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Abstract Data has become an integral part of day-to-day

human life. Users leave behind a trail of digital footprint

that includes their personal and non-personal information.

A normal user puts 1.7 megabytes of data every second into

the hand of service providers and trusts them to keep it

safe. However, researchers have found out that in the name

of improving the quality of service, the service providers,

knowing or accidentally, put users’ personal information at

risk of getting into the hands of an adversary. The service

providers usually apply masking or anonymization before

releasing the users’ data. Anonymization techniques do not

guarantee privacy preservation and are proven to be prone

to cross-linking attacks. In the past, researchers were able

to successfully cross-link multiple datasets to leak the

sensitive information of various users. Cross-linking

attacks are always possible on anonymized datasets, and

therefore, service providers must use a technique that

guarantees privacy preservation. Differential privacy is

superior for publishing sensitive information while pro-

tecting privacy. It provides mathematical guarantees and

prevents background knowledge attacks such that infor-

mation remains private regardless of whatever information

an adversary might have. This paper discusses how

differential privacy can help achieve privacy guarantees for

the release of sensitive heterogeneous datasets while pre-

serving its utility.

Keywords Differential privacy � Heterogeneous data �
Preserving utility

1 Introduction

Recent advancements in computing have enhanced the way

users and organizations interact with data. From person-

alized recommendations, e-commerce to industrial and

scientific research, data is needed everywhere, and that too

in vast abundance. There are 4.6 billion internet users

worldwide1 (approximately 60% of the world population),

each generating 1.7 megabytes of data every second,

according to a report2. The generated data, in turn, is used

with algorithms in machine learning and deep learning to

create solutions for self-driving cars, recommendation

engines, automated game playing, and so on.

The generation of data is diversified among several

domains, therefore, making it heterogeneous. In an Internet

of Things (IoT) scenario, data corresponds to values read

by installed sensors across the ecosystem. At the same

time, a self-driving car captures videos and images along

with sensor values. Similarly, a smart meter generates

time-series data of power consumption at the home it is

installed. The method of parsing a video is different from

that of an image. Similarly, naked sensor values are han-

dled by entirely different tools and techniques. Due to its
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heterogeneous nature, coming up with a single solution to

protect data privacy becomes a daunting task.

To understand privacy, we first need to understand the

categorization of data in the context of privacy. All kinds

of heterogeneous data, be it images, videos, text, or any

other format, can be categorized as PII (Personally Iden-

tifiable Information), pseudo sensitive data, and non-sen-

sitive data. As the name suggests, PIIs are highly sensitive

and must be protected from any leak. Pseudo-sensitive data

is one where we can choose to protect it based on its

application domain. For example, while performing

anonymization on a dataset that is to be shared with an

employer, the gender attribute might not be considered a

PII because just knowing the gender one cannot identify

the person. But if it is known that the same employer

prefers male candidates over female candidates, gender can

be considered as a sensitive attribute because revealing it

will cause harm to the candidate.

The vast amount of data about a user has created their

digital footprint. The adversary (or a service provider) can

use the digital footprint to tell a lot about its user. There-

fore, it is crucial to protect it using privacy-enhancing

technologies. The digital footprint consists of the user’s

private information and public information. There are clear

distinctions between what is needed to be protected and

what can remain public. For example, we might easily give

people our Facebook, Twitter, or LinkedIn username with

little or no hesitation. Still, we will think twice before

offering someone our social security number, credit card

details, and address. In an ideal scenario, sensitive data like

social security or credit card details must be kept separate

from the non-sensitive data.

In the preliminary work towards privacy protection, data

augmentation, shuffling, and masking methods were used

to obfuscate and hide sensitive attributes [1–3]. In these

methods, data is either shuffled to become random or

hidden via masking two or more characters present in the

data - for example, an email, abc@example.com, when

masked might look like a**@example.com. Shuffling

might replace the email with another email present in the

dataset, xyz@example.com. The techniques are trivial, and

data is still exposed, giving minimal privacy protection. In

one of our ongoing works, we found a dataset where first

four letters of email addresses are masked, and other

information like first name, last name were given3. In 90%

of the cases, the first four letters are found to be nothing but

the first four letters of the first name of the individual.

Hence, masking techniques are vulnerable to re-identifi-

cation if additional information is known.

To curb this visibility, several anonymization techniques

like k-anonymity [4], l-diversity [5], t-closeness [6] were

invented. k-anonymity uses suppression and generalization

to divide the dataset into k groups. k-anonymity is prone to

homogeneity attacks as it prevents identity disclosure but

still vulnerable to attribute leakage. l-diversity uses gen-

eralization and masking within each of the k-groups cre-

ated using k-anonymity to diversify sensitive attributes and

overcome homogeneity attacks. l-diversity is not effective

for single sensitive attributes and is difficult to achieve.

t-closeness extends l-diversity by ensuring that the distri-

bution of a sensitive attribute in any k-group is close to the

distribution of a sensitive attribute in the overall distribu-

tion. While anonymization proved to be effective,

researchers have shown it to be vulnerable to de-

anonymization attacks [7–10]. Netflix released an anon-

ymized dataset to improve their search recommendations.

The health records are anonymized and made public in the

US. The American Online Query Logs (AOL) are anon-

ymized and released for research purposes, but researchers

successfully deanonymized them and were able to find

exact users [11, 12].

Techniques like anonymization are vulnerable and

harder to apply where a complete dataset is unknown

(stream data) or has images and videos. Even when

anonymization is successfully applied, there is a risk of de-

anonymization. Therefore, with continuous efforts from

researchers, differential privacy has grown to be a universal

and a go-to way to release information publicly. Unlike

anonymization, the idea behind differential privacy is that

if the effect of making an arbitrary single substitution in the

database is small enough, the query result cannot be used to

infer much about any single individual, and therefore

provides privacy [13].

Differential privacy provides a way to share information

publicly (or release datasets) without compromising the

privacy of individual samples present in the dataset [14].

The former is achieved by describing the patterns experi-

enced by the groups within a dataset. Another way differ-

ential privacy is used is when instead of revealing the full

dataset, only aggregate information is released, limiting the

disclosure of private information of records. For example,

organizations publish statistical aggregates like percent-

ages and mean values to ensure the confidentiality of sur-

vey responses. We will explain differential privacy in Sect.

3 in more details. With its increasing popularity, differen-

tial privacy is being used in multiple domains and modified

to be applied to heterogeneous data. In 2018, Facebook

used differential privacy to release a dataset for researchers

to study the role of social media in elections and democ-

racy4. We are going to explore the application of

3 https://engineeringstudentsdata.com

4 https://research.facebook.com/blog/2020/02/new-privacy-pro

tected-facebook-data-for-independent-research-on-social-medias-

impact-on-democracy
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differential privacy for private data release with the fol-

lowing types of data: (i) images [15, 16]; (ii) high

dimensions [17, 18]; (iii) time series [19]; (iv) personalized

recommendations [20]; (v) streams [21, 22]; (vi) graphs

[23]; (vii) statistical computations [24]; (viii) internet of

things [25]. Each of the cases mentioned above is discussed

in more detail in Sect. 6.

In the remainder of the paper, we first talk about the

risks involved in releasing data in public via releasing a

sanitized dataset or providing a query interface that fetches

anonymized data in Sect. 2. Then we give a brief intro-

duction to differential privacy in Sect. 3. We also talk

about how it is infused in machine learning, and deep

learning as a lot of high utility and heterogeneous com-

putations involve them to some extent in Sect. 4. In Sect. 5,

we discuss the release strategies widely used with differ-

ential privacy. Further, in Sect. 6, we discuss how differ-

ential privacy is used with several heterogeneous data,

including graphs, sequential and time-series, streams, and

so on. We then mention its limitations in Sect. 7 followed

by real world use cases in Sect. 8. Finally, in Sect. 9, we

conclude with a few ideas where the future of differential

privacy is headed.

2 Risks involved in releasing data

2.1 Re-identification of anonymized records

De-anonymization of anonymized records can cause direct

harm to individuals, and therefore, organizations are

reluctant to make a dataset public. If it happens, a breach of

privacy causes the organization a loss of trust and their

reputation in keeping the data safe. Consider an example

where hospitals release anonymized data to know statistics

about patients admitted daily. Now, an attacker can use

attributes like timestamps or a unique disease and match

them with other public health records to reveal an indi-

vidual’s information. The State of Washington sells

patient-level health data for $50. A research study shows

that the health data can be purchased and cross-linked to

reveal anonymized information [26]. The authors also

showed that 87 percent of all Americans could be uniquely

identified using only three bits of information: ZIP code,

birthdate, and sex.5 We did a similar research where we

took election data from Twitter and successfully cross-

linked it with publicly available electoral rolls to identify a

Twitter user’s address [27].

2.2 Queries over large sets are not protective

One might think that having a large enough dataset will

provide better privacy, the truth is, the dataset becomes

prone to differencing attacks [28]. Suppose in a survey, it is

known that entity A is a smoker in database D. Answering

the two queries in D: ‘‘How many people in the dataset are

smokers?’’ and ‘‘How many people, not named A, in the

database are smokers’’ yields whether A is a smoker or not.

The following demonstrates a differencing attack: The

summation function in SQL is not differently private. Say

we want to find the specific value of a person in that

database. What we need to do is to first find the sum of

values for all individuals in the database, then find the sum

of the database after removing this individual.

SELECT count(*) from table; SELECT count(*) from

table WHERE name!=‘‘john’’;

And finally the difference between the two sums, would

result in the value of this individual. If we have the value of

two queries like the ones above, we could easily compro-

mise the data value for ‘‘john’’.

2.3 Query auditing is problematic

There are two problems in the case of query audits to check

whether a sequence of queries and their responses would

compromise privacy. First, the algorithm’s refusal to

respond to a query can be disclosive in itself. Second,

auditing historical queries can be computationally expen-

sive and infeasible. If the query language is sufficiently

rich, an algorithmic procedure that analyzes if a pair of

queries constitutes a differencing attack may not exist.

Therefore, manual inspection will be required, which might

not be a feasible solution.

2.4 Summary statistics are not safe

Summary statistics are prone to a variety of reconstruction

attacks against a dataset where each individual has a ‘‘se-

cret bit’’ of information to be protected. Consider a utility-

based query asking, ‘‘how many people having property P

have a secret bit as 1?’’. The goal of an attacker is to

successfully guess the secret bit value of as many indi-

viduals as possible. The reconstruction can look like mul-

tiple queries adjusting a few conditions and boiling the

responses down to a few.

3 Differential privacy

‘‘Differential privacy’’ (DP) refers to an assurance made by

a data collector (can be an organization or an individual

user) to the data owners (entities whose data is being

5 https://arstechnica.com/tech-policy/2009/09/your-secrets-live-

online-in-databases-of-ruin
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collected) that their data is safe and protected. They will

not be affected by allowing their data to be used in a study

no matter what other information or data sources are

available. DP is a protection guarantee from privacy

breaches due to cross-linking of multiple data sources,

which is better than anonymization techniques. Data cannot

be fully anonymized and remain functional. The richer the

data, the more exciting and valuable it is. This has led to

notions of ‘‘anonymization’’ and ‘‘removal of personally

identifiable information’’. The hope is that the data owner

can suppress portions of the data records and the remainder

published and used for analysis. The Fundamental Law of

Information Recovery states that ‘‘overly accurate answers

to too many questions will destroy privacy in a spectacular

way’’. In ideal cases, differential privacy-based database

mechanisms can protect privacy while making confidential

data widely available for accurate data analysis without

requiring data protection plans and usage agreements.

The paradox of discovering useful information about a

population without compromising even a single bit of

information about an individual belonging to that popu-

lation is addressed using differential privacy. For exam-

ple, suppose a hospital surveys individuals to know

whether they smoke for research purposes. These indi-

viduals own health insurance, which might be affected if

information about an individual’s smoking habits reaches

the insurance provider. Differential privacy guarantees

that the hospital will be able to conduct its experiments,

in a way such that, even if the insurance provider has

access to the data involved, they will not be able to link

it to an individual with complete certainty. It ensures

that the same conclusions, for example, smoking causes

cancer, will be reached, independent of whether any

individual opts into or opts out of the data set. Specifi-

cally, it ensures that any sequence of outputs (responses

to queries) is ‘‘essentially’’ equally likely to occur,

independent of the presence or absence of any

individual.

DP introduces privacy in a dataset by introducing

randomness to individual data samples. An example of

privacy using randomized response, a technique devel-

oped in the social sciences to collect statistical infor-

mation about embarrassing or illegal behavior, captured

by having a property P. For this example, let’s assume

the property P is ‘‘smoking’’. Participants are asked to

answer whether or not they smoke by flipping a coin. If

it is a head, answer truthfully. If it is a tail, flip another

coin and respond ‘‘Yes’’ if heads and ‘‘No’’ if tails. The

same is demonstrated in Fig. 1.

Any outcome in the experiment shown in Fig. 1 has

plausible deniability. If the insurance agency tries to

cancel your insurance because they think you are a

smoker, you can argue that the probability of me

smoking is at least 1/4. The insurance agency can never

say with a 100% surety that you smoke. Therefore,

privacy comes from the plausible deniability of any

outcome. However, the noise in data comes from the

procedure through which we introduce randomness.

Randomization is necessary for any non-trivial privacy

guarantee to hold. With randomness, the guarantee will

hold regardless of how much auxiliary information is at

your disposal. In the above example, the expected

number of ‘‘Yes’’ answers is 1/4 times the number of

participants who do not smoke plus 3/4 times the num-

ber of people who smoke. If ‘‘s’’ fraction of users are

actual smokers, then the expected number of smokers is

ð1=4Þð1 � pÞ þ ð3=4Þp and turns out to be 1=4 þ p=2.

Even if I remove a sample from the experiment, the

probability of the expected outcome remains the same

due to its dependence on the randomness of the noise,

which is tossing two coins in this case. Based on this,

differential privacy is defined as:

Definition 1 (Differential Privacy, DP) A randomized

algorithm AP is (�; d)-differentially private if for any two

databases D and D0 differing in a single point and for any

subset of outputs S [29]:

Fig. 1 Plausible Deniability. An example of privacy using random-

ized response. Participants are asked to answer whether or not they

smoke by flipping a coin. If it is a head, answer truthfully. If it is a

tail, flip another coin and respond ‘‘Yes’’ if heads and ‘‘No’’ if tails
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PðAPðDÞ 2 SÞ � e� :PðAPðD0Þ 2 SÞ þ d

where APðDÞ and APðD0Þ are the outputs of the algorithm

for input databases D and D0, respectively, and P is the

randomness of the noise in the algorithm.

The typical values d are less than the inverse of any

polynomial in the size of the database. The delta values

are of the order 1/n, n being the size of the database, are

dangerous as they are prone to ‘‘preserving privacy’’ by

publishing a small number of database records. The

values of � can be adjusted to increase/decrease the

amount of privacy depending on the utility function

understudy. � is used to balance the privacy and accuracy

level. If � is small, then more privacy is preserved but

data accuracy gets worse. If � is large, privacy will be

worse but data accuracy will be preserved. Note that �

goes from 0 to infinity. The typical � values used in

practice range from 10�2 to 104. Choosing an optimal �

value depends on the ‘‘privacy budget’’, which is the

amount of permissible noise.

Apple uses differential privacy in order to maintain their

users’ privacy. They run operations of the app data they

receive from the devices and use a privacy budget with

epsilon as 4 for lookup hints, same for emoji, and an

epsilon value of 8 for quick type feature [30].

4 Differential privacy for machine and deep
learning

One of the most valuable tasks in data analysis is

machine learning or deep learning. It is a problem of

automatically finding a simple rule to predict specific

unknown characteristics of never-before-seen data accu-

rately. In the works that study differential privacy in

deep learning, [31] change the model’s training algo-

rithm to make it private by clipping and adding noise to

the gradients. The authors also propose a privacy

accounting technique and introduce a moments accoun-

tant that computes the privacy costs. Algorithm 1 shows

an infusion of differential privacy into the widely used

stochastic gradient descent algorithm in deep learning.

Further, starting from that, authors use differential

privacy with a parallel and asynchronous training pro-

cedure for a multi-party privacy-preserving neural net-

work [32]. It involves transmitting local parameters

between server and local task, which has a high risk of

information leakage through man-in-the-middle attacks.

[33] models a private convolutional deep belief network

by adding noise on its objective functions and an extra

softmax layer. In [15], authors use generative adversarial

networks with differential privacy, and leverage the

moments accountant and the private training procedure

from [31] to train a differentially private generator.

Authors add noise to the training procedure and avoid a

distributed framework to prevent information leaks.

Advantages of DPGAN’s techniques over other methods

made them a salient choice for privacy preservation in

another framework proposed to generate private dataset

[15].
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5 Strategies for data release

5.1 Interactive model

An interactive model provides an interface to the data

requesters to make queries and fetch data. Differential

privacy is applied to the data query algorithms. When the

request from the data requester is received, it brings the

raw data from the database, sanitizes it, and returns it to the

data requester. The query number is restricted by this

model’s privacy budget �. Here, more queries mean a

smaller � value, which means that more noise is added to

the query result. Therefore, an optimization is required

between the maximum number of queries under a limited

budget �. Implementing interactive models is computa-

tionally expensive and requires regular maintenance and

auditing.

Figure 2 describes the interactive model for data release.

The data requester makes a request, the data owner applies

an algorithm that takes the request as input, fetches

responses, and adds noise to the results. The results are

then returned to the requester. Such models imply a dif-

ferential privacy approach where a privacy mechanism is

applied at an individual response level.

5.2 Non-interactive model

In non-interactive mode, the individuals have to trust the

data curator, and they transfer data ownership to the col-

lector once the information is filled. The data curator then

applies differential privacy mechanisms to add noise to the

complete dataset. The new sanitized dataset is then entirely

released to the data requester. The key to this model is to

design the privacy mechanism so that the utility function

understudy and the privacy budget � are optimized.

Implementing non-interactive models is a one-time task

that requires continuous auditing.

Figure 3 describes the non-interactive model for data

release. The data owners use differential privacy based

mechanisms to offer data requester an already sanitized

dataset. The dataset is built to provide noisy results for the

requester’s queries.

6 Heterogeneous datasets

6.1 Generating private synthetic data

Generating datasets using affine transformations, augmen-

tation, or deep learning techniques like generative adver-

sarial networks (GANs) is commonplace. The problem

with such generation is that the generated dataset looks

very similar to the original samples. Imagine a scenario

where we want to generate synthetic data that is private at

the same time. No individual sample from original samples

can be reconstructed using the samples from generated

synthetic data. DP-GANs are used with a private training

procedure to generate images that are private [15, 16]. The

authors also show that the generated data has high utility on

a binary classification task.

In [16], the authors have proposed an Information

maximizing Differentially Private Generative Adversarial

Network (imdpGAN), shown in Fig. 4 taken from [16]

(Figure 1). It is a unified framework to simultaneously

preserve privacy and learn latent representations. As pri-

vacy concerns are rising up there are multiple use cases of

our framework. For example, popular face recognition

systems (FRS) claim that they store only a representation

of users’ faces and not the actual image6. However, while

operating they require a complete face image as input to

authenticate an user. Researchers have shown that the

facial recognition systems are vulnerable to template

reconstruction attack, which might cause harm to privacy

of the users [34, 35]. The proposed framework, imdpGAN,

can be used to create anonymized face images that are

closer to the real face representations by learning mean-

ingful latent codes while generating private faces to pre-

serve user’s privacy. The private face representations differ

from the ones formed with original faces and hence are

shielded from template reconstruction attack.

Fig. 2 Interactive model for data release. Provides an interface to the

data requesters to make queries and fetch data

Fig. 3 Non-interactive model for data release. The individuals have

to trust the data curator, and they transfer data ownership to the

collector once the information is filled, sanitized and passed to a data

requester

6 Apple tweeted, ‘‘Face ID only stores a mathematical representation

of your face on iPhone, not a photo.’’https://twitter.com/apple/status/

1215224753449066497
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6.2 High dimensional data

Due to increased perturbation errors and computational

complexity, the trivial data release solutions were inef-

fective. Most of them requires injecting a prohibitive

amount of noise, which renders the published data to be

nearly useless [36–39]. For example, a database has 10M

tuples, 20 attributes (dimensions), and 10 values per attri-

bute. The full tuple distribution has 1020 ¼ 10T cells, and

most of them have non-zero counts after noise injection.

Thus, the average information in each cell can be calcu-

lated as 10M
10T ¼ 10�6. If the average noise is 1=� ¼ 10 (for

� ¼ 0:1). Obviously, the signal-to-noise ratio is extremely

low. To curb this problem, the authors proposed DPPro that

used random projections for differentially private data

release for high-dimensional data [17, 18]. They prove that

DPPro can generate a synthetic dataset with a similar

euclidean score (or l2 norm) between high dimensional

vectors while achieving (�, d)-differential privacy. The

utility guarantees depend on the projection dimensions and

variance of the added noise. DPPro is proven to be the

state-of-the-art model for high-dimensional datasets.

Figure 5 shows the architecture of DPPro. As we can

see, the sensitive data is identified and converted into high-

dimensional vectors. A low dimensional distribution is

created using random projections and optimizing the l2-

norm followed by the addition of noise for privacy.

6.3 Time series and sequential data

With time-series data, there is always a correlation between

timestamps, and therefore, it is hard to preserve the privacy

of such datasets. Even when noise is added trivially, the

perturbation errors become large enough to compromise

the dataset’s utility. The authors propose estimation

algorithms designed to utilize domain knowledge to miti-

gate the effect of perturbation error [19].

Figure 6 shows a Laplace perturbation with a known

mean, and variance is used to transform query responses.

Since the noise distribution is known, the query responses

Fig. 4 imdpGAN Architecture: addition of the private training procedure, the mutual information regularization and the Wasserstein distance

Fig. 5 DPPro: a framework for high dimensional data release.

Sensitive data is identified and converted into high-dimensional

vectors. A low dimensional distribution is created using random

projections and optimizing the l2-norm followed by the addition of

noise for privacy

CSIT (March 2022) 10(1):25–36 31

123



and the noise are optimized so that the generated results do

not lose their utility.

6.4 Personalized recommendations

In [20], authors propose a way to make personal recom-

mendations in a private manner. Unlike federated learning

[40], the users’ data is first obfuscated and then collected

from their devices. The obfuscation serves two purposes: i)

gives users more control over their data, and ii) service

providers less responsibility for privacy protections. The

authors use differential privacy for this obfuscation as it is

lightweight and have strong provable privacy guarantees.

Figure 7 shows the architecture for privacy-preserving

personalized recommendations. The privacy mechanism

(obfuscation of data) is introduced while the collection

step. The rest recommendation model remains the same.

6.5 Stream analytics

Many online services collect users’ data continuously for

real-time analytics. Most often, the data arrives as streams

requiring distributed architectures due to their high vol-

umes. Current architectures are centrally controlled and

therefore work on the trust between users’ and the analysts.

If sensitive information is removed or noise is added

arbitrarily, utility gets effected. The authors proposed Pri-

vApprox for high utility data analytics that provides pri-

vacy, utility and low latency for stream data [21, 22].

As shown in Fig. 8, the queries are samples and the

responses are encrypted and decrypted using a XOR-based

encryption technique. The encrypted response are pub-

lished on multiple proxies, which are then picked by ana-

lysts acting as aggregators to output the final query result.

6.6 Graph mining

Graph embedding maps graphs with nodes and vertices into

low dimensional vectors, known as embedding matrix -

while preserving the graph structure to reduce the high

computation and space complexity. Personal features

mapped onto the graph’s embedding matrix can identify an

individual, which puts them at risk of privacy leakage. The

authors proposed a private perturbed gradient descent

(PPGD) for embedding matrix sharing [23].

Figure 9 shows the framework with PPGD as a step to

convert data from high dimensional node similarity matrix

to a low dimensional graph embedding matrix. Here, a

Lipschitz condition based private mechanism is used with

matrix factorization for the transformation.

Fig. 6 Framework for time series data. A Laplace perturbation with a

known mean, and variance is used to transform query responses

Fig. 7 Privacy-Preserving Personalized Recommendation. A pertur-

bation is added on collected users’ private data and processed into a

recommendation pipeline

Fig. 8 PrivApprox framework taken from [21](Figure 3). The

encrypted responses using XOR based encryption are published on

multiple proxies, which are then picked by analysts acting as

aggregators to output the final query result

Fig. 9 Private embedding matrix sharing framework to convert data

from high dimensional node similarity matrix to a low dimensional

private graph embedding matrix [23](Figure 2)
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6.7 Statistical computations

While working with sensitive data, we want statistical

inferences to take into account the privacy of individual

samples and eliminate possibilities of input reconstruction.

However, enforcing strict privacy guarantees distort data,

and its analysis, thus limiting their analytical ability. To

address this issue, the authors propose ‘‘integral privacy’’, a

re-sampling based privacy model. It can be used to com-

pute descriptive analysis without compromising its utility

[24].

The objective here is to choose statistical or machine

learning model that can be formulated by multiple func-

tions. They will be different combinations of input samples

with zero shared records among them. This is will make it

hard for the adversary to link an output with an input even

if they have access to crucial information. Integral privacy

achieves this through re-sampling and discretization of

outputs. Suppose the statistical query is mean, integral

privacy will select the most recurrent result, which can be

generated by unique input samples with no intersection

among them.

6.8 Internet of things

More often than not, internet of things data is high

dimensional, and most differential privacy based mecha-

nisms have poor utility are not effective. They are com-

putationally expensive because the added noise is

proportional to the size of the data domain, and therefore,

goes exponential to the dimensionality. To solve this

problem, the authors proposed a compressed sensing

mechanism (CSM) that uses the compresses sensing

framework to provie accurate results to linear queries. [25]

As shown in Fig. 10 a sparse representation is formed

from the data followed by compression to reduce the

dimensionality of original dataset. The noise is injected on

the compressed representation, and then the original rep-

resentation is reconstructed for query outputs/synthetic

dataset. The norm between original and reconstructed data

is calcuclated and used as optimization metric.

7 Limitations of differential privacy

7.1 Sharing and collaboration

Differential privacy algorithms work because they add

noise, which is a nice way of saying ‘‘error’’. For some

algorithms like computing the mean, the errors can cancel

each other out and still lead to accurate results. More

complex algorithms are not so lucky. Also, when the data

sets are small, the effects of the fuzzing can be much more

dramatic leading to the potential for big distortions.

7.2 Controlling trade-offs between privacy

and accuracy

Epsilon is still just a number that is to be chosen based on

experimentation. There is no easy guide and the best

practices haven’t evolved yet for choosing the optimal �.

Setting the value can be complex, especially when the data

sets are less predictable. Algorithms try to suppress the

sensitivity of the data defined by how close the data values

may be to each other. The ideal noise will blur the dis-

tinction among people making it impossible for an attacker

to identify one. Sometimes the data cooperates and some-

times it can be hard to find a single good value of epsilon.

7.3 Machine/Deep learning

Noise can have unknown effects. Machine learning algo-

rithms can be black box making the decisions without any

explanation. The mystery is compounded when the algo-

rithms are fed fuzzed data because it is often impossible to

know just how the changes in the data affected the out-

come. Some simple algorithms like finding the mean are

easy to control and understand, but not complex and large

ML/DL models.

Fig. 10 Compressed Sensing Mechanism (CSM) Framework taken

from [25] (Figure 1). A sparse representation is formed from the data

followed by compression to reduce the dimensionality of original

dataset
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8 Use cases

8.1 Statistical computations

Google has a differential privacy project7 to generate �- and

(�,d)-differentially private statistics over datasets. Open-

mined has released a python based library, known as

Pysyft8, used for federated learning and training models

using private procedures. A similar organization, OpenDP

has released a tool to generate synthetic and private data-

set9. Aforementioned are the best tools available to use

differential privacy for statistical computations.

Example. There are 200 animals in a zoo. Each animal

eats carrots everyday, and the number of carrots eaten

along with the animal name is used to create a dataset. At

the end of each day, the zoo owner asks aggregate question

about the number of carrots everyone ate so that they can

order carrots for the next day. The animals are scared to

share the information, as it can be used against them. The

farmer can plan to get rid of the animals who are eating

maximum number of carrots to reduce operational costs.

To protect their interests, the animals used differential

privacy to aggregate their data. The DP implementation

protects the animals from getting identified, while accu-

rately giving out the number of carrots needed for the next

day for efficient operation of the zoo. The example is

borrowed from one of the Google’s differential privacy

project examples10. Please follow the footnote link to

check out the implementation.

8.2 Machine/Deep learning

Machine/Deep learning is widely used across the globe for

different tasks. Any machine learning problem involves

collecting a large dataset, followed by training models that

can learn patterns within that data. However, these models

tend to leak information about the original data in some

cases [41], and therefore, training machine learning models

is becoming commonplace in sensitive applications. Ten-

sorflow11 and Pytorch12 are the most widely used machine

learning frameworks and both of the them have have built-

in tools to impose privacy while training.

Example. Consider data from healthcare with images of

patients having a benign and a malignant lung cancer. To

train a model for a classification task, we will need access

to these images. But, the images under healthcare acts are

considered sensitive and cannot be used unless made pri-

vate. In such cases, we can use machine learning models to

generate private images and use them for the classification

task. As an example implementation, [16] and [15] used

differentially private training procedures to generate syn-

thetic datasets. Similar models can be created using the

aforementioned tools. An implementation of such kind is

discussed here13. Please follow the footnote link to check

out the implementation.

9 Conclusion and future works

According to the dictionary, the meaning of the term

‘‘statistics’’ is given as dealing with data that tells the

condition of a group or a community. Differential privacy,

as we defined it, states: if the presence or absence of an

individual sample in a study does not affect the outcome of

the study, we can say the outcome is about the group or the

community. But if in case, the outcome of the study

changes, we can say that the outcome was about the few

individuals whose data is included in the study. Therefore,

differential privacy has two properties: (i) it is stable to

small perturbations in the data, and (ii) it is statistical in

that the analysis done tells us about the whole community.

The existence of the first property directly leads to the

use of differential privacy into securing machine/deep

learning models. Differential privacy protects the models

from adversarial attacks that focus on adding small per-

turbations in the training data [42, 43]. Differential privacy

ensures generalization in adaptive data analysis. Adaptive

analysis means that the questions asked and hypotheses

tested depend on the outcomes of earlier questions. Gen-

eralization refers to bringing the outcome of a test on a

sample closer the ground truth of the distribution as much

as possible. Also, generalization requires the outcome to

remain the same no matter how the data is sampled.

Answering with differentially private mechanisms ensures

privacy and generalizability with high probabilities. Hence,

differential private mechanisms of adding controlled noise

have promising statistics results and applications.

While using differential privacy and its various methods

for data release, the data is stored in one entity. We need to

find the answer: if the data is stored at multiple entities,

how can it be shared while guaranteeing users’ privacy

between these entities. Another is the data lineage problem

with third-party sharing. When different attributes are used

to make the data private and the confidential data is shared

with multiple parties, how do we ensure that the cross-

7 https://opensource.google/projects/differential-privacy
8 https://github.com/OpenMined/PySyft
9 http://psiprivacy.org/static/about/index.html
10 https://github.com/google/differential-privacy/tree/main/exam

ples/cc
11 https://github.com/tensorflow/privacy
12 https://opacus.ai

13 https://blog.openmined.org/differentially-private-deep-learning-

using-opacus-in-20-lines-of-code/
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linking will not happen if both of the datasets reach an

adversary? Most of the problems stated above can be

resolved if we can infuse differential privacy into a

blockchain-based distributed environment instead of a

central entity controlling everything [44]. However, we

need more work before a successful solution is reached.

Despite its vast applications, differential privacy is not

yet applied to multi-modal data. All of the works that we

discussed focus on a single mode dataset. Due to the risk of

information leakage caused by data correlations, the

methods discussed earlier in the paper cannot be used

directly with multi-modal data. In an early attempt at multi-

modal privacy protection, [45] used an anonymity-based

privacy model to protect an integration of transaction and

trajectory data. More research is needed in the multi-modal

direction to understand its advantages and disadvantages

while using differential privacy mechanisms.
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