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Abstract— Recent advances in deep reinforcement learning
have shown promising results in solving sophisticated control
problems with high dimensional states and action space. Inspired
by this, we use the latest deep reinforcement learning (DRL)
methods to improve freeway traffic mobility and alleviate recur-
ring bottlenecks and congestion. More specifically, this paper
proposes a centralized traffic control system that can coordinate
multiple ramp metering (RM) and variable speed limit (VSL)
traffic controllers on freeways to minimize the total travel time.
The system uses a novel double-layer structure to synchronize
different traffic controllers and introduces the actor-critic-based
DRL methods to learn joint actions in a high-dimensional traffic
environment. The reward function takes into account the waiting
time of vehicles, the average speed of different road sections, and
the on-ramp queuing limit to improve traffic mobility. We also
proposed an integrated feedback controller as a benchmark. The
simulation results show that the actor-critic-based methods are
superior to other methods and can save more than 20% of the
total travel time. We also analyzed the curse of dimensionality
problem by comparing the performance of two scenarios in the
simulation: one is a single-ramp interweaving area scenario; the
other is a large freeway corridor with multiple on-ramps and off-
ramps. The results show that our system can effectively handle
these two situations without significant performance degradation,
which means that the centralized control system can effectively
control freeway corridors by directly guiding various traffic
controllers. This also leads to the conclusion that we can use
a centralized actor-critic-based control unit to manage medium-
scale freeway traffic to save computing resources instead of using
complex collaboration strategies.

Index Terms— Integrated traffic control, deep reinforce-
ment learning, deep actor-critic algorithm, freeway traffic
management.

I. INTRODUCTION

THE freeway bottleneck occurs when the traffic demand
exceeds traffic capacity, resulting in capacity drop and

traffic congestion. As a rule of thumb, the bottleneck often
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forms near the on-ramp sections, which is the merge area
of the freeway. When a large volume of traffic comes from
different directions, the on-ramp area is prone to traffic jams
and accidents. Thus, many studies focus on relieving traffic
congestion and improving traffic mobility around on-ramp
sections. The most frequently discussed strategies are ramp
metering (RM) [1] and the variable speed limit (VSL) [2]
control. The RM restricts vehicles from entering the congested
area, while the VSL limits the upstream speed to reduce the
inflow traffic. The restrictions will be lifted after congestion is
relieved. Although consider either RM or VSL may have good
performance in some cases, there are some imperfections. For
example, the RM may disturb the nearby road traffic when
the on-ramp road is full of vehicles, while the speed limit may
adversely affect the upstream traffic. Therefore, the integration
of RM and VSL has practical value, as it can combine the
merits of both strategies and reduce the side effect of the single
control strategy.

Conventionally, two ways are proposed to integrate RM
and VSL control near the on-ramp segment. First is the
model predictive control (MPC) methods [3]–[5], second is the
feedback (e.g., Proportion Integral) control methods [6], [7].
The MPC control methods can optimize traffic proactively and
systematically. Meanwhile, the feedback control methods are
easier for implementation and are reliable when the traffic fluc-
tuates within a reasonable range. However, both of them have
limitations. For example, complicated traffic models restrict
the problem scale of MPC methods. Besides, real traffic’s ran-
domness leads to inevitable inconsistency between the model
and reality, making long-term traffic unpredictable. On the
other hand, the feedback methods have delayed responding
to the control objectives, which may decay its performance
when the traffic is heavy and rapid variation. Therefore, it is
necessary to seek new solutions to these problems.

Recently, reinforcement learning (RL) based artificial intel-
ligence (A.I.) defeated top human professionals in complicated
multiplayer games [8], [9]. They are remarkable progress and
demonstrate that the RL methods may have great potential.
The traffic environment is similar to the game environment.
Thus, the RL approaches can be transferred to intelligent traffic
control systems. Rezaee et al. [10] studied the ramp metering
with the classic RL approaches for a typical bottleneck near
Toronto and found that the RL approaches could save 20%
more travel time than the feedback approach. Li et al. [11] built
a VSL control strategy with novel RL technology to relieve the
“capacity drop” problem of the recurrent bottlenecks, and they
improved the RL exploration techniques. The result showed

1558-0016 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ULAKBIM UASL - Hacettepe Universitesi. Downloaded on August 15,2022 at 08:20:21 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-3809-8368
https://orcid.org/0000-0002-9086-7622


2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

that the RL approach could quickly adapt to the changing
environment and even drivers’ behavior. Zhu et al. [12] pro-
posed a novel dynamic speed limit RL control model in the
stochastic traffic network environment. They found that the
total travel time and emissions could reduce by near 20%
compared with the no control cases. El-Tantawy et al. [13]
developed an RL-based coordination control strategy for mul-
tiple intersection traffic lights in the large-scale city road
network. The result showed that the average intersections delay
could reduce by 39%, and the road travel time could reduce
by 27%. In summary, RL algorithms have two advantages
compared with the feedback and MPC methods: (1) they can
control traffic flexibly with self-adaption and act proactively
based on the historical experience. (2) They are model-free
and do not require additional expert experience to train but
to learn by themselves automatically. As a result, the number
of RL studies for intelligent traffic control has proliferated in
recent years [16].

The classic RL methods often suffer from the curse of
dimensionality when facing large-scale traffic control prob-
lems. Therefore, researchers introduced deep reinforcement
learning (DRL) methods to solve the problem. For freeway
traffic control, Bellteti et al. [17] proposed the multi-agent
share weight DRL method for the cooperative ramp metering
control. They found that the DRL method could achieve
performance similar to the ALINEA algorithm and save 20%
travel time. Wu et al. [18] studied the differential variable
speed limits control (DVSL) with deep reinforcement learning.
The results indicated that the DRL-based DVSL control strat-
egy could improve safety, efficiency, and vehicle emissions
with different rewards. However, unlike the amount of urban
traffic light control [16] studies, research on the freeway
traffic control with DRL is still insufficient, especially for
integration control (of RM and VSL controllers). Integration
models require inspection on coordination details, and some
challenges have to be considered first, which are listed as
follows:

(1) How to decide the control period for a traffic controller:
for example, a traffic controller refers to a VSL sign or an
RM traffic signal light. In normal circumstances, the RM’s
control cycle (signal phase) could not keep pace with the VSL
controller. The immediate solution is to make independent
agents with different control cycles [7], but this may lead to
a complicated joint control strategy.

(2) How to control multiple traffic controllers accurately
and efficiently: Although the multi-agent DRL algorithms
developed quickly in recent years [19], they are still quite
complicated, and only some could transplant to the traffic
control field. Therefore, it is necessary to find new ways
for integration control. The ability of actor-critic-based DRL
methods to control multiple traffic controllers is neglected.
Their structures are straightforward and do not require com-
plex collaboration.

(3) How to process the massive input traffic data: images
or snapshots are used as the state input in previous stud-
ies [20], [21]. It worked fine on intersections but may not work
fine as well for freeway traffic control. Besides, it requires vast
storage resources to record every vehicle’s data.

We proposed a novel integrated control system with the
actor-critic-based DRL algorithms to solve the above chal-
lenges for freeway traffic control. The system allows dynamic
speed limits on the upstream of the bottleneck area and
adaptive ramp metering control to adjust the outflow of ramp
roads. To the best of our knowledge, this is the first study
to integrate multiple VSL and RM controllers with the latest
DRL methods for freeway traffic management. The main
contributions of this paper can be summarized as follows:

(1) This paper unified the control cycle with a double-layer
structure to synchronize different traffic controllers. The upper
layer optimizes the ramp outflow per minute to keep pace with
the VSL controllers. The lower layer converts ramp outflow
into RM signal phases.

(2) This paper proposed a generalized framework compa-
rable to many actor-critic-based DRL algorithms. The frame-
work is very flexible towards extensions. Therefore, our system
is not plagued by the curse of dimensionality, and the perfor-
mance is not noticeably decayed in a large road network.

(3) This paper divided the road network into segments
according to the Courant-Friedrichs-Lewy (CFL) condi-
tion [22]. Besides, it merged diverse traffic data (e.g., average
speed, density, traffic flow, etc.) to obtain traffic states. In addi-
tion, we introduced a normalization layer to merge different
traffic data. The neural networks are much simpler without the
image processing layers.

The rest of this paper is organized as follows: The review of
related works is in Section II. The methodology is described
in Section III. The problem statement is given in Section IV.
The DRL model is proposed in section V. The control frame-
work and improved algorithms are given in section VI. The
simulation results are shown in Section VII. The conclusion
is given in Section VIII.

II. RELATED WORK

This section will discuss the DRL algorithms studied in pre-
vious works and the Vehicle to Infrastructure (V2I) technology
for the DRL control system.

A. Deep Reinforcement Learning for Traffic Control

The essence of reinforcement learning is to learn through
interaction with the environment and record the experiences
(e.g., states, actions, rewards, etc.) to continuously improve the
agent’s behavior. The classic RL (e.g., Q learning) methods
use the Q table to record experiences, which suffers from
the curse of dimensionality for large-scale traffic control.
As a result, single-agent RL methods can only solve local
control problems [10], [11], for large-scale problems must use
multi-agent reinforcement learning (MARL) with complicated
coordination strategies [13]–[15].

Unlike the classic RL methods, the DRL methods use
neural networks to record learning experiences [23] and have
various optimizations for further improvement [24]. Since the
nonlinear neural network better describes real-world traffic, the
DRL methods have become prevailing in urban traffic control
research [25]. Study [20], [26] built the policy gradient (PG)
and deep Q network (DQN) models for the traffic light control
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TABLE I

SUMMARY OF REPRESENTATIVE DEEP REINFORCEMENT LEARNING STUDIES IN TRAFFIC CONTROL

TABLE II

MEANING AND REFERENCE OF ACRONYMS

(TLC) of independent intersections. The simulation results
showed that the intersection waiting time could be visibly
reduced. Study [27], [28] discussed multi-agent DRL control
strategies for large-scale urban traffic control, proposed differ-
ent cooperative solutions including traffic state sharing [27],
advantage actor-critic (A2C) algorithm with long short term
memory [28] (LSTM), and multi-agent deep deterministic
policy-gradient (MADDPG) [21] algorithm. The representative
studies are summarized in Table I.

The meaning of acronyms in Table I is given in Table II.
From TABLE I, we can see three limitations in previous

works. Firstly, most current studies focus on urban traffic
control, while research on freeway traffic is insufficient. Sec-
ondly, current multi-agent systems have many control units,
which might not be necessary. Thirdly, DRL methods develop
fast, many new algorithms [29], [30] not studied in the
traffic control field may play an essential part in the future.
In this paper, we make the following improvements: Firstly,
we designed a centralized traffic control system to combine the
merits of different control strategies. Secondly, we proposed a
generalized framework upon the novel actor-critic structure to
handle high-dimensional control problems effectively. Thirdly,
we employed the latest actor-critic DRL algorithms with
improved techniques to achieve good performance.

Fig. 1. Conceptual design of V2I based freeway traffic control system.

B. Vehicle to Infrastructure for Deep Reinforcement Learning

V2I is critical for an intelligent transportation system. With
V2I technology, the road can collect traffic information more
efficiently, and the vehicles can respond to road instructions
more quickly. In previous papers, V2I plays a key role
in improving the performance of MPC methods [31], [32]
and the cooperative on-ramp merging models [33], [34].
Study [35] pointed out that the control effect can be signifi-
cantly improved under the V2I environment.

Although our control system is implemented via the SUMO
simulation environment, we could consider how to realize it
in the real world. V2I is the bridge from simulation to reality.
The traffic state can be collected through various detectors
in the simulation, and then the instructions are immediately
sent to the vehicles. Similar functions can be done via the
V2I technology. Fig. 1 proposed the conceptual design of a
freeway traffic control system with V2I. The system consists
of roadside units (RSU), wireless transceivers, and a traffic
control unit (TCU). RSU and transceiver are the perceptrons
of the system, and the TCU is the brain. The freeway is divided
into segments, and each segment has an RSU. The RSU equips
devices (e.g., traffic detector, camera, etc.) to collect vehicle
data of the segment. Then, the vehicle data is aggregated and
sent to the TCU via the transceiver. Next, the TCU uses the
DRL algorithms to calculate the optimal results as the control
instructions. Finally, the control instructions are sent to the
vehicles through the transceivers, and the vehicles can adjust
their behaviors according to the instructions.
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Based on the above discussion, we assume that in the
simulation scenario, the traffic control system can access the
freeway traffic state, and the vehicles will obey the instructions
of the control system. The detailed design of the control
system is given in sections V and VI.

III. METHODOLOGY

A. Reinforcement Learning

The traffic control problem can be treated as a Markov
Decision Process (MDP) for the RL agents. The RL agents
learn by interacting with the dynamic environment. Each step,
the agents perceive the environment and take some actions.
Then the environment transits into a new state, and a reward
is generated. The process can be described with a five-tuple
(S, A, P, R, γ ), where:

S : denotes the traffic state space. s ∈ S is a specific state;
A : denotes the action space. a ∈ A is a specific action;
P = S×A×S : denotes the transmission probability among

the space sequences, the relation of state s and subsequent state
s′ is characterized as s′ = Pa

ss′ ;
R : denotes the reward space. r ∈ R is the immediate reward

of an action;
γ ∈ [0, 1) : denotes the discount factor that defines the

relative importance of the immediate and historical rewards.
To gradually improve the environment to the ideal state,

RL agents select actions according to an optimal policy π .
The goal of policy π is to maximize the cumulative expected
rewards starting from the initial state. If agents know the
optimal cumulative reward of a particular state, they can
choose actions with the highest reward [26]. The cumulative
reward can be obtained recursively with the Bellman equation.
For instance, the agent at certain state s takes an action a to
reach state s′ and gets a reward r , which is denoted by tuple(
s, a, r, s′

)
, then the cumulative reward Qπ (s, a)of policy π

can be calculated by the following equation

Qπ (s, a) = Es ′
[

r + γ max
a′

Qπ
(
s′, a′

) |s, a

]
(1)

where a′ ∼ π
(
s′

)
is the action selected according to the policy

π at state s′, Es ′ =∑
s ′∈S pa

ss′ is the expectation of states that
could transfer from (s, a), γ is the discount factor, and is the
best possible action.

Conventionally, Qπ (s, a) can be updated via a Q
table [10]–[15]. When the number of states becomes large, the
Q table could consume a considerable amount of computing
resources. Hence, DQN [23] methods are proposed to approx-
imate the Qπ (s, a) with a neural network Qφ (s, a). However,
DQN methods have difficulties processing large action space
or continuous actions [35]. Therefore, the deep actor-critic
algorithm emerges as a new solution [37].

B. Deep Actor-Critic Algorithm

Similar to the classic reinforcement learning, the objective
of the deep actor-critic algorithm is to find a parametric policy
πθ to maximize the expected return J (πθ ). The policy πθ

is a neural network with parameters θ known as the actor.

It can be updated by taking the gradient of the expected return
∇θ J (πθ ) [28], which can be written as:
∇θ J (πθ ) = Es∼pπ

[∇θ log πθ (a|s)Qπ (s, a) , a ∼ πθ(s)

(2)

where Es∼pπ is the expected possible states decided by the
transmission probability, log πθ (a|s) is the probability of
taking action a under state s following policy πθ , Qπ (s, a)is
the expected return of state-action pair (s, a) following policy
π . Eq. (2) increases the probability of the actions with high
Qπ (s, a) values and decreases others vice versa. Note that
Eq. (2) could be more straightforward if updated following
the chain rule in the deterministic form [35] as:
∇θ J (πθ )= Es∼pπ

[∇a Qπ (s, a)∇θπθ (s) , a=πθ(s)

(3)

Action a of Eq. (3) is determined by the state s and policy
πθ . Qπ (s, a) is known as the critic or value function. For large
state space, Qπ (s, a) can be estimated with a neural network
approximator Qφ (s, a) with parameters φ [37]. To make the
training process more stable, target networks πθ ′ and Qφ′ are
introduced [35]. The estimation equation can be written as:
min

φ
Es∼pπ

(
r + γ Qφ′

(
s′, a′

)− Qφ (s, a)
)2

, a′ = πθ ′(s
′)

(4)

where r is the immediate reward, γ is the discount factor,
Qπ (s, a) = r + γ Qφ′

(
s′, a′

)
is the value function. Es∼pπ

is the expectation of state occurrence rate under policy π .
The intuition form of Eq. (4) is to minimize the difference
between Qφ (s, a) and Qπ (s, a) during training. Training
can be applied off-policy, sampling random mini-batches of
experiences from an experience replay buffer [29].

Eq. (3) and Eq. (4) constitute the general form of deep actor-
critic algorithms. In general, the policy πθ could be updated by
the gradient of the expected return ∇θ J (πθ ), rather than the
random selection policy of classic RL methods. This can save
many computing resources and is the secret of the actor-critic
algorithms to deal with the high dimensional action space.
Since our study cases are integrated traffic control, the action
space is ample, and it is necessary to use actor-critic architec-
ture. Note that there are various actor-critic algorithms [37];
for convenience, the deep deterministic actor-critic algorithms
are chosen as the brain of the control system.

C. Integrated Feedback Control Strategy

The feedback traffic control strategies (e.g., ALINEA [38])
are proved effective by many studies. Thus, we proposed
an integrated feedback control strategy modified from the
study [7] as the benchmark. The framework is shown in
Fig. 2, which coordinates the RM and VSL controllers. The
RM controller is a proportional-integral controller that can be
written as:

rk = rk−1 + (KI + K P ) eo,k − K P eo,k−1 (5)

where rk is the ramp metering rate based on the desired
occupancy at time step k, KI and K P are the controller
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Fig. 2. The framework of the integrated feedback control strategy.

parameters, eo,k = ô − ok is the bias between the desired
occupancy ô and the dynamic occupancy ok . The intuition
form of Eq. (5) is to adjust the ramp metering rate according
to the congestion of the bottleneck area. The on-ramp vehicle
queue also restricts the ramp metering rate. If the queue is too
long, it will spill to the adjacent road. Hence, it is necessary to
maintain a minimum ramp metering rate according to Eq. (6):

qk = − 1

TRM

[
ŵ− wk−1 + dk−1 (6)

where ŵ represents the desired queuing limit. wk−1 represents
the dynamic on-ramp waiting vehicles, and dk−1 represents
the on-ramp traffic demand, respectively. The ramp metering
rate q̃RM is the maximum value of Eq. (5) and Eq. (6):

q̃RM = max (rk, qk) (7)

When q̃RM ≥ rk , it means that ramp metering has to tackle
the over-length queue, hence the VSL controller is activated
to limit the upstream inflow from entering the bottleneck. The
desired mainline inflow q̂in is given as:

q̂in = qCap − q̃RM (8)

where qCap is the road capacity. The control objective is to
restrict q̂in via an integral controller:

bk = bk−1 + KI eq,k (9)

where bk ∈ [bmin, 1] is the upstream inflow rate. Similarly,
eq,k = q̂in−qin,k is the desired flow bias. bk can be converted
into the speed limits with a linear approximator. In this paper,
KI = 15, K p = 40, ô = 30%, ŵ = 15 vehicles.

IV. PROBLEM STATEMENT

Our goal is to optimize the freeway bottleneck traffic via
integrating the RM and VSL controllers. For convenience,
the freeway road is divided into a series of segments, and
the segment length should satisfy �x ≥ υseg�t according
to the CFL condition [22], where �x is the segment length,
υseg is the average speed of the segment, and �t is the
time step. In the V2I environment, �t can be updated every
5 seconds, and the free flow speed is 100 km/h. Hence, we set
the segment length to 200 meters. A typical example is given
in Fig. 3, the control system combines several RSU, VSL, and
RM traffic controllers. The RSUs are deployed along the road,
collecting traffic information via different sensors. The VSL

Fig. 3. Integration control system with the deep actor-critic-based TCU.

controllers are built upstream of the bottleneck, sending the
speed limitations to the vehicles. Thus, the upstream traffic
is slowed down in the VSL application area when there is
congestion downstream. Then the vehicles could accelerate
in the acceleration area to pass through the bottleneck more
effectively. The RM signal has green and red phases, when the
traffic is congested near the on-ramp section, the red phase
stops the vehicles from entering the congested area, while
the green phase ensures that the vehicles do not spill back
to the adjacent road. The TCU is the brain of the system and
commands all the VSL and RM traffic controllers.

The first problem is how to improve the freeway traffic
mobility by dynamically changing the speed limits of VSL
signs and the phase’s duration of RM traffic lights via learn-
ing from historical experiences. This paper builds a novel
actor-critic DRL framework to estimate the Q-value and select
action, respectively. First, we need to synthesize the global
states by data from different sensors and set up the reward
to minimize the total travel time of the entire road network.
Then the critic network can self-training by continuously
receiving states and rewards from the environment. The model
is demonstrated on the right side of Fig. 3. The critic network
self-updates after a batch of state data are received. Note
that the training can be done offline, which means the critic
network can use historical data for pre-training.

Another problem is how to synchronize all the VSL and RM
controllers. To keep pace with the speed limits, RM actions are
set to the ramp outflow per minute and then transferred into
RM signal phase duration, and then the actor (network) could
treat the outflow and the speed limits as numeric actions. The
actor can choose multiple actions based on the current state
and the score (Q-value) of the critic (network). The critic
can continuously optimize the actor according to its latest
training results to control freeway traffic adaptively. Finally,
the actions are sent to traffic controllers through the V2I
network. In practice, large-scale road networks can combine
several small networks with similar control systems. We have
tested two scenarios in the simulation: a typical bottleneck
network similar to Fig. 3 and a more complicated large-scale
network.

V. DEEP REINFORCEMENT LEARNING MODEL

In this section, the details of the integrated control system
are proposed. We first build the study scenarios and then define
our DRL model’s three essential elements: states, actions, and
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Fig. 4. The detector and controllers of scene one.

rewards. The improved deep actor-critic algorithms are in the
next section.

A. The Study Scenes of the Control System

This study aims to evaluate deep reinforcement learning
algorithms in integration traffic control. To test control per-
formance, we select two scenarios with ramp weaving sec-
tions. The open-source software Simulation of Urban Mobility
(SUMO) [39] is chosen for the experiments. SUMO can
perfectly simulate different freeway traffic scenes and various
control strategies with the Traffic Control Interface package.
We made the simulation environment as accurate as possible
to evaluate the DRL models.

1) The Single Bottleneck Scene: A 2km freeway with on
and off-ramps near Drechttunnel, Netherlands, is selected as
the single bottleneck scene, as shown in Fig. 4. The road
network is divided into segments, with 200 meters each. The
control system has one RM controller and two continuously
placed VSL controllers. The traveling traffic has three routes:
the mainline to mainline (M2M) traffic, the mainline to off-
ramp (M2Off) traffic, and the on-ramp to mainline (On2M)
traffic. Krauss model [40] is used as the microscopic model
for the simulation, which guarantees safe driving. There are
two types of vehicles: 90% of cars and 10% of trucks. The
length of a car is 4 meters, while the length of a truck is
8 meters. One simulation episode takes two hours to cover
the entire rush hour period. The traffic demands of the three
routes are in Table III.

As shown in Fig. 4, there are two types of sensors in
the simulation to collect traffic information. The first type
is the traditional detectors to collect fixed point data (e.g.,
traffic flow). The second type is the area sensors that collect
traffic data of the entire segment (e.g., density and average
velocity). Sufficient sensors are deployed to simulate the V2I
environment. In addition, two VSL controllers to command
vehicles’ speed are placed upstream of the bottleneck (purple
area), and an RM controller is placed at the front of the on-
ramp road. The on-ramp weaving segment is the bottleneck of
the network.

2) The Multiple Bottlenecks Scene: A 6.5km freeway net-
work with multiple on and off-ramps from the Alicante to
Murcia freeway open data source [41] is selected as the large-
scale scene; the details are shown in Fig. 5. The road network

TABLE III

TRAFFIC DEMAND (VEHICLES PER ROUTE) OF SCENE ONE

TABLE IV

TRAFFIC DEMAND (VEHICLES PER ROUTE) OF SCENE TWO

contains two bottleneck areas, about 3.5km apart. The road
network is also divided into a series of 200 meters segments.
The control system has three RM signal controllers, and
four VSL controllers placed in two continuous VSL control
segments. The seven traveling routes of traffic are given in
Table IV.

Each segment has a five-tuple state si , each traffic controller
has an action ai in the traffic control unit. In the first scene,
we have 58 states (including the elements of si ) and three
actions (1 RM and 2 VSL actions). In the second scene,
we have 99 states and seven actions (3 RM and 4 VSL actions).

B. The State of the DRL Model

States are the input of the actor-critic DRL model. As men-
tioned above, the freeway network can be divided into N
segments, state si represents segment i , then the global state
s is denoted as s = (s1, . . . , sN ). si is denoted by a five-
tuple si =

(
fi,in , di , vi , wi , fi,out

)
, where fi,in is the segment

inflow, fi,out is the segment outflow, di is the segment density,
vi is the average speed, and wi is the waiting vehicles (speed
less than 0.1 m/s) in the segment. All the tuple elements can
be retrieved via different sensors, as shown in Fig. 6. Note
that the upstream outflow fi,out is equal to downstream inflow
fi+1,in , so the duplicated state elements are deleted in practice.
The state information is refreshed every second.

C. The Action of the DRL Model

Actions are the output of the DRL model. In each step,
the DRL model receives a global state s and produces a joint
action. a = (V SL1, . . . , V SLn, RM1, . . . , RMn) represents
the joint action of all the controllers, where V SLi represents
the speed limit of i th VSL controller, and RMi represents the
i th ramp outflow. Both V SLi and RMi have a range. V SLi ∈
[V SLmin , V SLmax ], where the V SLmin = 8.33m/s, and the
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Fig. 5. The detectors and controllers of scene two.

Fig. 6. The segment state retrieved by different sensors in SUMO.

V SLmax = 27.78m/s. Similarly, RMi∈ [RMmin , RMmax ],
where the RMmin = 4 veh/min, and the RMmax =
30 veh/min. The RMi has the same magnitude with V SLi

so the actors could output them correctly.
A double-layer architecture is proposed to solve the asyn-

chronous problem of VSL and RM controllers. Instead of
directly using the signal phases as actions, the upper layer
uses the ramp outflow RMi as an action. The lower layer
can convert it to the RM signal phases in the next step. For
instance, if the control period of V SLi is one minute, then
RMi can also set to outflow per minute, and then turn into
traffic phase duration with Algorithm 1:

Fig. 7 illustrates how the ramp metering and VSL controllers
keep in pace. VSL speed limitations and ramp outflow changes
once per minute. Then the ramp flow can convert into the
green and red phases via Algorithm 1. The different outflow
has different duration for green and red phases. When the
ramp outflow is large, the green duration becomes long.
Otherwise, the green duration becomes short. In this way,
RM signals can easily keep pace with the VSL controllers,

Algorithm 1 RM Signal Phase Conversion
1: Initialize: time step (TS), control period (CP), ramp outflow

(RO), green-time per vehicle (GPV), vehicle number (VN)
2: for TS = 1, N, do:
3: if TS mod CP = 0: //begin a control period
4: Delete previous green or red phase
5: Convert RO to VN/minute
6: Green phase duration = GPV×VN/minute
7: Red phase duration = CP-green phase duration
8: Convert duration to phases in CP
9: else //Regular step of CP

10: if TS in green phase:
11: RM signal phase set green
12: else TS in red phase:
13: RM signal phase set Red
14: end if
15: end if
16: end for

Fig. 7. The control period of VSL and the signal phase of ramp metering.

and the phase duration can adjust flexibly. Finally, the control
system decomposes joint action into independent strategies for
traffic controllers.

D. The Reward of the DRL Model

The immediate reward r ∈ R is a scalar value the DRL
model receives each step after taking a specific action. With a
proper reward r the agent can gradually converge to the opti-
mal action. Traffic in the microscopic simulation environment
is sophisticated, and the reward is often disturbed by stochastic
noise. Hence, a stable reward that can be easily distinguishable
is required. We consider three key factors of freeway traffic
mobility: the traveling speed on the road, the on-ramp queue
restriction, and the waiting (halting) vehicles in each segment.

1) The Average Traveling Speed on the Road: The average
traveling speed on the road is considered the major term to
measure the traffic mobility of the freeway network. Fur-
thermore, if the traveling speed of each segment is evenly
distributed as time goes, it implies that the traffic is stable.
The average traveling speed reward can be described as:

Vt = 1

N

∑N

i
v̄i,t (10)

where v̄i,t is the average speed of i th segment at time step t ,
and N is the total segments of the freeway network.
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Fig. 8. Reward function of on-ramp queue restriction.

2) On-Ramp Queue Restriction: On-ramp queue restriction
qRM is proposed because of the ramp road capacity. Previous
researches seldom considered the waiting vehicles on the ramp
road. However, they cannot ignore since they may spread to
the adjacent highway and cause congestion. Therefore, the
on-ramp queue restriction is defined as a positive value if not
exceed the maximum desired length, otherwise dived to zero.
We selected the combination of sigmoid function and the linear
function, which can be written as:

qRM = ki qt + k j

1+ eqt−qmax
(11)

where qt is the dynamic queuing limit of the on-ramp, qmax

is the longest desired queue. ki, j refers to the coefficient of
reward. Eq. (11) indicated that when qt ≤ qmax , there is no
penalty; when qt > qmax , qRM would dive to zero. Hence,
the vehicle queue can be restricted. In this study, we set qmax

as 15 vehicles for each on-ramp. Fig. 8 has shown the curves
of different ki, j . Considering the balance of the ramp outflow
and the waiting queue, we set ki = 0.05, k j = 0.5.

3) The Waiting Vehicles: Waiting vehicles include the vehi-
cles waiting on the ramp road and the mainstream during
congestion. Since the objective is to minimize traveling time,
waiting time is essential for evaluating freeway mobility.
To avoid the overlong queues in the road network, the waiting
vehicles played as the penalty term, which is given in Eq. (12):

Wt = − 1

N

∑N

i
ki (wi,t +�wi,t ) (12)

where wi,t is the dynamic waiting vehicles on segment i
on time step t , ki is the weight of each segment, �wi,t =
wi,t −wi,t−1 is the increment of waiting vehicles. With �wi,t ,
an extra incentive is received when the waiting vehicle number
is decreasing, an additional penalty is received vice versa.
Combining Eq. (10) ∼ (12), we propose the reward function
as:

rt = W1 ∗ Vt +W2 ∗ qRM +W3 ∗Wt (13)

where Wi is the weight of different terms, in this paper we
define W1 = 0.25, W2 = 0.25, W3 = 0.5.

Fig. 9. A generalized framework for deterministic actor-critic algorithms.

VI. DEEP REINFORCEMENT LEARNING ALGORITHMS

A. The Framework for Deep Actor-Critic Algorithm

Our control system provides a generalized framework for
deep actor-critic algorithms. The framework is designed based
on the similarity of deep deterministic actor-critic algorithms.
Therefore, our framework is very flexible towards extensions.
This paper has implemented the most prevailing algorithms
on our framework, the DDPG [36] and the TD3 [29], with
improved exploration techniques and the prioritized experience
replay. The framework is in Fig. 9.

The framework has three layers: First is the Network Layer,
where the control system retrieves traffic states via the RSU
and controls vehicles with different traffic signs as mentioned
in section III. The second is the Interaction Layer. It contains
two modules: 1. the traffic controllers, including the VSL
and RM signal controllers, which turn the output of actor
into specific traffic commands; 2. the replay memory, which
stores a vast of historical traffic state data from various sensors
each step, the states are aggregated as experience

(
s, a, r, s′

)
.

The experiences are randomly sampled and sent to the critic
networks for training.

The third is the Brain Layer. As shown in Fig. 9, different
algorithms have similar and separate networks, marked with
different colors in the Brain Layer. Generally speaking, a deep
actor-critic algorithm has an actor with parameter θ and a
critic with parameter φ. As mentioned in section II, the
actor generates the optimal policy πθ based on the critic
network Qφ with Eq. (3). To provide the stable update in each
iteration, separate target networks with the same architecture
but different parameter θ ′ and φ′ are used. In addition, to solve
the overestimate problem, another critic network is used in
the TD3 algorithm. To train Qφ with Eq. (4), a batch of
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TABLE V

NOTATIONS

experiences
{(

s, a, r, s′
)}

B are sent to the critic networks for
evaluation. Then, action a′ can be calculated according to
target policy πθ ′

(
s′

)
. Finally, Eq. (4) can be calculated with(

s, a, r, s′, a′
)
. The meaning of notations in Fig. 9 are shown

in Table V.

B. Training With the Deterministic Actor-Critic Algorithms

1) The DDPG Algorithm: Eq. (3) and (4) are the major
equations of the DDPG algorithm. In practice, however, more
details required consideration. The first problem is how to bal-
ance exploration and exploitation. Since the actions of DDPG
are deterministic, stochastic noise must add for exploration.
In this paper, we propose two techniques to improve explore
efficiency:
• Uniform exploration
With the first few episodes, the agent selected actions with

the uniform distribution U (or random selection).
• Reward Memorizing
The agent could remember the best reward Rmax and the

worst reward Rmin during training, as the reference of its latest
strategy (with the reward of rlast ) in Eq. (14):

Nexp = Nbasic + ξ
Rmax − rlast

Rmax − Rmin
(14)

where Nexp is the total exploration noise, Nbasic is the basic
noise with Gaussian distribution. ξ is the coefficient to measure
the importance of the agent’s latest action performance. In this
paper, we set Nbasic = 0.1 and ξ = 0.4. If rlast 	 Rmax , the
second term becomes prominent, and the agent will do more
exploration in the following episodes, which is good for the
agent to overstep the local optimum.

The second problem is how to calculate Es∼pπ [·] of Eq. (3).
Es∼pπ [·] can be estimated with a batch of randomly sampled
experiences

(
s, a, r, s′

)
B from replay memory, where B is

the batch size. To improve the efficiency of parameter updat-
ing, a prioritized experience replay strategy is selected [42],
in which the temporal difference error δi ranks the priority of
an experience sample i :

δi =
∣
r + γ Qφ′

(
s′, πθ

(
s′

))− Qφ (s, a) (15)

The following equation calculates the probability Pi of
sampling experience i :

Pi = pτ
i∑

k∈B pτ
k
, pi = 1

rank (δi )
(16)

where τ represents how much prioritization is used, when
τ becomes zero, it is random sampling. With the replay
examples, we can train the critic by minimizing the loss
function L (φ):

L (φ) = 1

|B|
∑

(si ,ai ,ri ,s ′i)∈B

(
yi − Qφ (si , ai )

)2 (17)

where

yi = ri + γ Qφ′
(

s′i , a′i |a′i=πθ ′(s ′i)

)
(18)

Here the i index refers to the i th sample. yi is the optimal
target, computed from reward ri and outputs of the target
actors and critics, with parameters πθ ′ and Qφ′ . In practice,
parameter φ is updated with the gradients obtained from the
loss function with the Adaptive moment estimation (Adam)
optimizer [43].

The actor is updated by maximizing the future reward, or the
value Qφ of critic networks, hence the updating of an actor
can be written as:
∇θ J (πθ ) = 1

|B|
∑

B

[∇a Qφ (s, a)∇θπθ (s) , a = πθ (s)

(19)

where ∇θ J (πθ ) denotes the gradient of policy πθ , B denotes
the size of the sampled batch, Qφ (s, a) denotes the evaluations
from the critic, ∇θ J (πθ ) can be solved by the chain rule [35].
The input of DDPG is the states received from the detectors in
the simulation, and the output of the DDPG is the joint action
of the RM outflow and VSL limitation values. The state and
action space have been discussed in the previous section.

2) The TD3 Algorithm: The TD3 algorithm has three major
improvements. First is the Target Policy Smoothing, where a
stochastic noise is added to πθ ′

(
s′i

)
in Eq. (18) as follows:

a
′′
i = cli p

(
πθ ′

(
s′i

)+ cli p (ε,−c, c) , aLow, aHigh
)

(20)

where ε ∼ N (0, σ ) is a stochastic noise subject to the normal
distribution. cli p is a function to limit the variables to a
specific range. e.g., aLow ≤ a

′′
i ≤ aHigh . The limit of noise

clip c = 0.5. Target Policy Smoothing essentially serves as a
regularization term. Since the DDPG is deterministic, it may
fall into local optimum. The regularization term of TD3 can
help the agent evade the local optimum.

The second improvement is the Double Q Learning, where
a secondary critic network is employed to solve the overesti-
mation problem [29], the minimal Q value will be taken as
the result. Thus, Eq. (18) can be rewritten as:

yi = ri + γ min
i=1,2

Qφ′i=1,2

(
s′i , a

′′
i

)
(21)

Note that the two critics are updated with L
(
φi=1,2

)
in Eq.

(17). The actor is updated in Eq. (19) with Qφ1 .
The third improvement is the Delayed Policy Updates,

which means the actor does not update as frequently as the
critic network, which will add the training stability.
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The action exploration techniques and prioritized experience
replay are also used in the TD3 algorithm. To sum up the above
equations, the deep actor-critic traffic control algorithms are
proposed with pseudocode in Algorithm 2.

Algorithm 2 DDPG and TD3 Algorithm for Freeway Traffic
Control
1: Initialize critic networks Qφi=1,2 , actor network πθ

2: Initialize target networks with φ′1,2← φ1,2, θ ′ ← θ
3: Initialize replay memory R, random noise Nexp

4: for episode = 1 to M, do:
5: Initialize simulation environment s0 in SUMO
6: for simulation step = 1 to T, do:
7: Receive state st from detectors and sensors in SUMO
8: Select action at according to πθ (st ) with noise

ε ∼ Nexp

9: Transfer at to traffic commands in SUMO
10: Observe reward rt and new state st+1
11: R← (st , at , rt , st+1)
12: Select B samples from R based on the sampling

priorities
13: if DDPG:
14: Update Qφ by minimizing the loss L (φ) with

(17) and (18)
15: Update πθ by sampled gradient with (19)
16: else: //TD3
17: Update Qφi=1,2 by minimizing the loss

L
(
φi=1,2

)
with (17) and (21), update at+1 with

target policy smoothing (20)
18: Update πθ by sampled gradient with (19) with

policy decay
19: end if
20: Update transition priorities with (15) and (16)
21: Update the target network:
22: θ ′ = τθ + (1− τ ) θ ′
23: φ′(1,2) = τφ(1,2) + (1− τ ) φ′(1,2)//the TD3 has

two critics
24: end for
25: end for

C. The Deep Neural Network Structure

Fig. 10 shows the structure of the actor and critic networks.
Both networks contain the input (output), batch normalization
(BN), and dense layers. The BN layer normalizes the scale
differences from different sensors’ inputs. The concatenation
layer in the critic network merges the observations and actions
into one layer. The dense layers contain many trainable units
that are updated during training. The layer-wise propagation
rule can be written as:

H l+1
N = αN

(
W N M H l

M + bl
N

)
(22)

where H l
M represents the output of lth layer with M neurons,

N is the number of next layer’s neurons. α represents the
activation function. Most layers use the Rectified Linear Unit
function (Relu) as the activation function. W represents the
trainable weights, and b represents the bias, respectively. Each

Fig. 10. Structure of the actor and critic network.

TABLE VI

SIMULATION PARAMETERS SETTING

dense layer has 256 neurons. Thus, W ∈ R256×256, H ∈ R256,
and b ∈ R256. Note that the last layer of the actor network
uses the tanh activation function to restrict the action range.

VII. EXPERIMENTAL RESULTS

A. Experiment Set-Up

This section evaluates our methods through simulation
experiments in two different scenes. In the first scene, we focus
on comparing different algorithms, while in the second scene,
we focus on the performance of proposed DRL algorithms in
a larger scale road network. The details of the two simulation
environments are in section V. The environment parameters’
configurations are in Table VI.

B. Compared Methods

To test the effectiveness of our control system, we compared
the following algorithms. All algorithms use the same states,
actions, and rewards defined in section V.

(1) Fixed-time ramp metering control (FTC): Ramp meter-
ing signal circulates in a fixed phase sequence, with
30 seconds of green/red phase. The fixed-time ramp
metering control is activated when the mainline traffic
flow is above 1000 vehicles/lane/hour.
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Fig. 11. Total travel time comparison of algorithms in scene one.

(2) Integrated feedback control (IFBC): The VSL signs and
ramp metering signal automatically change according to
bottleneck traffic occupancy and the ramp queue length.

(3) DDPG control with improved exploration and prioritized
replay (DDPGC): A traffic control unit controls all the
VSL and RM controllers with the DDPG algorithm to
find the optimal control policy.

(4) TD3 control with improved exploration and prioritized
replay (TD3C): A traffic control unit controls all the
VSL and RM controllers with the TD3 algorithm to find
the optimal control policy.

C. Result in Scene One

In this section, all the algorithms aim to minimize the total
travel time with the restriction of the on-ramp queue. The total
travel time includes vehicle traveling time and waiting time on
the road during simulation. Three key indicators, including
the total travel time, the average speed, and the episodes’
reward, are considered. The results after 200 episodes of
training (which are 400 simulation hours) are demonstrated
from Fig.11 to Fig. 13.

The comparison of total travel time is shown in Fig. 11. The
solid line indicates the mean value of each episode, and the
shallowed area indicates the standard deviation. From Fig.11,
we can see that the IFBC and DRL methods can significantly
reduce total travel time during rush hours. The reason is that
the IFBC and DRL methods are adaptive, they can maintain
a stabilized outflow to evacuate oversaturated traffic more
efficiently. In contrast, the fixed time control cannot adjust
its behavior according to traffic variation and may even lead
to congestion due to improper actions. From the result, the
DRL methods slightly outperformed the IFBC method, this is
achieved by continuous self-learning. Fig.11 showed that the
total travel time of FTC is about 1200 hours, the total travel
time of IFBC is about 1050 hours, and the total travel time of
DRL algorithms is around 950 hours. It can be found that the

Fig. 12. The average speed of the road network.

Fig. 13. Reward comparison of the TD3C and DDPGC.

IFBC can save 12.5% of travel time, while the DRL algorithms
can save 20.83% of travel time, indicating the effectiveness of
DRL algorithms. Fig. 12 showed that the average speed of
the road network is also increased, from 55 km/h of FTC to
65km/h of TD3C. This indicated that the increased traveling
speed and the reduced waiting vehicle number contribute to
the reduced total travel time. Moreover, results showed that
the deep actor-critic algorithms could outperform the IFBC
and FTC methods through continuous learning.

We further compared the cumulative rewards of DDPGC
and TD3C in Fig. 13. Our goal is to maximize the reward
in Eq. (13), and the higher reward implies less waiting time
or higher traveling speed. We can see that both DDPGC and
TD3C have an upward reward trend during training, but the
fluctuation is significant. The reason is that the saturated traffic
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Fig. 14. Total travel time of TD3C, DDPGC, and FTC in scene two.

is unstable and sensitive to disturbances, while under training,
there are random actions (trial and error) that may lead to
performance degradation. From the result, it can be seen that
although the fluctuation of TD3C was more significant in the
first few episodes, it quickly found the optimal actions and then
had minor fluctuations and better results. Obviously, the TD3C
is more stable, especially for the traffic speed. Harmonious
speed is beneficial when the traffic flow is saturated.

D. Result in Scene Two

1) The Performance on an Extensive Network: he result of
simulation scene two is shown in Fig. 14. Compared with
the FTC, the total travel time of deep actor-critic algorithms
(i.e., DDPGC and TD3C) decreases from 4620 hours (FTC) to
3000 hours on average, saving 35% more time than the FTC
strategy. Fig.15 illustrates that the waiting time contributes to
the major part of the traveling time saved, where the number of
the waiting vehicles has reduced by nearly one-half. It implies
that the freeway corridor can bear more vehicles on the road
with the adaptive control of DRL methods. However, since
the traffic on the road is more saturated, the average speed
decreases slightly from 65 km/h to 60 km/h. Nevertheless, the
overall traveling time is reduced.

In our cases, comparisons between TD3C and DDPGC
have shown that both algorithms can achieve optimal results.
However, the training process of TD3C is more stable, and
the outcome of TD3C is slightly better than the DDPGC.
We believe that the Target Policy Smoothing and the Delayed
Policy Update techniques contributed to the stability of TD3C,
and the double critic networks contributed to the better result
since they could evaluate the policy more accurately. Generally
speaking, the freeway traffic volume is much heavier than
urban traffic, and the average speed is much higher. Hence,
even tiny imperfections may lead to obvious decay. This can
explain the pulses of DDPGC during training. Therefore, the
stability of TD3C is important for freeway traffic management.

Fig. 15. Accumulated waiting vehicles and the average speed of the road
network of TD3C and DDPGC during training.

Fig. 16. Execution time of an episode for different problem scales.

In summary, the proposed system with TD3C can satisfy
the stability and accuracy requirements and achieve good
performance under rush hours.

2) The Scalability and Computational Performance: The
scalability and computational performance is key issue for
reinforcement learning. Classic RL methods suffer from the
curse of dimensionality when the state and action spaces
become large. Thus, we have investigated the performance of
the proposed system from two aspects. First is the training
episodes to converge. Compared Fig. 11 with Fig. 14, we could
see that the total travel time became stable within 200 episodes
in both scenes, indicating that the training episodes did not
increase for the large road network.

The second is the execution time of an episode. When the
state and action space grows large, the deep neural network
is more complicated and requires more time for training.
To test the execution time variation, we designed an exper-
iment in Fig. 16, where the “S18A7” denotes the control
system that receives 18 states and outputs seven actions.
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In other words, the system controls seven traffic controllers
simultaneously. Similarly, “S45A3” denotes the control system
receives 45 states and outputs three actions. All the cases were
tested in scene two using TD3C, and the baseline was a pure
simulation without traffic control. Every case ran ten times to
collect the average performance data. Fig. 16 illustrates that as
the state and action space grows large, the execution time rises
in a logarithmic curve, which means the computational per-
formance decreases slower than the increment of the problem
scale. The test results are promising: the proposed system does
not suffer from the curse of dimensionality and the execution
time is acceptable for large-scale network control. In the worst-
case “S99A7”, two hours of compressed simulation data can
be trained within five minutes. Note that the results were tested
with the Intel i7-10710U CPU and 16 GB RAM; the execution
time can be further decreased with more powerful devices.

The reason behind this is the structure of the deep actor-
critic algorithm. Unlike the classic RL methods, the actor
network’s output (last) layer can directly produce the actions
for traffic controllers. Each output layer neuron can produce
an independent numerical action. The results from different
neurons can easily combine to the joint action. The scalability
of state (input) is similar to the action. In a word, the size of
the neural network grows linearly as the size of action and state
space increases, which is acceptable for large-scale control.

VIII. CONCLUSION

This paper proposed a centralized traffic control system that
integrates multiple ramp metering and VSL traffic controllers
to relieve traffic congestion on the freeway. The centralized
system has a straightforward structure and is robust. Besides,
we have introduced deep actor-critic algorithms to solve the
curse of the dimensionality problem for the control system.
Simulation results indicated that the time complexity of the
deep actor-critic algorithms increases linearly when controlling
more traffic controllers on a larger network. Therefore, our sys-
tem could effectively manage complicated freeway bottleneck
sections with various traffic controllers using a centralized
traffic control unit.

In addition, we developed a generalized framework that can
implement different deep reinforcement algorithms for further
extension. The framework uses a double-layer architecture
to synchronize multiple traffic controllers. The upper layer
focuses on the cooperation between traffic controllers, while
the lower layer decomposes the collaboration into independent
strategies for different traffic controllers. We also improved the
exploration strategy. The new design allows more explorations
when the reward is relatively low so that there is a higher
chance to evade local optimum. The SUMO simulation is
utilized to evaluate the system performance. Two scenes are
discussed: a single ramp weaving section and a freeway
corridor with multiple on-ramps and off-ramps. Results have
demonstrated that our system can learn a good policy in both
scenes and remarkably reduce the total travel time. In the
first scene, the total travel time has decreased by 20%, and
in the second scene, the total travel time has reduced by 35%,
compared with the fixed-time control. The TD3 algorithm

outperforms other control methods in performance and is more
stable compared with the DDPG control method. Results also
pointed out that the proposed centralized control system could
guide multiple traffic controllers effectively in a medium-scale
freeway network. This concludes that we could save comput-
ing resources by controlling multiple traffic controllers with a
centralized traffic control unit without noticeable performance
decay.

In the future, we will expand our research to a large-scale
road network, focusing on finding the equilibrium point of
the traffic controllers’ scalability and the control algorithms’
effectiveness. The cooperation method will also upgrade to
allow more advanced control strategies.
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