− 1 = (mn− 1 − 1) ⋅ En− 1(h) ⋅ vn− 1 (14)  

where hmn− 1 denotes the m-th gap on Lang n-1, En-1(h) denotes the expectation of headway values on Lane n-1, and vn− 1 denotes the 
average speed of the vehicles on Lane n-1. 

Thus, ssn can be calculated as follows, 

ssn =
S′

n ⋅ vn

|vn − vn− 1|
=

(mn− 1 − 1) ⋅ En− 1(h) ⋅ vn− 1 ⋅ vn

|vn − vn− 1|
(15) 

The lane-changing trajectory has been well studied by the existing studies, so the trajectory of lane-changing can be obtained by the 
method presented in the paper (Yang et al., 2018). The following polynomial function is used to represent the lane-changing trajectory 
curve, 

y(x) = a0 + a1x + a2x2 + a3x3 (16)  

where a0, a1, a2, and a3 respectively denote the coefficients of the polynomial function, x denotes the longitudinal position of the AV 
during a lane-changing, and y denotes the lateral position of the AV during a lane-changing. 

Taking LB as an example, the lane-changing trajectory starts from B and ends at G. The course angle of the AV at B is zero, and it will 
change with the movement of the AV from B to G and go back to zero at G. Assuming that the coordinate is (0, 0) at the starting point B 
and is (xend, yend) at the endpoint G, there is, 

y′

(0) = 0 (17)  

y′

(xend) = 0 (18)  

where y’(x) denotes the first derivative of the lane-changing trajectory function. 
Replacing y(x) in Eqs. (17) and (18) with Eq. (16), and solving the functions produce, 

a1 = 0 (19)  

a0 = 0 (20)  

a2 =
3yend

x2
end

(21)  

a3 =
− 2yend

x3
end

(22) 

Replacing the parameters a0, a1, a2 and a3 in Eq. (16) with Eqs. (19)-(22) produces, 

y(x) =
3yend

x2
end

x2 −
2yend

x3
end

x3 (23) 

Eq. (23) is the lane-changing trajectory for the AV in a freeway-exiting process. If a consecutive lane-changing crossing multiple 
lanes happens, it can be decomposed into several lane-changing trajectories of Eq. (23). Moreover, in Eq. (23), yend equals the width of 
the lane, and it is a constant, so the trajectory is uniquely determined by the longitudinal ending position xend. Two factors, efficiency 
and comfort, should be taken into account simultaneously to find an optimal trajectory. Efficiency and comfort are two mutually 
contradictory factors, so the optimal lane-changing trajectory should balance them. A cost function is adopted to describe how comfort 
and efficiency impact the optimal lane-changing trajectory of automated vehicles. The equation of the cost function is as follows, 

JLC = ξ
(
as

end

/
as

max

)2
+ (1 − ξ)tLC / tLC

max (24)  

where JLC denotes the cost function in a lane-changing trajectory process, as end denotes the side acceleration at the final position of 
the lane-changing trajectory, as max denotes the maximum safe side acceleration of the lane-changing trajectory, tLC denotes the time 
used to finish the lane-changing execution, tLC max denotes the maximum lane-changing time, and ξ is a weight value in the cost 
function in a lane-changing trajectory process. 

In Eq. (24), the side acceleration at the final position as end obtains the maximum side acceleration for a given lane-changing 
trajectory curve, so it can represent the lane-changing comfort for passengers. The time used in a lane-changing process can reflect 
the lane-changing efficiency. The greater tLC indicates the lower efficiency. 

The side acceleration at the final position as end can be calculated by the following equation, 

as
end = v2

endK(xend) (25) 
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where vend denotes the velocity of the AV at the final position of the lane-changing trajectory, and K(x) denotes the curvature function 
of the lane-changing trajectory concerning the longitudinal position, which can be calculated by the following equation, 

K(x) =
⃒
⃒
⃒y′′(x)

/ (
1 + (y

′

(x))2)3
2
⃒
⃒
⃒ (26)  

where y’’(x) denotes the second derivative of the lane-changing trajectory function. 
Replacing y’(x) and y’’(x) in Eq. (26), 

K(x) =

⃒
⃒
⃒
⃒
⃒
⃒

(
6yend

x2
end

−
12yend

x3
end

x
)/(

1 +

(
6yend

x2
end

x −
6yend

x3
end

x2
)2
)3

2
⃒
⃒
⃒
⃒
⃒
⃒

(27) 

With the change of x, the curvature of trajectory first decreases to zero and then increases to the maximum value at the end of the 
lane-changing. The maximum curvature locates at the ending point of the lane-changing trajectory, so Eq. (25) has the following form, 

as
end = v2

end

⃒
⃒
⃒
⃒
6yend

x2
end

⃒
⃒
⃒
⃒ (28) 

Therefore, the final expression of the cost function JLC of the lane-changing is as follows, 

JLC = ξ
(

v2
end

⃒
⃒
⃒
⃒
6yend

x2
end

⃒
⃒
⃒
⃒

/

as
max

)2

+ (1 − ξ)
tLC

tLC
max

= ξ
(

v2
end

⃒
⃒
⃒
⃒
6yend

x2
end

⃒
⃒
⃒
⃒

/

as
max

)2

+ (1 − ξ)
xend

xmax
end

(29)  

where xmax end denotes the maximum longitudinal distance of lane-changings in all trajectories. 
In Eq. (29), the cost function JLC is a function concerning for xend, and the xend producing the minimum J is the longitudinal position 

of the optimal trajectory x. By solving Eq. (29), the trajectory LLC can be obtained, and thus se2 can be obtained as well. 
Thus, replacing SEn and SSn in Eq. (10) with Eqs. (11), (12), and (15), we can obtain Sn, based on which the longitudinal distance in 

the car-following process can be derived as follows, 

Sn = SAn −
∑N

k=n+1
sek −

∑N

k=n+1

(mk− 1 − 1) ⋅ Ek− 1(h) ⋅ vk− 1 ⋅ vk

|vk − vk− 1|
(30)  

3.3. Exiting success probability model 

3.3.1. Two-lane scenario 
This subsection aims to establish a relationship between ESP and the distance of the decision point to the off-ramp Fig. 4. displays a 

freeway-exiting process of an AV on a two-lane freeway. In the figure, an AV is currently located at point A on the left lane and will exit 
the freeway from the off-ramp. Assuming the AV makes a freeway-exiting decision at point D. According to Subsection 3.2, S2 (the 
longitudinal distance between points D and B) is the space the AV can use to search for an acceptable time gap to conduct a safe lane- 
changing from Lane 2 to Lane 1. If an acceptable gap is found at point E, the AV will move to point F following the curve LE and then 
drives to point C to exit the freeway. 

S2 has a significant impact on the number of safe lane-changing gaps the AV can meet and further influences the value of ESP. The 
closer the freeway-exiting decision position to the off-ramp is, the smaller the value of ESP is. In addition to the position of the exiting 
decision point, the LLP point and the gap distribution of the traffic flow are also critical variables to determine the value of ESP, so they 
are also should be considered in the proposed model. 

After the AV on Lane 2 generates a freeway-exiting intention, it begins to search for a safe gap to conduct a lane-changing to Lane 1. 
In the searching process, the AV judges whether the next gap satisfies the safety requirements for a lane-changing until it meets a 
qualified gap. As shown in Fig. 5, the AV can meet 6 gaps, and 3 of them satisfy the safe lane-changing condition. The probability of 
successfully changing a lane (that is ESP for the two-lane case) can be calculated as follows, 

Fig. 4. Freeway-exiting process for an AV on a two-lane freeway  
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P = 1 − (1 − p2)
M1 (31)  

where P denotes ESP of the AV, p2 denotes the probability that the gap on Lane 1 can satisfy the lane-changing safety requirement, and 
M1 denotes the number of the gaps that the AV can meet on Lane 1 before the LLP. 

Therefore, to obtain P, it needs to calculate the probability p2 and the number of gaps M1 that the AV can meet in the remaining 
distance to LLP. The following equation can derive the probability of accepting a gap p2 as follows, 

p2 = 1 − F1
(
Hsafe

)
= 1 −

∫ Hsafe

0
f1(h)dh (32)  

where f1(h) denotes the time headway distribution on Lane 1, which can be chosen according to the traffic state, F1 denotes the cu-
mulative distribution function of the time headway distribution on Lane 1, and Hsafe denotes the safe lane-changing time gap, whose 
value in calculation can refers to the study of Yang et al. (Yang, Wang and Quddus, 2019). 

Replacing p2 in Eq. (31) with Eq. (32) produces, 

P = 1 −

(∫ Hsafe

0
f1(h)dh

)M1

(33) 

From Eq. (14) and Eq. (13), we can use the expected value of headways and the average speed to estimate the number of gaps M1 
that the AV can meet on Lane 1 in the remaining distance, that is, 

M1 =
|v1 − v2| ⋅ S2

E1(h) ⋅ v1 ⋅ v2
(34) 

Replacing M1 in Eq. (33) with Eq. (34), the ESP for the two-lane freeway can be derived as follows, 

P = 1 −

(∫ Hsafe

0
f1(h)dh

)|v1 − v2 |⋅S2
E1 (h)⋅v1 ⋅v2

(35) 

Once a freeway-exiting decision point is generated, S2 and v2 can be determined, and f1(h), E1(h), and v1 can be easily determined by 
the distribution of the headways on Lane 1. Therefore, the proposed model can obtain the value of ESP at a given position. It can be 
seen that the ESP depends on the headway distribution f1(h), the average speed of vehicles on Lane 1, and the distance to the LLP (or 
the distance to the off-ramp). 

3.3.2. Multi-lane scenario 
This subsection focuses on the general freeway-exiting position decision model of AVs for the multi-lane scenario. In the multi-lane 

scenario, the AV needs multiple lane-changing movements to reach the outmost lane. The multilane scenario is much more complex 
than the two-lane scenario in calculating ESP. The freeway-exiting process in the two-lane scenario can be simply regarded as a 
problem of calculating the successful lane-changing probability from Lane 2 to Lane 1 before the AV reaches the latest lane-changing 
point. However, for the multi-lane scenario, the freeway-exiting process consists of multiple times of lane-changings, and a different 
early chosen lane-changing gap will result in different alternative gaps on the remaining lanes. Thus, in the multi-lane scenario, it more 
cares about a “gap sequence” for the lane-changing. The success probability of each “gap sequence” needs to be calculated, and the 
total ESP is the sum of the success probabilities of a series of “gap sequences”. 

Fig. 5. Schematic of the gap that the AV may meet when leaving a two-lane freeway  
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Taking the case of four lanes in Fig. 3 as an example, the AV locates at point A on Lane 4 at first, and to reach the off-ramp, the AV 
needs to change to Lane 3, Lane 2, and Lane 1 gradually. Point B is the LLP on Lane 4, from which the AV changes to Lane 3 following 
the lane-changing trajectory curve LB first, subsequently changes to Lane 2 following LG, and finally changes to Lane 1 following LH. If 
the AV generates a freeway-exiting decision at point D and finds an acceptable gap at point E, the AV will be able to change to Lane 3. 
After the AV arrives at point F on Lane 3, it will repeat the process of searching for an acceptable gap and try to change to Lane 2 and 
Lane 1. If the AV can successfully change to Lane 1 before point C, it can leave the freeway by the off-ramp successfully; otherwise, it 
fails to leave the freeway. 

In the four-lane scenario, the LLP (B) on Lane 4, the LLP (G) on Lane 3, and the LLP (H) on Lane 2 can be also determined by 
applying the lane-changing trajectory planning method (Yang et al., 2018). Assuming the total number of lanes is N, to calculate the 
position of point B, the lane-changing trajectory planning method needs to be applied for N-1 times. The different lanes on a freeway 
have different average speeds, and the average speed gradually increases as moving outside and is the lowest on the outmost lane, 
because the outer lanes are closer to the off-ramp and have more frequent lane-changings. 

Assume the AV is located on Lane n (1 < n ≤ N) and decides to exit the freeway by the closest off-ramp, and Sn is the distance 
between the decision position to the LLP on Lane n, so the probability that the mn-1-th gap on Lane n-1 is accepted can be calculated by 
the following equation, 

pmn− 1 = (1 − pn)
mn− 1 − 1 ⋅ pn,mn− 1 = 1, 2⋯,Mn− 1 (36)  

where pmn− 1 denotes the probability that the m-th gap on Lane n-1 is accepted, Mn-1 denotes the number of gaps that the AV can meet on 
Lane n-1, and pn denotes the probability that the gap Lane n-1 is acceptable. 

In Eq. (36), the number of gaps that the AV can meet on Lane n-1 can be determined by the position of the freeway-exiting decision 
position on Lane n, which means Mn-1 is a function of Sn, as follows, 

Mn− 1 = g(Sn) (37) 

With a given distribution of the headway on Lane n-1, pn can be easily derived as follows, 

pn = 1 − Fn− 1
(
Hsafe

)
= 1 −

∫ Hsafe

0
fn− 1(h)dh (38)  

where fn-1(h) denotes the time headway distribution on Lane n-1, and Fn-1 denotes the cumulative distribution function of the time 
headway distribution. 

Once the AV has changed to Lane n-1, it will begin to search for a new acceptable lane-changing gap on Lane n-2 immediately, so the 
lane-changing finishing point on Lane n-1 is the freeway-exiting decision position for Lane n-2. The process is repeated until the AV 
reaches Lane 1. 

Adopting the same method of the two-lane scenario, the number Mn-1 of the gaps that the AV can meet on Lane n-1 in the multi-lane 
scenario is derived as follows, 

Mn− 1 =
|vn − vn− 1| ⋅ Γn

En− 1 ⋅ vn− 1
(39)  

where Γn denotes the time that the AV can use to find the acceptable gap for lane-changing and can be obtained by the following 
equation, 

Γn =
Sn

vn
(40) 

The number of gaps on Lane n-1 that the AV can meet on Lane n-1 is as follows, 

Mn− 1 =

|vn − vn− 1| ⋅
(

SAn −
∑N

k=n+1
SEk −

∑N

k=n+1

(mk− 1 − 1)⋅Ek− 1(h)⋅vk− 1⋅vk
|vk − vk− 1 |

)

En− 1(h) ⋅ vn ⋅ vn− 1
(41) 

Furthermore, if the AV arrives at Lane n-1 and intends to change to Lane n-2, Sn-1 is determined by both Sn and the chosen gap jn-1 on 
Lane n-1. Therefore, in the entire process from generating a decision to leaving the freeway, the following recurrence relationship is 
met, 

{
Sn− 1 = f (Sn,mn− 1)

Mn− 1 = g(Sn)
, n = N,N − 1,⋯, 2 (42) 

Thus, for a given freeway-exiting path following the feasible gap sequence m1, …mN-1, the ESP function for the multi-lane freeway 
can be derived as follows, 

P =
∑

m1∈{1,2,...,M1},⋯,mN− 1∈{1,2,...,MN− 1}

Pr(m1,⋯,mN− 1) =
∑

m1∈{1,2,...,M1},⋯,mN− 1∈{1,2,...,MN− 1}

∏N

n=2
pmn− 1 (43) 
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An example of calculating ESP for the multi-lane scenario is illustrated in Fig. 6, in which it is assumed that the AV driving on Lane 5 
produces a freeway-exiting intention and will meet 4 alternative gaps on the right lane (Lane 4) during the remaining travel time Γ5 
(M4 = 4). The numbers in circles represent the gap orders that the AV can meet on each lane. The tree structure in Fig. 7 represents all 
the possible situations in the freeway-exiting process. The green solid lines represent the feasible gap sequences by which the AV can 
leave the freeway successfully. The red dotted lines represent the sequences that cannot lead the AV to exit the freeway, whose ESPs are 
0. The ESP in this example is the sum of the success probabilities of the five successful sequences, and Eq. (43) can be written as follows,

p = pm4=1pm3=1pm2=1pm1 + pm4=1pm3=1pm2=2pm1 + pm4=1pm3=2pm2=1pm1 + pm4=2pm3=1pm2=1pm1 (44)  

3.4. Mathematical analysis on the optimal exiting decision point 

In Eq. (1), with the increment of the distance from the freeway-exiting decision position to the off-ramp, the travel time T increases, 
and the efficiency decreases, which makes the value of cost function J greater. On the other hand, the increment of the distance from 
the freeway-exiting decision position to the off-ramp raises the value of ESP and reduces the value of 1-P, which makes the cost 
function J smaller. 

The minimum value of the cost function J can be obtained by taking the derivative of J to be zero, and it corresponds to the 
intersection point of the derivative curves of ωJ1 and (ω-1)J2. The Scipy.Optimize of Python is used to get the numerical solutions. The 
schematic solving process of the OED point for the two-lane case is discussed. 

In Eq. (1), the time T for the AV to travel from the freeway-exiting decision position on Lane 2 to the ramp consists of the three parts, 
the time of searching for an acceptable gap on Lane 1, the time of changing from Lane 2 to Lane 1, and the travel time on Lane 1, that is, 

T = Γss
2 + Γse

2 + Γcf =
ss2

v2
+

se2

v′

2
+

S1

v1
(45)  

where S1 denotes the longitudinal length from the decision position to the off-ramp, se2 denotes the longitudinal distance of the lane- 
changing trajectories in the process of changing from Lane 2 to Lane 1, v’2 denotes the speed of the AV when changes to Lane 1, ss2 
denotes the total longitudinal length used when the AV is searching for a gap to change from Lane 2 to Lane 1, and v2 denotes the speed 
of AV when it is on Lane 2. 

In Eq. (45), the relationship between SA1, S1, SE1, and SS1 is S1+SE1+SS1= SA1 according to Eq. (10). SE1 and SS1 can be easily 
obtained by the traffic condition and headway distribution on Lane 1, and SA1 can be determined once the freeway-exiting decision 
position is generated, so the value of S1 can be obtained. Thus, the derivative of J1 is as follows, 

J ′

1(SA1) = 1 / (Tmax ⋅ v1) (46) 

Moreover, in the two-lane case, the function of P is Eq. (35), and the derivative of J2 is as follows, 

J ′

2(SA1) = −
|v1 − v2|

E1(t) ⋅ v1 ⋅ v2
⋅ ln
(
F1
(
Hsafe

))
F1
(
Hsafe

)|v1 − v2 |SA1
E1 (t)⋅v1⋅v2 (47) 

By analyzing Eqs. (46) and (47), the solution of the proposed OED model for the two-lane scenario is analyzed in Fig. 7 Fig. 7. (a) 
displays the changes of J1, J2, and J with the distance to the off-ramp, and Fig. 7 (b) displays the changes of J’1, J’2, and J with the 
distance to the off-ramp. In Fig. 7 (a), J1 increases and J2 decreases with the increment of the position, so they are two competing 
functions, which reveals that the optimal solutions exit for J. The variation law of the cost function J can be obtained from Fig. 7 (b). 
Since there are two intersections for the two curves of J’1 and J’2, the cost function J will raise before the first intersection, decrease 
between the two intersections, and increase again after the second intersection, with the increment of position. In addition, the value of 

Fig. 6. Example of calculating the ESP for the five-lane scenario  
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ESP is in the range of [P0, 1], so there is an effective range for the cost function J (the grey area in the figure). Therefore, the minimum 
value of the cost function J corresponds to the second intersection point (Point Q in the figure) of the curves of J’1 and J’2. 

4. Model calibration and validation

In this section, we performed experiments and collected field data on a freeway in Chengdu, China to validate the proposed ESP
model. The data collection method is introduced in detail, and the validation results based on the collected data are presented. 
Moreover, the car-following model is calibrated, and the lane-changing trajectory planning model is evaluated. 

4.1. Freeway-exiting position decision model calibration and validation 

4.1.1. Data collection 
To validate the proposed model, the field experiments were conducted on freeway G401 in Chengdu, China. The selected freeway 

segment is shown in Fig. 8. In the figure, A1 and B1 are the two eastbound on-ramps, B2, C1, and C2 are the three eastbound off-ramps, 
C3 and B4 are the two westbound on-ramps, and B3, A2, and A3 are the three westbound off-ramps. 

Since automated vehicles are not allowed to drive on freeways according to the law of China, the testing vehicles used in the 
experiments were still driven by human drivers. To make that the results of the experiments can simulate the AV as much as possible, it 
is necessary to ensure that the two testing vehicles can precisely judge their distances to the surrounding vehicles, and the drivers obey 
the strict safety criteria like AVs in the car-following and lane-changing maneuvers. To realize that, we did the following two jobs. First, 
a suggestion system based on safe driving models was installed on the vehicles to give driving suggestions to the drivers, in which the 
sensors including radars and GPS were equipped on the vehicles to accurately estimate the positions and speeds of the testing and 
surrounding vehicles. In this way, safe driving criteria are guaranteed for the testing vehicles. Second, the volunteer drivers had been 
trained to obey the suggestions from the driving suggestion system and follow the driving directions to finish the data collection job. It 
should be noted that although the above jobs make the drivers on the testing vehicles act like AVs as far as possible, the reaction times 
between the human drivers and real AVs are still different. However, the problem this paper focused on is a decision-making problem 
whose key influencing factors are the macroscopic characteristics of the traffic flow, such as headway distribution and average traffic 
speed, so the small difference of reaction times between the human drivers and AVs in experiments will have a negligible effect on the 
validation results. For the same reason, the difference between the two different testing vehicles will also have not a significant impact 
on the effectiveness of the validation. 

The experiments were performed in two time periods: 8:00 am to 12:00 am and 2:00 pm to 6:00 pm, and the two testing vehicles 

Fig. 7. Solution analysis of the proposed OED model for the two-lane scenario  

Fig. 8. Selected testing routes on freeway G401  
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entered into the freeway from the on-ramp C3 and drove on the testing segments round and round. In addition to the driver, there were 
two other volunteers in a testing vehicle, including a data logger and a maneuverer to avoid unexpected situations. Some billboards 
and traffic signs on the freeway were chosen as the freeway-exiting decision points, as the yellow markers shown in Fig. 8. To make full 
use of the lanes of the freeway, all the testing vehicles drove on the leftmost lane (Lane 3) first and then made freeway-exiting de-
cisions. Once a freeway-exiting intention was generated, the testing vehicle started to search for a safe lane-changing gap and tried to 
leave the freeway by the closest off-ramp. If the testing vehicle can leave the freeway successfully, we mark the event as a successful 
freeway-exiting; if a safe lane-changing gap sequence cannot be found until the testing vehicle reached the LLP, the testing vehicle will 
not be able to leave the freeway successfully, marking the event as a failed freeway-exiting. After multiple tests were conducted, the 
value of ESP can be obtained for each freeway-exiting decision position. In the end, 103 times of tests were conducted in total. By 
calculating the numbers of the failed freeway-exiting and successful freeway-exiting, the value of ESP for each yellow marker in Fig. 8 
can be obtained, as shown inTable 2. 

In addition, cameras were also installed on the roadside to capture the traffic flow data. Five videos were captured in the exper-
iments, and the duration of each video lasted about half an hour. 

The headway distributions are extracted from the captured videos, as shown in Table 3. In the table, “Shooting Time” indicates the 
time that the camera recorded the traffic videos, the time interval for the headway statistics adopts 2 seconds, and the number of 
vehicles and its corresponding frequency is calculated for each interval. The data in Table 3 will be used to fit several distribution 
functions to find the best headway distribution function. 

4.1.2. Model calibration and validation 
Based on the collected data, the proposed models can be validated by comparing the field data with the ESP values calculated by the 

proposed models. The headway distribution on the target lane is a critical factor to successful freeway-exiting. According to the 
existing studies (Wu, Hu and Sun, 2010, Singh et al., 2020, Maurya et al., 2016), the headway at different traffic conditions (Peak hour 
and Non-Peak hour) follows different distributions. The collected headway data is divided into the sub-data for Peak hour and the 
sub-data for Non-Peak hour to find the best distribution that is the lognormal distribution (Greenberg, 1966), log-logistic distribution 
(Wu, Hu and Sun, 2010), inverse Gauss distribution (Sun and Benekohal, 2005), and Pearson 3 distribution (Maurya et al., 2016) Fig. 9. 
exhibits the fitting results, in which the gray histogram is the collected headway data, the colored line respectively represents the 
fitting results of the distribution functions, and the red line with marker is the best-fitted function. 

Table 4 exhibits the fitting errors and the parameters of the five distribution functions, in which μ denotes the means of the dis-
tribution functions, and σ denotes the variance of the distribution function. From the fitting results, it can be concluded that the 
lognormal distribution has the best fitting result in Non-Peak hour, and inverse Gauss distribution performs best in Peak hour, so in the 
following ESP calculation, the lognormal distribution and inverse Gauss distribution are adopted to simulate the headways in the 
proposed freeway-exiting position decision model. 

With a given distribution function of headway, ESP for a specific position can be calculated using the proposed freeway-exiting 
position decision model, and the corresponding MAPE (Mean Absolute Percentage Error) can be obtained as well, see Table 5. It 
can be observed that the MAPE value of the model is less than 13%, which indicates that the proposed model can predict ESP with high 
accuracy. 

4.2. Car-following and lane-changing models calibration and evaluation 

In the paper, the Gipps’ car-following model (Gipps, 1986) is used to control the longitudinal movement of the AV, and the 
OpenACC dataset (Makridis et al., 2021) is used to calibrate this model. OpenACC is an Open Database of car-following experiments 
involving vehicles with Adaptive Cruise Control systems (ACC), whose objective is to provide data about ACC behavior to help the 
whole scientific community better understand the properties of ACC vehicles. The variables provided by OpenACC are displayed in 
Table 6. The “Casale dataset” in OpenACC is used to calibrate and validate the Gipps’ car-following model, which involves two vehicles 
and the following vehicle was driving all times with ACC on. The calibration method adopts the one in the reference (Punzo and 
Simonelli, 2005, Brockfeld, Kühne and Wagner, 2005), and the GA toolbox in MATLAB is applied to find the optimal model param-
eters. The calibration and validation results are shown in Table 7. 

Moreover, the lane-changing trajectory model presented in Subsection 3.2 is evaluated by CarSim, which can analyze vehicle 
dynamics, develop active controllers, calculate a car’s performance characteristics, and engineer active safety systems. CarSim can 
deliver accurate and detailed methods for simulating the performance of vehicles (Yang et al., 2020). In the simulations, the 
lane-changing trajectory is generated by the third-order polynomial of Eq. (23), and CarSim is used to evaluate whether the planned 

Table 2 
Statistical results of ESP in the experiments  

Experiments Number of successful freeway- 
exiting 

Number of failed freeway- 
exiting 

Total 
number 

Success 
probability 

Position of the freeway-exiting decision 
position (m) 

A1B2 6 20 26 23.08% 498 
B1C1 19 6 25 76.00% 2213 
C3B3 14 10 24 58.33% 1387 
B4A2 12 16 28 42.85% 913  
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trajectory is applicable for AVs. In the used simulation scenarios, the AV conducts a consecutive lane-changing on a three-lane freeway, 
and the AV’s initial speed is 50 km/h or 80 km/h Fig. 10. displays the simulation results Fig. 10. (a) and (b) are the trajectory tracking 
and lateral acceleration results for the speed = 50 km/h, and Fig. 10 (c) and (d) are the results for the speed = 80 km/h. From Fig. 10, it 
can be concluded that the AV can successfully track the consecutive lane-changing trajectories planned by the third-order polynomial 
of Eq. (23). 

Table 3 
Headway distribution data     

Shooting time   
8:00 AM 9:55 AM 10:32 AM 2:00 PM 3:00 PM   

Duration   
28 min 28 min 28 min 24 min 24 min 

Interval 
(s) 

No. 
(veh) 

FREQ 
(%) 

No. 
(veh) 

FREQ 
(%) 

No. 
(veh) 

FREQ 
(%) 

No. 
(veh) 

FREQ 
(%) 

No. 
(veh) 

FREQ 
(%) 

0.5-2.5 90 29.32 89 28.43 93 30.59 52 21.67 38 16.67 
2.5-4.5 80 26.06 79 25.24 75 24.67 64 26.67 64 28.07 
4.5-6.5 44 14.33 56 17.89 42 13.82 44 18.33 31 13.60 
6.5-8.5 29 9.45 31 9.90 35 11.51 32 13.33 35 15.35 
8.5-10.5 27 8.79 25 7.99 24 7.89 19 7.92 17 7.46 
10.5-12.5 15 4.89 11 3.51 12 3.95 11 4.58 18 7.89 
12.5-14.5 10 3.26 5 1.60 6 1.97 6 2.50 7 3.07 
14.5-16.5 4 1.30 6 1.92 5 1.64 5 2.08 9 3.95 
16.5-18.5 1 0.33 2 0.64 5 1.64 4 1.67 4 1.75 
18.5-20.5 1 0.33 2 0.64 2 0.66 0 0.00 4 1.75 
20.5-22.5 2 0.65 3 0.96 2 0.66 1 0.42 0 0.00 
22.5-24.5 2 0.65 2 0.64 0 0.00 0 0.00 1 0.44 
24.5-26.5 1 0.33 1 0.32 0 0.00 1 0.42 0 0.00 
26.5-28.5 1 0.33 1 0.32 2 0.66 0 0.00 0 0.00 
28.5-30.5 0 0.00 0 0.00 1 0.33 1 0.42 0 0.00  

Fig. 9. Headway distribution fitting results  

Table 4 
Fitting errors of the headway distribution functions and parameter values  

Period distributions Parameters SumSquare error Best fit 
μ σ 

Peak Hour Lognormal 
Loglogistic 
Inverse Gauss 
Pearson 3 

0.7205 
3.2313 
0.5508 
1.5936 

-0.4215 
1.6089 
-0.6304 
3.7200 

0.0066 
0.0444 
0.0065 
0.0147 

Inverse Gauss 

Non-Peak Hour Lognormal 
Loglogistic 
Inverse Gauss 
Pearson 3 

0.7286 
5.4898 
0.5768 
1.5874 

0.9999 
1.9761 
0.7587 
6.1198 

0.0005 
0.0104 
0.0005 
0.0014 

Lognormal  
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5. Simulation experiments and numerical analysis

In this section, the setup of the simulations is introduced first, and a simulation example is presented to explain the advantage of the
proposed model. Following that, the influences of the several critical factors on ESP are analyzed by simulations. Furthermore, the 
variations of the OED point with the changes of the four factors, the initial lane, speed difference, average traffic speed, and weight 
value ω are explored by simulations. 

5.1. Simulation setup 

A simulation platform constructed using Python is used to perform simulation experiments. On the platform, the traffic flow is 
generated based on the headway distribution data collected in Section 4 and the fitted distribution function. A five-lane freeway is set 
up, and the average speeds of the vehicles on the five lanes are 55 km/h, 70 km/h, 85 km/h, 100 km/h, and 115 km/h respectively, as 
shown in Fig. 11. An AV on Lane 5 tends to leave the freeway, so Lane 5 is the initial decision lane (abbreviated as IDL in the paper). In 
Fig. 11, the red vehicle is the AV, and the blue, yellow, and red lines respectively represent the car-following state (CF), the gap- 
searching state (SS), and the lane-changing execution state (SE) of the AV. This simulation setup is set as the basic simulation sce-
nario for the following simulations. 

Based on the above simulation setup, the position of the OED point is obtained according to the proposed OED model, which is 4.5 
km away from the off-ramp. From this point, the AV can meet 274 gaps, and ESP is 0.9746. To make a comparison, the simulations for 
the other two cases, the decision point is before the OED point, and the decision point is after the OED point, are conducted. Define the 
case that the AV makes a freeway-exiting decision just at the OED point (4.5 km) as Case 1, and define the cases that the decision point 
before and after the OED point as Case 2 and Case 3. The key variables can be obtained through the simulation platform, based on 
which the schematic freeway-exiting processes of the three cases are displayed in Fig. 12. It can be observed that the AV cannot reach 
Lane 1 before the off-ramp and fails to exit the freeway in Case 3, while the AV succeeds in Case 1 and Case 2, because the AV has too 
short a distance to reach the off-ramp in Case 3. Moreover, the AV merges onto Lane 1 at 162 s and exits the freeway at 235 s in Case 2. 
In comparison, the AV merges onto Lane 1 at 184 s and exits the freeway at 209 s in Case 1. The results indicate that the OED point 

Table 5 
Model validation results  

Period Experimental section ESP calculated by the model ESP in the experiments MAPE 

Peak hour A1B2 21.18% 19.93% 6.27% 
B1C1 69.58% 74.85% 7.04% 
C3B3 51.03% 58.33% 12.52% 
B4A2 37.87% 42.85% 11.62% 

Non-Peak hour A1B2 34.09% 31.44% 8.42% 
B1C1 72.57% 78.93% 8.06% 
C3B3 66.27% 59.21% 11.92% 
B4A2 52.06% 46.76% 11.34%  

Table 6 
Variables description in OpenACC  

Variables Descriptions 

Time Common time frame for all vehicles (s) 
Speed Raw Speed (Doppler) (m/s) 
Lat Latitude (rad) 
Lon Longitude (rad) 
Alt Altitude (m) 
E East (x) coordinate in the local ENU plane (common center for all vehicles) (m) 
N North (y) coordinate in the local ENU plane (common center for all vehicles) (m) 
U Up (z) coordinate in the local ENU plane (common center for all vehicles) (m) 
IVS Inter Vehicle Spacing computed from GNSS data after bumper to bumper correction (m) 
Driver The driver of the vehicle: manual driving or ACC driving  

Table 7 
Gipps’ car-following model calibration and validation results  

Calibration results of model parameters Validation results 

Reaction time = 0.2 s Speed MAPE = 4.52% 
Position MAPE = 1.93% Maximum acceleration = 3.0023 m/s2 

Comfortable deceleration = -2.6298 m/s2 

Minimum gap = 1.0058 m 
Desired deceleration of proceeding vehicle = -4.9966 m/s2
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Fig. 10. Simulation results with CarSim  

Fig. 11. Scenario used in the simulations  
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Fig. 12. Comparison of the three cases for different freeway-exiting decision positions  
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generated by the proposed model can help the AV leave the freeway successfully with high efficiency. 

5.2. ESP analysis 

The impacts of several key variables, including the initial decision lane, the speed difference between the two adjacent lanes, 
average traffic speed, and speed of the AV, on ESP are investigated. The simulation setup in 5.1 is used. 

5.2.1. Initial decision lane 
The AV is initially located on which lane when it first makes a freeway-exiting decision will significantly influence the following 

freeway-exiting process, so this point is explored here Fig. 13. displays the relationship between ESP and the freeway-exiting decision 
position for different IDLs. In the case that IDL is Lane 2, the position of the LLP is 178 m, and ESP is 0 when the decision position is less 
than 178 m. The positions of LLP are 224 m, 382 m, and 526 m for the cases of IDL = 3, 4, and 5, respectively. Thus, the LLP moves 
upstream with the increment of the number of IDL, which is consistent with the intuition. Moreover, it can be observed that the value of 
ESP increases gradually with the increment of the distance from the decision point to LLP, because the AV can meet more safe lane- 
changing gaps. For the same decision position, the value of ESP gradually decreases with the increment of the number of IDL, because 
the AV needs to across more lanes to reach the rightmost lane. In addition, when the value of ESP is higher than 0.9, it is assumed that 
the AV can successfully exit the freeway, so then the AV needs to start the freeway-exiting maneuver before 312 m, 1641 m, 2350 m, 
and 3227 m for the cases of IDL = 2, 3, 4, and 5 respectively. 

5.2.2. Speed difference between the two adjacent lanes 
Fig. 14 displays the variation of ESP with the changes of the distance from the decision point to the off-ramp (denoted as “Pos” in 

the figure) and the speed difference between the two adjacent lanes (Δv). In the simulations, the speed of vehicles on Lane 1 is set as 55 
km/h, and Δv is increased gradually from 5 km/h to 23 km/h. 

From Fig. 14, it can be observed that, with the increment of Δv, the value of ESP increases gradually until reaching its maximum 
value and then starts to decline gradually. For example, on the position of 1 km, ESP reaches its maximum value when Δv = 11 km/h, 
and on the position of 3 km, the maximum value of ESP appears when Δv = 14 km/h. The reason is that when Δv increases, the AV can 
meet more safe lane-changing gaps within a given period, which will increase the value of ESP. However, the increment of the Δv will 
also increase the average speed of the AV, which will reduce the time for the AV to find a safe lane-changing gap and further decrease 
the value of ESP. Therefore, the value of ESP can be increased by making Δv be in an appropriate range. However, this phenomenon is 
not obvious for the cases of Pos = 1 km and 6 km. The reason is that the value of ESP is always small due to the AV’s short distance to 
the off-ramp in the case of 1 km, and the value of ESP is always large due to the AV’s long distance from the decision point to the off- 
ramp in the case of 6 km, no matter what the value of Δv is. 

5.2.3. Average speed of the traffic flow 
The influence of the average speed of the traffic flow on ESP is simulated. Increase the average speed of the traffic flow from 45 km/ 

h to 120 km/h gradually to observe the variation of ESP Fig. 15. displays the relationship between ESP and the decision position under 
different average speeds when IDL is Lane 4. From Fig. 15, it can be observed that the value of ESP increases with the increment of the 
distance from the exiting decision position to the off-ramp for a given average speed, which is consistent with the results of Subsection 
5.2.1. The value of ESP decreases with the increment of the average speed at a given decision position. The reason is that as the average 
speed increases, the travel time from the decision point to the off-ramp decreases, so that the safe lane-changing gaps that the AV can 
meet decrease as well, resulting in the decrement of ESP. Thus, when the traffic speed is higher, the AV should start an exiting decision 

Fig. 13. Relationship between ESP and position with different IDLs  
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earlier to enhance the value of ESP. 
Specifically, Fig. 16 illustrates the variations of ESP with the changes of the average speed for the two cases that the decision 

positions are 5 km and 2 km Fig. 16. (a) shows that the value of ESP decreases with the increase of traffic speed except for IDL = 2. 
When IDL = 2, the AV only needs to change one lane to exit the freeway, which is quite easy to achieve when the decision position is 5 
km, so the average speed does not significantly impact ESP. In the other three cases, when the average speed increases, the time left for 
the AV to find an acceptable lane-changing gap is reduced, so the value of ESP decreases. In the case of IDL = 5, the value of ESP is high 
(more than 0.9) when the speed is below 70 km/h; however, it drops sharply as the average speed continues to increase. As a result, an 
alert should be sent to the AV in advance to prepare the AV once the average speed is higher than 70 km/h Fig. 16. (b) illustrated that 
the values of ESP are much smaller than those of decision positions at 5 km for the same IDL except for the case of IDL = 2. For the two 
cases of IDL = 4 and 5, a successful exiting for the AV cannot be ensured even when the average decreases to 45 km/h. Therefore, when 
the traffic speed is high, or IDL is far from the lane connecting to the off-ramp, the AV should initiate a freeway-exiting process earlier. 

5.2.4. Speed of the AV 
With the same starting point, the way AV performs the freeway-exiting also affects the ESP. Therefore, the influence of the AV’s 

speed in the case of the two-lane scenario is investigated in this subsection. In the simulations, the IDL is Lane 2, and the decision 
position is taken as 2 km to the off-ramp. Keep the average speed of the vehicles on Lane 1 as 76 km/h, and change the speed of the AV 
from 40 km/h to 140 km/h gradually to observe the variation of ESP Fig. 17. illustrates that, with the increment of the speed of the AV, 
the value of ESP decreases when AV’s speed is less than 76 km/h and increases when AV’s speed is greater than 76 km/h (that is the 

Fig. 14. ESP for different Δv and decision positions  

Fig. 15. Relationship between ESP and position with different average speeds  
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Fig. 16. Relationship between ESP and the average speed of the traffic flow  

Fig. 17. Relationship between ESP and the speed of AV  

Fig. 18. Relationship between cost function J and the position of the OED point with different IDLs  
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average speed of vehicles on Lane 1). This phenomenon indicates that the ESP decreases with the decrement of the difference between 
the AV’s speed and the average speed of the vehicles on the right lane. The reason is that when the speed difference between the AV and 
the average speed of the vehicles on the target lane decreases, the number of acceptable gaps that the AV can meet on the right lane in 
the remaining time will decrease as well. Therefore, both deceleration and acceleration can increase the value of ESP with the lowest 
ESP at around 76 km/h. Furthermore, the trendline is much steeper in the deceleration regime than in the acceleration regime. Such a 
phenomenon indicates that deceleration is more efficient in obtaining a high ESP. This may be because the deceleration is more likely 
to allow AV to match gaps on the target lane before reaching the off-ramp. 

5.3. OED point analysis 

5.3.1. Initial decision lane 
In the simulations, the environment setup in Subsection 5.1 is still used, and the weight value ω is set as 0.3 Fig. 18. displays the 

variations of cost function J and the positions of the OED points for different IDLs in the cases of Δv = 10 km/h. From Fig. 18, it can be 
observed that the OED positions are 413 m, 1674 m, 2568 m, and 3896 m to the off-ramp, respectively, for the cases of the IDLs = 2, 3, 
4, and 5. The position of the OED point moves upstream when the initial decision lane becomes further away from the lane connecting 
to the off-ramp, which is consistent with intuition. Moreover, comparing the positions corresponding to ESP = 0.9 in Fig. 13 and the 
OED points in Fig. 18, it can be found that the position corresponding to ESP = 0.9 may be before the OED point. In these cases, if still 
choosing OED point to initiate a freeway-exiting process, the AV may fail to leave the freeway. Thus, to ensure that the AV can 
successfully leave the freeway, a part of efficiency gains must be sacrificed. The position corresponding to ESP = 0.9 is chosen as the 
final exiting decision point. 

5.3.2. Speed difference between the two adjacent lanes 
This part explores how Δv between the two adjacent lanes influences the position of the OED point. In the simulations, the average 

speed of the vehicles on Lane 1 is set as 55 km/h, and Δv is increased from 3 km/h to 30 km/h gradually Fig. 19. (a) displays the 
relationship between the OED point position and Δv for the cases of IDL = 2, 3, 4, and 5. When IDL is Lane 3 or Lane 2, the position of 
the OED point decreases with the increment of Δv within the discussed range of Δv. When IDL is Lane 5 or Lane 4, the position of the 
OED point decreases with the increment of Δv until reaching its minimum value at some point and then starts to increase. The position 
of the OED point reaches its minimum value when Δv is15 km/h for the case of IDL = 5 and is 25 km/h for the case of IDL = 4. This 
phenomenon indicates an optimal Δv that can make the OED point closest to the off-ramp when IDL is Lane 5 or Lane 4. The reason is 
that the increment of Δv will increase the value of ESP, but the increment of the average speed will reduce the time for the AV to find a 
safe lane-changing gap Fig. 19. (b) displays the solution characteristics of Eq. (1) for Δv = 9 km/h, 15 km/h, and 21 km/h when IDL =
5. Simulations generate the results in the figure. In the figure, the three points are the solutions of Eq. (1), namely, the OED points of the
three cases. Since the three cases have the same average speed on Lane 1, they have the same J’1 curve. Compared to the case of Δv = 9 
km/h, J’2 is smaller in the case of Δv = 15 km/h, so the position of the OED point moves to the left from 4.4 km to 3.7 km. When Δv 
increases from 15 km/h to 21 km/h, the curve of J’2 moves right and further causes that the distance from the OED point to the off- 
ramp to increase. Therefore, when the IDL is Lane 5, the position of the OED point in the case of Δv = 15 km/h is the smallest in the 
three cases. 

5.3.3. Average speed of the traffic flow 
The influence of the average speed of traffic flow on the OED point is investigated here. Maintain that Δv is 10 km/h, and increase 

Fig. 19. Relationship between the position of the OED point and Δv with different IDLs  
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the average speed from 50 km/h to 120 km/h gradually Fig. 20. displays the variation of the OED point position with the change of the 
average speed when IDL = 2, 3, 4, and 5 Fig. 20. depicts that the distance from the OED point to the off-ramp increases when increasing 
the average speed at IDL = 3, 4, and 5. This result indicates that the OED point gradually moves upstream as the average speed in-
creases, which means that the AV needs to initiate a freeway-exiting process earlier to leave the freeway when the traffic speed is 
higher. The reason is that the increment of the average speed will decrease the value of ESP, which further increases the distance from 
the OED point to the off-ramp. When IDL is Lane 2, the distance from the OED point to the off-ramp does not increase so significantly as 
in the other cases, and its value is always smaller than 1 km. For this case, the speed has a negligible effect on the OED point because the 
AV only needs to change one lane to exit the freeway, which is easy to be realized. 

5.3.4. Weight value ω for efficiency 
The influence of the weight value ω in the proposed OED model on the position of the OED point is investigated here. In the 

simulations, the average speed of the vehicles on Lane 1 is set as 55 km/h, and Δv is set as 10 km/h. Changing the weight value from 0.2 
to 0.9 to observe the variation of the OED point Fig. 21. displays the relationship between the position of the OED point and ω for the 
cases of IDL = 2, 3, 4, and 5. In the figure, the position of the OED point decreases with the increment of ω, because that larger ω means 
more considerations of the driving efficiency in the decision, and the AV will tend to stay longer on the faster lanes. When IDL is 2, the 
AV can leave the freeway easily, so the position of the OED point does not change much and is relatively small. For the cases that IDL =
3, 4, and 5, the position of the OED point varies significantly with ω, and the slopes for the different cases are different. When the value 
of ω is between 0.45 and 0.65, the slope is the highest. When ω increases from 0.65 to 0.9, the change rate tends to be gentle, which 
happens because the value of ESP drops sharply when the AV gets too close to the ramp, neutralizing the effect of ω. With the 

Fig. 20. Relationship between the OED point position and average speed with different IDLs  

Fig. 21. Relationship between the position of the OED point and ω
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decrement of ω in the range of [0.2, 0.45], the slopes decrease as well. The reason is that the value of ESP is quite high and approaching 
1 in this case, and the AV does not need to sacrifice more efficiency to increase the success probability. 

6. Conclusions and future work

This paper focuses on how an AV generates an appropriate freeway-exiting decision that can ensure the AV exit the freeway
successfully with less travel time. An Exiting Success Probability (ESP) model for AVs is first proposed. Based on the ESP model, a new 
model to determine the optimal exiting decision (OED) point is developed. The proposed ESP model is validated using field data 
collected in Chengdu, China. Numerical simulations further analyze the characteristics of the proposed models. The following main 
conclusions are drawn in the paper.  

(1) According to the validation results based on the field data, the MAPE of the proposed model is not more than 13%. The results 
indicate that the model can predict the freeway-exiting success probability with acceptable accuracy and can be applied to the 
AV to generate an appropriate freeway-exiting decision point in the freeway-exiting process.  

(2) With the increment of the distance of the freeway-exiting decision position to LLP, the value of ESP increases and approaches 
100% gradually. By evaluating ESP, the AV can choose an appropriate freeway-exiting decision position to ensure a high ESP 
but without sacrificing too much travel time in the freeway-exiting process.  

(3) When the AV speed becomes closer to the average speed of the vehicles on the target lane, the value of the ESP of the AV 
decreases. An AV can enhance ESP by decreasing or increasing its speed to meet more safe lane-changing gaps on the target lane, 
and the speed-decreasing method has a more significant effect than the speed-increasing method.  

(4) When the traffic speed is high on the freeway, the AV should start an exiting decision early to enhance the value of ESP. The 
value of the ESP can increase by making the speed difference between the two adjacent lanes be in an appropriate range. 

The paper still has some limitations. First, the exiting decision problem of AVs is still explored in the traditional traffic environment, 
and how the connected vehicle technology impact the problem will be discussed in the future. Second, more experiments should be 
conducted to test the model reliability, which will be performed in the future. 
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