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Abstract
Integrating cognitive radio (CR) with traditional wireless networks is helping solve the problem of spectrum scarcity in an 
efficient manner. The opportunistic and dynamic spectrum access features of CR provide the functionality to its unlicensed 
users to utilize the underutilized spectrum at the time of need because CR nodes can sense vacant bands of spectrum and 
can also access them to carry out communication. Various capabilities of CR nodes depend upon efficient and continuous 
reporting of data with each other and centralized base stations, which in turn can cause leakage in privacy. Experimental 
studies have shown that the privacy of CR users can be compromised easily during the cognition cycle, because they are 
knowingly or unknowingly sharing various personally identifiable information (PII), such as location, device ID, signal status, 
etc. In order to preserve this privacy leakage, various privacy preserving strategies have been developed by researchers, and 
according to us differential privacy is the most significant among them. In this article, we provide a thorough survey on how 
differential privacy can play an active role in preserving privacy of cognitive radio networks (CRN). Firstly, we provide a 
thorough comparison of our work with other similar studies to show its novelty and contribution, and afterwards, we provide 
a thorough analysis from the perspective of various CR scenarios which can cause privacy leakage. After that, we carry 
out an in-depth assessment from the perspective of integration of differential privacy at different levels of CRN. Then, we 
discuss various parameters which should be considered while integrating differential privacy in CRN alongside providing a 
comprehensive discussion about all integrations of differential privacy carried out till date. Finally, we provide discussion 
about prospective applications, challenges, and future research directions. The discussion about integration of differential 
privacy in different CR scenarios indicates that differential privacy is one of the most viable mechanisms to preserve privacy 
of CRN in modern day scenarios. From the discussion in the article, it is evident that the proposed integration of differential 
privacy can pave the way for futuristic CRN in which CR users will be able to share information during the cognition cycle 
without the risk of losing their private information.
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Introduction

The exponential surge in the usage of hand-held Internet of 
Things (IoT) devices caused a huge rise in wireless traffic. 
Statista report revealed that the number of hand-held mobile 
devices is projected to reach up to 17.72 billion by the end 
of the year 2024 [1]. This surge is causing an irregular usage 
of spectrum, which is further responsible to cause the issue 
of ‘artificial spectrum scarcity’ [2]. Similarly, the worldwide 
analysis and measurement of spectrum utilization revealed 
that only 5-10 % of wireless spectrum is being used by 
licensed/authorized users [3]. All these factors lead research-
ers to investigate mechanisms which provide spectrum effi-
ciency, and cognitive radio (CR) is one of them. Cognitive 
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radio is a widely accepted model for efficient spectrum uti-
lization [4]. CR was first coined by J. Mitola in 1999. CR 
is an ambiance-aware intelligent wireless system which can 
dynamically adapt changes depending upon its surrounding 
RF environment [5]. CR works over the principle of allowing 
CR users (also known as Secondary Users (SUs)), to access 
spectrum of licensed users (also known as Primary Users 
(PUs)), during idle time. This functionality of CR allows SUs 
to exploit underutilized bands of spectrum without causing 
any harmful inference to the communication of PUs [6]. 
Thus, SUs can dynamically access available spaces in the 
spectrum band in order to manage it efficiently [7, 8].

To dynamically access the spectrum, SUs need to follow 
complete cycle which involve spectrum sensing (SS), spectrum 
analysis, and spectrum adaptation (also known as exploita-
tion) [9]. SUs repeatedly carry out these functions in order to 
achieve the desired environmental conditions. (A detailed expla-
nation of functioning of CRN is provided in “Fundamentals of 
Differential Privacy in Cognitive Radio Networks”.) All other 
functions, for example, spectrum auction (used to decide win-
ner of spectrum allocation), etc., can be taken as a subvariant 
of the above-mentioned basic tasks. These functionalities help 
SUs to find and select the best possible spectrum band in order 
to carry out seamless communication. Since these steps involve 
transmission of SUs data, these steps can be exploited by adver-
saries to infer their personal data. For instance, multiple SUs 
are collected during collaborative spectrum sensing (CSS) by a 
fusion centre (FC) to get the best spectrum results. However, this 
FC can also become an adversary and exploit private data of CR 
users [10]. Similarly, in case of spectrum auction, the centralized 
auctioneer can exploit the bidding privacy (BP) because it has 
all data of multiple SUs and PUs from the bidding perspective. 
Therefore, it is important to protect the privacy of CR users 
by integrating some external privacy preservation mechanisms.

In the quest of providing privacy in CRN, extensive research 
has been carried out by researchers to integrate different pri-
vacy preservation strategies with CRN. For example, some 
works [11, 12] proposed the use of anonymization techniques 
such as k-anonymity to preserve privacy of CR users. Similarly, 
some other works [15–17] analysed the use of encryption to 
preserve privacy. Certain works [18–21] investigated the use of 
private information retrieval to protect private CR data. Along-
side these techniques, some works also highlight the use of 
obfuscation-based privacy (also known as differential privacy) 
to preserve CR users’ privacy. Among all these mechanisms 
we believe that differential privacy is one of the most viable 
mechanisms to protect the privacy of CR users because of its 
dynamic and adaptive nature.

The notion of differential privacy was first discussed by 
Cynthia Dwork in 2006 in order to protect privacy of sta-
tistical databases by adding random independent and iden-
tically distributed (i.i.d) noise in the data [22]. However, 
afterwards researchers working in the field of private CRN 

tried integrating this differential privacy notion with CRN 
at different aspects and they got fruitful results. Since then, 
plenty of works highlighting the integration of differential 
privacy with CRN have been carried out in the literature. In 
this paper, we provide a thorough survey regarding integra-
tion of differential privacy at various scenarios of CRN in 
order to demonstrate the useful benefits that one can get via 
this integration. Similarly, we try to discuss various techni-
cal works that have already carried out this integration and 
published their work in the literature.

Key Contributions of Our Survey Article

Nevertheless, certain surveys from the perspective of secu-
rity and location privacy of CRN have been presented in the 
literature, but a specific survey that highlights the need, inte-
gration, functioning, and applications of differential privacy 
in CRN has not been presented yet. In this article, we carry 
out survey of state-of-the-art works involving the integration 
of differential privacy and CRN alongside providing certain 
use cases which can be beneficial for future researchers who 
are interested to explore this field further. To conclude, the 
key contributions of our article are as follows:

• We carry out comparative comparison of our survey arti-
cle with previously published survey literature.

• We provide an in-depth analysis over the scenarios in
which privacy of CRN can be compromised.

• We provide a thorough analysis from the perspective of inte-
gration of differential privacy at different levels of CRN.
Alongside this, we also in-depth survey of all state-of-the-
art integrations involving differential privacy and CRN.

• We provide a comprehensive analysis of parameters
which should be considered while incorporating differ-
ential privacy in CRN models.

• We highlight various challenges, open issues, and prospec-
tive future directions for researchers and scientists inter-
ested to explore the field of differentially private CRN.

Related Survey Works

A comprehensive literature is available in the field of CRN; 
however, the aspect of privacy preservation in CRN is not 
much discussed and only a very few surveys are available in 
this field. Similarly, this presented survey work is different 
from other surveys in a context that it discusses the integra-
tion, design requirements, functioning, and applications of 
differential privacy in CRN. To the best of our knowledge, 
there is no prior work which covers multiple aspects of dif-
ferential privacy in CRN. None of the works discussed inte-
gration of differential privacy in cognitive cycles; therefore, 
we develop certain comparison matrices such as discussion 
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about differential privacy, location privacy (LP), trading pri-
vacy (TP), SS privacy (SSP), and sources of privacy leakage 
(SoPL). A comprehensive comparison of our survey with 
other surveys, based on the aforementioned parameters, is 
presented in Table 1.

The first work discussing vulnerabilities of CRN from the 
perspective of security, privacy, and deployment threats have 
been presented by Bhattacharjee et al. [11]. The authors first 
describe various architectural aspects of CRN focusing weak 
links having security and privacy threats. Afterwards, they 
discuss threats and vulnerabilities that CRN can face if they 
are attacked by some adversary. A brief book purely target-
ing location privacy of CRN have been presented by Wang 
and Zhang [12]. The work first highlights certain privacy 
preservation mechanisms, and then discuss the integration 
of privacy mechanisms in CRN. The major focus of the work 
is location privacy leakage during CSS and during database 
driven CRN. Another comprehensive survey discussing the 
security threats and defences in CRN have been carried out 
by Sharma and Rawat [2]. The work focuses over highlight-
ing security vulnerabilities in different layers of CRN. The 
article started with discussion of CRN physical layer, then 
discusses security threats in upper and cross-layer CRN. 
Finally, authors provide in-depth insights on how game 
theory can play the role in enhancing the security of CRN.

Another survey by Grissa et al. [10] focuses location pri-
vacy leakage and its mitigation techniques in CRN. This 

work first discusses the sources of CRN which may cause 
privacy leakage, then presents CRN privacy preservation 
mechanisms, and finally states CRN location privacy meth-
ods of spectrum discovery along with attack scenarios. One 
more work providing an in-depth classification of security 
threats of physical layer of CRN is presented by Hamamreh 
et al. [13]. The article first classifies security techniques of 
CRN physical layer and then presents its detailed applica-
tions. Another similar article discussing the basics, detec-
tion, functioning, and countermeasures of physical layer 
threats of CRN have been presented by Salahdine and 
Kaabouch [14]. The work first classifies all physical layer 
attacks in CRN, then classifies and discusses attack detection 
techniques and the possible countermeasures.

However, considering this discussion and after analys-
ing all possible surveys presenting privacy preservation in 
CRN, it can be concluded that the prevailing literature does 
not give an in-depth knowledge and analysis of differential 
privacy in CRN. Our presented work is the first one that 
covers integration of differential privacy with CRN from an 
in-depth technical perspective.

Overview of the Article

A brief list of acronyms used in our survey article is given 
in Table 2. The rest of the article is structured as follows: 
“Fundamentals of Differential Privacy in Cognitive Radio 

Table 1  Summary of Related Survey Articles with their Contribu-
tion, and Various Scopes such as Differential Privacy (DP), Loca-
tion Privacy (LP), Trading Privacy (TP), Spectrum Sensing Privacy 
(SSP), and Sources of Privacy Leakage (SoPL). Tick(✔) Shows that  

the mentioned topic is covered, Cross(✗)  shows that the provided 
domain is not covered, and Asterisk(✽) shows that the particular topic 
is partially covered

           Scope

Major Domain Ref. Year Type Contribution Summary DP LP TP SSP SoPL
Cognitive Radio Networks Vulner-

abilities
[11] 2013 Survey Comprehensive survey on security con-

cerns and prospective threats linked to 
deployment of CRN

✗ ✽ ✗ ✗ ✽

Location Privacy in CRN [12] 2014 Book Provided an extensive survey on location 
privacy and its mitigation strategies in 
CRN.

✔ ✔ ✗ ✽ ✽

Security Threats & Defences in CRN [2] 2015 Survey Carried out a detailed survey on threats 
& countermeasures of secure for both 
primary & secondary CRN users.

✗ ✽ ✗ ✽ ✽

Location Privacy in CRN [10] 2017 Survey A comprehensive survey on leakage 
sources and mitigation strategies for 
location privacy in CRN.

✽ ✔ ✽ ✽ ✔

Physical Layer Security [13] 2019 Survey Extensively classified security techniques 
and applications for CRN physical layer.

✗ ✗ ✗ ✗ ✗

Physical Layer Security [14] 2020 Survey A thorough discussion and analyzation 
of security attacks on physical layer of 
CRN is provided.

✗ ✽ ✗ ✗ ✗

Differential Privacy in CRN This Work 2020 Survey A state-of-the-art survey on privacy leak-
age of CRN along with extensive evalu-
ation from the perspective of integration 
of differential privacy in CRN.

✔ ✔ ✔ ✔ ✔
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Networks” provides a brief discussion about fundamental 
concepts and preliminaries of article from the perspective 
of differential privacy, CR, and sources of privacy leakage. 
Afterwards, “Scenarios of Privacy Leakage During Cogni-
tive Cycle and Prospective Role of Differential Privacy” pro-
vides an in-depth discussion about integration of differen-
tial privacy with CRN in different CR scenario. After that 
“Performance Matrices for Evaluating Differentially Private 
CRN Mechanisms” talks about various performance matri-
ces that can be used to evaluate integration of differentially 
private approaches in CRN scenarios. Then, “Differential 
Privacy Approaches for Cognitive Radio Networks” carries 
out an extensive survey of all technical works that have inte-
grated differential privacy in CRN. Afterwards, “Applicabil-
ity of Differential Privacy in Futuristic Cognitive Radios” 
provides in-depth discussion about applicability of CRN 
in various futuristic scenarios and applications. Similarly, 
“Challenges and Future Research Directions”  provides 
insights about possible challenges and prospective future 
research directions. Finally, the article is concluded in 
“Conclusion”.

Fundamentals of Differential Privacy 
in Cognitive Radio Networks

Since CRN serve as a viable solution to overcome spec-
trum scarcity issue, these have therefore been integrated 
with many domains, for example, smart grid, IoT, multi-
media transmission, transportation systems, healthcare and 
other [23]. Although CR provides amazing features, it also 

has an issue of privacy leakage. Thus, CRN privacy protec-
tion is also an important aspect that needs to be taken care 
of while implementing this paradigm. In this section, fun-
damental concepts of our survey such as CRN, differential 
privacy, importance of privacy in CRN, privacy threats, and 
sources of privacy leakage in CRN are discussed.

Cognitive Radio and its Preliminaries

Discussion about is further categorized into five different 
aspects: (i) spectrum bands, (ii) CRN users, (iii) white space 
exploitation and utilization, (iv) CRN cognitive cycle, and 
(v) SS.

Licensed and Unlicensed Bands of Spectrum

Spectrum band, also known as frequency band, is used to 
carry out communication between devices, and the band is 
widespread and ranges between 9 KHz to 3 THz depending 
upon the type of application [24]. The spectrum bands can 
be further subdivided into licensed spectrum band and unli-
censed spectrum band [25]. The licensed band is allocated 
to licensed users who have paid licensing fees. These users 
can use the allocation frequency at any time without any 
inference and interruption. The licensed bands are usually 
allocated to telecom/Internet companies via auctions, who 
further allocate the bands to their customers [26]. Contra-
rily, unlicensed spectrum bands have been excluded from 
auction-based sale/international licensing; therefore, these 
bands are used to carry out low-cost communication. These 
bands are limited and their users are pretty large; therefore, 
these bands face the issue of heavy inference. Since a large 
base of users compete for these unlicensed bands, National 
Authorities regulating these bands carry out a conventional 
auction to manage these bands  [24]. In this way, these 
authorities allocate a high paying user a fixed spectrum band 
and they can use it as a licensed user. An analysis indicates 
that the utilization of these bands greatly varies depend-
ing upon the geographical region. For example, the overall 
utilization is 85% at some places while it is 15% at other 
places [27]. This underutilization of spectrum leads to the 
formation of large unused white spaces, which gets wasted. 
To overcome this spectrum wastage, researchers are getting 
benefit from the dynamic spectrum access functionality of 
CRN, through which CR users can access the unoccupied 
spectrum band and can leave at the time of PU activity.

Primary & Secondary Cognitive Radio Users

The underutilization of spectrum can be controlled and 
reduced with the help of CRN with very minimal level of 

Table 2  List of Acronyms Used in the Article

Acronyms Definitions

BP Bidding Privacy
CR Cognitive Radio
CRN Cognitive Radio Networks
CSS Collaborative Spectrum Sensing
DP Differential Privacy
FC Fusion Centre
IU Incumbent User
IoT Internet of Things
LP Location Privacy
PU Primary User
RF Radio Frequency
SU Secondary User
SVM Support Vector Machine
SSP Spectrum Sensing Privacy
SS Spectrum Sensing
SoPL Sources of Privacy Leakage
TP Trading Privacy
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inference to licensed users. CRN mainly comprises of two 
types of users. First one is known as primary users (PUs), 
who are licensed and can access the spectrum at any time 
without any permission. The second type of users are sec-
ondary users (SUs), also known as CR users, who are unli-
censed and can only access spectrum when it is unoccupied. 
SUs have to leave the spectrum in case PU arrives [28]. CR 
users continuously sense the activity of PUs on the network 
and always look for white spaces. Once an SU finds a white 
space, it moves to it and starts utilizing it for communica-
tion. In this way, SUs help to overcome the issue of spectrum 
underutilization in an efficient manner.

White Space Utilization

CR is an intelligent radio, which changes and adapts to the 
changes according to environment. Similarly, extensive 
research has been carried out in order to efficiently utilize the 
underutilized spectrum. Generally, CRN can be further sub-
divided into three paradigms on the basis of their spectrum 
utilization [29]. First type of CRN is interweave CRN, where 
CRN continuously senses the activity of PUs and access the 
network only when it is vacant. These are conventional CRN, 
which wait for the spectrum to become idle. Second type of 
CRN is underlay CRN, which allows CR users to carry out 
operations alongside PU activity if the inference caused by 
CR users is less than a specific threshold value. Third type of 
CRN is overlay, in which CR users overhear the continuous 
PUs transmissions and then use sophisticated algorithms of 
signal processing to enhance PUs performance, and in turn 
they get some additional patch of bandwidth which they can 
use to carry out their own transmission.

Cognitive Cycle for White Space Exploitation

The spectrum utilization and exploitation phenomenon of 
CRN works in a stepwise manner, which is also known as 
the cognitive cycle. The cycle comprises four functional 
steps in which CR performs different actions to access spec-
trum in the most efficient manner. The steps of the cycle are 
sensing, analysis, sharing, and mobility [30]. The details of 
these steps are given as follows:

• Spectrum sensing is the first step in the cognitive cycle.
Through SS, CR nodes carry out efficient detection of
spectrum opportunities around themselves in order to
develop an initial idea of which spectrum band to access.

• Spectrum analysis is the next step in which SUs select
the best spectrum band from the available bands. The
values collected via SS are used in spectrum analysis to
choose a band in which inference to PUs is minimum and
utilization is maximum.

• Spectrum sharing is the third step in the cognitive cycle
which is used to exploit the chosen spectrum for com-
munication. In this step, the decision of choosing the
appropriate CR model (such as interweave, underlay,
or overlay) is taken on the basis of data collected from
previous two steps. At the end of this step, CR nodes
can carry out transmission of their data via the selected
spectrum band.

• Spectrum mobility is the final step in the cognitive
cycle and it involves the immediate mobility of SU nodes
after detection of PUs. As the name suggests, this step
is responsible for making the spectrum available to PUs
by vacating the activity of SUs in case if PU returns to
resume its activity.

Similarly, a figure to demonstrate functioning of the cogni-
tion cycle for CRN is provided in Fig. 2.

Spectrum Sensing and Access

Since a large proportion of researchers focus on the inte-
gration of differential privacy during SS and access, 
let’s demonstrate these steps in a bit detail for better 
understanding.

Collaborative Spectrum Sensing Usually, SS in CRN is car-
ried out in a collaborative manner, in which all CR nodes 
collaborate with each other to generate the best SS outcome. 
This collaborative sensing is carried out to overcome the 
issue of shadowing of PU. For instance, if a PU is present 
on the rooftop of a high building and SU is on the ground 
level, then the presence or absence of PU cannot be sensed 
with precision using a normal sensing mechanism due to 
low signal-to-noise ratio (SNR) of the signal received from 
PU  [31]. To overcome this issue of fading, multiple CR 
users collaborate with each other to carry out SS to ensure 
that they do not miss any specific PU. This whole process of 
collaborative sensing is done with the help of a centralized 
data collection centre called FC. Generally speaking, FC 
collects data from all CRN and determines the final values 
regarding presence or absence of PU in a particular region.

Database-Driven Spectrum Access According to data-
base-driven spectrum access, data administrations are con-
sidered responsible for keeping up to date knowledge of 
spectrum and whitespaces in order to provide SUs with the 
most beneficial information [32]. A selected database col-
lects necessary information from PUs including their usage 
times, tolerable inference, available channels, allowed power 
transmission, and other useful information. This information 
is then forwarded to SUs upon request, and the decision of 
joining or leaving a specific spectrum band is taken on the 
basis of this information.
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Differential Privacy

The perception of differential privacy as a medium to protect 
database privacy was first proposed by Cynthia Dwork in 
2006 [22]. This notion was later used by researchers in almost 
every field to protect the privacy of their participants. For exam-
ple, in auction, differential privacy has been used in auction to 
protect bid privacy. Similarly, it has been used in SS to protect 
location privacy. To summarize, it will not be wrong to say 
that differential privacy is being applied to all real-life domains 
ranging from statistical databases to real-time decision analy-
sis [33]. The formal definition of differential privacy from the 
perspective of two adjacent datasets x and x′ is as follows [34]:

(1)PR[R(x) ∈ Op] ≤ exp �xPR[R(x
�) ∈ Op]

In the above equation, R is the randomized differentially pri-
vate algorithm, x and x′ are two adjacent datasets, PR is the 
probability value for an outcome Op to be in range of func-
tion Range(R). Furthermore, � is privacy parameter which 
is also known as privacy budget. The value of � is used to 
control the amount of noise which is going to be added in 
query result.

Alongside � , sensitivity is the other parameter that plays 
an important role in determining noise value. Sensitivity can 
be defined as the maximum difference an observer can get 
from the result of a query applied to two adjacent datasets 
x and x′ . The formal definition of sensitivity can be defined 
as follows [35]:

(2)ΔSq = max
x,xprime

|| f (x) − f (x�)||

Fig. 1  A Graphical Illustration of Functioning of Differential Privacy Mechanism in Two Adjacent Databases (adapted from [22])

Fig. 2  A Graphical Illustration of Functioning of Cognition Cycle for CR Nodes (adapted from [27])
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Furthermore, various mechanisms of differential privacy 
have been proposed to calculate noise, and the two most 
famous among them are Laplace and Exponential. These two 
use the pseudorandom noise generated from their respective 
database to perturb the query output. A detailed discussion 
of differential privacy from the perspective of mechanisms, 
composition theorem, sensitivity, and privacy budget can 
be found in [36]. Moreover, an illustrative explanation of 
differential privacy is provided in Fig. 1.

Importance of Privacy Protection in CRN

Despite great advantages by CRN, they do suffer from a seri-
ous threat related to the privacy of its users. As discussed in the 
previous section, CR nodes have to sense the spectrum in order 
to generate the environment map of PUs [37]. Similarly, que-
ries and spectrum auctions are also carried out by FC to access 
and trade spectrum. However, while doing all these tasks, CR 
participating nodes have to report numerous amounts of data to 
FC. Although FCs are usually trusted entities, in certain cases 
such as when there is an adversarial attack on FC, the privacy 
of CR participants can be compromised [38]. For instance, the 
location of SUs and PUs can be compromised which can lead 
to serious consequences. Similarly, the PUs and SUs usage 
and occupancy times can be analysed for malicious purposes. 
Similar to that, bidding and asking prices can be analysed by 
adversaries for unethical actions. Some of the key benchmarks 
from the perspective of differential privacy and CRN have been 
presented in Table 3. (Detailed discussion on privacy sources 
and their countermeasures using differential privacy is given 
in “Scenarios of Privacy Leakage During Cognitive Cycle and 
Prospective Role of Differential Privacy”)

Adversary Models in CRN

CR is a diversified network; it therefore faces numerous 
types of adversarial attacks. In this section, we categorize 
privacy-related adversaries into four subtypes which cover 

approximately all types of adversarial attacks. The discus-
sion about these adversaries is as follows:

External Adversary

This type is one of the most prominent and dangerous as com-
pared to others. The adversary in this type includes any type of 
external intruder who is interested to get insights about the net-
work in order to fulfil malicious objectives. For example, this 
adversary could be an external pharmaceutical company who 
is interested in finding out the number of CR users who visit 
hospitals/pharmacies frequently. They will do so by compro-
mising the location of PUs and SU. This company will collect 
all required information and can-do targeted advertisements. 
Usually, these adversaries operate in two ways, either com-
promised communication link or via compromised database.

Compromised Communication Link In this case, adversar-
ies try to attack the communication link between SU/PU and 
central authority (usually FC). In this way, these adversaries 
try to overhear the communication between SU and FC to 
infer their private information. One way is to launch man-
in-the-middle attack [39] on the communication link, thus 
adversaries can get required private information. Similarly, 
another attack in this type is exogenous attack [2], in which 
an external adversary tries to jam the whole CR network to 
carry out malicious operations during this time.

Compromised Database The second type of attack by 
external adversaries could be in the form of compromising 
the FC database. In this attack, adversaries try to carry out a 
direct attack on FC database to get personal information of 
participants including topology map of PUs and SUs [40]. 
This type of attack is usually carried out in database-driven 
CRN. In collaborative sensing, this can also be done by 
intruding attack [2], where an intruder tries to get into the 
network externally by masquerading itself as a regular CR 

Table 3  Benchmarks achieved from the perspective of differential privacy, cognitive radio networks, and their integration

1999  [5]   J. Mitola coined the concept of cognitive radio as a dynamic and intelligent radio.

2006 [22]   C. Dwork introduced the notion of differential privacy to protect private data during queries.
2007 [95]   H. Celebi highlighted the need of privacy preservation in location-aware CRN.
2008 [96]   N.R. Prasad discussed security & privacy concerns in CRN alongside proposing a secure authentication framework.
2012 [63]   S. Li worked over preserving location privacy during collaborative spectrum sensing of CRN via differential privacy.
2014 [12]   W. Wei wrote a comprehensive book on preserving location privacy for CRN.
2014 [51]   R. Zhu integrated differential privacy in spectrum trading auction of CRN.
2014 [97]   W. Wang preserved CR sensing privacy leakage attacks via differential privacy in multi-service provider scenarios.
2017 [10]   Mohamed wrote a detailed survey article on the issue of location privacy leakage in cognition cycle of CRN.
2018 [53]   X. Dong introduced a differentially private notion to protect operation time privacy of primary users.
2019 [98]   F. Hu worked over development of differentially private matching-based double auction in spectrum trading.
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user, either for getting private information of CR nodes, or 
to inject falsified information in the network.

SUs Acting as Adversary

Alongside external adversaries, sometimes SUs can also 
act as adversaries and can play the role in compromising 
privacy of other CR participants. Similar to the intruding 
attack discussed in the above section, sometimes legitimate 
SUs can also act as adversaries and try to leak into the pri-
vacy of other SUs, PUs, and FC by collecting unnecessary 
data during cognitive cycle [10]. Nowadays there is a trend 
of decentralized sensing via blockchain, and all SUs try 
to reach a consensus in a decentralized manner [41]. This 
decentralized consensus is a great way to remove FCs, but it 
can also cause privacy issues because information reported 
by SUs is publicly visible to all other SUs, which can lead 
to harmful effects.

PUs Acting as Adversary

Apart from SUs, sometimes, PUs can also act as adversar-
ies. This rarely occurring case cannot be ignored especially 
in the case of spectrum auction and trading. Since PUs are 
the authorities having excessive spectrum to sell, they also 
have objectives to enhance their revenue. Some PUs there-
fore try to analyse the bids of SUs and try to take certain 
actions through which they could increase their revenue in 
a tactical way [42].

Service/Fusion Centre Acting as Adversary

The fourth type of adversary in our CRN modelling is cen-
tralized data centre-based adversary, which are also known 
as FCs. These FCs are usually trusted central entities and are 
designed to collect information from SUs during SS process 
to get the best spectrum. However, in some cases these FCs 
become adversaries. For example, FCs can sell the private 
data of their associated SUs and PUs to advertising organi-
zations to earn extra profit. Similarly, these FCs can also 
analyse the data in a malicious way, which can even lead to 
the development of certain policies that may impact a certain 
group of participants.

This discussion concludes that efficient privacy preserv-
ing mechanisms are required to protect CRN from these 
types of adversaries. In this perspective, differential privacy 
provides a strong privacy guarantee, which can be used to 
protect the privacy of CR users.

Motivation of Using Differential Privacy in CRN

Privacy preservation in wireless systems is a well-established 
field, and extensive research has been carried out in this 

regard [43]. In this section, a comparative analysis of these 
privacy preservation strategies with differential privacy has 
been presented.

Encryption‑Based Privacy Protection

Since the advent of cryptography, encryption is being used 
to protect information in almost all fields of life [44]. There-
fore, it will not be wrong to state that encryption-based pri-
vacy is the most traditional means to protect the privacy 
of any network/application. Encryption works over the 
phenomenon of key-based cryptography, in which a mes-
sage is encrypted by a CR sender and then it is sent to CR 
receiver [45]. The receiver has the key which is used to 
decrypt the message. The message in its encrypted form is 
known as ciphertext, which is unreadable and can only be 
decrypted by the person having the secret key. In this way, 
the message is protected from external intruders who cannot 
tap into the private communication of CR users.

Although, encryption provides strong privacy against 
external adversaries, but it is not an efficient privacy protec-
tion mechanism when internal participants become adversar-
ies. According to our already discussed adversary models, 
encryption will only be helpful against external adversaries, 
but will not be much useful against the other three adversar-
ies. There are certain encryption mechanisms which require 
strong computational power and a specific architecture for 
encryption [46]. Such computational efficiency is hard to 
obtain in small CR nodes. Contrarily, differential privacy 
provides both these features, as it provides privacy protec-
tion from internal adversaries and is computationally less-
expensive as compared to encryption.

Oblivious Transfer‑Based Privacy

Oblivious transfer (OT) is also a popular means to protect 
privacy of CR nodes nowadays because it allows CR senders 
to send a message in multiple patches [10]. In this mecha-
nism, a message is broken down into multiple segments dur-
ing transmission, which are then received and reassembled at 
the receiver as a single message. This approach is being used 
as a viable approach to carry out SS tasks in order to find 
out available spectrum without compromising communica-
tion privacy. However, this mechanism suffers from similar 
issues of encryption-based privacy.

Firstly, OT can only preserve privacy against external 
intruders, but cannot protect it from internal intruders. Sec-
ondly, the computational and communication overhead of 
this mechanism is quite high as compared to other mecha-
nisms because multiple messages are transmitted at the 
same time, which incur high communication overhead due 
to collision, cohesion, and redundant rebroadcasts. Differen-
tial privacy is, however, free from these issues, because the 

482 Cognitive Computation (2022) 14:475–510



1 3

computational and communication overhead of differentially 
private messages is quite minimal, and it also provides pro-
tection from internal intruders.

Data Anonymization‑Based Privacy

Data anonymization is also a famous privacy preservation 
strategy which is being used to protect privacy during query 
evaluation of CR nodes [47]. In anonymization-based pri-
vacy, a dataset is anonymized by removing pseudoidentifi-
able information from data before making it available for 
query evaluation. For instance, in CRN, FC can remove 
names and IDs of PUs before making the dataset available 
to SUs for database drive spectrum access.

This mechanism provides an effective solution for certain 
internal adversaries, but continuous experimentations have 
revealed that anonymized datasets can also be deanonymized 

by carrying out various linking attacks [48, 49]. Similarly, 
finding the best combination to remove from the dataset is 
also difficult, e.g. for some participants, coverage area could 
be confidential but not for others. Therefore, developing a 
consensus among participants on pseudoidentifiable infor-
mation is also tough. A major drawback of anonymization 
in CRN is that it requires a large database to operate, and in 
case if the database is not significantly big, then it can leak 
privacy. Contrary to all these aspects, differential privacy 
provides a dynamic mechanism which can be used to pro-
vide efficient privacy in these scenarios. Firstly, it is hard to 
identify the data protected via differential privacy due to its 
strong privacy guarantee. Secondly, differential privacy does 
not always require a large database, because pointwise dif-
ferential privacy mechanism can also protect a single entity 
generated by CR nodes.  

Fig. 3  Graphical Illustration of Sources of Privacy Leakage in Cognitive Cycle of Cognitive Radio Networks
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Scenarios of Privacy Leakage During 
Cognitive Cycle and Prospective Role 
of Differential Privacy

In the previous section, a thorough discussion regarding  
the importance of privacy preservation in CRN from the 
perspective of SUs, PUs, and other involved participants is 
provided. Moving further to classification, we discuss major 
sources of privacy leakage in CRN alongside an in-depth anal-
ysis of how differential privacy can play its role in preserving 
privacy. The sources are further categorized into four sub-
types on the basis of four major steps of cognitive cycle. An  
illustration of sources is also provided in Fig. 3. Moreover, 
in order to provide our readers an intuitive overview of pri-
vacy leakage with respect to various prominent CR scenarios  
(such as fairness degree, SU bidding privacy, PU location  
privacy, PU operation time privacy, SU holding time pri-
vacy, and privacy in spectrum sensing time), we develop  
certain intuitive graphs, which have been presented in Fig. 4.

Privacy Leakage Scenarios During Spectrum 
Sensing

SS is considered as a key functionality of CRN, as it provides 
information about available spectrum, which is the core for 
Dynamic Spectrum Access (DSA). SS in CR is performed by SUs 
in order to detect spectrum holes which they use to carry out cog-
nitive communication. The CRN environment is highly mobile 
and at certain times immediate decisions need to be taken in order 
to utilize the spectrum in the most efficient manner. Therefore, 

the aspects of accuracy, efficiency, timeliness, and decision mak-
ing cannot be ignored [56]. In order to make quick decisions, a 
fine-grained data of participating nodes in CRN which provides 
efficiency on one hand, but on the other leaks the privacy of par-
ticipants at multiple standpoints [57]. In this section, possible 
scenarios that can leak privacy during SS of CRN are discussed.

PU Location Privacy from Databases‑Driven Access

According to General Data Protection Regulation (GDPR), loca-
tion is a personal information and location of any participant/
node cannot be traced without their approval [58]. Similarly, 
Federal Communications Commission (FCC) has also made 
it mandatory to preserve location privacy of PU nodes while 
designing CRN sensing techniques [59]. Database-driven CRN 
works over the phenomenon of query evaluation-based spectrum 
access. It can easily be analysed that multiple queries from FC 
database can leak privacy of PUs who are involved in SS. For 
instance, an adversary can try to launch multiple queries from 
database which collectively form a location inference attack. 
For example, if there is a single PU with name ‘X’ in a region 
‘Y’, then the first query could be to find the number of PUs 
operating under a specific band (this will be done to find out the 
availability of spectrum). Similarly, the second query could be 
to find out the number of PUs in this specific region. Afterwards, 
the next query could be, for example, to find out the name of 
PU organization by saying ‘how many PUs have ‘X’ in their 
name’. In this way, via multiple queries one can easily identify 
the presence and availability of a PU in a region. This can lead to 
harmful consequences because other attacks can be launched to 

Fig. 4  Intuitive Analysis of Privacy Leakage in Various CR Scenarios 
at Different Privacy Budget ( � ) Values.  (a) Fairness Degree Vs Pri-
vacy Budget (adapted from [50]) (b) SU Bidding Privacy Leakage Vs 
Privacy Budget (adapted from [51]) (c) PU Location Privacy Leakage 
Vs Privacy Budget (adapted from [52]) (d) PU Operation Time Pri-

vacy Leakage Vs Privacy Budget (adapted from [53]) (e) SU Hold-
ing Time Privacy Leakage Vs Privacy Budget (adapted from [54]) (f) 
Privacy Leakage Vs Spectrum Sensing Time at Different Epsilon 
(adapted from [55])
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exploit such identified PUs. Therefore, location privacy of PUs 
during database-driven DSA should be protected.

Prospective Role of Differential Privacy: Since database-
driven DSA works over the phenomenon of query evaluation, 
this location privacy issue of PU nodes can easily be protected 
via differential privacy. As differential privacy was designed to 
protect privacy of statistical databases [60], it can be applied here 
to protect location privacy of PUs at the time of query evaluation. 
For instance, at the time of query from FC, a pseudorandom noise 
generated from differential privacy distribution can be added into 
query output to ensure the randomness in the query output. How-
ever, the utility can also be maintained by controlling the privacy 
budget ( � ) to a desired range [61]. Therefore, integration of dif-
ferential privacy during query evaluation of database-driven DSA 
can effectively protect location privacy of PU nodes.

SU Location Privacy During Collaborative Sensing

SS is not only harmful for the privacy of PUs, but also poses a 
risk to the privacy of SUs location [62]. In CSS, all SU nodes 
have to report the sensed values to centralized FC. This col-
laboration results in an efficient and trustworthy sensing, but this 
also poses a high risk to the location privacy of SU nodes. For 
instance, untrusted, or compromised SUs can act as adversar-
ies to locate the exact location of other SUs on the basis of the 
values received for SS [63]. For instance, location leakage of an 
SU can result in tracking of daily life activities of a particular 
SU. Therefore, considering the catastrophic outcomes of loca-
tion privacy leakage, SUs are also concerned about their privacy 
protection. Considering this discussion, it can be concluded that 
privacy of SUs should be protected during CSS.

Prospective Role of Differential Privacy: Since SS in a 
collaborative manner is a critical aspect of CRN, it cannot be 
ignored. Therefore, protecting privacy during CSS is pretty 
important. Differential privacy is a randomization technique 
which can protect privacy from statistical databases to real-time 
reporting and it can be protected using pointwise differential 
privacy. Pointwise differential privacy means that any individual 
instance of data can be protected by adding pseudorandom noise 
from differential privacy distribution [64]. Usually, Laplace and 
Gaussian distributions are used to carry out pointwise perturba-
tion of differential privacy. Similarly, if one adds a pseudoran-
dom noise to protect location privacy of CR node at the time 
of SS, its privacy can easily be preserved. Plenty of research 
is carried out to integrate the phenomenon of differential pri-
vacy in location reporting [65]. The need here is to integrate this 
dynamic concept in the reporting aspect of SS in CRN.

Identity Privacy Leakage During Crowdsourced Sensing

Alongside location privacy leakage, another significantly impor-
tant parameter is identity of PU and SUs. We briefly discussed 
this identity in query evaluation, but it is important to mention 

it separately as well, especially in the case of crowdsourced SS. 
Since crowdsourced SS is a combined activity, all CR nodes 
have to perform their best in order to get optimum results. As 
all nodes share the information, this may lead to identity theft in 
case of an adversarial attack. For example, an adversarial node 
can pretend to be some other node if it gets to know all iden-
tity parameters of other nodes. In this way, many malicious acts 
can be carried out, ranging from adversarial decisions to DoS 
attacks. Therefore, it is important to protect identity privacy in 
SS alongside preserving location privacy.

Prospective Role of Differential Privacy: In crowdsourced 
SS, the most important parameter to protect is identity of the 
sensing node, because this identity can further be backtracked 
to locate the specific node. However, at certain phases it is also 
important to check identity in order to ensure the integrity of the 
sensing report. Differential privacy is a strong privacy guarantee 
that can also be used to protect privacy leakage in case of iden-
tity theft-based attacks [66]. For instance, differential privacy 
can be combined with other provable encryption or proofing 
mechanisms to provide a provable identity alongside preserving 
the actual values [67]. The similar concept can easily be applied 
for CR nodes during the aspect of SS. Therefore, we believe add-
ing calibrated differentially private noise with provable security 
mechanisms can be a viable solution to preserve identity theft 
privacy during crowdsourced SS.

Privacy Leakage Scenarios During Spectrum 
Analysis

Spectrum analysis comes after SS and is used to select an avail-
able spectrum [68]. Similarly, the decision of bidding/trading for 
any specific spectrum is also taken on the basis of results from 
this step [69]. Spectrum analysis is broadly divided into two steps 
named as characterization and reconfiguration. First, the prospec-
tive scenarios in spectrum analysis which can become the source 
of privacy leakage are discussed and afterwards the role of dif-
ferential privacy to overcome these leakages have been presented.

PU Privacy in Spectrum Characterization

After successful SS, SUs possess information about PUs and the 
available spectrum band which they can use to choose the most 
suitable. The scrutiny process is called spectrum characteriza-
tion and it works as follows. After collecting all data from the 
sensing step, a list of spectrum bands is formulated involving 
various parameters such as path loss, RF environment, hold-
ing time, error rate, and switching delay [70]. These parameters 
are then used by SUs to determine the best available spectrum. 
This process helps in the in-depth spectrum analysis but also 
leaks privacy. For example, the fine-grained values, for example 
error rate and RF environment, can easily be used to identify 
the private characteristics of PUs. Thus, privacy of PUs during 
characterization needs to be protected.
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Prospective Role of Differential Privacy: Differential 
privacy is an advanced privacy protection mechanism which 
can be used to protect privacy during the characterization 
process. Firstly, differential privacy can be used to obfuscate 
the identity values so that the identity does not get leaked 
during characterization. Secondly, differential privacy obfus-
cation can further be applied to parametric values on the 
basis of requirement. For example, a margin of error can be 
ignored in error rate or a margin of error in path loss can also 
be tolerated. So, the dynamic differential privacy algorithm 
can take advantage of this marginal error and can perturb 
data within this range in order to ensure privacy along with 
significant utility.

Privacy Leakage in Learning Network Topology

Similar to spectrum characteristics, network topology also 
carries private information in it. For instance, the geoloca-
tion of nodes can easily be inferred in case of unprotected 
network topology. In case of an adversarial attack on CRN, 
the adversary node may try to infer and collect all possible 
information collected via sensing, and after this inferring, 
the adversarial opponent may try to get much deeper insights 
about network topology [71]. This is done in order to find 
out the exact location of all PU nodes in the network. In case 
if the adversary successfully gets this personal information, 
then it can launch all attacks associated with location pri-
vacy, as discussed above. Therefore, it is important to protect 
privacy of network topology before publishing data during 
spectrum analysis.

Prospective Role of Differential Privacy: Since network 
topology depends upon multiple aspects, such as geo-loca-
tion and signal strength, they are combined together to form 
a complete topology. To protect privacy during network 
topology formation, one therefore needs to protect individual 
parameters. The obfuscation of differential privacy can effi-
ciently protect this by adding pseudorandom pointwise noise 
to all parameters individually while considering the overall 
network utility [72].

PU Operation Time Privacy

During spectrum characterization, an aspect of operation 
time cannot be ignored from a privacy viewpoint. Opera-
tion time is the total activity time of primary user, which 
is also known as primary user activity time [73]. Usually, 
during development of CR mechanisms researchers use vari-
ous PU activity models to analyse the mechanism behav-
iour [74]. These PU models are used to determine the pres-
ence, absence, and functioning of PU nodes. However, in 
real-life scenarios, if one has this much fine-grained infor-
mation about activity and presence of any node, then it can 
cause serious consequences to its privacy. For instance, if an 

adversary has fine-grained information about PU activity, it 
can easily infer a daily schedule. For example, if an adver-
sary is active then it means it is at a particular place, and if 
the spectrum band is unused, then the licensed user must be 
sleeping or doing other tasks. This data is fed into machine/
deep learning models, which further train themselves and 
try to predict the accurate lifestyle. Therefore, privacy of 
PU operation time needs to be protected before sharing this 
information to SU nodes.

Prospective Role of Differential Privacy: Protecting real-
time lifestyle privacy is one of the key roles of differential 
privacy. Due to this advantage, differential privacy is being 
used by researchers in multiple aspects, for example, protect-
ing privacy real-time smart metering data, protecting privacy 
of real-time EVs data [36]. Similarly, this aspect can also be 
applied to protect PU operation time privacy. For example, 
PU operation time values can be perturbed using differen-
tially private noise from the distribution, and this noise can 
be calibrated according to privacy budget and data sensitivity.

Spectrum Reconfiguration Parameter Privacy

After successful categorization of desired channel, the step 
of spectrum reconfiguration arises in which parameters of 
the transceiver of SU are configured according to the given 
condition [75]. This involves configuration of power, band-
width, frequency, and other communication technologies. 
Although these are important parameters, which need to be 
configured properly, they in return can also leak privacy. 
For example, power control parameters can be used to figure 
out signal-to-interference ratio (SINR), which can further be 
used to geo-locate the particular SU. Therefore, it is impor-
tant to protect privacy of these parameters as well at the time 
of system reconfiguration.

Prospective Role of Differential Privacy: Differential 
privacy is a viable solution to protect the configuration 
data. Since certain configuration parameters, for exam-
ple frequency and values, are pretty strict and cannot be 
changed, thus, in such cases differential privacy can be com-
bined with some provable mechanism to ensure privacy [66]. 
Furthermore, in case of parameters which can bear some 
noise or error, pointwise differential privacy can be inte-
grated to protect their privacy.

Privacy Leakage Scenarios During Spectrum Sharing

Spectrum sharing/decision is the third step after spectrum 
analysis, this step is further divided into three major steps 
involving allocation of resources, accessing of spectrum, and 
trading of spectrum [76]. To demonstrate it further, after 
spectrum analysis, CR nodes have the choice to choose the 
best available spectrum, and in order to do so, they first 
participate in spectrum trading to win the best available 
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spectrum slot. Afterwards, the desired resource is allocated 
to them by FC or by some other server, and after comple-
tion of these two steps, they can access the spectrum for 
communication. These steps involve plenty of informational 
parameter exchange, which can lead to CR users. In this sec-
tion, various cases of privacy leakage in scenarios involving 
spectrum sharing have been discussed.

Privacy Leakage in Spectrum Auctions

Spectrum auction is a whole new world involving mathemat-
ical models. For instance, game theory has been applied to 
it to achieve better results during auctions [77]. Similarly, 
for the majority of auctions, equilibrium is usually evaluated 
to get best results [78]. Alongside this, machine learning 
is also being applied to spectrum auctions to predict best 
outcomes [79]. Since this step has been explored a lot, the 
risk of privacy leakage has also increased a lot, and plenty 
of attacks on auction mechanisms have been developed in 
the past. In this section, we also discuss certain sub aspects 
of auctions such as BP.

Prospective Role of Differential Privacy: Since spec-
trum auctions are vulnerable to privacy attacks, privacy 
preservation is required during this process. To preserve 
auction privacy, differential privacy obfuscation is a viable 
solution because with differentially private auctions, one 
can still enhance social welfare of auction alongside pre-
serving differential privacy. Similarly, in case of spectrum 
auctions, differential privacy can be used to protect privacy 
of both SUs and PUs acting as spectrum sellers and buyers, 
respectively. (A detailed discussion about these mechanisms 
is given in “Differential Privacy Approaches for Cognitive 
Radio Networks”.)

PU Asking Price Privacy

Submitting available spectrum slots alongside asking prices 
is one of the first step of the auction process. In this step 
PU node submits the available spectrum value alongside its 
asking price to FC or centralized server, which is further 
displayed to CR nodes to collect bids [80]. However, these 
values are critical, as they contain information about PU 
spectrum usage, and an adversary can get insights that when 
a PU is vacant, or occupied. By this analysis, the adversary 
can plan an adversarial activity or can launch an attack on 
the basis of previous knowledge. Similarly, an adversary can 
get insights about financial condition/dependencies of PU on 
the basis of total spectrum band and the price he asked for 
it. Therefore, it is important to protect asking price privacy 
before publicizing these values.

Prospective Role of Differential Privacy: Exponential 
shuffling, a mechanism of differential privacy can be used to 

introduce randomness in asking price string [81]. Similarly, 
the Laplace mechanism of differential privacy can be used 
to protect the privacy of asking price while managing social 
welfare of the complete auction process. Similarly, other 
ways could be to integrate differential privacy with some 
provable mechanism to protect identity indirectly alongside 
preserving privacy of PU nodes.

SU Bidding Privacy

Apart from PUs asking price privacy, it is important to pro-
tect valuations/bids of buyers during the auction process. 
Valuations for a specific spectrum band is personal informa-
tion and the majority of CR buyers do not want their private 
valuations to get leaked [82]. To overcome this, researchers 
integrated sealed bid auctions in CRN, but modern machine 
learning-based attacks have caused privacy leakage even 
in sealed bid auctions. Therefore, it is important to protect 
privacy of bidding price alongside preserving privacy of 
asking price.

Prospective Role of Differential Privacy: Private valu-
ation of auction process can easily be protected using ran-
domized differential privacy mechanism [83]. For SUs, 
differential privacy works from the perspective of addi-
tion of random noise in the set valued data, which plays an 
important role in hiding the actual valuation. For instance, 
a randomized valuation within the range of social welfare 
maximization can be generated for auction with the help of 
differential privacy. This randomized valuation ensures that 
the privacy does not get leaked and the social welfare for 
auction still remains positive.

SU Demand Privacy

Alongside valuations, the amount required by a particular 
SU is also personal, because no CR node wants to reveal the 
exact spectrum usage to any adversary [84]. This is because 
these spectrum usage values can further be used to carry out 
burglaries or other attacks at non-usage/idle times. Similarly, 
the demand of a particular SU does also signify the financial 
situation and other similar aspects. Therefore, SUs usually 
try not to reveal their actual demand to auction places where 
there is a chance of adversarial attacks. Considering this 
discussion, it can be claimed that if the demand of SUs can 
be protected, a large gain in spectrum trading can be seen 
because SUs will be able to participate in auction without 
the risk of losing their private information.

Prospective Role of Differential Privacy: Demand by a 
particular SU is a personalized information, which it needs 
to be protected [85]. This value can easily be protected by 
dynamic differential privacy mechanisms. Differential pri-
vacy can be integrated at multiple steps during this demand 
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protection process. The most significant way to overcome 
this issue is to integrate differential privacy with some prov-
able mechanism. By doing this, one will be able to show per-
turbed demand alongside having a protected demand at the 
backend for verification and allocation. Another way could 
be to collect variable demand from SUs and then find out 
the finalized value via an obfuscation mechanism. Third way 
could be to use the Exponential obfuscation mechanism in a 
way that does not harm the utility but introduces a selection 
randomness. All these mechanisms can be used to protect 
demand privacy in a viable manner.

Privacy Leakage in Spectrum Allocation

After careful collection of asking price and bids, the next 
step is the allocation of spectrum. This step is usually carried 
out via some game-theoretic auction model. Some prominent 
auctions used in CRN include double auction, VCG auction, 
Dutch auction [86]. These auction models analyse all col-
lected values and find the auction winner according to the 
prescribed process. Although highest bidder wins the best 
spectrum in these auctions, this can cause privacy leakage 
at various levels. For instance, the identity privacy of the 
winner can be leaked by analysing the auction result [87]. 
Similarly, the identity privacy of sellers gets leaked and it 
can be analysed that which seller has a specified amount of 
available spectrum. Alongside this, the financial situation 
of PU and SU nodes can be analysed by adversaries as a 
result of this spectrum. Similarly, the number of available 
channels involved in auctions can also be leaked during allo-
cation. Therefore, designing a privacy preserving spectrum 
allocation model should be considered while developing CR 
auctions.

Prospective Role of Differential Privacy: Significant 
research on integration of differential privacy in auction 
allocation have been carried out and these research works 
have showed that differential privacy protection is a suitable 
method to protect privacy during auctions allocation [88]. 
From CRN perspective, there is a need to design certain 
works which ensure truthful and private allocation alongside 
enhancing social welfare. In this way, the Laplace mecha-
nism of differential privacy can play a significant role to 
ensure identity and multi-channel privacy at the time of 
allocation by integrating controlled randomized obfuscation.

Privacy Leakage Scenarios During Spectrum 
Mobility

The fourth and final step in the cognitive cycle revolves 
around movement of SU nodes at the time of PU arrival 
called as spectrum mobility [89]. In this step, first of all, PU 
tries to access the licensed spectrum back, which in return 
forces SU nodes to leave the spectrum immediately. Then 

SU vacates the spectrum and stops communication on it. 
SUs then looks for another available spectrum or waits for 
the PU to stop the communication again in order to resume 
their communication [76]. In both cases, privacy gets leaked 
at multiple events ranging from request to hand-off. Let’s 
discuss that how differential privacy can play its role to miti-
gate these privacy risks.

SU Holding Time Privacy

When a SU occupies a spectrum, it holds the spectrum until 
the PU arrives, or it holds the spectrum until the required 
communication need is fulfilled [54]. In both cases, SU does 
not want other adversaries to know the exact amount of time 
the spectrum was held by it. For instance, if the specific 
time gets leaked, then the adversary can find out that the 
particular SU held the spectrum on a particular place for 
an ‘X’ amount of time which can further lead to harmful 
events. Therefore, protecting privacy of SUs holding time 
is important and specific privacy preserving mechanisms 
should be designed for this purpose.

Prospective Role of Differential Privacy: Channel hold-
ing time can be used to infer private information of SU, it 
should therefore be protected by designing privacy preserv-
ing mechanisms. In this case, differential privacy can play 
an active role by integrating Laplace-based obfuscation in 
values of holding time [90]. This obfuscation ensures that 
adversaries will not be able to predict with confidence about 
the presence or absence of a specific SU on a spectrum. 
Similarly, at the time of sharing holding time, the exponen-
tial randomness can be used to ensure randomized response 
in order to protect privacy of SU.

Privacy Leakage During Spectrum Hand‑Off

When PU arrives, SUs are forced to leave the spectrum 
causing privacy leakage at multiple levels. Firstly, PU may 
know that a particular SU is within its specified region. Sec-
ondly, SUs might have to carry out SS again to find the 
new appropriate spectrum, which again opens the door for 
all privacy leakage scenarios during SS. Thirdly, alongside 
SU, the identity privacy of PU is also at risk, because SU 
can infer the presence of PU in its region by visualizing the 
request [10]. Therefore, it is important to integrate a privacy 
preserving mechanism at the time of spectrum hand-off.

Prospective Role of Differential Privacy: Spectrum 
hand-off comprises multiple steps, so a simple obfusca-
tion mechanism will not be enough to protect privacy as it 
will only cover a single aspect. Therefore, there is a need 
to design such differential privacy mechanisms which pro-
tect the privacy of multiple parallel events to ensure a trust-
worthy CRN. For instance, a Laplace-based location pri-
vacy mechanism can be used to protect the privacy of SUs 
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location [90]. In this mechanism, differential privacy can be 
used to introduce randomness in the location reporting to 
PU. Secondly, the sensing request should be done in a rand-
omized way to protect this request privacy [91]. Afterwards, 
from the perspective of PU, an Exponential mechanism can 
be used to show randomized PU to SU instead of accurate 
identity. Similarly, the location privacy of PU at hand-off 
can also be protected by integrating Laplace obfuscation at 
the time of hand-off request.

Summary

In this section, we analysed privacy leakage scenarios dur-
ing cognitive cycle which can be exploited by adversaries 
to infer privacy of CR participating users. We analysed all 
four steps involved in cognitive cycle ranging from sens-
ing, and analysis to sharing and mobility. In SS, majority 
of sources are linked with location privacy. For instance, 
location privacy of SUs and PUs during collection of their 
values. Contrary to this, the sources in spectrum analysis 
step are more related identical threats such as characteris-
tics privacy and network topology privacy. Moving further 
to spectrum sharing, it can be visualized that literature is 
more titled towards privacy leakage during different steps of 
trading. Finally, in spectrum mobility, the privacy leakage is 
discussed from the perspective of hand-off, which involves 
both identity and location privacy.

Moving further to the mitigation of these privacy issues, 
we also provide an in-depth discussion about each possible 
scenario that how differential privacy can play its role in 
overcoming privacy issues at different steps. We have pro-
vided a detailed discussion from the perspective of integra-
tion of both Laplace and Exponential mechanisms of differ-
ential privacy in CRN. From the discussion it can be deduced 
that differential privacy is a dynamic privacy preservation 
strategy that can play a significant role in all four cognitive 
cycle steps. And it can be used by researchers in multiple CR 
scenarios, where there is a risk of privacy leakage.

Performance Matrices for Evaluating 
Differentially Private CRN Mechanisms

In the previous sections, we highlight significance of dif-
ferential privacy in preserving privacy of CRN. This sec-
tion highlights performance parameters that should be taken 
care of while developing of differentially private CR mecha-
nisms. This section divides performance matrices into three 
categories, first are the matrices which are required while 
designing differential privacy techniques; second are those 
matrices which should be taken care of to avoid attacks; 
and third are those matrices which should be focused in CR 
applications.

From the Perspective of Privacy Preservation

There are three important parameters which need to be 
considered while developing of differentially private CRN 
works. These are discussed below.

Degree of Privacy

While designing any privacy preservation mechanism it is 
important to figure out the degree of privacy required by 
application. For example, some applications might need a 
high level of privacy, but they can compromise on utility, 
for example, EV battery status reporting [92]. Contrarily, 
some applications might need a high level of utility but can 
compromise a little bit on privacy, for example, industrial 
manufacturing. Similar is the case in CRN, where some 
aspects in the cognitive cycle might require a higher level 
of privacy. For example, location reporting during SS might 
need a high level of privacy due to involved location infer-
ence risks. However, some aspects might require a high level 
of utility, such as available frequency values from a particu-
lar PU. Considering this discussion, it is important that one 
should determine the degree of privacy before designing and 
evaluating the privacy preserving model for CRN. Due to 
differential privacy noise addition, the degree of privacy can 
be further divided into: (a) degree of privacy due to noise, 
and (b) degree of privacy due to anonymity. The detailed 
discussion on these parameters is given below.

Degree of Privacy due to Noise: While designing a dif-
ferential privacy mechanism, it is important to figure out the 
level of required noise  for the specific cycle. In differential 
privacy, two factors actively contribute in determination 
of noise, first one is privacy budget ( � ), while second is 
sensitivity ( � ). In a differentially private CR mechanism, 
� is used to determine the value of noise which is going 
to add in the output result. This � is chosen after careful 
consideration and is usually backed by a strong theoretical 
guarantee. For instance, specific theoretical contributions 
have been carried out to choose the appropriate � value [93]. 
This � is inversely proportional to noise level, which means 
the higher value of � provides less privacy and low values 
of � provides high privacy values. Similarly, in different CR 
scenarios different � values are required, which is deter-
mined at the time of mechanism design. For instance, in 
case of location reporting during SS, the desired � value 
is pretty low, which ensures that the chances of location 
value getting leaked are pretty less. On the other hand, if 
one is determining final price of spectrum band during auc-
tion, only a minor level of noise can play the required role. 
Therefore, in such cases even the high value of � can fulfil 
the requirement.

Similarly, the sensitivity Δ value of a differentially pri-
vate mechanism is usually determined on the basis of data. 
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Formally, sensitivity is defined as maximum possible impact 
of one record in accordance with all neighbouring datasets. 
This value is used in the noise addition and plays a sig-
nificant role in determining the noise value. For instance, 
a CR database in which the participants have such values 
which differ a lot with each other might have high sensitivity 
value. On the other hand, a CR database in which the dif-
ference is pretty small, will have low sensitivity. Therefore, 
it is important to determine the sensitivity of model before 
implementing it. Certain works also highlighted dynamic 
varying sensitivity on the basis of dynamic data, but even 
in that case a predetermined method to choose appropriate 
sensitivity is required.

Degree of Privacy due to Anonymity: Another param-
eter similar to noise level is anonymity level, which basi-
cally is the level of privacy/anonymity after noise addition. 
This level is determined by comparing the anonymized 
dataset with original dataset. Similarly, certain works 
also mentioned it as degree of privacy leakage. In dif-
ferentially private CRN, it can be termed as the difference 
between sanitized and non-sanitized CR dataset whether 
it is in case of sensing, analysis, sharing, or mobility. For 
instance, if one requests a sensing query from a dataset, 
then the level of privacy that an observer will see is the 
actual anonymity of that privacy preservation mechanism. 
Considering this discussion, it can be concluded that one 
needs to take care of anonymity level as well during devel-
opment of differentially private CR mechanisms.

Computational Complexity

Computational complexity is a very important parameter 
in designing a privacy preservation strategy [94]. Among 
all privacy preservation mechanisms (such as anonymi-
zation, encryption, information-theoretic privacy.) dif-
ferential privacy has minimum computational complexity 
due to its light-weight nature [36]. However, even during 
development of differentially private CR mechanisms, the 
aspect of computational complexity cannot be ignored. 
This is because of the fact that sometimes, CR nodes are 
pretty minute, and they cannot handle large computa-
tions. For instance, let us take the case of a low-powered 
agricultural sensor which is measuring crop parametric 
values and is carrying out communication through CR. 
In this case, multiple sensors taking these readings will 
be pretty minute and will not have enough computational 
complexity to carry out heavy tasks. And if one thinks of 
integrating local differential privacy with these nodes, then 
it will need such a local differential privacy mechanism 
which is computationally efficient and can be supported 
by these nodes. Therefore, it is important to ensure that 

the complexity of differentially private CR mechanisms is 
well suited for the concerned application. 

Utility Evaluation

Utility is one of the most considered factors during the 
development of privacy preservation models because it 
determines the usefulness of the mechanism. Similar is the 
case with differential privacy models, where utility plays a 
very important role in determining privacy budget and ano-
nymity level [99]. Similarly, in differentially private CRN 
models the utility also plays a very important role because 
this factor is responsible for smooth functioning of the net-
work. For instance, if the utility of SS values is low, then 
CR nodes shall not be able to access spectrum in the best 
way, which in turn shall impact the spectrum utilization. 
Similarly, if utility is not considered during spectrum trad-
ing then the social welfare being of auction may go negative. 
Similarly, the possibility of auction being in non-equilibrium 
state is also there if auction utility is not considered properly. 
Therefore, during development of differentially private CRN 
models, utility needs to be considered in detail. In order to 
do so, researchers specifically evaluate utility parameters 
in their experimental evaluation to ensure that the utility of 
the proposed mechanism is up to a specific level, and noise 
addition has not disturbed utility much.

Attack Resilience

Preventing adversarial attack is one of the most prominent 
features of a privacy model. Different privacy mechanisms 
provide resilience to different types of attacks. Similarly, the 
differential privacy model also provides strong resilience 
to a lot of privacy attacks [100]. Nevertheless, differential 
privacy provides resilience to a number of attacks. There are 
some attacks which need special consideration while devel-
oping differentially private CR models due to the nature of 
the adversary involved. In this section, three major attacks 
that are of sheer importance in preserving CRN privacy are 
discussed.

Inference Attack

The first attack that requires special consideration is infer-
ence attack in CRN. As the name suggests, the adversary 
tries to infer private data of participants by carrying out vari-
ous statistical analysis [101]. Similarly, in certain cases, the 
adversary tries to use various machine/deep learning tools as 
well to find out more about the participants involved in the 
dataset. In CRN, this inference attack is usually carried out 
by an external adversary who tries to find out more informa-
tion from a centralized server by asking unethical queries 
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or by gaining maximum possible access to the database. 
For instance, the adversary can try to ask multiple queries 
related to a single person in a database to find more about 
that particular individual. Therefore, while developing dif-
ferentially private CRN models, it is important to evaluate 
and check the effect of inference attacks on databases. This 
is usually done by asking multiple queries and evaluating the 
privacy leakage effect through differentially private answers. 
In this way, one can analyse if the proposed differentially 
private model is resilient to inference attack or not.

Disclosure Attack

Disclosure attack is more related to leakage of private infor-
mation about a particular individual, spectrum band, or an 
organization [102]. In certain cases, the organizations/FCs 
have to share the dataset to observers in order to perform 
certain statistical tasks. But they do not share the dataset 
directly, they first anonymize the database through a privacy 
preservation mechanism and then share the dataset for sta-
tistical tasks. Indeed, FCs try their best to make the private 
information protected, but if the data analysing observer is an 
adversary then it tries to carry out a disclosure attack in order 
to infer private information. To overcome this, researchers 
are now integrating the phenomenon of differential privacy 
before publicizing databases. Therefore, disclosure attack 
analysis is pretty important in cases where the possibility 
of publishing anonymized data is high. Differential privacy 
mechanism provides strong resilience to this attack, as it ran-
domizes databases in a manner that the presence/absence of 
a particular individual cannot be guessed with confidence. 
Because the value of noise always keeps the observer in 
ambiguity, it cannot predict anything with confidence.

Correlation Attack

Another critical attack that needs to be considered while 
developing differentially private CR models is correlation 
attack. A correlation attack is usually used after query evalu-
ation. For example, after query evaluation, the data of que-
ries is stored at the adversary side, and then the adversary 
tries to carry out machine/deep learning-based analysis over 
the collected information. The adversary combines the col-
lected information with other publicly available datasets to 
find out links and correlation between participants [103]. 
This correlation analysis can further be used to infer into 
private information of participating CR users, whether they 
are the corresponding PUs/SUs or not. Therefore, while 
developing differentially private CR protocols it is important 
for researchers to analyse the effect of correlation attack in 
order to show resilience to it.

From the Perspective of Cognitive Radio

Alongside privacy and other matrices, certain parameters 
from CR perspective do also need careful analysis and eval-
uation while designing differentially private CR matrices. 
Usually, a networking protocol is evaluated on the basis of 
enhancement in throughput, communication overhead, and 
communication delay [104]. However, in the case of CRN, it 
is also important to figure out that the proposed model also 
analyses the effect of PU activity in the proposed model. In 
this section, we provide a thorough discussion of why the 
evaluation of these parameters is important while designing 
a differentially private CR model.

Incorporating PU Activity

The most important parameter from the CR perspective of 
incorporation of PU activity in the proposed model. CR is 
known for its dynamic capability of allowing CR nodes to 
carry out communication in the presence of PUs. Therefore, 
evaluating the proposed model with certain PU activity is 
important. PU activity can simply be defined as the usage of 
spectrum by primary nodes. This usage can be of different 
types and various PU activity patterns have been developed 
by researchers called as long-term, high, low, and intermit-
tent. Each of these models has their own significance and 
cause different types of inference to CR usage. A detailed 
discussion about these models can be found in [74]. Since 
these models pose different types of inferences to utility, 
usability, and privacy of the network, while developing dif-
ferentially private CR models, it is important to incorporate 
these activities to show a broader perspective.

Throughput Enhancement

Throughput is another critical parameter that is used by 
researchers to evaluate effectiveness of CR protocols [105]. 
Generally, throughput in wireless networks is considered 
as the total number of messages transmitted in a particular 
time interval [106]. However, in CRN, throughput analy-
sis is pretty vast and a number of scenarios come under 
throughput enhancement and analysis. For instance, the 
sensing of spectrum and PU nodes around CR nodes also 
comes under throughput, as the faster the sensing works, 
the faster will the throughput of the network [105]. Simi-
larly, the spectrum hand-off speed at the time of mobility 
of CR nodes is also considered as throughput. However, the 
important thing is that, if one wants to integrate differen-
tial privacy in these aspects then it is important to ensure 
that the throughput of CRN should enhance or at least do 
not decrease by addition of external noise. Therefore, while 
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developing differential privacy CR models, authors are sug-
gested to evaluate throughput aspect to ensure the speed of 
the network.

Delay Enhancement

Delay is usually taken in terms of the time taken to carry 
out some operation; however, in wireless networks it is the 
time that a packet takes from source to destination [107]. 
This parameter is being considered by approximately every 
second work in the field of CRN because they want to ensure 
that their model is efficient enough to carry out seamless 
communication. But when we talk about integration of dif-
ferential privacy in CRN, it becomes a more critical param-
eter. Because the communication is now obfuscated, and in 
order to get beneficial output, one has to take special care of 
delay caused due to perturbation. Therefore, while evaluat-
ing differentially private CR models, researchers are usually 
advised to evaluate this delay parameter alongside.

Communication Overhead Analysis

Overhead caused by communication cannot be neglected 
while developing differentially private CR mechanisms 
because it plays an important role to carry out smooth com-
munication between nodes [108]. Typically, differential pri-
vacy works over noise, but this noise addition should not 
contribute overhead. If the overhead increases because of 
noise addition, then the overall network performance will 
be reduced. Therefore, during development of differentially 
private CR models, researchers perform overhead analysis 
and compare the overhead of the proposed model with pre-
vious models without differential privacy. In this way, the 
proposed model is analysed and approved efficiently enough 
for practical implementation in CRN.

Summary

In this section, a comprehensive analysis of all matrices that 
can play a critical role during design and development of 
differentially private CRN protocols have been presented. 
Overall, we divide parameters in three categories from the 
perspective of privacy, attacks, and CR. We then subdivide 
each category further to provide a much clearer picture for 
our readers. Firstly, from the perspective of privacy pres-
ervation, we first discuss how noise level and anonymity 
level can play the role in determining the degree of privacy. 
Afterwards, we highlight that how computational complex-
ity should be evaluated at the time of designing differentially 
private models, and finally we provide insights about utility 
evaluation of differentially private CR models.

Secondly, from the perspective of attack resilience, we 
gave a thorough investigation about top three attacks which 

are important to be prevented in differentially private CR 
models. First attack is inference attack which is caused due 
to harmful inference of adversary on centralized data cen-
tres or communication links. Second attack we discuss is 
data disclosure attack, which is more linked to data sharing, 
while the third attack we analysed is correlation attack in 
which strong machine/deep learning models are used to find 
out correlation between other databases and CR databases. 
Finally, in the third parametric category, we analyse param-
eters from CR perspective and provide discussion about 
four CR parameters which should be discussed in techni-
cal works. Firstly, we discuss primary user incorporation; 
then we provide discussion about throughput enhancement; 
afterwards, we analyse delay and overhead of CRN. Overall, 
it can be concluded that if one is designing a differential pri-
vacy-based CR protocol, then analysing and evaluating these 
parameters will help shape the work in the best manner.

Differential Privacy Approaches 
for Cognitive Radio Networks

In previous sections, we discussed how differential privacy 
can play its role in developing private CRN models, and 
that parameters should be considered while developing dif-
ferentially private CR protocols. In this section, an extensive 
literature review that involves integration of differential pri-
vacy with CRN at different models is discussed. Based on 
the cognitive cycle, the technical work has been divided into 
three categories, that is differential privacy in: (i) SS, (ii) 
spectrum analysis, and (iii) spectrum sharing. Evaluation of 
the technical work is given in Table 4, whereas classification 
of the technical work is given in Fig. 5.

Differential Privacy in Spectrum Sensing

Spectrum sensing involves carrying out measurement and 
observations for efficient utilization of spectrum bands [121]. 
In SS, SUs sense their surroundings and develop a radio 
environment map by sharing these values with each other to 
get better results [122]. The sensing could be through cen-
tralized FC (which is also known as database-driven SS) or 
it could be through collaborative or crowdsourced approach 
in which all CR nodes collaborate to figure out the optimal 
environment. No matter which approach is used; the risk of 
privacy leakage still exists. For instance, location privacy, 
identity privacy, and behavioural privacy of PUs, SUs, and 
FC are always at risk when multiple parties are involved. 
Therefore, it is important to integrate a privacy preservation 
mechanism in order to protect privacy in an efficient manner. 
We now discuss technical approaches which propose this 
integration and develop their models.
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Collaborative Spectrum Sensing

Sensing spectrum in a collaborative fashion is one of the 
prominent steps of CRN, as this gives information about 
surroundings in order to access the most beneficial spec-
trum. However, this step is vulnerable to privacy leakage 
as well, and to overcome this privacy leakage, differential 
privacy can play a viable role. The first work in this direc-
tion providing detailed insights about the development of 
a differentially private incentive mechanism has been pre-
sented by Dong et al. [115]. The work developed a CSS 
model and integrated the concept of differential privacy 
to protect privacy. Authors developed a multi-bid model 
which collects bids from sensing participants and selects 
sensing winners in differentially private manner. In the 
proposed work, authors ensured that they maximize social 

welfare alongside enhancing winners’ cost efficiency. 
The work provided extensive theoretical analysis for dif-
ferential privacy guarantees; however, an analysis from 
the perspective of welfare maximization is missing in the 
article. Another work discussing differential privacy for 
crowdsourced SS of CRN have been carried out by Jin 
and Zhang [114]. Authors proposed two models named 
as PriCSS+ and PriCSS+ and demonstrated that both of 
the proposed models preserve location privacy using dif-
ferential privacy protection. Alongside protection, authors 
also enhanced payment system and proposed a truthful and 
cost minimizing payment mechanisms of SS participants. 
From the perspective of evaluation, authors carried out 
evaluation on multiple PU activities and evaluated utility 
and network overhead to demonstrate that their proposed 
model outperforms others in this perspective.

Fig. 5  A Detailed Classification of Technical Works Integrating the Concept of Differential Privacy (DP) in Cognitive Radio Networks at Vari-
ous Cognitive Cycle Scenarios
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A similar work on location privacy preservation for CSS 
is presented by Li et al. [116]. Authors proposed a privacy 
preserving sensing scheme, PPSS. The authors further pro-
posed two private protocols of PPSS for aggregation and 
injection during sensing called PPRSA and DDRI respec-
tively. Authors evaluated the proposed model on SRLP and 
DLP attacks by taking values from real-testbed sampling 
region of CRN. From experimental evaluations, it can be 
seen that the proposed model successfully protected privacy 
of model alongside enhancing entropy and fluctuations of 
received signal strength. The fourth work in the domain of 
differentially private privacy protection for crowdsourced SS 
have been carried out by Huang and Gong [117]. The work 
featured the method of geo-cast for hop by hop message dis-
semination and broadcast in CRN, and in the article authors 
demonstrated that how location privacy gets leaked via this 
type of sensing. The proposed model enhanced privacy pro-
tection for geo-cast SS alongside providing enhancement in 
agents task acceptance, system overhead, and report correla-
tion. In the experimental evaluation, the work analysed cor-
relation in the data; however, the aspect of privacy leakage 
and error rate is missing, which is one of the critical aspect 
that should be added in the location reporting works.

Private Spectrum Aggregation

Apart from CSS, a work discussing private sensing aggrega-
tion and auction in CRN is presented by Zhou et al. [118]. 
The work first proposed an efficient data aggregation model 
for multiparty CRN, and then demonstrated the sources of 
privacy leakage in this model. Thus, in order to overcome 
the privacy leakage, the authors further propose a light-
weight privacy preserving aggregation strategy using the 
concept of dynamic differential privacy. And, alongside pro-
viding private aggregation, authors also proposed PPSSA for 
differentially private spectrum auction to enhance revenue 
of auctioneer. The authors further evaluated their proposed 
models and experimental evaluation showing that the pro-
posed strategy not only enhances communication cost, but 
also enhances SUs satisfaction and auctioneers’ revenue. 
Authors provide an in-depth theoretical analysis for the 
proposed work; however, it is important to mention that the 
article does not have any algorithm, which is usually help-
ful in replicating the work for future experiments by new 
researchers.

Database Driven Spectrum Sensing

In SS for CRN, one cannot ignore the discussion about data-
base driven SS, which is the second most prominent strat-
egy to carry out SS after CSS [89]. This method is domi-
nantly used by SUs to get efficient results, but research has 

indicated that it can also cause privacy leakage. In order 
to overcome this privacy leakage, researchers have pro-
posed the usage of differential privacy in database driven 
SS. The first work in the integration of differential privacy in 
CSS have been carried out by Wang et al. [97]. It is a privacy 
preserving framework for SU in CRN on basis of cloaking 
time and named the framework as PromCos. Authors draw 
the motivation that in order to carry out efficient sensing, 
it is important to incentivize and enhance trust of SUs in 
the network. In order to do so, authors computed differ-
entially private theoretical privacy guarantees for SU, and 
afterwards, evaluated these guarantees on SP, SU, and col-
lusion attack to ensure privacy. Some other works evaluated 
database driven private sensing from a differentially private 
perspective. The first work in enhancing privacy of database 
driven CRN was carried out by Zhang et al. [120]. The aim 
of the article is to develop an inference free framework for 
both SUs and PUs in which both will be able to play their 
part in SS without the risk of losing their private location 
and identity data. The authors formulated theoretical bounds 
for optimal decisions of PUs and SUs, and then evaluated 
these bounds by carrying out extensive experimental evalu-
ation, which ensured utility of both participating SUs and 
PUs. The final work for integration of differential privacy 
in CRN was carried out by Li et al. [119]. The work focused 
over evaluation of privacy preserving models for SU privacy 
in database driven CRN. The proposed work analysed four 
different types of adversaries and then proposed two security 
matrices called indistinguishable input and adversarial esti-
mation error. Afterwards, the authors evaluated the privacy 
preservation models and showed the effect of these models 
with respect to proposed matrices. Overall, it will not be 
wrong to say that the article is a good piece of literature for 
a new researcher in the field. But in-depth analysis, evalu-
ation, and experiments from the perspective of the field are 
lacking in the article.

Differential Privacy in Spectrum Analysis

Analysing spectrum efficiently after getting values from SS 
devices is the second and one of the most critical steps in 
cognitive cycle, because this step is used to opt or bid for 
a specific spectrum or not [68]. It also checks if a specific 
available spectrum band is suitable for the required commu-
nication. Therefore, a careful analysis of spectrum is carried 
out in this step which involves two major steps named char-
acter analysis and parameter configuration. However, careful 
analysis has shown that the privacy of participants, espe-
cially the privacy of PUs gets leaked during this step [123]. 
Therefore, it is important to protect the privacy of partici-
pating nodes alongside providing efficient service. In order 
to protect the privacy of participating PUs and SUs during 
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spectrum analysis, we believe the obfuscation mechanism 
of differential privacy can be utilized in an efficient manner.

Primary User Data Analysis Privacy

From the perspective of integration of differential privacy 
in spectrum analysis, it can be observed that work has only 
been carried out to protect PU privacy. In this direction, two 
significant works have been carried out so far. Both focus 
on preserving privacy of participating PUs during spectrum 
analysis, as PUs are the most vulnerable participants because 
their data is being analysed in this step. The first work for 
protecting operation-time privacy of PU in CRN is carried 
out by Dong et al. [53]. The authors named the proposed 
mechanism as PriDSS, in which they carried out a two-fold 
contribution. First from the perspective of providing efficient 
selection of SUs for dynamic sharing systems, and secondly 
from the perspective of providing privacy on operation time of 
PUs. This work integrated and contributed to multiple aspects 
of spectrum analysis within a single article. For instance, 
they worked on a SU selection problem by calling it a utility 
dependent problem, and then solved it by proposing a utility 
maximizing model. Afterwards, they explicitly mentioned that 
the operation-time of participating PUs is not private, and 
it can be used for various malicious purposes. For instance, 
detecting presence/absence of a particular PU or channel. 
After this discussion, they propose the strategy to efficiently 
select SUs from differentially private operation-time readings. 
The evaluation results of the proposed model showed that the 
work efficiently overcome privacy loss alongside providing 
efficient payments to maximize system utility.

The second and the final work in the domain of differ-
entially private PU privacy protection for CRN is carried 
out by Liu et al. [52]. The article focused on protecting the 
privacy of PUs in a real-time environment. The major moti-
vation of the article is the real-time protection, as the authors 
mentioned that several other works protected privacy in data-
base-driven environments, but the works protecting privacy 
in real-time are missing. Therefore, authors proposed a PU 
privacy protection model, which protects location privacy 
of PUs during spectrum analysis in a real-time environment. 
The article used the concept of cloaking time optimality to 
design a differentially private utility optimal model which 
also enhances spectrum usage efficiency. Alongside this, 
authors proposed theoretical guarantees to prove that how 
their proposed model obeys the rules of differential privacy 
in order to protect PUs from harmful adversarial interfer-
ence. To demonstrate it further, they developed the notion 
of ‘expected interference error’ and evaluated and compared 
this notion with other recent works to show the significance 
of the proposed model. Nevertheless, there is not much work 
in the domain of differentially private spectrum analysis, but 
the two works demonstrated how differential privacy can 

enhance privacy in this step optimally. Therefore, there is 
a need for more work from the perspective of differentially 
private spectrum analysis.

Differential Privacy in Spectrum Sharing

Spectrum sharing is a decisive step in the cognitive cycle 
because multiple SUs are competing for an available spec-
trum at this stage. Usually, auctions are carried out to choose 
the optimal combination of buyer and seller which maxi-
mizes utility of auction [80]. These auctions are carried 
out in multiple different ways. For instance, some research 
work is carried out on traditional auction styles, while some 
works  proposed crowdsensed auctions. Similarly, cer-
tain other works highlighted the use of auction grouping 
for CRN nodes on the basis of the double auction model. 
Among all these auctions, it is made sure that the proposed 
model is rational, truthful, and maximizes social welfare 
of the network [80]. Apart from auction models, another 
aspect of data analysis during spectrum sharing cannot be 
ignored, because it is used to learn and adapt efficient futur-
istic models of spectrum sharing [10]. Usually, the aspects 
of game-theory and machine/deep learning are used at this 
step to find optimal sharing strategies. In all these models, 
it is important to mention that the risk of privacy leakage 
cannot be ignored, and in order to overcome this privacy 
risk, the aspect of differential privacy is being integrated 
by researchers.

In this section, we highlight the works which integrate the 
concept of differential privacy in spectrum sharing to pro-
duce optimal private results. Differentially private spectrum 
sharing work can be categorized into three domains from the 
perspective of auction model and spectrum sharing. The first 
two categories focus over integration of differential privacy 
in various types of auction, while the third category focus 
over integration of differential privacy in other processes 
involving spectrum sharing.

Traditional Spectrum Auctions

The first two works in this domain worked over integrating 
traditional auction models with differential privacy to ensure 
privacy in the trading. The first work discussing revenue max-
imization via approximate privacy guarantees is presented by 
Chen et al. [109]. The work proposed a differentially private 
revenue maximizing auction and named the proposed strat-
egy as DEAR. The proposed DEAR algorithm is an auction 
model which protects the privacy of participating entities via 
the Exponential mechanism of differential privacy. The pro-
posed work introduced differentially private randomness in 
bidders’ group in a hexagonal formation to ensure maximum 
privacy. Afterwards, the work also proved fairness enhancing 
theoretical guarantees of differential privacy to demonstrate 
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that their work supports all theoretical bounds. Authors per-
formed extensive experiments showing that the proposed 
work enhanced revenue of the auction market; however, it 
is also significant to mention that the evaluation from the 
perspective of social welfare of buyers is missing. Another 
work that evaluated differentially private auction mechanisms 
in CR settings was carried out by Wu et al. [110]. Authors 
proposed a private auction model named ‘DIARY’ and then 
evaluated and compared the proposed model with four other 
state of the art models to show effectiveness of the proposed 
model. It can be seen from experimental results that DIARY 
outperforms other models from the perspective of seller, and 
auction revenue. Authors further supported their work by add-
ing extensive theoretical contributions from the perspective 
of differential privacy and auction-based evaluations such as 
winner selection and price determination.

Grouping‑based Double Auction

Another type of auction that is commonly used in differen-
tially private CRN is grouping-based double auction. From 
this perspective, Zhu et al. [51] proposed DDSM mechanism 
which is a double auction scheme for differentially private 
spectrum grouping. Authors used the Exponential mechanism 
of differential privacy to select private optimal prices dur-
ing the double auction process. Afterwards, authors proved 
using theoretical guarantees that their proposed price selec-
tion model provides truthfulness and rationality alongside 
providing private pricing. The second work in the domain 
of differentially private auction was carried out by Hu et 
al. [98]. The authors used Geom(�) distribution to protect 
bid privacy during the auction process. The new distribution 
is combined with a differentially private noise addition model 
to find out the optimal amount of noise for the bid value 
before encryption. The performance evaluation demonstrated 
that the proposed model outperforms other similar works in 
terms of revenue, satisfaction, and privacy of PUs and SUs. 
The article is a twofold contribution from the perceptive of 
auction and differential privacy. But the experimental evalu-
ation only shows the evaluation of auction properties, while 
the evaluation for privacy parameters is missing.

Data‑Driven Spectrum Sharing

Apart from auction works, some researchers worked over 
integration of differential privacy in data-driven aspects of 
private spectrum sharing. The first work that falls in this 
category is carried out by Wang et al. [111], which focused 
on preserving SUs privacy in data-driven spectrum trading. 
The contributions of the articles are twofold: firstly, authors 
preserved revenue of PUs by integrating differential privacy 
in it, and afterwards, authors preserved the demand values of 
SUs as well through dynamic differential privacy. The work 

first proposed an architecture in which available spectrum of 
PUs is aggregated for selling during spectrum sharing. PUs 
can sell the spectrum to centralized SSP at fixed price or can 
also sell it directly to SUs at the individual price. However, 
in both of the cases authors ensured that the privacy of PUs 
gets protected by adding a specified level of obfuscation in 
the trading. Alongside this, the centralized PSP also collects 
values and estimates the demand of SUs, in order to develop 
an efficient utilization matrix. This is also done in a differen-
tially private manner to protect privacy of SUs. Overall work 
ensured that the proposed model is optimized with respect to 
revenue-maximization and risk-minimization. Another work 
targeting truthful aggregation via game-theoretic perspective 
is carried out by Zhou et al. [113]. This work introduced 
a novel game in CRN and called the game as an aggrega-
tive game, which is used to carry out large-scale modelling 
of spectrum sharing in CRN. Authors draw the motivation 
of proposed game by saying that in large-scale CRN, the 
information about each other is incomplete, which forms a 
‘weak mediator’, and this weak mediator will not be able to 
reach Nash equilibrium with this incomplete information. 
Therefore, they developed an aggregative game to improve 
the utility of these systems. However, they showed that this 
type of learning can lead to privacy leakage, which they fur-
ther eliminated by using the concept of differential privacy 
and proposed an incentive-compatible and differentially pri-
vate approximate Nash equilibrium of aggregative game for 
CRN. The final work focusing over privacy enhancement of 
PUs in spectrum sharing has been carried out by Clark and 
Psounis [112]. The work first studied the trade-off between 
privacy and performance in differentially private CRN, and 
then proposed a generalized spectrum sharing model to over-
come this trade-off. Authors considered this research gap as 
an optimization problem of privacy in which one measures 
the level of privacy on the basis of data exposure to possible 
adversaries. After that, the authors tried to fill this research 
gap by developing an optimal solution for multi-utility spec-
trum sharing model in terms of performance and efficiency 
of using spectrum in the best possible way.

Summary

In this section, a comprehensive overview of integration of 
differential privacy in CRN from the perspective of technical 
works is presented. We first categorized all technical works 
from the perspective of steps involved in cognitive cycle, 
and afterwards provide in-depth subcategories of these cycle 
steps on the basis of technical contributions in the article. 
From the discussion it can be seen that a variety of scenar-
ios in spectrum analysis have been evaluated ranging from 
CSS to database-drive SS. Similarly, the aspect of differen-
tially privacy spectrum sharing has also been explored a lot 
from trading and database analysis perspective. But, when 
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we move to spectrum analysis and spectrum mobility, not 
much work can be seen. For instance, in spectrum analysis, 
only two technical works have carried out integration of dif-
ferential privacy, and that too to protect PUs privacy. Simi-
larly, from the perspective of differentially private spectrum 
mobility, none of the technical work evaluated this aspect in 
detail. Therefore, we did not provide this cycle step in the 
classification figure and table. This discussion opens a wide-
range of future directions especially from the perspective of 
spectrum analysis and spectrum mobility in CRN.

Applicability of Differential Privacy 
in Futuristic Cognitive Radios

Apart from the privacy leakage in traditional usage, the 
notion of CR is also being applied to various applications. 
For instance, CRN are being integrated with smart grid and 
other similar technologies to carry out resource efficient com-
munication [124]. Nevertheless, these integrations provide 
a vast number of benefits, but they also come with certain 
drawbacks, and one of the largest among them is the privacy 
leakage. Therefore, preserving privacy is of sheer importance 
in futuristic CR-based technologies. In this section, discuss 
the importance of privacy in these applications, and then we 
provide an in-depth discussion that how differential privacy 
can be used to project privacy in these scenarios.

Cognitive Radio‑Based Smart Grid

Integration of CR with traditional energy grids is also one 
of the key features being considered during development of 
modern smart grid systems [124]. This integration has pro-
vided a wide range of benefits ranging from power reduction 
to low-latency communication between smart meters and 
grid utilities [125]. For instance, CR-based smart metering 
nodes can carry out communication over available spec-
trum bands without having heavy license cost. Similarly, 
the highly adaptive nature of CR communication is suit-
able to carry out almost every possible operation of smart 
grid, whether its real-time reporting, fault monitoring, or 
meter firmware updates, etc. Nevertheless, CR-based smart 
grid is a viable communication model for modern smart 
grid scenarios, but it also comes up with certain privacy-
related issues which needs to be tackled. For example, daily 
lifestyle privacy of residents can be leaked if smart meters 
report their real-time data to grid utility via dynamic CR 
channel. Similarly, location privacy of smart meters can be 
leaked while carrying out spectrum analysis for communi-
cation. Therefore, it is important to protect the privacy of 
CR-based smart grid users before practical application of 
these scenarios.

Integration of Differential Privacy

In order to protect privacy of CR-based smart grid users, dif-
ferential privacy can be used as a viable solution because of 
its dynamic and light-weight nature. For instance, CR-based 
smart meter nodes reporting their real-time data via unli-
censed channels can use a perturbation mechanism of differ-
ential privacy to add noise in their values in order to protect 
their privacy. Similarly, Exponential perturbation of differ-
ential privacy can be used during spectrum analysis of CR-
based smart meters. Apart from these prominent directions, 
differential privacy can also be used to protect usage privacy 
during firmware updates, fault detection, fault reporting, and 
other similar scenarios where smart grid nodes have to use 
functionalities of CRN to carry out communication. From 
the perspective of literature review in this domain, certain 
works (such as  [64, 126]) highlighted the use of differential 
privacy in smart grid reporting and other analysis. However, 
a full-fledged work discussing and integrating differential 
privacy in CR-based smart grid has not been carried out 
yet. Therefore, we believe that this domain has potential and 
this integration of differential privacy with CR-based smart 
grid communication can lead to development of secure and 
efficient modern energy infrastructures.

Software‑Defined Networks‑based Cognitive Radio

Since the emergence of CR, it has been incorporated with 
various technologies, and software-defined network (SDN) 
is one of them. This integration of CR and SDNs are in 
discussion for more than a decade due to its tremendous ben-
efits [127]. SDNs provide CR users with an efficient archi-
tecture to carry out their communication and networking 
needs, which in turn will help to improve the efficiency and 
latency of CRN. Effective network management capabilities 
of SDN enables CR nodes to carry out efficient communica-
tion without worrying about network latency and complexity 
issues. However, despite these tremendous advantages, it can 
also be visualized that even SDN-based CR do also suffer 
with privacy issues because of centrally managed networks. 
As SDN uses various rules to manage network wide traffic, 
and all this is happening in a centralized manner; therefore, 
if an adversary gets control over this central entity or in case 
of some malicious query evaluation, the privacy of these 
networks is at risk [128]. Therefore, it is important to protect 
the privacy of these networks before integrating them with 
CR and other similar radios.

Integration of Differential Privacy

To overcome this issue of centralized query evaluation for 
SDN-based CRN, differential privacy serves as one of the 
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most suitable options. Exponential mechanism of differen-
tial privacy can be used to protect privacy of CR users dur-
ing query evaluation, during spectrum analysis, and during 
other cognition cycle steps. Similarly, critical information of 
the SDN-based CRN can also be protected via direct data 
perturbation/Laplace mechanism of differential privacy in 
order to reduce adversarial risk. For instance, during SS 
when every CR node transmits their data to a centralized 
SDN server, then instead of reporting plain-text data, one 
can report differentially private data in order to protect its 
location and identity privacy.

Cognitive Radio‑Based Internet of Things

IoT is a widespread domain which is playing a very impor-
tant role in our daily lives ranging from small temperature 
sensors in homes to massive ubiquitous sensing control-
lers taking decision of transportation [129]. If one looks 
around, IoT devices are everywhere around us and are being 
integrated with almost all major communication technolo-
gies to carry out operations in a streamline manner. As a 
part of this integration, researchers also integrated and used 
the concept of CR to carry out IoT communication, which 
has been proved to be beneficial in many ways [130]. For 
instance, smart in-home applications are being made capable 
of running over unlicensed spectrum in order to overcome 
spectrum scarcity due to immense increase in in-home sen-
sors [131]. Similarly, smart cities are being developed with 
an aim of developing an eco-friendly environment, and one 
step in them is to carry out communication via CR instead 
of traditional licensed bands to reduce the excessive use of 
licensed spectrum [132]. Despite these tremendous benefits, 
the aspect of privacy leakage from these IoT devices cannot 
be ignored due to the large amount of data traversing across 
the network [133].

Integration of Differential Privacy

IoT devices transmit a large amount of data to the network 
via CR unlicensed channels to carry out various operations 
for the functioning. If this data is not secured, then this 
can leak privacy of the device owners, which can lead to 
catastrophic results [134]. In this perspective, differential 
privacy can play a key role in both active and passive data 
protection of CR-based IoT devices. For example, in case if 
IoT devices are carrying real-time streaming of their data via 
CRN, then noise addition mechanism of differential privacy 
can protect data of this real-time streaming by injecting i.i.d 
noise in it. Similarly, in case of passive data protection for 
IoT where surveys, learning, and query evaluation is carried 
out, the randomization mechanism of differential privacy can 
play a role to produce ambiguity in attackers mind regarding 
presence or absence of a specific user or IoT node during 

learning. Therefore, we believe integrating differential pri-
vacy with IoT devices operating over CRN can be a viable 
solution to protect them from external and internal intruders.

Machine/Deep Learning‑Based Cognitive Radio 
Networks

Since the advent of CRN, researchers are continuously try-
ing to develop and integrate novel technologies to enhance 
its efficiency. One such pathway is integration of machine/
deep learning with CRN. CRN by its basic nature is consid-
ered to be an artificially intelligent radio which is capable 
of taking intelligent decisions involving spectrum sharing, 
hand-off, etc. However, the integration of modern machine/
deep learning models with CRN has opened a plethora of 
research directions via which one can enhance the function-
ing of CRN in an efficient manner [135]. For example, rein-
forcement learning provides CR users the functionality to 
develop their behaviour via interacting with the surrounding 
environment during the cognition cycle [136]. Apart from 
reinforcement learning, basic machine learning algorithms 
such as support vector machine (SVM), homomorphic 
machine learning, nearest neighbour, ANN, etc., have also 
aided a lot in development of modern CRN. Similarly, in the 
modern times, the integration of deep learning models with 
CRN is paving path for future intelligent radios, e.g. one 
such example is the integration of deep reinforcement learn-
ing with CRN, which enhances the capability of SS a bit 
further and provides CRN users with an efficient signalling 
results to choose the best possible option [137]. Similarly, 
deep neural network (DNN)-based models are also being 
used to enhance the detection accuracy during spectrum 
sending [138]. Nevertheless, the research in machine/deep 
learning-based CRN is improving day by day, and a large 
amount of data from CR nodes is being collected to enhance 
the cognition cycle of CRN. This data is basically the feed to 
machine/deep learning models, and it will not be wrong to 
say that more data means high detection accuracy. However, 
on the other hand this data can leak a huge amount of pri-
vate information of CR users. For example, accurate location 
information during SS can lead to location privacy leakage. 
Similarly, spectrum hand-off information can lead to leakage 
of holding time privacy of nodes. Therefore, alongside col-
lecting this huge amount of data for machine/deep learning 
models, it is equally important to protect this data from all 
sorts of adversaries.

Integration of Differential Privacy

Nonetheless, the collected data during the cognition cycle 
can pose a huge privacy concern for CR users, but on the 
other hand differential privacy protection can be used to 
protect this privacy leakage to a large extent. Nowadays, 
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differential privacy is a universally accepted matrix for pri-
vacy protection during machine/deep learning scenarios, 
thus differential privacy is being integrated with almost all 
state-of-the-art learning models to protect privacy at differ-
ent levels. For instance, local differential privacy is being 
used to protect individual privacy before feeding the data 
to a machine learning model  [139]. Similarly, differen-
tially private learning in wireless big data networks is also 
being employed by researchers to test its efficacy in wire-
less scenarios [140]. Apart from these, differential privacy 
have proved its significance in almost all machine learning 
models, such as naïve bayes, linear regression, linear SVM, 
logistic regression, kernel SVM, decision tree, k-means clus-
tering, etc. [141]. Thus, one can imply all these differentially 
private machine learning models in the majority of CR sce-
narios. For example, during machine learning for SS, local 
differential privacy can be used to protect user privacy. Simi-
larly, during query evaluation and learning steps of cognition 
cycle, noise can be calibrated and added to protect individual 
privacy. Therefore, by keeping in view this discussion, it 
will not be wrong to say that differential privacy is one of 
the most viable solutions to protect privacy during machine 
learning-based CR applications, where users have to share 
their private data in order to get efficient outcomes.

Cognitive Radio‑Based UAV Communication

Nowadays, drone technology (also known as unmanned 
aerial vehicle (UAV)) is booming, and various different 
sized drones are being used to carry out multiple applica-
tions around us ranging from sports streaming to carrying 
critical military operations [142]. In order to carry out effi-
cient communication and message exchange between UAVs, 
researchers are using unlicensed CR-bands for communica-
tion [143]. In this way, UAVs can exploit the unused spec-
trum and can carry out their operations without causing their 
part in spectrum scarcity. Nonetheless, this integration is 
fruitful, but research has highlighted that the information 
exchange via this integration is not completely secure and is 
prone to many privacy attacks. For example, in autonomous 
UAVs, route planning is carried out, but this route planning 
also needs to be reported to neighbouring clusters via CR 
network to overcome possibility of any collusion. However, 
if this information gets leaked, it can reveal the complete 
planning and movement of UAV clusters. Therefore, it is 
important to protect the privacy of these UAVs in order to 
carry out seamless operations.

Integration of Differential Privacy

Similar to CR-based IoT devices, CR-based UAVs are also 
reporting their real-time planning, location, and identity 
values to the neighbouring nodes, clusters, and managing 

authorities to carry out operations in a streamline manner. 
This real-time reporting can cause serious privacy leak-
age because significant strategic information can be leaked 
from the reported values. Similarly, while performing steps 
involved in the cognition cycle, these UAVs also have to 
carry out SS, analysis, sharing, and mobility, which can 
also cause privacy leakage to a greater extent. In order to 
overcome these issues, the notion of differential privacy can 
play a critical role due to its dynamic nature of privacy pro-
tection during a real-time reporting environment. Different 
from other privacy preserving strategies, differential privacy 
can perturb values in real-time depending upon the allowed 
error rate. This real-time perturbation can be integrated with 
UAV real-time reporting and sensing to protect their private 
values. For example, if a UAV is reporting its identity in 
real-time just to show its presence, then its identity can be 
protected by adding i.i.d noise, which will not affect normal 
operations of the CR network, but on the other hand it will 
protect the identity theft of that particular UAV. Therefore, 
we believe integrating differential privacy with CR-based 
UAVs can be a good step ahead to develop a secure CR-
based drone network.

Cognitive Radio‑Based Industrial Internet of Things

Carrying out industrial operations via industrial sensors is a 
well-developed subfield of IoT which is also known as indus-
trial IoT (IIoT). The sensors involved in IIoT are responsible 
to carry out decisions on the basis of received input [144]. 
For example, a sensor in a car manufacturing industry will 
take input from the buyer and will change the colour of 
the car according to the requirement. In order to provide 
seamless communication, these sensors are now being oper-
ated over unlicensed CR bands [145]. This integration of 
CR with IIoT architecture is enabling many industries and 
organizations to reduce their contribution in spectrum scar-
city. However, on the other hand, these IIoT nodes are now 
more vulnerable to privacy issues because now they have to 
report their sensing values to the centralized CR moderators 
in order to perform steps involved in cognition cycle. There-
fore, it is important to protect privacy of these CR-based 
IIoT nodes so that they can carry out their operations without 
risking them to potential adversaries.

Integration of Differential Privacy

The notion of differential privacy has been well researched 
in literature from the perspective of IIoT [65]. These research 
works have proved that integration of differential privacy 
with IIoT sensors and nodes can result in a fruitful outcome. 
For example, during sharing of mutual information among 
sensors, differential privacy perturbation can protect sensors 
and involve user’s privacy. Similarly, these concepts can also 
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be applied to CR-based IIoT networks because they share 
pretty much similar space. For example, if an IIoT node has 
to carry out SS to choose the most viable spectrum band, 
then it can perturb its identity and location values to protect 
itself from network adversaries. Similarly, during informa-
tion sharing on unlicensed spectrum, these IIoT nodes can 
add noise to protect information of users being shared via 
their medium. That is why, we believe that adding differen-
tial privacy with a CR-based IIoT network will pave the way 
for futuristic IIoT systems.

Blockchain‑Based Cognitive Radio Networks

Blockchain came into sight as a backbone technology after 
the sudden boom in the price of Bitcoin since the past dec-
ade [146]. Since then, research works are being carried out 
to integrate blockchain in almost every second aspect of our 
everyday life [147]. In the quest of this integration, block-
chain technology is now being used to perform various CR 
operations. For example, the steps involved in the cogni-
tion cycle are being performed on decentralized distributed 
blockchain networks in order to enhance trust in the network. 
This recording of CRN data on blockchain ledger ensures 
that all participants receive a fair outcome and will prevail 
a sense of security and trust in the network [148]. How-
ever, this decentralized nature also raises various questions, 
and one of the biggest questions among them is privacy of 
CR nodes. As mentioned, that the data from CR nodes will 
be reported and recorded on a tamper-proof decentralized 
ledger, which means that this data will be visible to all par-
ticipating nodes in case of a public blockchain to ensure 
trust, but on the other hand an adversary or a node with 
adversarial intentions can also misuse this data as well. 
Similarly, as the data is tamper-proof and will always be 
there on the chain, then some adversarial node can also learn 
about past history of a CR node even if the node has left the 
network. These are certain privacy aspects which need to 
be addressed in detail before practical deployment of block-
chain with CRN.

Integration of Differential Privacy

To preserve privacy of blockchain-based CRN, differential 
privacy can be a feasible solution because of the diverse 
adaptability of differential privacy protection. The biggest 
reason that makes blockchain-based CRN prone to privacy 
attack is the public availability of plain-text data on decen-
tralized distributed ledger. This issue can be countered by 
adding pseudorandom noise via differential privacy to the 
data before reporting/recording it to a decentralized ledger. 
The noise in differential privacy is controlled by privacy 
budget, which ensures that the noisy values remain useful 
to carry out various operations such as statistical analysis, 

etc. But on the other hand, the strong theoretical guarantee 
of differential privacy also ensures that the adversary should 
not be able to get private information of CR nodes from the 
recorded data. Similarly, in private blockchain networks, 
certain analyses have been carried out to learn from CR data 
for futuristic purposes. This analysis can also be secured by 
introducing a layer of differential privacy between block-
chain ledger and observer. Considering this discussion, we 
believe that differential privacy is one of the critical mecha-
nisms which can play a key role in development of modern 
blockchain-based CRN.

Cognitive Radio‑Based Vehicular Networks

Vehicular communication is not a new topic and it has been 
in discussion in the scientific community since ages [149]. 
Similar to other networks, these vehicular networks have 
also been made capable of running over unlicensed CR spec-
trum in order to preserve excessive usage of spectrum [150]. 
A plethora of research has been carried out to perform all 
operations of vehicular networks via CR so that modern 
vehicles do not contribute to spectrum shortage [151]. These 
research works have indicated that this integration of CR 
with vehicular ad hoc network is a viable solution, and vehi-
cles can achieve low-latency rate and ultra-reliable commu-
nication by incorporating CRN during their communication. 
On the other side of the coin, these CR-based vehicular ad 
hoc networks (VANETS) are not completely secure and are 
prone to various privacy attacks because of their real-time 
reporting. Therefore, protecting privacy of these CR-based 
VANETS is of sheer importance and this issue needs to be 
resolved.

Integration of Differential Privacy

To protect privacy of CR-based VANETS, it is important to 
analyse the type of privacy leakages among these networks. 
If we analyse, it is evident that the most critical private infor-
mation among CR-based VANETS is location privacy of 
vehicles. For example, one does not want to show to others 
whether he/she visited the hospital at a particular time or 
not. However, in case of CR-based VANET reporting, sens-
ing, and analysis, this information is prone to adversaries, 
and any adversary with some background knowledge can 
get insights of exact values. In order to overcome this, dif-
ferential privacy can be used to protect location privacy. As 
discussed in “Scenarios of Privacy Leakage During Cogni-
tive Cycle and Prospective Role of Differential Privacy”, 
one can protect location information pretty easily by just 
incorporating randomness via differential privacy models. 
For example, if a vehicle adds differentially private noise to 
its location coordinated during SS, then the original coordi-
nates will become protected. However, on the other hand the 
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SS results will not have much effect because of the vehicle 
being present in the same region. Therefore, we believe inte-
gration of differential privacy with CR-based VANETS can 
serve as a viable step towards development of more secure 
and private vehicular networks.

Challenges and Future Research Directions

Till now, we provide a detailed overview of how differential 
privacy can play a critical role in various aspects of the CRN 
cognition cycle. For instance, we highlight the integration 
scenarios of differential privacy in SS, analysis, sharing, 
and mobility. Similarly, we highlight various parameters 
that need to be taken care of while designing differentially 
private CRN models. However, apart from all these discus-
sions, there are certain challenges and future directions that 
need special considerations while designing future differen-
tially private CRN models. In this section, we provide first 
provide insights about certain prospective integrations that 
can be beneficial for differentially private CRN, and then we 
highlight certain challenges that researchers exploring these 
directions can face during their evaluations.

Integrating Blockchain with Differential Privacy 
and CRN

During cognition cycle of CRN, SU, and PU nodes suffer 
with lack of trust due to centralized entities. For instance, 
during database-drive SS, one has to rely on a centralized 
database to provide efficient results. Similarly, this centrali-
zation is also a part of other steps in the cognition cycle, 
and it cannot be ignored. Indeed, this centralization pro-
vides benefits such as quick response, etc., but on the other 
hand it also raises serious trust-related issues in the net-
work. Therefore, there is a need to develop decentralized 
models for modern CRN [152]. In order to provide an effi-
cient alternative to centralization, the notion of blockchain 
came up as a saviour for CRN. Blockchain is a novel para-
digm which is being applied to a large number of daily life 
domains because of its trust, availability, and tamper-proof 
nature [153]. Similarly, certain works also discussed and 
evaluated the integration of blockchain with CRN ranging 
from SS to other steps of the cognition cycle [41, 154–157]. 
However, just integrating blockchain with CRN is not a 
one-in-all solution to every problem as it also suffers from 
privacy issues due to its public nature [158]. Therefore, it 
is important to protect privacy of decentralized blockchain 
CRN.

In order to ensure privacy in decentralized blockchain-
based CRN, we believe that differential privacy can play a 
critical role. A very detailed survey on integration of dif-
ferential privacy in various layers of blockchain has been 

presented in [159]. However, the aspect of integration of 
differential privacy in blockchain-based CRN has not been 
carried out yet. From the works integrating differential pri-
vacy with blockchain, it can be seen that it is an efficient 
solution to the privacy problem, but it still requires detailed 
research. For instance, one of the critical challenges for this 
integration is to choose optimal blockchain type, e.g. there 
could be scenarios in which public blockchain will perform 
the best as compared to consortium or private. Contrarily, 
for some functionalities, private or consortium blockchain 
will outperform public blockchain. Similarly, choosing an 
optimal differential privacy budget according to the decen-
tralized nature of blockchain is another challenge that needs 
to be discussed in future works. Overall, we believe that 
this integration of blockchain, differential privacy, and CRN 
have a lot of scope in future but certain aspects require in-
depth addressing before practical implementation.

Differential Privacy in Game‑Theoretic Spectrum 
Sharing Models

Since spectrum is a non-renewable resource, it is important 
to use and allocate the spectrum in the most efficient manner. 
In order to do so, certain researchers worked over integra-
tion of game-theory in various scenarios of the cognition 
cycle. For instance, some works highlighted use dynamic 
games to get maximum benefits from CRN [160]. Similarly, 
certain works highlighted use repeated games for power/
spectrum allocation in CRN to maximize spectrum usage 
efficiency [161]. Alongside this, certain works also high-
lighted to use game-theory-based auctions for CR spec-
trum trading [86]. However, the recent studies showed that 
CRN is vulnerable to certain privacy issues; therefore, it is 
important to integrate privacy preservation mechanisms with 
game-theoretic CRN approaches. The dynamic functionality 
of differential privacy can play a vital role in this integration, 
e.g. one aspect could be to design game-theoretic differ-
entially private auctions that maximizes revenue alongside 
preserving privacy. This aspect has been touched by certain 
research works that we discussed in previous sections. How-
ever, it is important to highlight that maximizing revenue 
while preserving privacy is one of the biggest challenges 
that these mechanisms face. For instance, in a simple game-
theoretic auction revenue can be maximized by proving vari-
ous equilibriums in the system, such as Nash equilibrium, 
etc. However, in differentially private auctions, we cannot 
publicize the bids, which becomes a big hurdle to find opti-
mal values. Certain works focused over approximate social 
welfare/revenue maximization, but this field still has a lot of 
potential which needs to be explored further.

Another direction could be to integrate differential pri-
vacy with resource allocation of CRN, in which efficient 
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resource allocation/sharing can be carried out in a private 
manner. This aspect of traditional resource allocation while 
maintaining equilibrium has been discussed by research-
ers [162]. However, from the perspective of CRN, this prob-
lem is not well addressed, and we need modern differentially 
private strategies specifically designed for game-theoretic 
resource allocation by considering dynamic spectrum access 
capability of CRN. A significant challenge that one can face 
while designing these differentially private CRN allocation 
strategies is to perform truthful reporting for any game-
theoretic mechanism. Therefore, researchers should focus  
over this direction in order to get maximum benefit from 
game-theory for differentially private CRN.

Differentially Private Cognitive Radio Trade‑Offs

CR works over the phenomenon of utilization of unused 
spectrum band when PU is not using the specific band. Thus, 
in order to utilize the spectrum in the most efficient manner, 
SUs are continuously sensing the environment to get better 
opportunities, and they switch to the best available spec-
trum. However, during this cognition cycle process, a large 
number of processes are taking place, which sometime can 
lead to unwilling circumstances, such as false alarm, energy 
wastage, etc. Thus, in order to eradicate such a phenomenon, 
SUs try to opt certain strategies to ensure the effectiveness 
of sensing, e.g. increasing sensing time duration for a spe-
cific band/area, etc. These strategies help in efficient detec-
tion, but there are certain trade-offs associated with this. 
For example, one of the most famous trade-offs is sensing-
throughput trade-off, in which detection probability and false 
alarm probability are taken into account in order to figure 
out the efficiency of the specific CRN [163]. Another famous 
trade-off for CRN is energy efficiency and spectral efficiency 
trade-off, where different architectures (such as cooperative, 
non-cooperative, etc.), links, analyses, and probabilities 
are considered to figure out efficient balance point among 
energy and spectral efficiency [164].

From the perspective of relevance of these trade-offs 
with privacy preservation, we believe that it is important 
to highlight that majority of these trade-offs can be linked 
to leakage of privacy in certain aspects. For example, 
in sensing-throughput trade-off, in order to enhance the 
throughput, sensing time needs to be increased, which in 
turn leads into learning a lot more than required about 
a specific spectrum/coverage area, which directly leads 
to various privacy leakages. Similarly, in energy related 
trade-offs, selecting a specific architecture or relay model, 
etc., also require learning about a specific area, which 
leads to leakage of privacy. Therefore, it is important to 
also consider the prospect of privacy preservation while 

observing these trade-offs. In order to protect privacy dur-
ing these trade-offs, we believe that differential privacy 
can play an active role. For example, the location and iden-
tity privacy during excessive SS can easily be preserved 
via Laplacian and Exponential perturbation, in which we 
perturb the values to ensure that individuals cannot be 
re-identified, but on the other hand efficiency and accu-
racy is also taken into consideration in order to enhance 
throughput. Similarly, differential privacy can also perturb 
the learnt values for a specific architecture in such a way 
that privacy is maintained alongside ensuring the accuracy 
and effectiveness.

Differential Privacy in Spectrum Characterization

Spectrum characterization is the core foundation of the 
spectrum analysis step during the cognitive cycle. In 
spectrum characterization, all available spectrum bands 
and channels are collected and categorized according to 
the need [165]. This step ensures that characteristics of 
all available spectrum bands are gathered and grouped in 
an efficient way to get maximum benefits from available 
spectrum. In order to achieve this, researchers are also 
integrating modern machine/deep learning mechanisms to 
group these values. However, this advancement can also 
cause privacy leakage during the learning process. As it 
can be seen from experimental evaluations that machine 
learning algorithms can be adversely used to learn about 
characteristics of participants [166]. Same is the case with 
CRN, that if we integrate machine/deep learning during 
spectrum characterization, then privacy can be leaked in 
an adversarial manner.

In order to mitigate this privacy risk, differential pri-
vacy can play an active role due to its dynamic nature. For 
instance, one can develop a differentially private machine 
learning model to train and group spectrum bands in an 
efficient manner. This integration of differential privacy 
ensures that the added noise is pseudorandom, and no one 
can extract private information of participants by just look-
ing into it. However, this integration is not as simple as it 
seems because it involves a large number of challenges that 
needs to be tackled. First of all, one has to choose an optimal 
machine/deep learning model that matches perfectly with the 
nature of dynamic differential privacy and CRN. Afterwards, 
the second big challenge is to figure out parameter training 
values via which we get both; utility and privacy during 
characterization. Keeping in view this discussion, it can be 
said that differentially private spectrum characterization can 
provide us a lot of benefits, but there are certain challenges 
that need to be addressed before this fruitful integration.

504 Cognitive Computation (2022) 14:475–510



1 3

Differential Privacy in CRN for Smart Grid System

CRN has been integrated with smart grid technology for 
a long time due to its numerous benefits such as low com-
munication cost [167]. If one analyses this integration, it 
can be seen that CRN is being used in almost all aspects of 
smart grid. For instance, certain works analysed integration 
of CRN in home management, while other works discussed 
collection of meter reading, pricing, and power outage val-
ues via CRN. Similarly, wide area monitoring and power 
line monitoring is also being carried out through CR-based 
smart grid. A very detailed survey on the integration of CR 
with smart grid has been written by Khan et al. [124]. From 
these integrations it is evident that CR is paving a way for 
futuristic smart grids. But on the other hand, the privacy 
issues during this integration cannot be ignored.

Ranging from privacy leakage from real-time energy 
monitoring to dynamic energy auctions, the communication 
is vulnerable, and it needs to be protected from adversaries. 
In order to do so, differential privacy can play a key role 
because of its randomization mechanisms. Similar to this, 
differential privacy has been applied with smart grid sce-
narios since long, such as differentially private smart meter-
ing [126]. But the works integrating differential privacy with 
CRN-based smart grid are not yet covered. Therefore, there 
is a need to carry out this integration of differential privacy 
with CRN-based smart grid in order to get maximum pos-
sible benefits from these advancing technologies. Neverthe-
less, this integration is pretty beneficial, but this will raise 
certain challenges as well, the most important among them 
will be maintaining the balance between utility and privacy 
in the protected data. The values reported by smart grid 
systems involve decisions related to energy; therefore, it is 
important to take special care of data utility because even a 
very small mistake can lead to catastrophic events. There-
fore, the researchers who are intended to work in differen-
tially private CRN-based smart grids have to deal with the 
challenge of finding optimal privacy budget, sensitivity, and 
other parametric values for differential privacy mechanisms.

Integrating Differential Privacy in Federated 
Learning with CRN

Federated learning is also a novel paradigm which is being 
used to carry out decentralized learning at users’ end without 
collecting data from them [168]. Federated learning is being 
applied to various scenarios of cognitive cycle [169]. This 
concept of federated learning is providing the advantage of 
decentralized learning in CRN, and now FCs can learn about 
the characteristics and availability of spectrum without col-
lecting sensitive information from CR nodes. This enhances 
the security and privacy of the whole CRN because minimal 
data is being collected at a centralized server.

Research works have shown that this integration can also 
cause privacy leakage, and even in some worst case sce-
narios adversarial federated learning models can be used 
by adversaries to learn private information from users [170, 
171]. In order to overcome this risk, the integration of differ-
ential privacy with federated learning models can play a key 
role. For instance, certain works have been developed which 
have integrated differential privacy with federated learning 
at the time of model design, and learning. Similarly, a dif-
ferentially private federated learning model can be designed 
for the learning environment of CRN, or differential privacy 
can be integrated with learning outcomes during the run-
time. Both of these scenarios can be considered to preserve 
the privacy of CRN. Although both of these scenarios can 
be pretty beneficial to preserve privacy, one also has to over-
come certain challenges while considering these scenarios. 
The most important challenge is to figure out the best type of 
federated learning model. For instance, two most prominent 
models for federated learning are horizontal federated learn-
ing and federated transfer learning. Both of these models 
have their pros and cons, e.g. if the datasets being used in 
federated learning share the same feature then horizontal 
federated learning is the optimal way. Contrarily, if there are 
not many overlapping features among data, then federated 
transfer learning needs to be used. Thus, in differentially 
private CRN, for some scenarios, such as SS, horizontal fed-
erated learning could be more suitable, because the shared 
features are the same, but in some cases this approach might 
not be feasible. For example, in case of spectrum hand-off, 
the responses after spectrum mobility can comprise multiple 
disjoint features. So, in such cases federated transfer learning 
could be more suitable. Therefore, finding optimal differen-
tially private federated learning models is the key challenge 
that needs to be resolved before this integration.

Conclusion

Spectrum is a non-renewable resource. It is therefore impor-
tant to use this precious resource in an efficient manner. In 
order to carry out efficient utilization of spectrum, scientists 
developed the notion of CR, which works over the princi-
ple of spectrum access at vacant times. CR nodes have the 
ability to sense the loopholes in the spectrum and then use 
these loopholes to carry out communication. In this way, CR 
nodes can play a vital role in overcoming spectrum scarcity. 
Nevertheless, CRN has a large number of benefits, they are 
not immune to all threats and one of the most critical ones 
is the privacy leakage, which causes serious consequences 
if not handled properly. Certain research works have high-
lighted the use of various privacy preservation approaches 
to protect privacy of CRN, and differential privacy is one 
of them. Differential privacy can play an important role in 
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the design and development of modern, private, and more 
secure CRN of the future. In this paper, we carried out a 
comprehensive survey targeting the integration of differen-
tial privacy in CRN from various aspects. Firstly, we high-
light the importance of privacy preservation in CRN, by 
discussing the functioning of differential privacy. We then 
provide an in-depth discussion about the sources of privacy 
leakage in CRN. Next we provide insights into how differ-
ential privacy can play a critical role in protecting this leak-
age. We then present an analysis of certain parameters that 
should be taken into account while developing differential 
privacy-based CRN protocols. Then, an in-depth analysis 
of technical works integrating differential privacy in vari-
ous scenarios of CRN. Finally, we provide analysis about 
prospective future directions alongside highlighting certain 
challenges that researchers may face.
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