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A B S T R A C T

Significant amounts of data are collected in buildings. While these data have great potential for 
maximizing the energy efficiency of buildings in general, only a small portion of the data are 
accessible to researchers, government, and industry for analyses. Concerns about privacy are one 
of the major barriers prohibiting access to these data. Privacy preservation techniques are 
generally applied to this problem not only to preserve underlying privacy but also to improve the 
usefulness of data. Among various privacy preserving techniques, differential privacy has become 
one of the more popular solutions since its introduction in 2006. Differential privacy is a math
ematical measure for protecting privacy so that one’s privacy cannot be incurred by participating 
in a database. Although significant research improvements have been made for more than a 
decade, applying differential privacy to data collected in buildings is still an immature field of 
study. Because implementing differential privacy on a certain use case is not straightforward and 
can be achieved with various configurations, it is important to understand variation of configu
rations with different use cases around data collected from buildings. This literature review aims 
to introduce what has been done to implement differential privacy in data collected in buildings, 
and to discuss associated challenges and potential future research opportunities.   

1. Introduction

Background: The residential and commercial buildings sector accounted for 20% of global energy consumption in 2018 [1], and a
much higher 39% in the United States in 2019 [2]. Many research efforts are focused on reducing the energy consumption, increasing 
the energy efficiency of buildings, and reducing carbon emission. Buildings can also provide services to utilities to enable deeper 
penetration of renewable energy on the grid. One of the major pathways to achieve these goals is to first understand the operational 
performance of buildings with collected data. The performance reflected in these data either informs the reality of existing buildings, 
reflects the effects of short- or long-term events and improvements in buildings, or aids the development of innovative approaches for 
maximizing building energy efficiency. The focus of this literature review aligns with the last use case, where extracting insights from 
the data greatly benefits further research. 

Definition of privacy: The big data era saw a massive increase in data collection as well as unprecedented privacy threats. It is worth 
noting what privacy means in this field of study because the definition of privacy has evolved over the years. An early definition of 
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privacy started with “the right to be left alone” [3]; however, social situations have evolved since then, as mentioned by Hayashi [4] 
who notes “self-determination such as sexual orientation or contraception is admitted as one of the privacy elements.” Similar evo
lution also occurred and continues to occur in data collected from buildings. Granular data, such as smart meter data collected from 
advanced metering infrastructure (AMI) in sub-hourly (e.g., down to 15 min) intervals, has become available (owned by many utility 
companies around the world), but research has also shown that these data include various types of private information given the strong 
correlation of occupants (or building operators) with building energy consumption. Thus, there is a need to define privacy, especially 
for data collected in buildings. While Warren and Brandeis [3], Prosser [5], and Clark [6] defined privacy in general, Hayashi [4], 
Begum and Nausheen [7], and Jain et al. [8] considered privacy in terms of big data, and Pillitteri and Brewer [9] specifically focused 
on the context of smart grids. Pillitteri and Brewer [9] translated the privacy classifications defined by Clark [6] in the context of the 
smart grid application as shown in Table 1.This literature review follows the definition of privacy depicted by Pillitteri and Brewer [9]. 

Existing privacy disclosure practices: Best and Teehan [10] provided details of how privacy (embedded in the meter data 
collected from buildings) is protected in the United States. While specific applications of protecting privacy varies in the United States 
depending on different stakeholders, regulatory mandates, and political contexts, variations of applications include similar re
quirements: notice, purpose statement, access and control, data minimization, use and disclosure limitation, data quality and integrity, 
data security (including breach notification), and accountability and auditing. Because energy used in buildings is provided by utilities, 
utilities (or a third party) are considered as custodians and they hold the liability for protecting the privacy embedded in the meter 
data. Protection of privacy is typically done by anonymization and/or aggregation of data to ensure the data is non-identifiable to a 
specific individual (or entity). The aggregation of metered data is a common practice which can (1) protect individual customer usage 
and (2) enable certain use cases that do not require identifiable information or customer consent for utilizing the data. Risk-based 
approach that focuses on developing privacy protection mechanisms specific to high and potential risks is also included in existing 
privacy protection applications, however, the detailed approaches can vary significantly between applications. 

Previous reviews of privacy protection against big data: Various approaches (e.g., encryption, anonymization, differential 
privacy) have been studied and applied to achieve a trade-off between preserving privacy and extracting accurate insights from the 
data. Lane [11], Hayashi [4], and Fang et al. [12] described the importance of ensuring privacy while handling and extracting insights 
from large data sets (data that is broader than data collected in buildings). While Lane [11] emphasized the new demand created by the 
big data era to both disseminate data and protect privacy and confidentiality of data, Hayashi [4] presented and compared actual 
privacy approaches between the United States and the United Kingdom, focusing on possible policy considerations, an area that needs 
significant attention to realize the implementation of privacy preserving techniques into the marketplace. Fang et al. [12] conducted a 
survey on privacy preserving techniques for big data and also considered legal measures and industry specifications. 

Previous reviews of privacy protection specific to buildings: Regarding data specifically collected for buildings, Chau and Little 
[13], Pillitteri and Brewer [9], Finster and Baumgart [14], Begum and Nausheen [7], Asghar et al. [15], Desai et al. [16], and Sookhak 
et al. [17] discussed privacy protections in different levels of smart applications, such as smart spaces, smart buildings, and smart cities. 
Chau and Little [13] analyzed limitations of existing privacy preserving approaches for smart spaces and proposed adaptations to 
ensure strong privacy preservation. Pillitteri and Brewer [9] developed guidelines for smart grid cybersecurity to enable relevant 
organizations to effectively construct their cybersecurity strategies around the smart grid. Their study also covered the privacy aspect 
of the data in smart grids by assessing the privacy impact, discussing mitigating factors, and identifying potential privacy issues. Finster 
and Baumgart [14] conducted a survey on privacy preserving approaches and solutions in smart grids and classified the problem into 
two areas: problems in energy metering for billing and metering for operations. Asghar et al. [15] also reviewed privacy preserving 
approaches for smart meter data in three application areas (billing, operation, value-added service) and covered various use cases of 
smart meter data and related privacy legislation highlighting shortcomings, recommendations, and future research directions. Desai 
et al. [16] reviewed privacy preserving approaches for smart meter data and presented solutions for detailed privacy problems. 
Sookhak et al. [17] surveyed security and privacy issues in smart cities and presented a thematic taxonomy of the issues to support the 
security design of smart cities. 

Previous reviews highlighting other important aspects: While these studies have clearly touched upon important aspects of 
privacy as it relates to smart meter data, other studies have also highlighted different aspects of the same context of protecting data 
collected from buildings. Ruddell et al. [18] emphasized the usefulness of smart meter data (collected by utility companies) and how 
these data can result in public benefit by analyzing the trade-off between usability and privacy. The study also noted that the strict 
privacy rule applied to California utilities (in the United States) does not meet the needs of compelling public interest and suggested a 
relaxed privacy rule based on their statistical analysis. Schwee et al. [19] developed a tool for assessing privacy risk as part of the data 
sharing process. The tool creates a report that presents potential risks associated with each data type. The tool was tested on real-world 
building data sets that include state measurements of indoor air temperature, humidity, CO2, illuminance, weather, noise, pressure, 

Table 1 
Definition of privacy by Pillitteri and Brewer [9].  

“There is no one universal, internationally accepted definition of privacy, it can mean many things to different individuals …. Privacy is not a plainly delineated 
concept and is not simply the specifications provided within laws and regulations. Furthermore, privacy should not be confused, as it often is, with being the 
same as confidentiality; and personal information is not the same as confidential information. Confidential information is information for which access should 
be limited to only those with a business need to know and that could result in compromise to a system, data, application, or other business function if 
inappropriately shared. It is important to understand that privacy considerations with respect to the Smart Grid include examining the rights, values, and 
interests of individuals; it involves the related characteristics, descriptive information and labels, activities, and opinions of individuals, to name just a few 
applicable considerations.”
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etc. at various time intervals (10 s–20 min). 
Previous reviews of privacy protection with differential privacy: Differential privacy is one of the privacy preserving tech

niques. While the protection with a typical annonymization includes only two options between possible or impossible for extracting 
specific insights from the annonymized data, differential privacy enables continuous control (i.e., possible to extract insight from data 
with controlled uncertainty) of privacy protection with mathemathical formulation. This capability of differential privacy opens up 
opportunities for extracting various insights from the data and also mitigates the weakness of the annonymization (i.e., linkage/re- 
identification attack). More detailed description of differential privacy is included in the following section. There are additional re
view studies that focus on differential privacy but with relatively broader scope compared to this literature review. These review 
studies provide useful theories, concepts, configurations, and general perspectives of differential privacy regardless of the type of data. 
Desfontaines and Pejó [20] emphasized that approximately 200 different notions that are either extensions or variants of differential 
privacy have been introduced since 2006. The evolution of differential privacy definitions necessitated a proper classification, and the 
study proposed a systematic taxonomy that is unified, comprehensive, and flexible enough to categorize numerous types of differential 
privacy definitions. This study provides key insights on what type of variations can happen in differential privacy implementations in 
general; however, it can be difficult for an early practitioner to digest all dimensions and variants in the context of the building data. 
Hassan et al. [21] relatively distilled the scope and surveyed differential privacy applications around cyber physical systems (CPS). The 
term CPS represents any computer system that includes a mechanism of monitoring and/or controlling by a computer-based algorithm 
and is connected to an internet where data can be transferred to other CPSs. Application areas such as energy systems (e.g., smart grid), 
transportation systems, healthcare and medical systems, and the industrial internet of things are covered in the study. The study 
provides a very comprehensive review of many previous studies, classifying them into different applications and various configura
tions of differential privacy. While there is some overlap in scope between Hassan et al. [21] (via applications in smart grid) and this 
literature review, the review needs more distilling for a building researcher to understand all possible variations of differential privacy 
around building data. 

Objective of the literature review: While extensive research have been covered during the past 16 years, previous research has 
not been distilled down into the application on data collected from buildings. Thus, the main objective of this paper is to open the door 
for building researchers to introduce differential privacy and understand how the applications are implemented around the data that 
building researchers are interested in. To achieve this goal, this paper reviews previous studies that focus on preserving privacy in data 
collected in buildings with differential privacy. The remainder of this article is organized as follows: Section 2 describes the specific 
scope considered in this review, Section 3 introduces privacy risks associated with building data, Section 4 provides use cases that 
leverage insights extracted from the building data, Section 5 reviews all studies in terms of various configurations of differential 
privacy, Section 6 discusses research gaps summarized from the review, and Section 7 provides concluding remarks. 

2. Scope of the literature review

This section presents specific scope and definitions used in the literature review. The detailed methodology for our literature review
and metadata analysis based on the gathered literature are provided in the Supplementary Material. 

What type of data is this article interested in? While the data is a key starting element of applying differential privacy, dif
ferential privacy can be applied to any type of data (e.g., numeric, categorical, timeseries). While various data can be collected in 
buildings, the phrase “building data” as used in this literature review covers data listed in Table 2. Note that this is a relatively 
extensive list and not all data types were found in reviewed studies. 

What type of privacy preserving technique is this article interested in? While there are different approaches available, such as 
anonymization, encryption, or differential privacy, this review focuses on the approach of differential privacy which was first 
introduced by Dwork [22]. The contextual and formal definition of differential privacy is described as follows: “Differential privacy 
describes a promise, made by a data holder, or curator, to a data subject: You will not be affected, adversely or otherwise, by allowing 
your data to be used in any study or analysis, no matter what other studies, data sets, or information sources, are available. At their 
best, differentially private database mechanisms can make confidential data widely available for accurate data analysis, without 
resorting to data clean rooms, data usage agreements, data protection plans, or restricted views [23].” To provide additional context, 
Fig. 1 provides mathematical and narrative definitions of differential privacy. As shown in the figure, the core concept of differential 
privacy is to add mathematically random but controllable noise (via ε and δ) in the original data so that the likelihood of identifying an 
individual’s contribution to the data can be minimized. The ε in the equation is called the privacy loss, privacy parameter, or privacy 
budget. Theoretically, it is the maximum distance between the same query on database D1 and D2. Because the addition of noise 

Table 2 
Types of building data considered in the literature review.  

Data Type Data Description Typical Data Owner 

smart meter electricity, gas, water, on-site power generation (e.g., photovoltaic [PV]) data utility companies 
submeter data data measuring building sub-systemtotals: HVAC, lighting, plug load, orwater 

heating, etc. 
homeowner or building operator (typically 
tracked in BAS) 

state measurement 
data 

data measuring the state of building systems: temperature, pressure, airflow, 
occupancy, control signal, etc. 

homeowner or building operator (typically 
tracked in BAS) 

smart home device 
data 

data measured with smart Internet of Things (IoT) devices: smart thermostat, 
occupant health monitor, etc. 

homeowner  
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increases the uncertainty of the original data, (1) there is a trade-off between privacy protection (e.g., increased protection with 
smaller ε) and usability of the data (e.g., less usability with smaller ε) for any differential privacy implementation and (2) specific 
configurations (e.g., how much noise should be added?) should be carefully considered for each implementation practice. 

There are many choices for the noise addition ”mechanisms” in differential privacy implementations where each mechanism differ 
in terms of how to add noise to (or perturb) the original data with certain statistical distribution. The most popular noise addition 
mechanisms include Laplace, Gaussian, and exponential mechanisms. These mechanisms and more others (e.g., geometric, binomial, 
etc.) differ in terms of (1) which statistical distribution the noise is drawn from, (2) how each can be applied between (ε, δ)- and 
ε-differential privacy, and (3) what type of query (e.g., numeric or categorical) each can support. Because the selection of the 

Fig. 1. Mathematical and narrative definitions of differential privacy.  

Fig. 2. Privacy risks documented in this study.  
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mechanism depends on the data, query, and use case of the differential privacy implementation, studies covered in this literature 
review also includes variations of mechanism selections. More detailed summary regarding the choice of the noise addition mechanism 
between studies is included in review of studies in Section 5. 

Unlike other anonymization methods, differential privacy provides a mathematically rigorous definition of privacy. This definition 
of privacy is implemented in a wide variety of “mechanisms” suitable for different analytical workloads. The guarantee of differential 
privacy is composable, allowing data owners to bound privacy risk across multiple data releases, even for very different statistics. 
Appealingly, this guarantee holds no matter how much additional information is released about individuals in a data set. Finally, 
differential privacy can be realized in a number of different architectures depending on the threat model for a given data set. 

3. Review of privacy risks

Before examining individual studies that have applied differential privacy in building data, readers should be aware of the private
information that these data might contain. Privacy risks are summarized from the reviewed literature categorizing risks into 1) 
research studies that revealed private information from real data, 2) theoretical privacy risks mentioned in studies, and 3) privacy risks 
in real life. Fig. 2 includes a summary of privacy risks covered in this study where the risk examples are differentiated by scenario (i.e., 
in what scenario privacy is being revealed), method (i.e., what type of privacy revealing technique is used), characteristics (i.e., how 
this example can be generalized for other contexts), and type of private information revealed (i.e., what are exactly revealed). 

3.1. Risks revealed from studies (from data not related to buildings) 

The first set of examples include general (and popular) context that revealed private information based on the public data that are 
not related to buildings as shown in Fig. 2. In the 1990s, the Massachusetts Group Insurance Commission in the United States decided 
to release anonymized health information of state employees to help researchers. While the governor assured the public that the data 
would be anonymized enough to protect underlying privacy, Sweeney [24] combined the anonymized health data with additional 
information such as proximity of the governor’s residence (i.e., Cambridge, Massachusetts) and a $20 database including the city of 
Cambridge voters’ information (e.g., name, address, ZIP code) and was able to narrow down the anonymized health information 
specific to the governor. In 2006, Netflix released an anonymized data set including movie rankings of 500,000 customers. The purpose 
of this release was to hold an open competition where competitors could use this data to create better movie recommendation al
gorithms. Knowing from past experience that anonymization does not always guarantee the protection of underlying privacy in data, 
Narayanan and Shmatikov [25] leveraged public data from the Internet Movie Database (IMDb) to reidentify the anonymized customer 
and his or her movie rankings. This reidentification of anonymized data not only revealed movie rankings of a certain customer but can 
also reveal a customer’s political preferences, which can easily be deemed private. The last example is Homer et al. [26], which showed 
that a person’s participation in a genome study can be inferred using the publicly released genome-wide association study statistics. 
Once it is verified that a person has participated in the genome-wide association study, the genotype of the person including certain 
risk factors related to their health can also be revealed. These examples not only provide real-life privacy risks in other data types but 
also demonstrate the weakness of anonymized data, where a linkage attack that can combine multiple data sources to fill the gap of 
previously anonymized information. 

3.2. Risks revealed from studies (from data collected in buildings) 

The second set of examples include risks from studies related to data collected in buildings. These examples mainly consider private 
information extracted from electricity consumption data (shown in Fig. 2) and expressing concerns of privacy threats. The non- 
intrusive load monitoring (NILM) method was first introduced by Hart [27] in 1992, where the method infers usage of various 
home appliances by analyzing and disaggregating household-level current and voltage measurements. The original purpose of this 
method was to understand a household’s home appliance usage and to inform utility companies about a customer managing use cases. 
However, the usage profiles of home appliances can reveal private lifestyles of the occupants, such as whether an occupant is in the 
shower or not. For this reason, the NILM technique has also been used as an adversary (attack) model for evaluating the performance of 
privacy preserving techniques. 

The emergence of smart grids associated with smart meters in AMI led researchers to focus more on privacy in smart meter data 
because data sharing via smart meters in the smart grid is not only required for efficiently managing the smart grid, but also exposes 
data relatively more to the outer world than the conventional automatic meter reading (AMR) infrastructure. Lisovich et al. [28], 
Berenguer et al. [29], and Molina-Markam et al. [30] specifically focused on this concern by conducting NILM attacks on fine-grained 
real smart meter data. Without a priori knowledge and leveraging off-the-shelf (or newly developed) statistical methods, the studies 
revealed either 1) the number of occupants at home, 2) sleeping routines of occupants, 3) eating routines of occupants, and other 
characteristics based on home appliance usage patterns. 

Rouf et al. [31] also emphasized the privacy risks in the existing AMR infrastructure, where there are 40 million meters being used 
in the United States. Because the existing AMR infrastructure was receiving less attention compared to AMI, the study performed 
reverse engineering to infer private information from AMR data and proved that the existing infrastructure is also vulnerable to privacy 
threats. The study conducted an eavesdropping experiment in a neighborhood with AMR infrastructure, and experiments were con
ducted in a nearby location with a laptop installed with a commercially available low noise amplifier (LNA) to increase the physical 
range of eavesdropping. Most of the meters in the neighborhood were decoded, and based on the energy consumption readings 
revealed from these meters, private information such as daily routines of occupants (e.g., household occupancy) and appliance (e.g., 
water heater, washing machine, stove) usage patterns were also revealed. 
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Greveler et al. [32] focused on even more granular disaggregation by using relatively more granular metered data (compared to 
typical smart meter readings) to infer not just TV usage patterns but also display type (e.g., CRT, plasma, or LCD) and TV channels that 
occupants are watching. The developed algorithm first requires digital movie data as an input and to use as a basis for comparison. The 
data is then split into 5-min intervals, and the brightness of each frame in each interval is calculated. Because the brightness (i.e., 
backlighting) is mainly correlated with the power consumption of the TV, the timeseries TV power consumption can also be calculated. 
The calculated power consumption can be compared against the TV power consumption inferred from NILM. Once the best match is 
verified based on the movie data, the 5-min window can specifically decipher which scene the occupant was watching with his or her 
TV. 

While the examples related to buildings described above mostly focus on meter data as a basis to infer, there are other mea
surements typically being collected in buildings. Wang and Tague [33] focused on occupancy sensor measurements that can be stored 
in the building automation system (BAS, or Building Management System [BMS]), which provides timeseries occupancy status 
(occupied/unoccupied or even counts of occupants) in each room installed with an occupancy sensor. And these data are considered 
valuable as an input for optimally controlling the heating, ventilation, and air conditioning (HVAC) system in a building. The study 
begins with a concern that these data can reveal as much information as looking into a surveillance camera installed in buildings, 
revealing the whereabouts of occupants. Although typical data measured in BAS stay within BAS and generally never leave the 
building operator’s hands (who are considered trustworthy), another assumption justifying the study’s concern is the scenario for 
smart buildings where data exchange against the outside world (e.g., cloud) is necessary for maximizing the efficiency of buildings in a 
community. Other than occupancy sensor measurements, the developed algorithm also requires additional contextual information, 
such as the floor plan of the building and office directories, which are often publicly available. The factorial hidden Markov model 
(FHMM), which is suitable for transforming the characteristics of occupancy sensor measurements in different locations in a building, 
was applied in the study to reconstruct and reveal location traces of individuals. The proposed algorithm was evaluated with real and 
synthetic occupancy sensor data, proving the accuracy of the reconstruction. 

3.3. Risks in theory 

The third examples include theoretical privacy risks mentioned in studies reviewed in this article. Most of them can be grouped into 
daily (or even more granular) activities and lifestyles of occupants, not only in residential homes but also in commercial buildings. For 
example, specific locations of an occupant in a building, general occupancy status (either occupied or unoccupied) of the building, 
number of occupants in the building, and other characteristics are described as risks that can be revealed from the data collected in 
buildings. 

In addition to the lifestyle of an occupant, two studies (Barbosa et al. [34,35] and Hassan et al. [21]) also noted that the information 
of equipment in buildings not operating at the desired efficiency level can be inferred and used for targeted business advertisement. 
Anecdotally, it is not uncommon to see homeowners being surprised and questioning “How did they know?” in response to adver
tisement material delivered to their homes. Other private information includes the timings of on-site electricity generation with 
renewable energy sources (e.g., PV), mentioned mostly by Hassan et al. [21,36]. The information of when and how long these on-site 
generations occur can be used by a utility to change their dynamic pricing scheme to one unfavorable to the customer; this information 
can also be sold to commercial parties for targeted advertisements. 

Liu et al. [37] and Xu et al. [38], which focused on IoT device data, described a privacy risk in individual’s health data monitored in 
smart home devices. Liu et al. [37] specifically provided examples of Intel’s IoT solutions targeting the healthcare industry and Intel 
and General Electric’s QuietCare, where the purpose of these solutions is creating a new paradigm that reduces unnecessary societal 
costs by leveraging IoT. For example, sensors developed in these solutions can monitor the occupant’s health status almost in real time. 
These data can also be shared with the healthcare providers, where timely instructions and feedback can be provided to minimize 
emergency visits and healthcare office visits. However, if these data are leaked, they would seriously threaten the privacy of the 
occupant (or patient) because health information is one of the most highly regarded types of private data in real life. 

3.4. Risks in real life 

To the best of the authors’ knowledge, the building-related privacy risk examples presented previously have never reached the 
point where the harm resulted in public shaming, monetary expense, or legal proceedings. Thus, it is worth knowing if there was any 
real-life harm due to the privacy invasion inferred by data collected from buildings. Examples included in this section are mostly based 
on the comparison of aggregated meter consumption between users where the information about the outlier (i.e., high energy users) 
can be tied to a certain private information as shown in Fig. 2. Amador [39] analyzed domestic and international terrorism events that 
occurred in Germany between 1960 and the 1990s. It described the transformation of radical students to become terrorists and 
described how the government responded to these terrorism events. The thesis specifically mentioned an example where a member of 
the Red Army Faction was arrested by utilizing meter data. At the time, it was thought that the terrorists preferred high-rise apartments 
close to highways and with underground garages. Officials reached out to the local electricity company to verify apartment units with 
extremely low electricity consumption (because safe houses are only used at certain times) and where payments were made in cash. By 
narrowing down apartment units that fit these criteria, officials were able to detect the safe house and arrested the member of the Red 
Army Faction. However, this was later deemed unconstitutional by German courts giving the inference from private billing 
information. 

Several news articles (Guest [40] and Smith [41]) in 2007 reported that the Austin Police Department in Texas in the United States 
utilized electricity consumption data acquired from Austin Energy (a local utility company) to verify illegal marijuana growing op
erations. Similar to the high energy use intensity of data centers, marijuana growing facilities are also a huge energy consumer per unit 
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floor area. On one side, targeting narrowed-down addresses for an investigation can save a large amount of police enforcement effort. 
This case resulted in a legal court debate, and revealed that the Austin Police Department used thousands of Austin Energy customers’ 
data without their consent. Thus, on the other side, thousands of customers’ underlying privacy in metered data was at risk. At the 
time, Austin Energy’s decision on sharing the data with the law enforcement was based on a previous ruling from 1994. However, 
because data collected in buildings is becoming more granular (e.g., smaller measurement intervals) and high-quality (e.g., without 
erroneous measurements), these data are increasingly being considered private. A similar court case was Naperville Smart Meter 
Awareness v. City of Naperville [42] in 2018. The city of Naperville in Illinois in the United States received funding from the 
Department of Energy to upgrade AMR infrastructure into AMI. While other cities had an option for residents to opt out from the smart 
meter transition, Naperville’s residents did not have that option. And because intimate personal information can be inferred from the 
smart meter data if the data falls into the hands of adversaries, concerned residents sued the city of Naperville. However, the court 
decided the following: “Because of the significant government interests in the program, and the diminished privacy interests at stake, 
the search is reasonable. We therefore AFFIRM the district court’s denial of leave to amend.” 

The last examples are from news articles by Glionna [43] (Las Vegas, Nevada, United States) and Horwath [44] (Santa Fe, New 
Mexico, United States). These articles reported a list of top residential owners and commercial users who have consumed the most 
water in the city based on the data provided by the local water utility companies. These articles not only included commercial users but 
also included residential owners with their names clearly shown. The intention of these articles was not to publicly shame these users 
because it is also revealed that those large bills can be due to leaky pipes, incorrect billing, or not accounting for the usage of recycled 
water. However, releasing the exact names of businesses and individuals can easily cause readers to shame the users. 

Some readers might argue that many of these examples are based on theory, with only a handful of real-life examples. However, it is 
worth noting that data collection is still evolving in terms of its quality and quantity and, at the same time, skills of researchers or data 
scientists for analyzing these data (e.g., machine learning) are also quickly evolving. Thus, before these threats become more definite, 
the topic of preserving privacy in data collected in buildings should be carefully scrutinized. 

4. Review of use cases

Applying differential privacy often means implementing additional mathematical equations in an existing query that supports the
use case of the analyst. Here, the term query is an algorithm developed by the analyst (or data curator) to extract insights by running 
the algorithm on data. An analyst is the person or entity who needs insights for their use case. For example, considering the use case of a 
utility company’s monthly billing scheme, the algorithm for calculating the monthly electricity consumption from granular (e.g., in 15 
min interval) timeseries data can easily be formulated without differential privacy implementation. But if the threat that customers 
may not trust the data curator (i.e., internal attack) working for the utility is perceived as significant, then the timeseries electricity 
consumption of individual customers should be obfuscated by adding another layer of mathematical equations with differential 

Fig. 3. Use cases identified in the literature review.  
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privacy before the data gets transmitted to the utility company’s database. If the data curator can be trusted, but releasing monthly 
energy consumption information to the public is the concern (i.e., external attack), then the results of monthly energy consumption 
should also be obfuscated. For this reason, the implementation of differential privacy is highly dependent on the use case of the analyst 
or the underlying queries used for various use cases. This section summarizes all use cases identified in the literature (summarized in 
Fig. 3) and also provides other potential use cases. 

4.1. Building portfolio level use cases 

Energy consumption data of buildings joined or related to other data (e.g., metadata such as building footprint, primary business 
type) is a very underutilized resource. Utility companies that provide energy (e.g., electricity, natural gas, and/or water) to customers 
have a relatively strong track record in energy management and energy data analysis because utilities have much less friction limiting 
their ability to obtain data to conduct such analyses. And as a result of having the means, analyses that serve a utility’s business in
terests are more likely to be well developed. Thus, the description and conceptual framing of many use cases (shown in Table S2) for 
data privacy centers on (a) applying energy data to meet an objective or serve a business interest of a utility company, (b) meeting 
moral and/or legal standards for providing privacy to utility customers, and (c) focusing on numerous customers’ (portfolio-level) 
energy consumption rather than focusing on individual building performance. 

Aside from use cases, which mostly focus on a utility company’s interest, there are also problems and potential solutions from the 
point of view of other stakeholders such as local governments, owners and their representatives from individual properties to port
folios, real estate investors, academics, and other parties performing research in the public interest. The interests of these non-utility 
parties may rely on similar or identical analytic methods to those developed to address a utility company’s use cases. For example, local 
governments have interest in planning for reduction and elimination of building operational greenhouse gas (GHG) emissions. To 
understand which buildings (within the jurisdiction or portfolio) contribute the most toward GHG emissions, an analysis can be 
performed by joining building energy use by fuel type with spatial and demographic data. This can enable proper planning and tar
geting of customers for building electrification. 

It is not only local governments but also state governments, utility companies, and electrical engineers that have interest in right- 
sizing electrical infrastructure with thinner tolerance due to more precise safety factors and diversity factors in load estimation. An 
analysis of this use case can be conducted by identifying and quantifying distribution statistics for different end uses that present 
identifiable signals by occupancy in usage data. These statistics and a transparent methodology can be provided to officials for drafting 
National Electrical Code and local policy. This will provide a supplemental and alternative source of data to inform load diversity 
factors or related calculation methods used by electrical engineers to resize electrical infrastructure. Another type of interest from 
similar stakeholders is estimating the potential and impact of electrification or implementing best practices for selecting minimum 
efficiency appliances. This use case can be constrained by the electrical capacity of the local distribution network. Additionally, the use 
case considers grid harmonization from the point of view of utility companies, but it also considers transparency about potential scale, 
methods, priorities, and timing for energy system transformation for the other parties. Local governments are also interested in 
facilitating community input as part of a master plan for developing new or replacement utility infrastructure and decommissioning 
existing utility infrastructure (i.e., decarbonization entailing electric system upgrades and “pruning” of gas infrastructure, or devel
opment of community microgrids enabled by concentrated deployment of utility-controllable distributed energy resources). The 
analysis should be based on where (specific location) local government, stakeholders, and/or utility should prioritize investment to 
advance public safety, racial equity, and public health by facilitating concentrated transition of energy systems. 

4.2. Individual building level use cases 

As shown in Table S2, many studies have also discussed use cases that focus on performance within a building. Two data types are 
covered in this scope: 1) IoT devices (and their measurements) in smart-home, -city, -community, and -grid scenarios where these 
devices have capability of communicating with the cloud and 2) BAS data that collects various state measurements (e.g., temperature, 
flow, control signal) as well as energy consumption information for the purpose of automating and efficiently controlling sub-systems 
(e.g., HVAC, lighting) in buildings. Hassan et al. [21], Jelasity and Birman [45], Liu et al. [37], and Pappachan et al. [46] described a 
use case of monitoring the quality and structural health of each smart meter device and their target to maintain the quality service of 
IoT devices. Pappachan et al. [46] also mentioned that “information captured about the building and its inhabitants will aid in 
development of services that improve productivity, comfort, social interactions, safety, energy savings and more.” However, because 
the useful “information captured about the building and its habitants” can also be private, these studies are making an effort to develop 
privacy preserving techniques while providing valuable services. 

According to the Commercial Buildings Energy Consumption Survey (CBECS, [? ]), which provides results of a bottom up approach 
(via statistical sampling) for estimating nationwide energy consumption characteristics of commercial buildings in the United States, it 
is estimated that 36% (780,662 buildings covering 3.4 billion m2 of floor area) of commercial buildings in the United States have BAS 
integrated in their buildings. The comprehensiveness level of BAS can vary widely by product, but it typically measures various state 
measurements such as temperature in rooms (i.e., thermal zones) and temperature, pressure, airflow, and control signals around the 
HVAC system that are necessary for automating and controlling the HVAC system to deliver comfort to occupants while maximizing 
the efficiency of the system. Some extended capabilities of BAS can include measurements around the lighting system. For example, by 
measuring the indoor/outdoor brightness levels and calculating the solar angle based on the location of the building and time, it is 
possible to automate the control of motorized roller shades on the facade and lighting power output (i.e., dimming) depending on the 
available daylight that penetrates into the rooms throughout the day. Hassan et al. [21], Sookhak et al. [17], Jia et al. [47], Chau and 
Little [13], Xiao et al. [48], and Ny and Mohammady [49] described or focused on the use case of improving HVAC and/or lighting 
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systems control by using the data measured in BAS. Similar to value-added services that the utility company can offer to customers 
based on portfolio-level measurements, energy efficiency providers can also take advantage of the BAS data for optimizing service 
offerings with data-driven applications for building owners and operators. 

There are certainly many more use cases that are not highlighted in the literature that may need a proper obfuscation because of the 
underlying privacy included in the data. One of the popular research topics around buildings is a data-driven analysis leveraging 
machine learning techniques. Today, this field of study is an enormous research area in which studies are expanding in both quantity 
and quality every day. While reviewing all use cases in this field of study is not the scope of this paper, some of the recent review 
articles that focus on several major use cases can represent the current trends and reviews. Similar to the use case of load forecasting in 
the grid level, individual building level load prediction with machine learning techniques is also a popular research topic as it was 
reviewed by Zhang et al. [50]. Mirnaghi and Haghighat [51] conducted a review of how data-driven methods can be used for the 
automated fault detection and diagnostics (AFDD). Data-driven AFDD is, in short, analyzing various state and energy consumption 
measurements in buildings to detect or classify the signatures in data that correspond to certain faults (e.g., condenser fouling, duct 

Fig. 4. Different configurations of differential privacy implemented for building data.  
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leaking) in buildings. Wang and Hong [52] focused on the review of improved building control realized by machine learning tech
niques. While the previous three studies focused on the performance of buildings, Hong et al. [53] expanded the review scope of 
machine learning applications to the building’s entire life cycle, including design, construction, commissioning, operation, mainte
nance, control, and retrofit. 

5. Review of differential privacy implementation approaches

This section reviews differential privacy implementation approaches around building data. Fig. 4 presents various simplified
implementations of differential privacy summarized from the literature, including approach classification, required key components/ 
actors from collecting data to extracting insights from the data, the location of the data obfuscation, type of data considered in studies, 
type of noise addition mechanisms selected in studies, and relative characteristics between approaches. Relative characteristics that 
cover aspects of privacy protection, queried insights, and implementation are represented with arrows (i.e., up-arrow meaning better 
and down-arrow meaning worse) in the figure. 

As shown in Fig. 4, the highest level of approach classification is differentiated between local (distributed) and global (centralized) 
differential privacy. As mentioned in Section 2, there are hundreds of different configurations of differential privacy when it comes to a 
specific implementation. While there is no formal definitions of local and global differential privacy, the two differs mainly where the 
noise is being added across the workflow between data collection and data query. The local model adds noise on end use devices (e.g., 
at the meter) before the individual data is combined (or aggregated) with any other data in a database. Conversely, the global model is 
distinctive compared to the local model because the differential privacy filter is applied after all data are collected (or aggregated) in 
the database. Compared to the global model, local models have larger noise once they are aggregated into various grouped levels (e.g., 
utility customers by different building types) for a given level of accuracy. This also means that in order to achieve a certain level of 
accuracy for extracting insights from very noisy aggregated consumption data, the number of samples (e.g., meters, buildings, or 
homes) should also be large enough to compensate the noise. The global model has merits in this perspective where the noise is added 
once for a certain query after numerous meter data is gathered in the database, and the configuration of differential privacy can be 
tailored for each and every query for maximizing the accuracy of insights while preserving privacy. However, when (and if) cata
strophic failure happens with differential privacy, the global models have more risk compared to the local model because the failure 
can reveal lots of data that are placed in one database while several privacy preserving failures in local models will still ensure safety 
for the other majority of data. 

From the data query perspective for extracting insights from the data, the local model can provide a privacy preserved database that 
includes noisy meter data while the global model provides a database with raw meter data that contains the private information of the 
building or occupants. For this reason, the global model requires a trusted data curator who has access to the raw data but also has 
responsibility for preserving privacy while extracting insights from the raw data. The global models in the literature are either 
interactive or non-interactive. The interactive global model requires the data curator to review and respond to individual queries, 
requiring independent interaction for each query type. This can result in additional processing time (if the new query has never been 
reviewed before) for the entire querying process compared to the non-interactive models where any query can be made on the noisy 
database. Additionally, the data curator can also be a risk over time. For a local model, because the data is obfuscated before any data 
curators look into the raw data, this configuration does not require an additional human resource. For the same aspect of not involving 
the data curator and specific interaction for individual queries, the local model is also represented as a non-interactive model. 

5.1. Local (distributed) and non-interactive models 

The literature review found a total of 35 studies applying “local” differential privacy on data collected in buildings, including five 
major variants within the local (and non-interactive) model in terms of the application as shown in Fig. 4: simple private meter, private 
meter with differential privacy combined with encryption, battery load hiding, fog/edge node, and building control applications. 
These applications differ slightly in terms of components that constitute the entire workflow between measuring the data, obfuscating 
the data, and querying the data (by the analyst). 

Configurations and mechanisms varied across these studies, as well as the type of queries analysts were interested in. While 
ε-differential privacy was adopted in 19 studies, (ε, δ)-differential privacy was adopted in 6 studies. In order to evaluate the perfor
mance of privacy preserving techniques proposed from these studies, many studies reviewed in this literature review shared a similar 
study component by structuring attack (or adversary or threat) models and considering internal (e.g., honest-but-curious) and/or 
external (e.g., malicious eavesdropper) attacks. The honest-but-curious adversary in this context means the actors (i.e., internal at
tackers including data curator and analyst) involved in the algorithm are ”honest” enough not to tamper with the algorithm of dif
ferential privacy protocols but are “curious” enough to seek and infer insights from data that they are handling. Most of the studies 
selected one of the distributions (Laplace, Gaussian, Uniform, and Geometric) for the noise addition mechanism while only one of the 
studies explored and quantified the performance of different differential privacy mechanisms testing all distribution types [54]. 

The most common query (or use case) type was calculating aggregated consumption of numerous meter data, which is important in 
terms of understanding the magnitude and profile of energy consumption on the grid level. Meter data aggregation (across the time 
horizon and/or across different meters) is one of the popular queries that the utility company can mainly use for customer billing, 
creating strategies for mitigating peak demand, and/or creating cost-effective plans for balancing the supply and demand. Other 
queries included 1) perturbating individual timeseries metered profile [55–59], 2) spectral analysis [60,61], and 3) state estimation in 
distribution network [62]. 

J. K et al.                                              



Journal of Building Engineering 56 (2022) 104724

11

5.1.1. Private meter including differential privacy combined with encryption 
The applications of private meter and differentially private meter combined with encryption shown in Fig. 4 include a meter (or IoT 

device) connected to a building, database that includes data collected from multiple meters, and analyst that conducts a query on the 
database to extract insights. The data obfuscation with the differential privacy happens before the meter data are transferred to the 
database; thus, the database includes noisy (or differentially private) data compared to the actual meter readings. The 27 studies that 
focused on these applications are the most common type of studies among those reviewed in this study [35,36,45,54–77]. 

Determining the value of ε is one of the big questions in differential privacy implementation, and studies in this review mostly 
tested the performance with either a fixed (and arbitrary) value of ε or tested the variation of performance across a range of ε values 
(where the ε value varied from 0.001 to 2.5 within 25 studies). Because the implementation of the differential privacy algorithm is 
highly dependent on a specific use case, analyzing the implementation against a use case can provide relatively more physical 
meanings of ε [35,66,69,71]. For example, Yang et al. [69] focused on the use case of a utility company’s optimal power flow to 
minimize the total generation cost by applying (ε, δ)-differential privacy. The use case of optimal power flow aims to minimize the total 
generation cost of the utility company and constructs the optimal schedules for power generators. While the optimal power flow is a 
complicated problem that is constrained by various parameters (e.g., to meet the generation capacity and also to not violate low
er/upper bounds of generation capacity), it not only serves to minimize the generation cost but also supports other use cases such as 
real-time pricing for customers. The study constructed a workflow 1) to create a differential privacy algorithm for obfuscating local 
smart meter data (and for a group of meters), 2) inform an optimal power flow algorithm to create generation planning, and 3) 
calculate the additional generation cost associated with differentially private input. The study also considered the impact where the 
change in the power supply on the utility side can affect the cost of electricity on the customer side by considering a locational marginal 
price scenario. In this context, the study actually connects the relationship between how much customers want in terms of privacy level 
(via ε) to how much they actually have to pay additionally (in their electric bill) because of the elevated privacy preservation 
guarantee. 

Eibl and Engel [68] pointed out that the global sensitivity calculated from the actual data can be misinformed by the nature of 
malfunctioning smart meters (e.g., transmitting unreasonably high value) in the real world, resulting in too much noise in aggregated 
results (i.e., decreased usability). Thus, combining encryption techniques with differential privacy has been studied [63–65,70], which 
supports the identification of malfunctioning smart meters and removes the necessity of trusted data curator. Barthe et al. [64] 
considered a realistic scenario by counting the number of meters that are malfunctioning or non-responding to disregard those meters 
and to provide the correct customer base for the total aggregation of energy consumption. The study combined differential privacy 
with an encryption technique to share encrypted keys between an analyst and smart meter that supports identifying malfunctioning 
meters. Because the encryption technique requires relatively more computational and communication overhead (compared to dif
ferential privacy), most of the other studies that adopted encryption techniques quantified the overhead with experiments to measure 
the weight of the proposed algorithm and to see if the proposed algorithm is feasible for practical implementation. Ács and Castelluccia 
[63] also assumed the smart meters to be trusted devices (i.e., tamper resistant) that can store encryption keys and perform encryption 
and differential privacy computations. Based on this assumption, encryption techniques are introduced and combined with differential 
privacy to include the capability of identifying malfunctioning smart meters as well as to obfuscate the individual smart meter readings 
before they are transmitted to the database. Unlike most other studies, this study considers internal attackers to be 
dishonest-but-non-intrusive, where the adversary may not follow the differential privacy protocol correctly and is allowed to provide 
false information to manipulate the collected data. Bao and Lu [65] also emphasized a feature of handling faults (e.g., malfunctioning) 
in smart meters while differentially privatizing the meter data. The study combined differential privacy with an encryption technique 
by proposing a novel key management technique that is used for handling the fault in smart meters. 

Some of the studies [36,78] highlighted specific scenarios between actors (e.g., data owner, data analyst, and smart meter 
customer) showing how the data access framework policy can be constructed around the differential privacy implementation. Lou 
et al. [78] focused on the use case of a utility company’s economic dispatch control that plans the active power outputs of generators to 
meet demand at the lowest total generation cost subject to various transmission and operational constraints. Compared to the con
ventional method where the economic dispatch control analysis starts on a group of customer readings in the group connection point (i. 
e., bus) level, the study suggested a differentially private aggregated demand forecasting and reporting algorithm at the smart meter 
level (or building level) as a solution to the use case. Within this context, the study quantified the cost impact of differential privacy (by 
adding noise) of different smart meter customer groups while assuming different groups of customers will choose their own level of 
privacy. The study also considered how to allocate fair shares of the total cost of differential privacy for those groups that differ in 
privacy levels. Simulations were evaluated by comparing electricity generation costs between a conventional method and several 
different configurations of the differential privacy algorithm. The study suggested designing incentive programs that will not only 
motivate customers to participate in demand reporting but will also let the customers pay less compared to when they are not reporting 
at all. 

When and where to add noise can also happen either on each time stamp (several studies referred this application as point-wise 
differential privacy) on time dependent energy consumption data or after some level (e.g., monthly, annual) of aggregation is per
formed (this scenario needs a trusted data curator). The former implementation mostly focuses on protecting the individual lifestyle 
embedded in the time dependent energy consumption data where the privacy can be threatened by NILM attack. Some of the previous 
studies [55–61] focused specifically on perturbing the timeseries data by adding noise in each time stamp to hide the underlying 
privacy in the time dependent data stream. For example, Pöhls and Karwe [55] proposed a ε-differential privacy algorithm to obfuscate 
the energy usage pattern of a household. While this algorithm requires the data curator to be involved in the smart meter data 
obfuscation, a redactable signature scheme that removes parts of the data when it is not allowed by the smart meter user is also 
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considered to remove the need for trusted data curator. In this algorithm, the utility company (or analyst) should be defining the 
accuracy of the query, and the smart meter user should also define the privacy level. And whenever there is a conflict between two, the 
smart meter reading is not reported to the utility company by the redactable signature scheme. The study leans against the importance 
of a utility company’s use case (i.e., accuracy), thus emphasizing that the decision about the accuracy should first be determined (by 
the utility company), and the noise (or privacy level ε) should be driven by the accuracy limit. But the study also acknowledges the 
criticism that this scenario leads to weak privacy protection. 

Only 1 of the 25 studies [75] focused on data that were collected through an IoT device (e.g., any device connected to Wi-Fi); the 
other studies focused on the smart meter data. Chen et al. [75] considered several representative queries in the study such as (but not 
limited to) 1) how many users are connected to a certain access point at a certain point in time, 2) how many users are connected to a 
certain access point at a certain time window, 3) whether the number of users who have accesse to the access point is larger than a 
certain threshold at a certain previous point in time, 4) whether the number of users with access to the access point larger than a certain 
threshold at a certain time window, and 5) how many sensors in a building were successfully connected to the access point in terms of 
being installed in the same room, same floor, and/or the same building. The proposed algorithm included three main modules: 1) 
“perturber” differentially privatizes the real-time data (increasing privacy guarantee), 2) ”grouper” performs differentially privatized 
grouping of incoming timeseries data, which later informs smoother, and 3) “smoother” utilizes two previous outputs and performs 
smoothing of noisy timeseries data to increase data usability. 

5.1.2. Battery load hiding 
The analysis of local energy storage (e.g., rechargeable battery) attached to a building has gained increased attention in past 

decades, and there have also been studies [79–82] that concentrated on implementing differential privacy by hiding the raw energy 
consumption characteristics with a battery. The use of the battery (shown in Fig. 4) in a building has the ability to shift the peak of end 
users’ power consumption, which can result in reduced electricity prices when dynamic electricity pricing is adopted. The differences 
among the studies focused on battery load hiding are the mechanisms when the battery charge level reaches the bottom or top, for 
example, controlling the charge/discharge rate differently in those circumstances. While these studies included features of these 
mechanisms to mitigate the limit on batteries, the physical limits of the battery were still expressed as a limitation. 

Backes and Meiser [79] developed a differential privacy algorithm leveraging a rechargeable battery that is connected to a 
household’s power supply to obfuscate the electricity consumption profile of the household. In the proposed algorithm, the 
rechargeable battery is used to add noise on top of the original consumption data to achieve differential privacy. There are two major 
constraints when leveraging a rechargeable battery: 1) the power (denoted as throughput in the study) limit at each time step for either 
drawing or charging and 2) the energy (denoted as capacity in the study) limit for either drawing or charging during a certain time 
window. Zhao et al. [80] developed a differential privacy algorithm for the battery load hiding application by applying (ε, δ)-dif
ferential privacy. Attackers who are interested in revealing the timeseries profile of home appliances are assumed as an adversary 
model, and it is also assumed they have no common sense about typical consumption characteristics (e.g., expecting higher con
sumption in the evenings compared to after midnight). The multiple armed bandit problem that is a sequential decision problem 
defined by a set of actions was adopted in this study to mitigate the constraints (i.e., rate and capacity) stemming from leveraging a 
battery in the algorithm. More specifically, two separate noise generating mechanisms were proposed in this study, and the multiple 
armed bandit problem was used to decide which noise mechanism would be optimal when facing the battery’s limit. The study noted 
that while there are various studies evaluating the differential privacy algorithms with certain metrics, there is no clear definition to 
connect these metrics to real privacy threats, thus emphasizing the need to properly define privacy around these use cases. Zhang et al. 
[82] also developed a differential privacy algorithm for the battery load hiding application. The study also incorporated the multiple 
armed bandit problem into the algorithm as well as a switching mechanism to deny the reporting of the smart meter reading to the 
utility company if necessary. The study also attempted to convert the impact of privacy preservation to cost impact by adopting the 
time of use pricing policy with three pricing models (square, triangle, and sinusoidal). An honest-but-curious internal attacker is 
assumed for the adversary model who can apply NILM on smart meter readings. Because of the constraints in the battery (i.e., rate and 
capacity), not all noise drawn from the Laplace distribution can be drawn from the battery. For this reason, a technique for adjusting 
and scaling the noise generation is applied to resolve these constraints. Zellner et al. [81] developed a model predictive controller 
leveraging the local energy storage (e.g., battery) for differentially privatizing the load profile of smart meters while minimizing the 
cost of the electricity they use. An optimization problem for distributed (local) smart meters was considered, and two main objectives 
were targeted: 1) minimization of the energy costs for smart meter users under a dynamic electricity pricing scheme and 2) smoothing 
(and obfuscating) the load profile to lower the operation cost of a utility company. A dynamic pricing of the electricity is considered for 
calculating the total electricity cost for a smart meter user, and the net consumption used for the cost calculation is calculated by 
subtracting the electricity generation (from the renewable energy sources, such as PV) from the demand and adding electricity drawn 
from the battery to the demand. In the proposed algorithm, a data curator is required to perform analytics to calculate the cost of 
electricity based on a group of smart meter readings in order to achieve a proper smoothing. For this reason, both trusted and not-to-be 
trusted data curators are considered as two separate scenarios where the noise is either added in the local smart meter (not-to-be 
trusted data curator scenario) or added when the data curator performs cost minimization analytics (trusted data curator scenario). 

5.1.3. Fog/Edge node 
Most local differential privacy applications are in nature representing edge or fog computing environments because the obfuscation 

analytics are performed either in or close to the end use devices (e.g., smart meter). Edge and fog computing have the same concept in 
terms of the capability they provide by moving the analytics down to the end use devices rather than computing everything at the 
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highest cloud (or database) level. The difference between the two environments is primarily the physical distance between end use 
devices and where the analytics happen: edge computing occurs at the device or in the gateway close to the sensor, and fog computing 
occurs in the LAN, which can be relatively distant from the sensor. Fog and edge computing depicted in Fig. 4 essentially provide 
improved response time and relaxed bandwidth in the network, resulting in efficient communication of information. Because IoT 
devices and even smart meters can also be installed under these environments, studies [38,83] have also focused on implementing 
differential privacy in these environments. 

Xu et al. [38] focused on developing a local differential privacy algorithm for IoT device measurements in an edge computing 
environment considering both the computation limits of the edge devices and underlying privacy threats in those devices. The ability 
to share information and perform lightweight tasks among edge devices (e.g., laptop, Wi-Fi router) means that the edge computing 
environment can avoid significant response delays that affect the operations of each edge device if computations are all conducted on 
the cloud server. However, because lightweight tasks are only feasible in these devices, the mechanism of differential privacy should 
also be lightweight. For this reason, the study implemented two layers of data obfuscation by applying a feature distillation method to 
minimize the type and size of the data and by applying differential privacy against the output of the first layer to add noise and preserve 
privacy. An autoencoder model that automatically extracts features based on the useful inference objective function is used in the 
feature distillation method. Cao et al. [83] proposed a differential privacy algorithm in a fog computing environment leveraging a 
Factorial Hidden Markov model as a basis for smart meter reading obfuscation. Instead of adding noise directly on the smart meter 
readings, this study developed a mechanism where the noise is added in a different state (applying Factorial Hidden Markov model) of 
the user consumption information. The proposed algorithm provided better trade-offs (compared to existing algorithms) between 
usability and privacy by creating another state based on the smart meter data and by adding noise in that additional state before the 
obfuscated consumption data is sent to the fog node. More specifically, smart meter data representing the energy consumption of a 
single household was used to 1) disaggregate appliance level consumption profiles, 2) convert appliance level consumption into on/off 
switching sequences for each appliance (using Factorial Hidden Markov model), 3) add noise into switching sequences, and 4) 
regenerate obfuscated smart meter readings based on differentially private switching sequences. 

5.1.4. Building control 
While studies introduced previously mostly consider the smart meter data (measuring the whole building level performance) as the 

main source for obfuscation, some of the previous studies [47–49,84] focused on differentially privatizing buildings’ sub-system 
measurements to improve the operation efficiency of the building (or buildings) with privacy protection. Fig. 4 also includes the 
schematic of actors and components of this architecture. 

Ny and Mohammady [49] developed a differential privacy algorithm to obfuscate the multiple-input multiple-output (MIMO) 
system by considering an example of numerous occupancy status measurements with motion sensors in a building. The study also 
considered short-to medium-term occupancy forecasting based on differentially private motion sensor measurements, and the goal of 
the privacy protection was to protect an individual’s location in the building. The sensitivity was analytically calculated for both 
single-input multiple-output (SIMO) and multiple-input multiple-output (MIMO) systems to apply (ε, δ)-differential privacy with 
Gaussian noise. A data set including 200 motion sensor measurements in a two-story building over several months was used to 
demonstrate the proposed algorithm in terms of how well the occupancy can be predicted with the differentially private motion sensor 
measurements with ε of 1 and δ of 0.5. Jia et al. [47] focused on the use case of occupancy-based HVAC control while preserving the 
location traces of individuals in a building that are measured by occupancy sensors. While measurements in occupancy sensors only 
provide information about whether a space is occupied, without revealing who those individuals are, the study noted that if the sensor 
measurements across various spaces (or rooms) are combined with additional information such as an office directory (showing who 
usually occupies a certain space) of the building, location traces of individuals can be inferred with high accuracy. 

An HVAC system’s performance and the thermal comfort in a building can be optimized with advanced control techniques using 
highly accurate sensor measurements. Because the noise added to the sensor measurement will impact the HVAC system, Jia et al. [47] 
analyzed the trade-off between privacy preservation versus the performance (e.g., comfort and expenditure) of the HVAC system 
controller. Technically, this study implemented a different occupancy distortion mechanism compared to differential privacy to 
enhance optimizing the noise distribution. However, it is introduced in this literature review given that the mechanism of adding noise 
and setting the framework is still viable for applying differential privacy. Several mathematical models are formulated to develop a 
model predictive controller: 1) a state model representing the comfort (expressed with zone temperature) of thermal zones depending 
on supply air flow rate and temperature set by the controller, 2) a cost function calculating the cost of using HVAC components (e.g., 
fan, cooling coil, reheat coil) to provide comfort in thermal zones, and 3) constraints for maintaining certain HVAC requirement levels 
(e.g., thermal comfort, indoor air quality, HVAC system capacity). Additionally, uncertainty limits of zone temperature and cost of 
energy consumption are bounded as input parameters to limit the amount of noise. Instead of applying differential privacy, the 
addition of noise was implemented by adopting the mutual information as a privacy loss metric, thus solving the optimization problem 
for ensuring the performance of the HVAC system while quantifying the privacy loss with the mutual information provided the 
appropriate amount of noise for the application. While the use case focus in previous studies was to improve a single building’s 
operation, Xiao et al. [48] considered a use case for optimizing the control of a group (or cluster) of buildings in a privatized manner. 
This use case includes more risk in terms of revealing the privacy of occupants (or building operation) because the data collected in 
buildings needs to be shared with the data curator to optimize the control of the building cluster. A differential privacy algorithm was 
developed and applied on a model predictive control method, and three main targets were considered: 1) minimize energy con
sumption, 2) minimize energy cost, and 3) maintain privacy. An optimization problem for the building cluster control was formulated 
to minimize the energy cost of the building cluster (while satisfying comfort and capacity constraints). The proposed algorithm 
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requires a data curator who collects locally optimized data from individual buildings to perform cluster level analysis. To avoid a 
trusted data curator scenario, a local (ε, δ)-differential privacy with Gaussian noise was implemented in each building to obfuscate the 
energy demand of individual buildings. 

Both modern smart buildings and buildings equipped with BAS collect vast amounts of data around a building to understand the 
status of various systems (e.g., HVAC, lighting, plug load, occupancy) and to control the building in real time to optimize operation (in 
terms of comfort and energy efficiency). Some readers might argue whether the submetered data stored within the building needs to be 
privatized if it is just used for HVAC control while not sharing with the outside world. The argument is valid at the moment, however, 
there is a significant potential for these submetered data (including IoT device measurements in buildings), which are typically (and 
privately) stored within the building once they can be shared with the outside world and combined with data analytics. While there has 
been significant research advancement in the past couple of decades, buildings are complex, dynamic, and evolving in nature, which 
makes them very difficult to understand in terms of every aspect. There can be many different approaches for understanding buildings, 
however, opening up these data in a differentially private manner will boost the analytics on building research. 

5.2. Global (centralized) and interactive/non-interactive models 

As shown in Fig. 4, the global (centralized) model includes both interactive and non-interactive models, which are then classified 
into variants such as private database, differential privacy combined with encryption, model publishing, and data publishing. A total of 
11 studies [85–95] that are related to the implementation of global differential privacy are identified, and their implementation 
approaches are reviewed in this section. 

The obfuscation in the global model happens after data is gathered in the database, which is represented as centralized storage. 
While the specific configurations between local and global models can vary significantly depending on the variants, the type of a query 
(or the use case) of a differential privacy implementation can still be similar for studies focusing on smart meter data. For example, the 
query of data aggregation that was introduced as the most frequent query in the local model implementation studies was also one of the 
query types that was studied in the global model implementations. However, compared to the queries analyzed in the local model 
implementations, the global model implementations included more queries that are suitable for extracting insights from large data. 
These included machine learning techniques such as data clustering. The variation of configurations between studies was less diverse 
compared to the local model implementations. For example, nine studies adopted ε-differential privacy while one study adopted (ε, 
δ)-differential privacy, and eight studies used the Laplacian distribution for the noise addition while one study considered both 
Laplacian and Geometric distributions. 

5.2.1. Private database including differential privacy combined with encryption 
The two implementation approaches covered in this section include the 1) private database and 2) differentially private database 

combined with encryption, shown in Fig. 4 under the global model. Studies [85–92,94] that focused on these implementations covered 
queries such as data aggregation, data clustering, and other machine learning techniques. 

Hassan et al. [92] focused on the use case of dynamic pricing for enhancing demand response programs with global differential 
privacy. One of the major goals of a modern utility company is to reshape (or shift peak) the grid level load profile by utilizing various 
programs, such as a demand response program, and adopting dynamic pricing to efficiently match the supply and demand. However, 
because dynamic pricing directly leverages timeseries energy consumption of individual customers, the privacy of these customers can 
be threatened. Smart meter readings of individual households are gathered in the local database handled by a trusted data curator. The 
data curator applies the differential privacy mechanism on these data to obfuscate underlying privacy before the timeseries data gets 
transmitted to the utility company. Then, the utility checks the noisy data for every month to generate billing for each customer based 
on the dynamic pricing scheme. The study applied ε-differential privacy with a Laplacian distribution for adding noise, and both 
external and internal (honest-but-curious) adversary models are considered a threat. The study also developed a dynamic pricing 
strategy by understanding usage at certain times, where the customers get charged for the peak load only if they have contributed to 
the peak load. 

Jonsson [85] proposed a global ε-differential privacy algorithm considering the use case of data aggregation to support a utility 
company’s efficient load forecasting. The study focused on improving the query mechanism by adopting simpler queries with low 
sensitivity, thus increasing the accuracy of the query while preserving privacy (in terms of ε). For example, a simple aggregation query 
asking “how many kW is being consumed by a group of smart meter users?” that typically includes a very large noise is reconstructed to 
a histogram type of query asking “how many smart meter users’ consumptions are between x and y kW?” The basis of this recon
struction is from a counting query, which is theoretically proven to have very low sensitivity. An additional contribution was made in 
the study for setting the bins (how to set ranges of multiple x an y) of the histogram with four different partitioning strategies. These 
four strategies are either creating equally sized bins for the entire range, creating equally sized bins starting from the mean value, 
creating equally sized bins starting from each end of the range, or creating adaptively sized bins for the entire range. Once the complete 
histogram is generated with multiple counting queries, the original query is answered by mathematically integrating the histogram 
with average kWhs of each bin and corresponding counts. 

Another common query that has been studied [88,90,91,94] in global model implementations is data clustering. Data clustering 
analysis is a frequently used unsupervised data mining technique for efficiently extracting high-level insights or classifications from a 
massive amount of data. There are different methods available even within the data clustering analysis, and the k-means clustering 
method is the most popular method, where the mathematical centroid of each cluster is determined and used to cluster and classify the 
data into subgroups. Data clustering analysis has been widely used in many applications (e.g., market research, image processing) in 
machine learning, and it is also used by utility companies for various use cases (e.g., efficient power distribution operation, load 
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forecasting). For example, Xiong et al. [90] focused on the query of data clustering with smart meter data that supports various use 
cases for the utility company. The goal of the study is to maximize the accuracy of the data clustering results while preserving un
derlying privacy in the smart meter data. The k-means clustering method was considered for the clustering algorithm, and im
provements in selecting the appropriate (but noisy) centroids were made while combining with the differential privacy algorithm. An 
outlier detection method was also proposed in the study to remove the outlier data from the data set, thus reducing the sensitivity of the 
data and reducing the noise (but still retaining the same privacy level). Two adversary models were considered in the study, where one 
attack happens based on the center point and the other attack happens based on background knowledge. During the iterative process of 
k-means clustering, the calculations of the distance between the original data and the centroid in each iteration can reveal the un
derlying data, meaning successfully attacking the data based on the centroid information. The second attack occurs when the attacker 
has even more background information that can be used to deduce the private information more easily with the same information 
available during the clustering analysis. ε-differential privacy was applied in the study and Laplacian distribution was used to add noise 
to the centroid in each iteration during the data clustering analysis. 

Applying machine learning techniques other than data clustering is another emerging area for implementing differential privacy. 
While a black box model trained with machined learned techniques already includes uncertainty in terms of the output that the model 
is trying to predict, the accuracy of the model can also be in the level of threatening the privacy of certain data if the quality of the 
training data is enough and the configurations of the machine learning processes are optimized. Differential privacy can also play a role 
in this area if the data needs to be obfuscated before being released to other parties. There are several review studies [96,97] that 
discuss the deep learning or machine learning techniques around differential privacy implementation; for example, Zhao et al. [97] 
reviewed differential privacy implementation in deep learning by introducing privacy attacks (e.g., membership inference, training 
data extraction, and model extracting) related to deep learning models, classifying differential privacy mechanisms based on layers (e. 
g., input, hidden, and output layers) of deep learning. While this field of study is receiving growing attention, only one study related to 
applications in buildings was found. Soykan et al. [89] focused on the use case of load forecasting and implemented differential privacy 
leveraging open source libraries (for both machine learning and differential privacy) to preserve underlying privacy in smart meter 
data. The study adopted the forecasting model of Long-Short Term Memory (LSTM), which is one of the models of the Recurrent Neural 
Network (RNN) method for predicting the load in an hourly interval. A membership inference attack where the attacker tries to verify if 
a record they own is included in the training data set was considered as the adversary model. (ε, δ)-differential privacy was directly 
integrated in the LSTM model by adding random noise in one of the internal functions (e.g., gradient descent method optimizer) during 
the model training process. Because adding noise (to preserve privacy) to the training process will decrease the accuracy of load 
forecasting, the trade-off between accuracy of load prediction against the level of privacy preservation was studied. 

5.2.2. Model publishing 
There is certainly less literature focusing on global differential privacy implemented around building data compared to local 

differential privacy. However, it was also noticeable during the literature search process that some of these variants of differential 
privacy have potential for application to building data. The last two columns in Fig. 4 show these variants. Zhu et al. [93] proposed a 
differentially private model publishing method that can be applied in CPSs. In order to increase the usability compared to the con
ventional method (e.g., private database in Fig. 4), the existing framework of releasing the obfuscated query results is transformed into 
releasing prediction models trained by machine learning techniques, as illustrated in Fig. 4. More specifically, the models being 
released to the analyst are trained based on the raw data and raw results of the query, thus providing the relation between the data and 
the query with black box models. In this implementation, 1) the raw data is used to generate raw outputs for a set of queries, 2) 
differential privacy is implemented in these outputs of queries by inducing noise, 3) the relations between the raw data and noisy 
outputs of queries are used as training data for training the black box models, and 4) models trained with the noisy training data are 
released to the analyst. Various learning algorithms, such as linear regression, neural network, support vector machine, and others, are 
considered for the evaluations. 

5.2.3. Data publishing 
The last variant in the global model is data publishing. Rather than publishing the noisy query results or publishing black box 

models trained with queries, this approach involves publishing the anonymized or noisy data. This approach is actually the most 
common practice today with an anonymization technique (e.g., anonymous Netflix Prize data set1). While no literature was found 
where the differential privacy implementation was targeting building data, Fung et al. [98] reviewed existing privacy preserving data 
publishing methods not only for differential privacy but also for other privacy preserving techniques. The study considers various 
possible attacks (e.g., record linkage, attribute linkage, table linkage, probabilistic attack) and classifies different privacy preserving 
techniques that are immune to some of these attacks. The review includes theoretical aspects between different privacy preserving 
techniques that can be used for data publishing; however, no actual implementation or experiments were conducted. The study 
concluded with a future direction emphasizing needed efforts beyond technical advancements: “Privacy protection is a complex social 
issue, which involves policy-making, technology, psychology, and politics. Privacy protection research in computer science can 
provide only technical solutions to the problem. Successful application of privacy preserving technology will rely on the cooperation of 
policy makers in governments and decision makers in companies and organizations. Unfortunately, while the deployment of 
privacy-threatening technology, such as RFID and social networks, grows quickly, the implementation of privacy preserving 

1 https://en.wikipedia.org/wiki/Netflixprize. 
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technology in real-life applications is very limited. As the gap becomes larger, we foresee that the number of incidents and the scope of 
privacy breach will increase in the near future.” 

6. Discussion

This review provides a landscape view of data privacy in the buildings field, and an in depth discussion on differential privacy as an
essential means to protect data privacy while unlocking the value from the widely collected and growing amount of data in buildings. It 
is clear from the literature that this research area, although attractive, is still in its early stage, and there are still a lot of topics to be 
studied. Thus, this section attempts to draw key findings gathered from the literature along with implications, limitations, and future 
work related to these key findings. 

Understanding the current state of data access frameworks: Access to AMI smart meter data is important for energy efficiency 
providers to cost-effectively inform energy efficiency programs. State commissions, such as those in California and Illinois in the 
United States, established rules where customers can authorize distributed energy resources (DER) providers to access their smart 
meter usage data via platforms such as Green Button.2 However, the narrow focus on permission-based access to AMI data became 
inadequate because energy efficiency service providers, building operators, and building researchers want granular data (not only 
usage, but also metadata such as demographics and building characteristics) without individual consent. Still, utility companies (as the 
custodians of smart meter data) control the information that each requester seeks, even when the customer approves the sharing of 
their data with an authorized third party by establishing constraints on the release of information that may or may not have an explicit 
basis in law. It is inevitable that practices for accessing private data will continue to evolve. Keeping data access rules and protocols up 
to date will be essential in a future in which more and more actors will either be enabled or thwarted by data access rules. Thus, the 
implementation of the differential privacy requires not only technical solutions about how to effectively add noise into the data but 
also comprehensive communications between actors to come to a mutual agreement to properly balance privacy and usability. 

Determining the trade-off between privacy and usability: On the technical side, differential privacy has been increasingly 
adopted as an essential technique to protect data privacy at various levels, from individual buildings to portfolios of buildings. 
However, the determination of ε, which sets the privacy level of differentially private data, is still an open question. The closest attempt 
for selecting the appropriate ε from reviewed studies was reflecting the physical meanings of ε in a realistic scenario. For example, if a 
utility company is using private data of an individual customer for load forecasting, then the elevated privacy guarantee can result in 
additional generation cost because of the noise induced in the data. So, if the utility can decide on the upper bound of uncertainty of a 
load forecasting use case (e.g., how much error in load forecasting the utility company can accept), then the maximum limit of noise 
can also be determined mathematically. However, this does not consider the appropriate level of privacy from the customer’s (person 
whose private information can be reflected in data) perspective. Some other studies leave this as an open question or an option where, 
in the future, the implementer will provide a set of privacy options to the customers and the customers will select their own privacy 
level from “completely okay to share everything” to “will not share anything.” Other than studies that were reviewed in this article, 
there are studies (Lee and Clifton [99], Hsu et al. [100], Yao et al. [101], Nissim et al. [102]) that discussed guidelines or theoretical 
aspects for selecting an appropriate ε. Based on the understanding gathered from the literature, while ε is implemented via a math
ematical expression of differential privacy, the determination of ε should involve all stakeholders: differential privacy implementer, 
person or entity whose privacy is embedded in the data, policymaker, and end user (or analyst) of the data for extracting insights. 

Differential privacy as a technical solution: As illustrated in Fig. 4, this literature review found at least nine different variants of 
differential privacy implementation approaches from the gathered literature, where each of the variants was targeting specific query 
types or use cases. Furthermore, even within the same approach, the detailed differential privacy algorithms were different by making 
advancements from conventional approaches. As described by Desfontaines and Pejó [20], these variants can grow significantly more 
along with the advancement in research because the literature reviewed in this article only represents the early phase of the research. 
Some of the reviewed studies specifically expressed that the formulation of differential privacy has to be constructed for each query 
type. However, the authors also believe a systematic classification (e.g., leveraging differential privacy taxonomy from Desfontaines 
and Pejó [20]) and some level of generalization by grouping similar queries will be necessary and beneficial for researchers to align 
their contributions and for end users to leverage differential privacy as a tool with fewer hurdles. There are various existing open 
source libraries3 that contribute to this path; however, libraries that can be used for applying differential privacy around building data 
are still minimal. Thus, a collaborative effort to develop open source tools (e.g., eeprivacy4) for implementing differential privacy in 
building data will be essential. 

Building data coverage: Smart meter data is primarily considered in reviewed studies because of the emerging focus on smart grid 
scenarios where information sharing is one of the key aspects (but which increases privacy risk). However, buildings collect much more 
than just meter data. As it was mentioned previously, 36% of commercial buildings in the United States are supposedly integrated with 
BAS, measuring more specific measurements around the building. Furthermore, the deployment of IoT devices in buildings will also 
increase the amount of data collected in buildings significantly in the near future. While several studies focused on implementing 
differential privacy with regards to this aspect, further research efforts are required to examine privacy risks in various forms of data 
collected in buildings, especially occupant-related data such as internet connection (Wi-Fi signals), occupancy, and activities 

2 https://www.greenbuttondata.org/. 
3 https://github.com/google/differential-privacy. 
4 https://github.com/recurve-inc/eeprivacy. 
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(movement, presence, human-building interactions). 
Data and adversary models for testing differential privacy implementations: The reviewed studies tend to use their own or ad 

hoc publicly available data sets with limited coverage or data quality for testing and evaluating the performance of differential privacy 
implementations. For FAIR principles,5 there is a strong need for an open access high-quality data set as well as standardized per
formance metrics to support the evaluation and benchmarking of differential privacy techniques. 

7. Conclusions

This article reviewed previous literature to provide building researchers with the basics of differential privacy implementation
around data collected in buildings. Although the specific scope of this article is still in an early research stage, fast-growing data 
collection in buildings along with the breadth and scale of data available necessitated an examination of privacy preserving research 
for differential privacy. Because the topic is also not common in the representative building research journals, this study aimed to 
provide a greater level of detail for readers who might never have heard of differential privacy. To provide relevant context around 
privacy preservation in data, this literature review presented 1) privacy risks associated with data collected in buildings, 2) use cases 
that could be supported by analyses from these data, and 3) reviews of differential privacy implementation. The findings from the 
literature emphasize not only technical development but also engagement from stakeholders and policymakers in properly configuring 
differential privacy and protecting underlying privacy in data collected in buildings. 
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