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A B S T R A C T

The recent advancements in Internet of Things (IoT) have brought enormous advantages for
businesses. These benefits are achieved by services that collect large volumes of data that is
collected for analysis. The data may also contain sensitive information. Privacy of such data
is an important research challenge. Differential privacy is a recent technique for data privacy.
It works by anonymizing the attributes that may contain sensitive information. An essential
step before applying differential privacy is the division of attribute set into three groups called
sensitive, non-sensitive and ambiguous. A key issue in existing studies is that the division of
attribute set is done manually by a domain expert and is therefore costly. We introduce a
three-way approach for differential privacy and a supporting algorithm for this demarcation of
attribute sets. Results indicate that the information content and stability of the dataset improves
considerably with our approach.

1. Introduction

Internet of things (IoT) has enormous usage potential in smart homes, Industrial IoTs and medical or healthcare IoTs. This
equires collection of large amounts of data that may be stored and shared for analysis. The collected data may contain medical,
inancial or personal information and its leakage may lead to privacy issues. Many privacy related incidents have been reported
n the recent past which demand for efficient and effective solutions for data privacy [1]. On the other hand, in IoT smart homes,

there is a greater risk of data and identity theft. Data can be used to analyze human activities and may have serious implications
such as robberies.

Different anonymization techniques have been used in IoTs to protect sensitive information. The most common approach is
hiding all the sensitive attributes. This however, leads to significant loss in utility of the data for useful analysis [2]. Another
ommon approach is to release only aggregate values [3]. A privacy breach can occur with this approach if someone manages to
ain enough aggregate values that provide hints about sensitive data of an individual [3]. Query auditing is another approach for data
rivacy [4]. It works by comparing the results of the past queries with the current query to determine whether or not responding to

the same query will lead to a privacy breach. It can then deny those queries that lead to a privacy breach. It is however argued that
query denials can also lead to information leakage. The approach of k-anonymity was introduced in order to address shortcomings
of the earlier techniques. It fails in situations where sensitive values in a class lack diversity [5]. l-diversity was a refinement of
k-anonymity [6]. It works by making sure that each class of values has enough sensitive values and that the values are distributed
evenly. It is not able to prevent attribute disclosure which makes it susceptible to inference attacks [7]. The approach of t-closeness
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is a refinement of k-anonymity which works by making sure that the distribution of a sensitive attribute in a class is close to the
distribution of the sensitive attribute in the overall table. It however is susceptible to re-identification attacks [8].

Differential privacy is a recent and more effective technique and it overcomes many issues associated with the earlier
pproaches [9]. It has gained significant popularity in the community, as well as the industry due to its strict guarantees for ensuring
rotection and security of the data [9]. An important step before applying differential privacy is the division of attributes into
ensitive, non-sensitive and ambiguous groups. Sensitive attributes are not stored on the cloud since they contain private data, such
s names and other unique identifiers. Non-sensitive attributes do not contain any private data and are therefore stored on the cloud.
mbiguous attributes may contain sensitive data but it may not be used to directly reveal one’s private information. We typically
ant to store these attributes as they contain data that is useful for analysis, such as being used in research or in market analysis

or public interest. This division of attributes is typically a tedious, manual process and requires a domain expert which may be
ime consuming and costly in cases of large datasets. Automated approaches for effective three-way attribute division is of exigent
eed in this context. We consider the use of three-way decisions for constructing such an approach.

In this paper, we propose a three-way decisions based approach to differential privacy that automatically determines an effective
rouping of the attributes. The approach follows an evaluation based interpretation of three-way decisions and uses an evaluation
unction and a pair of thresholds to place an attribute into one of the three groups. The configuration of thresholds plays a key
ole in obtaining grouping of the attributes. To obtain effective grouping of attributes, we introduce an algorithm called Three-
ay Attribute Division Algorithm for Differential Privacy (3WADD) that automatically determines the thresholds by continuously

mproving the overall utility level of a dataset from analysis and privacy viewpoints. An architecture of privacy preservation based
n differential privacy with automated three-way attribute division is also presented. The results in this paper advocates that the
roposed approach can be used as an added mechanism for improving the overall performance of differential privacy in IoT.

The rest of the paper is organized as follows: In Section 2, the background of differential privacy and three-way decisions has
been reviewed. Section 3 presents an architecture for privacy preservation using differential privacy. Section 4 presents the model
proposed in this paper. In this section we discuss the techniques used to categorize the attributes and anonymize the sensitive data.
Section 5 presents the details of the experiments, the evaluation metrics and the results of the experiments. Section 6 discusses the
conclusion of this research.

2. Related work

In this section, we introduce the background of our proposed approach, which includes differential privacy and three-way
decisions.

2.1. An overview of differential privacy

Differential privacy is a technique that addresses many of the issues associated with the earlier approaches [9]. Considering 𝑓
as a function corresponding to a certain query on a dataset, and 𝐷𝑜 as the original dataset with 𝑁 rows. The key idea of differential
privacy is to add noise to the result of a query using the formula [9],

𝑓 (𝐷𝑜) + (𝐿𝑎𝑝(𝛥𝑓∕𝜖)). (1)

The 𝛥𝑓 is known as the sensitivity of a query which is computed as,

𝛥𝑓 = max
𝑖∈{1,2,3,…,𝑁}

‖𝑓 (𝐷𝑜) − 𝑓 (𝐷𝑖)‖1, (2)

where 𝐷𝑖 is the same dataset as 𝐷𝑜 without the 𝑖th row. Eq. (1) has two terms. The first term 𝑓 (𝐷𝑜) denotes the actual result of
applying a query using function 𝑓 on the dataset 𝐷𝑜. The second term is used to add noise to the result of the query. Generally
Laplacian noise is added based on the Laplacian distribution with zero mean and a scale factor of 𝛥𝑓∕𝜖. The 𝛥𝑓 in Eq. (2) computes
the maximum of the difference between the result of a query on the original dataset 𝐷𝑜 and for all datasets 𝐷𝑖 where 𝑖 ∈ {1, 2,… , 𝑁}.
A high value of sensitivity will mean that removing a row from the original dataset 𝐷𝑜 has a greater effect on the result of the query
and a low value of sensitivity will mean that removing a row from the original dataset 𝐷𝑜 has little effect on the result of the query.
For a simple count query, 𝛥𝑓 will be one because 𝑓 (𝐷𝑜)−𝑓 (𝐷𝑖) will be equal to one for all 𝐷𝑖. This is because the difference between
the number of rows in the two datasets 𝐷𝑜 and 𝐷𝑖 is one. The value of 𝜖 controls the amount of noise in the dataset. Adding a lot of
noise may result in a dataset that is highly secure but may not be very useful for analysis thereby having lesser utility for analysis
purposes. Adding lesser noise may result in a dataset that has higher utility for analysis but has lesser security. A suitable value of
𝜖 provides a balance and tradeoff between the utility and security of the dataset [10].

Existing studies on differential privacy can be roughly categorized into two classes. One class of studies focuses on the
determination of 𝜖 and its impact on the overall security and utility of the dataset. A technique for determining 𝜖 was considered
in [11]. A threshold was introduced that keeps 𝜖 in limits and small enough to provide high privacy guarantee. This technique was
used to anonymize query logs of web searches. The utility of the dataset was computed by introducing the measures of discounted
cumulative gain and mean average precision. They were able to maintain an acceptable level of utility between the original and the
anonymized logs. The value of 𝜖 was determined with the help of a threshold which represented the maximum tolerable value for
the probability of identifying an individual in [10]. A strict bound was placed on the information leakage to identify the optimal
value of 𝜖 in [2]. Other relevant studies in the same group includes differential privacy for sensor-cloud systems [12] and differential
privacy for blockchain data [13].
2
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The second class of studies deal with the identification of dependencies between records or attributes in a dataset and masking
hese dependencies. One such study is presented in [14]. In particular, correlations and distribution of attributes were build from the
ecords of the dataset to mask the dependencies in the final publishable dataset. A correlated boundary was used to mask the relation
etween sensitive and non-sensitive attributes in [15]. Adjacency matrices were constructed to identify the dense regions in [16].
he dense regions are reconstructed using the exponential mechanism of differential privacy to hide the correlation between data.
ther relevant studies in the same group include differential privacy under dependent tuples [17] and plausible deniability [18].

.2. Problem under focus

In all of the cases discussed earlier, differential privacy requires manual division of attributes in a dataset as being sensitive, non-
ensitive or ambiguous. Sensitive attributes are not saved on the cloud, non-sensitive attributes are saved verbatim while ambiguous
ttributes are anonymized by adding noise using differential privacy and then saved. The division of attributes is not always obvious
nd clear [19]. Typically, the knowledge of domain experts is used to provide the necessary division of attributes. In most of the
ases, the job of domain experts is time consuming and overwhelming especially when the datasets are large. Automating the division
f attributes is an important issue in this context. This however has not been sufficiently addressed in the existing literature. In this
aper, we aim to provide an approach in this regards based on the principles of three-way decisions.

.3. Three-way decisions

Three-way decisions is a new decision making paradigm which provides a human problem solving strategy that aims at
epresenting, understanding and processing the whole in terms of three related parts. Since its inception, the theory has been widely
sed in many fields and has led to research areas such as three-way clustering [20], three-way classification [21], three-way attribute

reduction and many others [22].
Three-way decisions are typically realized by considering the framework of trisecting and acting or more recently trisecting, acting

and outcome [23]. In trisecting, the whole is divided into three parts or regions which is also sometimes referred to as tripartition. The
cting phase consists of devising effective and efficient strategies for processing the three parts. Outcome measures the effectiveness
f trisecting and acting for achieving certain desirable outputs or outcomes. As an example, consider the case of medical decision
aking. The trisection will consist of dividing the set of patients into three regions, i.e., those having the disease, those that do not
ave the disease and those for whom there is insufficient evidence to decide either way. The acting will consist of strategies such as
iving treatments to all those having the disease, not giving treatments to those not having the disease and performing further tests
n patients in the third category. The outcome will measure the effectiveness of the trisecting or equivalently the tripartitioning
nd the corresponding strategies.

An evaluation function and a pair of thresholds are commonly used to obtain the tripartition of the universe (this is also sometimes
eferred to as evaluation based interpretation). Consider an evaluation function 𝑒(𝑥) ∶ 𝑈 ⟶ 𝐿 and a pair of thresholds (𝛼, 𝛽). The
valuation function assigns an evaluation value to each object 𝑥 ∈ 𝑈 from a totally ordered set (𝐿,⪯). The universe 𝑈 is partitioned
ased on e and a threshold pair (𝛼, 𝛽) as,

POS(𝛼,𝛽) = {𝑥 ∈ 𝑈 | 𝑒(𝑥) ⪰ 𝛼} , (3)

NEG(𝛼,𝛽) = {𝑥 ∈ 𝑈 | 𝑒(𝑥) ⪯ 𝛽} , (4)

BND(𝛼,𝛽) = {𝑥 ∈ 𝑈 | 𝛽 ≺ 𝑒(𝑥) ≺ 𝛼} . (5)

The three regions provide realization of three-way decisions. In this research, we aim at an approach for automatic division of
ttributes using three-way decisions into sensitive, non-sensitive and ambiguous attributes. In Section 4, we explain and introduce
uch an approach.

. An architecture of privacy preservation with three-way attribute division

To incorporate three-way division of attributes in the automated process of ensuring privacy of data in Internet of things, we
resent an architecture for privacy preservation using differential privacy. The architecture is shown in Fig. 1. The architecture
omprises of two main parts namely three-way division of attributes and privacy of ambiguous attributes.

The first part, i.e., three-way division of attributes iteratively decides on the a suitable three-way division of attributes which
s returned by the three-way attribute divider component. It iteratively combines the non-sensitive and ambiguous attributes to form

dataset. The usefulness of the formed dataset is carried by the component called dataset evaluation. It considers the aspects of
tility of the dataset for analysis as well as the stability of the dataset to keep a balance between the number of attributes in the
on-sensitive and ambiguous groups. The process continues for each dataset and stops when an acceptable level of the considered
spects is reached. In Section 4, we discuss measures which can be used for reflecting the aspects of utility and stability of a dataset.
e now explain the components included in the first part.

hree-way Attribute Divider: This component provides three-way division of attributes and divides the set of attributes into
ensitive, non-sensitive and ambiguous. Input to this module is the dataset and its output is a three-way division of attributes.
3



Computers and Electrical Engineering 100 (2022) 107894W. Ali et al.

o

i
h
n
T

Fig. 1. High level view of the proposed architecture.

An important question is how to obtain the three-way division of attributes. We use three-way decisions based approach in this
regards which is explained in the next section.

Dataset Evaluation: This component decides whether a dataset created by the three-way attribute divider is suitable or not. This
is achieved by computing different measures reflecting various aspects of dataset usefulness. Inputs to this module is the original
dataset (𝐷𝑜) and the dataset obtained from the three-way divider module (i.e., 𝐷𝑜−Sensitive). The output of this module is a decision
n whether a dataset is suitable or not.

The second part of the architecture deals with the privacy of the ambiguous attributes. Once the three-way division of attributes
s obtained, the ambiguous attributes need to be protected since they may contain sensitive information. This is done with the
elp of the noise adder component. In particular, the noise adder component employs the differential privacy mechanism of adding
oise to data for anonymization. The amount of noise added to the data depends upon two parameters, one is 𝜖 and the other is 𝛥𝑓 .
hese parameters are discussed in Section 2.1 and are given in Eqs. (1) and (2). These anonymized attributes are combined with

the non-sensitive attributes to form a synthetic dataset. A query is executed on the records of the original dataset and the synthetic
dataset. The result of the query on the original dataset and the synthetic dataset are compared to calculate privacy level of the
synthetic dataset. If the privacy is lower than a threshold then the noise parameter is adjusted and noise is added to the ambiguous
attributes with the new parameter values to obtain another synthetic dataset. This process continues until the privacy is at or above
a certain acceptable level. The primary contribution in this research work lies in this first part of the architecture. For the sake of
completeness, we also explain the components included in the second part here.

Noise Adder: This component adds noise to the data in the ambiguous attributes based on some parameters using differential
privacy mechanism. Input to this module is the data corresponding to ambiguous attributes and the output is the modified data
corresponding to ambiguous attributes with noise added to them.

Synthetic Dataset: This component is used to create a synthetic dataset. The synthetic dataset is formed by combining the data
corresponding to the ambiguous attributes (with added noise) and the data corresponding to non-sensitive attributes from the
original dataset.

Privacy Measure: This module decides whether the synthetic dataset has enough privacy for it to be published. The inputs to this
module are the answers of a query on the original and the synthetic datasets which corresponds to the results of 𝑓 (𝐷𝑜) and 𝑓 (𝐷𝑖)
respectively, these are given in Eq. (2). The output of this module is the adjusted noise parameter 𝜖 if the level of privacy is not
acceptable. The level of privacy is denoted by 𝐿𝑎𝑝(𝛥𝑓∕𝜖) and is given in Eq. (1).

4. Proposed scheme

In this section, we propose an approach for three-way division of attributes based on three-way decisions. The three-way division
of attributes will divide the set of attributes into three pair-wise disjoint groups, namely, sensitive, non-sensitive and ambiguous. Fig. 2
shows the three-way interpretation of attribute division based on the trisecting and acting framework. In the trisecting step, we
partition or divide the attributes into three disjoint groups and in the acting step, we take actions of publishing, not publishing and
anonymizing the attributes. We aim at an approach that is in contrast to existing approaches. Our model provides an automated
three-way division of attributes rather than relying on manual and tedious efforts by domain experts.

4.1. Attribute division using three-way decisions

To obtain the tripartition of the set of attributes or equivalently three-way division of attributes, we consider an evaluation
function based three-way decisions discussed in Section 2.3. To define an evaluation function, we consider the data corresponding
to an attribute and measures its suitability for providing protection against attacks. In other words, we measure, based on the values
of the attributes in the particular dataset, as to how difficult it will be to identify an individual record.
4
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Fig. 2. Three-way decision classification of attributes.

Generally speaking, an attribute with many distinct values may be considered to be less protected compared to an attribute with
less distinct values. For instance, consider a dataset corresponding to a hospital containing the attributes of age and disease. Let us
assume that all the patients have different age values. In such a case, if an adversary who knows the age of a certain patient can
easily identify his/her respective disease from the dataset. In contrast to this, if we assume that all the patients have the same age
values, the adversary cannot infer a patient’s disease from age because all patients have the same value for this particular attribute.
This means that by having higher information content in an attribute, i.e., many distinct values for an attribute, we have lesser
protection capability in the respective attribute against potential attacks and therefore may be considered as sensitive. On the other
hand, if we have lesser information content in an attribute, i.e., very few distinct values for an attribute, we have higher protection
capability in the respective attribute against attacks and therefore may be considered as non-sensitive. We employ this measure of
information in attributes to construct an evaluation function.

4.1.1. Measures of information content
Entropy is a common measure of computing the amount of information in an attribute [24]. An attribute having high entropy

will tend to have high information content and therefore may be considered as sensitive. On the other hand, an attribute having low
entropy will tend to have low information content and therefore may be considered as non-sensitive. Finally, for those attributes,
whose information content is neither very high nor very low may be considered as ambiguous. The measure of entropy for an
attribute 𝐴𝑖 belonging to an attribute set 𝐴𝑡 is formally defined as,

Entropy(𝐴𝑖) = −
∑

𝑎𝑖∈𝐴𝑖

𝑃 (𝑎𝑖) log𝑃 (𝑎𝑖), (6)

where 𝑎𝑖 is a particular value of an attribute 𝐴𝑖 and 𝑃 (𝑎𝑖) is probability with which it occurs. It may be noted that other measures for
omputing the information content can also be used as evaluation measures. One such measure is the measure of variance. However
n the context of information and uncertainty, it has its own strengths and limitations as compared to entropy. For instance, if the
istribution of data is discrete and unimodal i.e., the distribution has a single peak, variance is a better measure [24]. However, if
he distribution of data is continuous and is bimodal i.e., have multiple peaks, entropy is a better measure. In case of categorical
ata, variance is completely artificial because one must assign arbitrary numbers to each category and the variance of the data will
epend on the assigned numbers which does not reflect the true nature of the data. In such case entropy is a better measure. In
his study, we only consider the measure of entropy as evaluation function as our main focus is on the formulation of three-way
ivision of attributes. In future, further evaluation measures may also be explored and incorporated in the proposed approach for
ine tunning the results.

.1.2. Systematic division of attributes
Once the evaluation function values are computed, we next divide the set of attributes into sensitive, non-sensitive and ambiguous

roups using the following equations,

Sensitive(𝛼,𝛽) =
{

𝐴𝑖 ∈ 𝐴𝑡 | 𝑒(𝐴𝑖) ≥ 𝛼
}

, (7)

Non-Sensitive(𝛼,𝛽) =
{

𝐴𝑖 ∈ 𝐴𝑡 | 𝑒(𝐴𝑖) ≤ 𝛽
}

, (8)

Ambiguous(𝛼,𝛽) =
{

𝐴𝑖 ∈ 𝐴𝑡 | 𝛽 < 𝑒(𝐴𝑖) < 𝛼
}

, (9)

here the evaluation function 𝑒(𝐴𝑖) is a generalized evaluation function which we realized as a measure of entropy defined in Eq. (6)
nd (𝛼, 𝛽) are the two thresholds used to divide the attributes into three groups. We assume 0 ≤ 𝛽 < 𝛼 ≤ 1 and 𝛼+𝛽 = 1 in this paper
hich ensures that the three sets or groups are disjoints. The attributes whose evaluation function values are at or above threshold
are assigned to the sensitive group while the attributes whose evaluation function values are at or below thresholds 𝛽 are assigned
5

o the non-sensitive group. The attributes whose evaluation function values are between the two thresholds will be assigned to the
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ambiguous group. Next, a dataset is formed by combining the data corresponding to the non-sensitive and ambiguous attributes.
Please note that, as mentioned in the previous section, the data corresponding to the ambiguous attributes will be first anonymized
using differential privacy before being added to the synthetic dataset.

4.1.3. Utility assessment of resulting datasets
It may be noted that choosing arbitrary threshold values may lead to inefficient division of attributes which may degrade privacy

f the data. The selection of proper (𝛼, 𝛽) thresholds is an important issue in this context. We consider the computation of effective
hresholds as an iterative process where thresholds will be continuously updated by considering the usefulness of the resulting three-
ay attribute division. Since the three-way division of attributes defines a candidate synthetic dataset, therefore the usefulness of

hree-way attribute division of attributes is equivalent to the usefulness of the resulting candidate dataset.
We consider two qualitative aspects for assessing the usefulness of a candidate synthetic dataset resulting from a certain three-way

ttribute division. The first aspect is the information content in the resultant dataset. This aspect is typically quantified in existing
tudies by making use of the measure of utility which is defined as,

Utility(𝐷(𝛼,𝛽)) = −
∑

𝑎1∈𝐴1

...
∑

𝑎𝑛∈𝐴𝑛

𝑃 (𝑎1,… , 𝑎𝑛) log𝑃 (𝑎1,… , 𝑎𝑛), (10)

here 𝐷(𝛼,𝛽) is the dataset based on the attributes in the sets Non-sensitive(𝛼,𝛽) and Ambigious(𝛼,𝛽), 𝐴1, 𝐴2,… , 𝐴𝑛 represent the
attributes of the dataset 𝐷(𝛼,𝛽) and 𝑎1, 𝑎2,… , 𝑎𝑛 are particular values of 𝐴1, 𝐴2,… , 𝐴𝑛. We have different levels of information for
different resultant datasets (which are created by considering various thresholds and the resulting three-way division of attribute).

4.1.4. Quantifying trade-off between stability and utility
The second quantitative aspect is the realization of a good balance between the number of attributes in the non-sensitive and

ambiguous groups. For a certain three-way division of attributes, keeping majority of the attributes in the non-sensitive group puts
the privacy of data at stake while considering more attributes in the ambiguous group will have a negative impact on the usefulness
of the dataset. To incorporate this aspect into the selection of attribute division, we define the measure of stability which is defined
as,

Stability(𝐷(𝛼,𝛽)) =
|Non-Sensitive(𝛼,𝛽)| × |Ambiguous(𝛼,𝛽)|

|𝐴𝑡| × (|Ambiguous(𝛼,𝛽)| + |Non-Sensitive(𝛼,𝛽)|)
. (11)

Stability will have its minimum value when all the attributes (apart from the attributes of the sensitive group) are either in the
non-sensitive or ambiguous groups. On the other hand, it will have its maximum value when the attributes are equally divided
among the non-sensitive and ambiguous groups.

To incorporate both the measures of utility and stability into a single framework, we define another measure which we call
suitability which is defined as,

Suitability(𝐷(𝛼,𝛽)) =
2

Utility−1(𝐷(𝛼,𝛽)) + Stability−1(𝐷(𝛼,𝛽))
. (12)

where Utility−1(𝐷(𝛼,𝛽)) and Stability−1(𝐷(𝛼,𝛽)) are the reciprocals of Utility and Stability respectively. The measure of suitability
considers both utility and stability and we use it to select a suitable dataset as shown in Fig. 1.

The iterative change of thresholds for continuously improving the measure of suitability will provide useful hints towards optimal
thresholds. In particular, different thresholds will lead to different datasets which are created by combining the resulting non-
sensitive and ambiguous attributes (corresponding to the thresholds) and therefore will have different values for suitability. We
proposed an algorithm in Section 4.3 for obtaining suitable thresholds defining the three-way attribute division based on the measure
of suitability.

4.2. Demonstration of three-way division of attributes

In this section, we demonstrate with the help of an example the use of three-way division of attributes. We consider a sample
dataset shown in Table 1 which is created based on the sample data taken from the Adult dataset. The sample dataset contains 12
attributes and 20 instances.

In order to apply the three-way attribute division, we first need to determine the evaluation function values for all the attributes.
For this purpose, we compute entropy as in Eq. (6) for all the attributes. The entropy for a certain attribute for instance the attribute
of Work can be computed as,

Entropy(Work) = −
∑

𝑎𝑖∈Work
𝑃 (𝑎𝑖) log𝑃 (𝑎𝑖)

= −
(

𝑃 (Gov.) log𝑃 (Gov.) + 𝑃 (Self) log𝑃 (Self) + 𝑃 (Priv.) log𝑃 (Priv.)
)

= −
( 2
20

× log
( 2
20

)

+ 4
20

× log
( 4
20

)

+ 14
20

× log
( 14
20

))

= 0.8

Entropy of other attributes can be computed in the same way. Table 2 lists all the values which are normalized in the range of [0, 1]
for the sake of ease in interpretation. We may note that the attribute Age has the highest entropy value in Table 2 because it has
6
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Table 1
Sample data from the Adult dataset.

Age Work Edu EduNo Marital status Occupation Relationship Race Sex Loss Hpw Country

39 Gov. BS 13 Never Clerk Not-in-family White M 0 40 US
50 Self BS 13 Civ-spouse Manager Husband White M 0 13 US
38 Priv. HS 9 Divorced Cleaner Not-in-family White M 0 40 US
53 Priv. 11th 7 Civ-spouse Cleaners Husband Black M 0 40 US
28 Priv. BS 13 Civ-spouse Professor Wife Black F 0 40 Cuba
37 Priv. MS 14 Civ-spouse Manager Wife White F 0 40 US
49 Priv. 9th 5 Spouse-absent Other Not-in-family Black F 0 16 Jamaica
52 Self HS 9 Civ-spouse Manager Husband White M 0 45 US
31 Priv. MS 14 Never Professor Not-in-family White F 0 50 US
42 Priv. BS 13 Civ-spouse Manager Husband White M 0 40 US
37 Priv. College 10 Civ-spouse Manager Husband Black M 0 80 US
30 Gov. BS 13 Civ-spouse Professor Husband Asian M 0 40 India
23 Priv. BS 13 Never Clerk Own-child White F 0 30 US
32 Priv. Acdm 12 Never Sales Not-in-family Black M 0 50 US
40 Priv. Voc 11 Civ-spouse Craft Husband Asian M 0 40 China
34 Priv. 7th-8th 4 Civ-spouse Transport Husband Asian M 0 45 Mexico
25 Self HS 9 Never Farming Own-child White M 0 35 US
32 Priv. HS 9 Never Inspector Unmarried White M 0 40 US
38 Priv. 11th 7 Civ-spouse Sales Husband White M 0 50 US
43 Self MS 14 Divorced Manager Unmarried White F 0 45 US

Table 2
Entropy of attributes for sample data.

Attributes Entropy Attributes Entropy

Age 1.0 Relationship 0.50
Work 0.29 Race 0.34
Edu 0.70 Sex 0.22
EduNo 0.70 Loss 0.00
Marital status 0.38 Hpw 0.60
Occupation 0.75 Country 0.35

the maximum number of distinct values and therefore has the highest entropy. This attribute conveys the maximum information
and needs to be placed in the sensitive group because one can easily infer a person’s age using this attribute.

On the other hand, the attribute Loss has only a single value and therefore has a minimum entropy. This attribute may be placed
n the non-sensitive group because little or no information about an individual may be inferred based on this attribute. Once the
valuation function values are computed, the three-way division of attributes is carried out using Eqs. (7)–(9). For a certain threshold

pair, say (𝛼, 𝛽) = (1,0), the division of attributes is given by,

Sensitive(1,0) = {Age}
Non-Sensitive(1,0) = {Loss}

Ambiguous(1,0) = {Work, Edu, EduNo, Marital Status,
Occupation, Relationship, Race, Sex, Hpw, Country}

The resultant dataset given by 𝐷(𝛼,𝛽) in this case will be created based on the attributes in the sets Non-Sensitive(𝛼,𝛽) and
Ambigous(𝛼,𝛽). Since different thresholds will lead to different division of attributes, we need to compute thresholds based on
qualitative aspects of the resultant dataset. The measures of utility, stability and suitability will be computed for this purpose which
will reflect the effectiveness of the computed thresholds. The measure of utility for the thresholds of (𝛼, 𝛽) = (1,0) is given by,

Utility(𝐷(1,0)) = −
∑

𝑎1∈Loss

∑

𝑎2∈Work
...

∑

𝑎11∈Country
𝑃 (𝑎1, 𝑎2,… , 𝑎11) log𝑃 (𝑎1, 𝑎2,… , 𝑎11)

n the same way, the measure of stability and suitability for the same thresholds of (𝛼, 𝛽) = (1,0) are given by,

Stability(𝐷(1,0)) =
|Non-Sensitive(1,0)| × |Ambiguous(1,0)|

|𝐴𝑡| × (|Ambiguous(1,0)| + |Non-Sensitive(1,0)|)

=
|{Loss}| × |{Work, Edu, EduNo, . . . }|

|𝐴𝑡| × (|{Work, Edu, EduNo, . . . }| + |{Loss}|)

= 1 × 10
12 × 10 × 1

= 0.08

Suitability(𝐷(1,0)) = 2
Utility−1(𝐷(1,0)) + Stability−1(𝐷(1,0))

= 2 = 0.15
7

(0.9)−1 + (0.08)−1
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Table 3
Utility, Stability and Suitability of the dataset resulting from different thresholds.
(𝛼, 𝛽) Utility(𝐷(𝛼,𝛽)) Stability(𝐷(𝛼,𝛽)) Suitability(𝐷(𝛼,𝛽))

(0.5, 0.5) 0.20 0.17 0.18
(0.6, 0.4) 0.27 0.18 0.22
(0.7, 0.3) 0.65 0.15 0.24
(0.8, 0.2) 0.90 0.08 0.15
(0.9, 0.1) 0.90 0.08 0.15
(1.0, 0.0) 0.90 0.08 0.15

One can compute the respective values for all possible pairs of thresholds that may happen within the data. For the considered
dataset, the values are given in Table 3. We can find a pair of thresholds with maximum value for the measure of suitability in the
table which combines both the measures of utility and stability. For this example, in this case, the maximum value corresponds to
𝛼 = 0.7 and 𝛽 = 0.3. This exhaustive search may not be possible for large datasets with many attributes and therefore in the next
section, we present an algorithm for automatically determining the thresholds.

4.3. Three-way attribute division algorithm for differential privacy (3WADD)

In this section, we present a three-way decisions based algorithm for differential privacy called three-way attribute division for
differential Privacy or 3WADD. Algorithm 1 presents the of 3WADD. The algorithm takes the original dataset 𝐷𝑜, thresholds (𝛼, 𝛽)
nd step size 𝜆 as inputs and returns a publishable dataset 𝐷𝑝 based on suitable three-way division of attributes.

Line 1 of the algorithm computes the utility of the original dataset 𝐷𝑜 using Eq. (6). Line 2 makes a simple assignment to
ariables. From line 3 to 11, we repeatedly modify and refine the thresholds with the aim of improving the overall usefulness of the
esultant dataset based on the measures discussed in Section 4.1. To do this, we first compute the three-way division of attributes
n lines 5 to 7 which is followed by computing the resultant dataset given by 𝐷𝛼,𝛽 in line 8. Next, we compute the usefulness of the
our neighboring thresholds using the Suitability measure. The threshold pair that yield the maximum suitability value is selected
t each iteration. This helps in directing and guiding the search towards optimal thresholds.

Algorithm 1 Three-way attribute division for differential privacy
Input: Original Dataset 𝐷𝑜, thresholds (𝛼, 𝛽), step size 𝜆
Output: Publishable Dataset 𝐷𝑝
1: Compute Utility of 𝐷𝑜
2: (𝛼′ , 𝛽 ′ ) ← (𝛼, 𝛽)
3: do
4: (𝛼, 𝛽) ← (𝛼′ , 𝛽 ′ )
5: Sensitive(𝛼,𝛽) ←

{

𝐴𝑖 ∈ 𝐴𝑡 | 𝑒(𝐴𝑖) ≥ 𝛼
}

6: Non-Sensitive(𝛼,𝛽) ←
{

𝐴𝑖 ∈ 𝐴𝑡 | 𝑒(𝐴𝑖) ≤ 𝛽
}

7: Ambiguous(𝛼,𝛽) ←
{

𝐴𝑖 ∈ 𝐴𝑡 | 𝛽 < 𝑒(𝐴𝑖) < 𝛼
}

8: 𝐷(𝛼,𝛽) ← Non-Sensitive(𝛼,𝛽) ∪ Ambiguous(𝛼,𝛽)
9: (𝛼′ , 𝛽 ′ ) ← max

(𝛼,𝛽)
(Suitability(𝐷(𝛼−𝜆,𝛽)), Suitability(𝐷(𝛼+𝜆,𝛽)),

Suitability(𝐷(𝛼,𝛽−𝜆)), Suitability(𝐷(𝛼,𝛽+𝜆)))
0: while (Suitability(𝐷(𝛼′ ,𝛽′ )) ≥ Suitability(𝐷(𝛼,𝛽))

11: 𝐷Anonymized(𝛼,𝛽)
← Anonymize data corresponding to Ambiguous(𝛼,𝛽) using differential privacy

12: 𝐷𝑝 ← 𝐷Non-sensitive(𝛼,𝛽) ∪𝐷Anonymized(𝛼,𝛽)

13: return 𝐷𝑝

Finally, in line 10, the algorithm checks if the suitability of the updated thresholds (𝛼′, 𝛽′) is better than the suitability of the
thresholds from the previous step. If they are better, the algorithm will continue and in any other case the algorithm will stop
and the resultant thresholds will be the selected thresholds. In line 11, the dataset created with attributes in the set Ambigious(𝛼,𝛽)
is anonymized to create a dataset of 𝐷𝐴𝑛𝑜𝑛𝑦𝑚𝑖𝑧𝑒𝑑(𝛼,𝛽) using the differential privacy mechanism explained in Section 2.1. Finally, the
dataset corresponding to non-sensitive attributes, i.e., 𝐷Non-Sensitive(𝛼,𝛽) and the dataset corresponding to anonymized attributes are
combined together to create a publishable dataset given by 𝐷𝑝.

5. Experiments and results

5.1. Experimental setup and datasets

The technique discussed in this paper is general and can even be applied to datasets gathered from sources other than IoT sensors.
Therefore, we are using general as well as IoT sensor datasets to demonstrate our experiments. We used five datasets from the UCI
machine learning repository and Kaggle repository in the experiments. These datasets include Titanic, Adult, Bank Marketing, Heart
Disease and Student Performance. Some important information about these datasets is given in Table 4. It may be noted that different
datasets have been used in the studies of differential privacy however there are no standard benchmarks. Generally speaking, the
8
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Table 4
Datasets description.

Dataset Attributes Records

Titanic 12 1309
Adult 15 48,842
Bank Marketing 17 45,211
Heart Disease 14 720
Student Performance 30 1044

Table 5
Sample records for motion, light, pressure and contact sensors [25].

Sensor ID Timestamp Value Name

5895 2020-05-04 12:55:45 0 Bathroom/ambience/motion
5887 2020-07-18 16:00:00 175 Kitchen/stove/light
5891 2020-07-28 16:00:00 0 Livingroom/ambience/motion
5892 2020-07-28 16:00:00 0 Bedroom/ambience/motion
6127 2020-07-28 16:00:00 1024 Livingroom/tv/light
5896 2020-07-28 16:00:00 555 Bedroom/bed/pressure
6687 2020-07-28 16:00:00 1 Bedroom/weightscale/pressure
5889 2020-07-28 16:00:00 6 Livingroom/couch/pressure
7125 2020-07-28 16:00:00 1024 Bathroom/ambience/light
5893 2020-07-28 16:00:00 0 Kitchen/ambience/motion
5888 2020-07-28 16:00:00 0 Entrance/door/contact
6686 2020-07-28 16:00:00 0 Bedroom/ambience_under_the_bed/motion
6220 2020-07-28 16:00:00 0 Balcon/door/contact
5894 2020-07-28 16:00:01 0 Corridor/ambience/motion
6253 2020-07-28 16:00:01 0 Kitchen/fridge/contact

Table 6
Summary of sensors, object monitored, and location. [25].

Sensor Sensor type Object monitored Location

M06 Motion Ambience Bathroom
L01 Light TV Living room
L02 Light Stove Kitchen
L03 Light Ambience Bathroom
P01 Pressure Couch Living room
P02 Pressure Bed Bedroom
P03 Pressure Weight scale Bedroom
TH01 Temperature & Humidity Ambience Bathroom
D01 Reed switch Door contact Entrance
D02 Reed switch Door contact Balcon
D03 Reed switch Fridge Door contact Kitchen
SMP01 Smart plug Coffee maker Kitchen
SMP02 Smart plug Dishwasher Kitchen
SMP03 Smart plug Sandwich maker Kitchen
SMP04 Smart plug Kettle Kitchen
SMP05 Smart plug Washing machine Bathroom
SMP06 Smart plug Microwave Kitchen
SMP07 Smart plug Vacuum cleaner Corridor

datasets used in the previous studies are synthetic or artificially created for use in the specific studies and are not easily accessible.
We selected publicly available datasets where the attributes can be meaningfully divided into three groups with clear semantic
interpretation of the attributes belonging to the three attribute sets. These experiments can be performed on data from IoT sensors.
One such dataset of human activities in a smart home environment is generated and discussed in [25]. Table 5 shows the data from
light, motion, contact and pressure sensors. Table 6 shows the sensors, the object they are monitoring and their location in the
house.

In all the experiments we use the starting thresholds of (𝛼, 𝛽) = (0.5, 0.5). Different strategies may be employed with regards to the
starting thresholds. We, however, used the initial setting of (𝛼, 𝛽) = (0.5, 0.5) to examine the possible improvement in performance
measures when there are no attributes in the ambiguous group. An important issue with regards to executing Algorithm 1 is the
setting of suitable value for the step size 𝜆. By having a higher values of 𝜆, the Algorithm 1 may converge to the final result in
ower number of iterations however the thresholds may not be very fine tuned. On the other hand, by having a lower value of 𝜆,
he Algorithm 1 may take more iterations to converge but it may allow to fine tune the thresholds. To use suitable and effective
alues of the thresholds, we tested different values of the 𝜆 on the considered datasets and noted the number of iterations the
lgorithm 1 takes to converge to the final result. For each 𝜆 value, we noted the maximum and average number of iterations for
9

he five datasets and report the results in Fig. 3. Note that we have a very higher number of iteration for lower values of 𝜆 but as
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Fig. 3. Step size 𝜆 and number of iterations.

Table 7
Entropy of attributes of Titanic dataset.

Attributes Entropy Attributes Entropy

Passengerid 1.0 Sibsp 0.039
Survived 0.0018 Parch 0.020
Pclass 0.054 Ticket 0.923
Name 1 Fare 0.658
Sex 0 Cabin 0.158
Age 0.477 Embarked 0.024

Table 8
Entropy of attributes of Adult dataset.

Attributes Entropy Attributes Entropy

Age 0.529 Race 0.024
Workclass 0.116 Sex 0.038
Fnlwgt 1.0 Capital gain 0.024
Education 0.240 Capital loss 0
Education-num 0.240 Hours per week 0.297
Martial status 0.132 Country 0.035
Occupation 0.306 Target 0.027
Relationship 0.163

Table 9
Distribution of attributes in three groups for the Titanic dataset.
(𝛼, 𝛽) Sen.(𝛼,𝛽) Non-Sen.(𝛼,𝛽) Amb.(𝛼,𝛽) Utility(𝐷(𝛼,𝛽)) Stability(𝐷(𝛼,𝛽)) Suitability(𝐷(𝛼,𝛽))

(0.50, 0.50) 4 8 0 0.42 0.0 0
(0.50, 0.45) 4 7 1 0.42 0.07 0.12
(0.55, 0.45) 4 7 1 0.42 0.07 0.12
... ... ... ... ... ... ...
... ... ... ... ... ... ...
(0.95, 0.10) 2 6 4 0.72 0.2 0.31
(0.95, 0.05) 2 5 5 0.72 0.21 0.33

the 𝜆 increases, the algorithm converges in fewer iterations. We may also note that after around 𝜆 = 0.05, increasing the 𝜆 further
has little or no change on the number of iterations. We therefore choose to use 𝜆 = 0.05 in all of our experiments.

.2. Three-way attribute division results

The experiments are performed with the evaluation function of entropy. Please note that we use normalized values for entropy
or all the attributes. Entropy of individual attributes of the Titanic dataset are given in Table 7. The highest entropy value is of the
ttribute named PassengerId. This is because each passenger has a unique identifier and therefore this attribute has the maximum
mount of information or equivalently maximum entropy. On the other hand, attributes such as Sex and Survived has low entropy
ecause the attribute Sex and Survived both have only two values of {Male, Female} and {0, 1} respectively. Entropy of individual

attributes of the Adult dataset is given in Table 8. Similar trends can be found in the Adult dataset where some attributes have a
larger entropy value hence carrying more information while others have low entropy and therefore carry lesser information.
10
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Table 10
Distribution of attributes in three groups for the Adult dataset.
(𝛼, 𝛽) Sen.(𝛼,𝛽) Non-Sen.(𝛼,𝛽) Amb.(𝛼,𝛽) Utility(𝐷(𝛼,𝛽)) Stability(𝐷(𝛼,𝛽)) Suitability(𝐷(𝛼,𝛽))

(0.50, 0.50) 2 13 0 0.68 0.0 0
(0.50, 0.45) 2 13 0 0.68 0.0 0
(0.55, 0.45) 1 13 1 0.79 0.06 0.11
... ... ... ... ... ... ...
... ... ... ... ... ... ...
(0.9, 0.05) 1 6 8 0.79 0.23 0.36
(0.95, 0.05) 1 6 8 0.79 0.23 0.36

Table 11
Distribution of attributes in three groups for the Bank Marketing dataset.
(𝛼, 𝛽) Sen.(𝛼,𝛽) Non-Sen.(𝛼,𝛽) Amb.(𝛼,𝛽) Utility(𝐷(𝛼,𝛽)) Stability(𝐷(𝛼,𝛽)) Suitability(𝐷(𝛼,𝛽))

(0.50, 0.50) 3 14 0 0.59 0.0 0
(0.50, 0.45) 3 13 1 0.59 0.05 0.09
(0.55, 0.45) 2 13 2 0.68 0.1 0.17
... ... ... ... ... ... ...
... ... ... ... ... ... ...
(0.9, 0.15) 1 9 7 0.84 0.23 0.36
(0.95, 0.15) 1 9 7 0.84 0.23 0.36

Table 12
Distribution of attributes in three groups for the Heart Disease dataset.
(𝛼, 𝛽) Sen.(𝛼,𝛽) Non-Sen.(𝛼,𝛽) Amb.(𝛼,𝛽) Utility(𝐷(𝛼,𝛽)) Stability(𝐷(𝛼,𝛽)) Suitability(𝐷(𝛼,𝛽))

(0.50, 0.50) 5 9 0 0.56 0.0 0
(0.50, 0.45) 5 9 0 0.56 0.0 0
(0.55, 0.45) 4 9 1 0.64 0.06 0.11
... ... ... ... ... ... ...
... ... ... ... ... ... ...
(0.9, 0.20) 2 7 5 0.8 0.21 0.33
(0.95, 0.20) 2 7 5 0.8 0.21 0.33

Table 13
Distribution of attributes in three groups for the Student Performance dataset.
(𝛼, 𝛽) Sen.(𝛼,𝛽) Non-Sen.(𝛼,𝛽) Amb.(𝛼,𝛽) Utility(𝐷(𝛼,𝛽)) Stability(𝐷(𝛼,𝛽)) Suitability(𝐷(𝛼,𝛽))

(0.50, 0.50) 10 20 0 0.71 0.0 0
(0.50, 0.45) 10 18 2 0.71 0.06 0.11
(0.55, 0.45) 9 18 3 0.74 0.09 0.16
... ... ... ... ... ... ...
... ... ... ... ... ... ...
(0.70, 0.3) 1 15 14 0.96 0.24 0.38
(0.70, 0.25) 1 14 15 0.96 0.24 0.38

Algorithm 1 is executed for all the datasets to compute effective thresholds and the respective three-way division of attributes.
able 9 shows the results corresponding to different iterations of the Algorithm 1 for the Titanic dataset. Each row of the table
orresponds to a certain iteration of the algorithm. The last row of the table corresponds to the determined thresholds using
lgorithm 1. When the algorithm starts all the attributes are crisply divided into sensitive or non-sensitive groups. As the algorithm

terates, the attributes from the sensitive and non-sensitive groups are moved to the ambiguous group. In particular, when the
lgorithm stops, the sensitive and non-sensitive groups are reduced by two and three attributes, respectively while the ambiguous
ttribute group increases by five attributes. The change of attributes among the different groups improves the measures of utility,
tability and suitability. From the starting configuration of thresholds at the beginning of the algorithm that is (𝛼, 𝛽) = (0.5, 0.5),

the measure of utility improves by 30% with the determine thresholds of (𝛼, 𝛽) = (0.95, 0.05). Moreover, the improvement in the
easures of stability and suitably improve by 21% and 33% respectively.

Table 10 shows the results corresponding to the Adult dataset. The results are similar to those obtained for the Titanic dataset.
gain we may note that as the algorithm iterates, the attributes are moved from the sensitive and non-sensitive groups to the
mbiguous groups thereby reducing the size of sensitive and non-sensitive groups. In particular, the number of attributes in the
ensitive group and non-sensitive groups are reduced by one and seven attributes respectively. The ambiguous group increases
y eight attributes in this case. Change in number of attributes in the three groups may effect the measures of utility, stability
nd suitability. Therefore, the utility computed with starting thresholds improves from 0.68 to 0.79 with the computed thresholds
𝛼, 𝛽) = (0.95, 0.05). On the other hand, both the stability and suitability are improved from 0 to 0.23 and 0.36, respectively. Similar
esults corresponding to the datasets of Bank Marketing, Heart Disease and Student Performance are reported in Tables 11–13.
11
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Fig. 4. Percentage of attributes in each group for (0.5, 0.5) and determined thresholds.

Fig. 5. Improvements in Utility, Stability and Suitability with respect to starting thresholds.

Figs. 4 and 5 are constructed to summarize the results in visual form. Fig. 4 shows the attributes group sizes for the initial
and final computed thresholds. For all the datasets, the attribute division is refined based on three-way attribute division. Fig. 5
shows the percentage improvements in three measures with the determined thresholds from the starting or initial configuration of
the thresholds. We may note that all three measures improve significantly with the determined thresholds. The measure of utility
improves in the range of 0.11 to 0.3 for the considered datasets. There are also significant improvements in the measures of stability
and suitability. In particular, the measure of stability shows an improvement in the range of 0.21 to 0.24 while the measure of
suitability shows an improvement in the range of 0.33 to 0.38.

Table 14 shows the divisions selected by Algorithm 1 for each dataset. For the Titanic dataset, the suitable division is achieved
by thresholds (𝛼, 𝛽) = (0.95, 0.05). In this case, PassengerId and Name and are placed in the sensitive group. These attributes
re perfect candidates for the sensitive group because publishing any of these attributes will cause sensitive information of an
ndividual to be leaked. On the other hand, the attributes Survived, Sex, Sibsp (number of siblings/spouses aboard), Parch (number
f parents/children abroad) and Embarked are placed in the non-sensitive group because none of these attribute may uniquely
dentify an individual in this case. For example, one cannot identify an individual’s information based on the fact that he survived
he crash or he was male or had certain number of children/parents aboard the ship.

Attributes like Age, Fare and Cabin are also sensitive but they also heavily contribute towards the utility of data and keeping
hem in the dataset is beneficial. These attributes may or may not determine an individual. For instance, there may be a single
12

r multiple people with the same age. These attributes will be anonymized using differential privacy and then published. Similar
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Table 14
Division of attributes with the determined thresholds.

Dataset (𝛼, 𝛽) Groups Entropy based division

Titanic (0.95, 0.05) Sensitive(𝛼,𝛽) {Passengerid, Name}
Non-Sensitive(𝛼,𝛽) {Survived, Sex, Sibsp, Parch, Embarked}
Ambiguous(𝛼,𝛽) {Pclass, Age, Ticket, Fare, Cabin}

Adult (0.95, 0.05) Sensitive(𝛼,𝛽) {fnlwgt}
Non-Sensitive(𝛼,𝛽) {Race, Sex, Capital gain, Capital loss, Country, Target}
Ambiguous(𝛼,𝛽) {Age, Workclass, Education, Education-num, Martial status,

Occupation, Relationship, Hours per week}

Bank Marketing (0.95, 0.15) Sensitive(𝛼,𝛽) {Balance}
Non-Sensitive(𝛼,𝛽) {Marital, Education, Default, Housing, Loan, Contact,

Previous, Poutcome, Y}
Ambiguous(𝛼,𝛽) {Age, Job, Day, Month, Duration, Campaign, Pdays}

Heart Disease (0.95, 0.20) Sensitive(𝛼,𝛽) {Chol, Thalach}
Non-Sensitive(𝛼,𝛽) {Sex, Cp, Fbs, Restecg, Exang, Ca, Num}
Ambiguous(𝛼,𝛽) {Age, Trestbps, Oldpeak, Slope, Thal}

Student Performance (0.70, 0.25) Sensitive(𝛼,𝛽) {Absences}
Non-Sensitive(𝛼,𝛽) {School, Sex, Address, Famsize, Pstatus, Failures,

Schoolsup, Famsup, Paid, Activities, Nursery, Higher,
Internet, Romantic}

Ambiguous(𝛼,𝛽) {Age, Medu, Fedu, Mjob, Fjob, Reason, Guardian, Traveltime,
Studytime, Famrel, Freetime, Goout’, Dalc, Walc, Health }

Table 15
Comparison of the determined thresholds with extreme thresholds of (0.5,0.5) and (1,0).

Dataset Thresholds Utility(𝐷(𝛼,𝛽)) Stability(𝐷(𝛼,𝛽)) Suitability(𝐷(𝛼,𝛽))

Titanic
(0.5, 0.5) 0.42 0.0 0.0
(𝛼, 𝛽) 0.72 0.21 0.33
(1, 0) 0.87 0.08 0.15

Adult
(0.5, 0.5) 0.68 0.0 0.0
(𝛼, 𝛽) 0.79 0.23 0.36
(1, 0) 0.79 0.06 0.11

Bank Marketing
(0.5, 0.5) 0.59 0.0 0
(𝛼, 𝛽) 0.84 0.23 0.36
(1, 0) 0.84 0.06 0.11

Heart Disease
(0.5, 0.5) 0.56 0.0 0.0
(𝛼, 𝛽) 0.8 0.21 0.33
(1, 0) 0.91 0.07 0.13

Student Performance
(0.5, 0.5) 0.71 0.0 0.0
(𝛼, 𝛽) 0.96 0.24 0.38
(1, 0) 0.96 0.03 0.06

interpretation may be provided for the attributes in different groups corresponding to the other datasets shown in Table 14. These
results show that our algorithm works effectively in identifying the attributes for the three groups.

5.3. Comparison with extreme thresholds

In this section, we provide comparative analysis of attribute division obtained with the determined threshold using Algorithm
and the extreme thresholds of (𝛼, 𝛽) = (0.5, 0.5) and (𝛼, 𝛽) = (1, 0). The casual reader may skip this section without loss of critical

information.
The thresholds (𝛼, 𝛽) = (0.5, 0.5) and (𝛼, 𝛽) = (1, 0) are generally used as a starting point for learning effective thresholds of three-

way decisions and comparisons with them provide useful hints for the performance gains that are achieved with the determined
thresholds. It may be noted that with the thresholds setting of (𝛼, 𝛽) = (0.5, 0.5), we have minimum possible size of the ambiguous
ttribute set while for the thresholds of (𝛼, 𝛽) = (1, 0), we have maximum possible size of the ambiguous attribute set. Table 15 shows

the evaluation measures for the extreme thresholds as well as the determined thresholds. We may note that with the determined
thresholds, we always have better results compared to those of (𝛼, 𝛽) = (0.5, 0.5). The configuration of (𝛼, 𝛽) = (1, 0) has better utility
especially for datasets of Titanic, Heart Disease and Student Performance, however, its stability and suitability is always inferior to
those achieved with the determined thresholds.

The details results in this section advocate for the use of the proposed approach for obtaining automatic division of attributes
13

for differential privacy.



Computers and Electrical Engineering 100 (2022) 107894W. Ali et al.

p
i
d
p
t
t
e
s

e
o
s
I

D

t

A

R

6. Conclusion

The data collected and stored by sensors in Internet of things (IoT) needs to be protected against privacy breaches. Differential
rivacy is an approach for privacy preservation. Before applying differential privacy, it is necessary to divide the attribute set
nto three groups known as sensitive, non-sensitive and ambiguous. Existing practices rely on manual division of attributes by a
omain expert and are therefore quite costly. We introduce a three-way approach for automatic attribute division for differential
rivacy. The approach divides the attribute set based on a pair of thresholds and an evaluation function. The configuration of
hresholds controls the groupings or divisions of attributes and needs to be configured carefully. To achieve effective thresholds and
he resulting grouping of attributes, we introduce an algorithm called 3WADD that automatically determines the thresholds for an
ffective division of attributes. An architecture that incorporated 3WADD using differential privacy is also presented. The proposed
cheme improves the information content and stability of the dataset.

These results open up new research avenues for exploring more sophisticated methods of three-way decisions for obtaining
ffective and useful division of attributes for IoT. In particular, different kinds of evaluation functions may be explored depending
n the underlying nature of the data and the specific needs of the application at hand. The automated nature of this approach can
ignificantly reduce the cost of privacy preservation in an IoT dataset and thus motivate more organizations and individuals to use
oT to improve their processes.
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