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Abstract
This paper studies the US and global economic fundamentals that exacerbate emerging stock
markets volatility and can be considered as systemic risk factors increasing financial stability
vulnerabilities. We apply the bivariate HEAVY system of daily and intra-daily volatility
equations enriched with powers, leverage, and macro-effects that improve its forecasting
accuracy significantly. Our macro-augmented asymmetric power HEAVY model estimates
the inflammatory effect of US uncertainty and infectious disease news impact on equities
alongside global credit and commodity factors on emerging stock index realized volatility.
Our study further demonstrates the power of the economic uncertainty channel, showing
that higher US policy uncertainty levels increase the leverage effects and the impact from
the common macro-financial proxies on emerging markets’ financial volatility. Lastly, we
provide evidence on the crucial role of both financial and health crisis events (the 2008
global financial turmoil and the recent Covid-19 pandemic) in raising markets’ turbulence
and amplifying the volatility macro-drivers impact, as well.
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1 Introduction

A common stylized fact about emerging economies is the high volatility of their stock mar-
kets (De Santis 1997; Aggarwal et al. 1999; Xu 1999; Cano-Berlanga and Giménez-Gómez
2018). The liberalization of the emerging world’s financial markets, which attracted a sig-
nificant amount of capital flows by foreign institutional investors, has been the first step of
an integration process with significant economies’ interdependence and asset markets’ syn-
chronization. Given that emerging economies are characterized by critical vulnerabilities to
external shocks, they exhibit higher equity market fluctuations than the developed markets
and it is worth investigating how US and global common economic forces affect their intra-
daily volatility. In general, modeling the volatility of financial returns has crucial implications
for asset allocation, riskmanagement practices, and financial stability oversight. Robustmod-
eling and reliable forecasting of the volatility trajectory of financial instruments has been the
main task and objective of financial economics applications for business operations, given
that volatility constitutes one of the fundamental input variables in estimations and decision
processes of any corporation on investing and funding choices. Financial volatility is also
closely inspected by policymakers since it is perceived to constitute an early warning cri-
sis signal, entailing critical destabilizing threats for the financial system (see, for example,
Kürüm et al. 2018).

This paper applies an extension of the bivariate HEAVY1 system, firstly, with asymmetries
and power transformations, through the APARCH structure of Ding et al. (1993). Motivated
by the widely-recognized merits of the this framework, which considerably improves Boller-
slev’s (1986) GARCH process by adding leverage and power effects (see, for example,
Karanasos and Kim 2006), we similarly extend the HEAVY system with these two main
features to demonstrate its superiority over the benchmark specification introduced by Shep-
hard and Sheppard (2010). The optimal estimation of the power term and the asymmetric
response to positive and negative shocks embedded in the time-varying volatility pattern
have already proved to be one of the most pivotal innovations in the GARCH family of
models (see, for example, Brooks et al. 2000). One of our first findings is that each of the
two powered conditional variances is significantly affected by the first lags of both power
transformed variables, that is, squared negative returns, and realized variance. Secondly, we
extend the asymmetric power specification with macro-effects from US economic policy and
financial uncertainty, bond and commodity market global benchmarks, and the infectious
disease news impact on US equity market volatility, providing a competing framework of
volatility modeling to the well-established practice of financial instruments trading and risk
measuring based on economic fundamentals. We apply the macro-augmented model on five
emerging stock market indices from two different regions: the Americas and Asia-Pacific.
The realized measure receives significant positive impact from all macro-variables included
with further improvement of the model’s forecasting performance. Moreover, we examine
not only the direct destabilizing effect of the policy uncertainty volatility spillover on stock
market realized volatility, by using it as a conditional variance regressor, but also the policy
uncertainty level impact on each parameter of the system (indirect impact), showing that
higher US policy uncertainty inflates the leverage and the macro-environment’s effects from
financial uncertainty, credit conditions, commodity markets, and infectious diseases on the
realized measure. Finally, we explore the crisis influence on emerging stock markets and find
that both global financial (the 2008 financial turmoil) and health (the Covid-19 outbreak)
crisis events magnify the markets turbulence and the volatility macro-drivers effect.

1 High-frequency-based-volatility (see, Shephard and Sheppard 2010).
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At the beginning of the 2008 global financial crisis, when volatilities increased sharply
and persistently with crucial systemic risk externalities, we witnessed a reigniting interest
of regulators and academics in meaningful volatility estimates, while, at the same time,
practitioners remained alert to improving the relevant volatility frameworks on a day-to-day
basis. Financial economics scholars focused on volatility as a potent catalyst of systemic risk
build-up, which policymakers tried to limit. We demarcate this study from the extant finance
bibliography by applying the extended HEAVY model with asymmetries, power transfor-
mations, and macro-effects, a well-defined framework that adequately fits the volatility
process and considerably outperforms the traditional econometric approaches for modeling
returns [GARCH(1, 1) specifications] and realized volatility (long memory specifications:
Autoregressive Fractionally Integrated Moving Average-ARFIMA(1, d , 1) and Heteroge-
neous Autoregressive Realized Variance-HAR-RV). Our framework contributes to two main
strands of empirical macro-finance literature: the research on volatility modeling and the
macro-financial linkages in emerging economies, with the investigation of the crucial US
uncertainty spillover effects and crisis events on emerging financial market stability. Most
importantly, we intend to complement existing evidence by bridging the research on the
macro-relevance of financial volatility with the high-frequency financial data domain. Filling
a notable gap of the academic literature related to the high-frequencymacro-financial linkages
in emerging economies our novel findings are summarized as follows: (i) higher volatility
of US Economic Policy Uncertainty (EPU), elevated US financial uncertainty, tighter credit
conditions, increased commodity prices, and stronger infectious disease news impact on US
equities, all five economic forces intensify emerging stock markets volatilities, (ii) the eco-
nomic uncertainty channel (proxied by the US EPU level) further exacerbates asymmetries
andmacro-ramifications on emerging equities, and (iii) both global crisis events, the subprime
crisis and the current pandemic-led crash, boost emerging stock market volatility through the
time-varying pattern of the HEAVY’s parameters with the macro-effects included, as well.

In this vein, our analysis focuses on the macro-financial linkages running from the
macroeconomy to the financial sector by incorporating important economic fundamentals
in emerging equity volatility modeling for a long sample period covering the recent health
crisis-driven market crash. We aim at contributing to the existing empirical evidence on the
macro-factors driving financial volatility by using daily macro-variables (instead of monthly
or quarterly proxies included in the existing literature) and on the effects of the global finan-
cial turmoil and the recent pandemic on volatility dynamics. The higher the frequency of
economic news incorporated in forecasting the volatility pattern, the more accurately the
predicted values will be. Daily volatility forecasts, updatedwith daily shocks from the contin-
uously evolving macro-environment, offer the necessary tools for market participants closely
watching day-to-day volatility dynamics, trading and investing in the markets, or supervising
and regulating the financial system. On the contrary, forecasts based on macro-shocks with a
one- or three-month lag cannot reflect the up-to-date influencewhich economic fundamentals
exert on financial markets. The use of the high-frequency macro domain in volatility mod-
eling becomes even more crucial in crisis periods where the macro-conditions change very
rapidly. Therefore, we explore the response of emerging equity markets to the unprecedented
pandemic shock we experience nowadays apart from the global financial turmoil of the pre-
vious decade. The Covid-19 outbreak can be characterized as a generational phenomenon
leading to a unique crisis. We are seeing a global socio-economic meltdown that quickly
unfolds following the explosive Covid-related new deaths or infections and the unprece-
dented ways policymakers have responded. These are uncharted waters, and thus it is crucial
that our macro-informed financial volatility modeling approach should rely on the highest
possible frequency of economic news affecting the markets and not on data releases that
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refer to the previous month or quarter. The bivariate system of the two volatility equations
is ready-to-use not only on stock market returns but also on further asset classes or financial
instruments (e.g. exchange rate, cryptocurrency, commodity, real estate, and bond returns,
associating them with alternative macro-proxies besides uncertainty) and multiple financial
economics applications of business operations, such as bonds investing, foreign exchange
trading and commodities hedging, core daily functions in the treasuries of most financial and
non-financial corporations.

Overall, our volatility framework improves theHEAVYmodel and beats the standard vari-
ance specifications (GARCH, ARFIMA, and HARmodels), with significant implications for
market practitioners and policymakers on forecasting the financial returns’ second moment.
Volatility modeling and forecasting are essential for asset valuation and risk management
strategies. A reliable volatility forecast, exploiting in full the high-frequency domain and the
macro-financial linkages, is the input variable of paramount importance for the processes of
derivatives pricing, effective cross-hedging, Value-at-Risk measurement, investment alloca-
tion, portfolio optimization with different asset classes and financial instruments. Moreover,
the robust volatility modeling approach we apply provides a useful tool not only for market
players but also for policymakers. Policymaking includes continuous oversight duties and
prudential regulation practices. Thus, it is imperative for the authorities to account for the
volatility of financial markets across every aspect of the financial system’s policy responses,
both post-crisis through stabilization policy reactions and pre-crisis through proactive assess-
ment of financial risks. Regulators in emerging economies should consider, among the threats
of their financial markets, the global destabilizing factors, beyond the local characteristics. In
particular, the significant repercussions of uncertainty about US economic policies constitute
the focus of attention in political debates, nowadays, with the widespread anxiety of world
market players immediately after Trump’s victory and inauguration. The trade war uncer-
tainty from the very early days of Trumponomics (e.g. steel and aluminum unconventional
import tariffs) was followed by the overall fear of economic agents about future government
initiatives. More intriguingly, our study is relevant to a highly topical issue nowadays, the
Coronavirus pandemic, and contributes to the rapidly growing literature on the pandemic’s
socio-economic effects and policy responses.

The remainder of the paper is structured as follows. Section 2 reviews the relevant lit-
erature. In Sect. 3, we detail the HEAVY formulation enriched with asymmetries, power
transformations, and macro-effects. Section 4 describes the data and Sect. 5 presents the
results for the benchmark, the macro-augmented asymmetric power models, and the crisis
effect on volatilitymodeling parameters. In Sect. 6, we compute themultiple-step-ahead fore-
casts to measure the out-of-sample performance of the various specifications. The following
Section focuses on the uncertainty effects across the parameters of the HEAVY specification
and Sect. 8 discusses the policy implications of our findings. Finally, Sect. 9 concludes the
analysis.

2 Literature review

There is a large body of literature focusing on modeling and forecasting realized volatil-
ity, applying non-parametric estimation methods to high-frequency data. Following the first
studies that formalized the daily realized measures on intra-daily returns (e.g. the realized
variance established by Andersen et al. 2001, and the realized kernel by Barndorff-Nielsen
et al. 2008), Andersen et al. (2001) and Corsi (2009) proposed long memory models for the
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conditional mean of the realized variance, that is the ARFIMA and HAR-RV specifications,
respectively. In order to improve the forecasting accuracy of the various volatility models,
econometricians have developed specifications combining daily with intra-daily measures.
Engle (2002) estimated the daily GARCH-X specification adding the realized measure as an
exogenous variable in the GARCH(1, 1) equation to capture the incremental information of
the higher-frequency domain. Accordingly, Shephard and Sheppard (2010) introduced the
HEAVY framework and Hansen et al. (2012) followed with the Realized GARCH (see also
Barunik et al. 2016). Both HEAVY and Realized GARCH jointly estimate daily returns’ con-
ditional variance and realized measure’s conditional mean. The HEAVY system of equations
is proved to adopt to information arrival more rapidly than the classic daily GARCH process.
A key advantage is the system’s robustness to certain forms of structural breaks, especially
during crisis periods, since the mean reversion and short-run momentum effects result in
higher quality performance in volatility level shifts and more reliable forecasts (Shephard
and Sheppard 2010).

Thefinancial econometrics literature on realized volatility dynamicsmostly ignores impor-
tant macro-factors that may affect the volatility pattern in the high-frequency domain. The
empirical evidence on the economic drivers of equity volatility mostly employs lower- than
daily-frequency macro-variables (monthly or quarterly). The first studies that explained
monthly stock volatility with the business cycle dynamics were Schwert (1989) and Hamil-
ton and Lin (1996). Engle and Rangel (2008) and Engle et al. (2013) use Spline- and
MIDAS (Mixed-Data Sampling)—GARCH to link daily volatility with lower-frequency
macro-proxies through themixed-frequencies approach. Corradi et al. (2013) explore the eco-
nomic impact on monthly returns, volatilities, and volatility risk-premia. Finally, Conrad and
Loch (2015) test quarterlymacro-regressors of daily conditional variance, andMeligkotsidou
et al. (2019) include monthly macro-financial factors in monthly realized volatility quantile
forecasting. The common finding of this area of research is the counter-cyclical behavior of
financial volatility vis-a-vis economic activity indices. The economic intuition underpinning
the link between equities and the macro-environment can be described as follows: equities
volatility is tightly related to the uncertainty over the future expected cash flows of the firms
issuing the stocks traded. These cash flows constitute the direct result of the firms’ perfor-
mance which is, in turn, strongly affected by the business cycle dynamics. Besides the cash
flow volume, the economic stance also determines the valuation of the cash flows through
the discount rates used to define their present value (for a more detailed discussion on the
economic theory supporting the stock volatility-macro conditions countercyclical nexus see
Paye 2012; Christiansen et al. 2012, and Mittnik et al. 2015). Therefore, volatility modeling
practice should rely onmacroeconomic condition metrics to demonstrate the macro-financial
effects on stock market volatility driven either by the cash flow or the discount rates channel.

Moreover, the unprecedented economic impact of the current pandemic and the high speed
with which the crisis is evolving introduce uncertainty into models that assess the disastrous
effects of the virus spread (Baker et al. 2020c). Caggiano et al. (2020) have predicted a huge
decrease in the world output due to the Covid-induced uncertainty shock. Baker et al. (2020b)
are the first to quantify this Covid-induced economic uncertainty combining three sources:
stock market volatility, newspaper-based and business expectations survey-based uncertain-
ties. Baker et al. (2020a) have investigated the disease’s detrimental impact on stock markets
and demonstrate that the Covid-19 stock market effects have been by far more powerful than
those of previous diseases (e.g. Spanish flu) due to the current pandemic’s severity, the more
rapid diffusion of pandemic news, and the tighter macro-financial cross-border intercon-
nectedness in the current globalization era. Turning to the pandemic shock on stock market
volatility, Wang et al. (2020) have applied the HAR-RV (Heterogeneous Autoregressive-
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Realized Variance) model to predict daily stock market volatility during the Covid outbreak
period. They extended the HAR equation with two alternative daily US uncertainty proxies:
(i) the VIX index, which is the implied volatility metric of S&P500 used as a financial uncer-
tainty source, and (ii) the US Economic Policy Uncertainty. Their forecasting exercise for
nineteen equity indices indicates which uncertainty proxy produces more accurate forecasts
for each market during the current crisis. Wang et al. (2020) investigated the US uncer-
tainty spillovers on financial volatility across the different markets globally while the present
paper focuses on the US uncertainty spillover effect alongside other US and global macro-
factors on emerging stock market volatilities applying the sophisticated HEAVY framework
for both returns and realized dispersion measures. Our macro-augmented specification with
daily macro-proxies driving the volatility pattern during the last two decades with the 2008
turmoil and the pandemic period included, also advances the volatility modeling research
which does not consider significant macro-determinants of the volatility process in the high-
frequency domain.

In the present paper, we focus on the crucial role of economic uncertainty, besides other
macro-variables, in volatility predictions applying the news-based Economic Policy Uncer-
tainty index, the only macroeconomic uncertainty measure with a daily frequency provided
by Baker et al. (2016) for the United States and the United Kingdom. The widely-recognized
main advantage of the EPU index is its inclusivity since it incorporates both economic and
policy-related factors giving rise to uncertainty. We investigate the effect of daily US EPU
on emerging equity volatility modeling and its impact during the financial and health crises.
Exploring the effects of uncertainty on financial volatility is very topical in the aftermath of
the global financial crisis of 2007/08, since there has been renewed interest in this ‘amor-
phous’ concept (Bloom 2014). Based on the Knightian uncertainty definition (Knight 1921)
and the seminal papers on uncertainty by Bernanke (1983) and Dixit and Pindyck (1994),
researchers have focused onmeasuring this latent variable affecting the decision-making pro-
cess by economic agents (Bekaert et al. 2013; Jurado et al. 2015; Mumtaz and Theodoridis
2018; Carriero et al. 2018; Jo and Sekkel 2019). Knight observed that households’ saving
and consumption, corporations’ recruitments, investing and funding, traders’ portfolio selec-
tion, and regulators’ policy choices are deeply influenced by their ‘inability to forecast the
likelihood of events happening’ (Bloom 2014). There is ample evidence that uncertainty
disrupts the real economy (Colombo 2013; Jones and Olson 2013; Caggiano et al. 2017;
Connolly et al. 2018; Tarassow 2019) through its effects on financial markets, namely by
restraining economic agents from doing business due to their loss of confidence. At times
of high uncertainty or lower confidence, individuals forsake consumption and turn to more
savings while corporations restrict new investment projects or new recruitments (Gulen and
Ion 2015). Further, asset market participants become more cautious, asset prices fall (either
through the discount rate or the cash flow channel), volatilities and correlations soar (Pastor
and Veronesi 2012, 2013; Li et al. 2015; Kelly et al. 2016; Bernal et al. 2016; Andreasson
et al. 2016). A higher risk premium increases the cost of capital and generally the corporate
funding costs (Alessandri and Mumtaz 2019) and erodes confidence in the financial system
(see also Wisniewski and Lambe 2015; Bordo et al. 2016; Boumparis et al. 2017; Caliendo
et al. 2018).

Despite the substantial advances in uncertainty research, the literature on the realized
volatility dynamics of high-frequency financial variables associated with uncertainty is still
in its infancy. Reviewing the few commendable attempts to explain the behavior of stock
market volatility with EPU, we can trace back this link to Pastor and Veronesi (2013), who
were the first to connect stock markets with monthly EPU using simple OLS regressions
of monthly stock returns, volatilities, and correlations (unconditional) on the EPU index,
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whose parameter sign was consistently positive for correlations and volatilities and negative
for returns. Antonakakis et al. (2013) further compute the dynamic conditional correlations
between EPU, S&P 500 Stock index returns, and implied volatility (VIX) pairwise on a
monthly frequency. The EPU–VIX correlation is positive and the EPU-returns negative, as
expected, since elevated uncertainty depresses stock market performance and goes alongside
higher stockmarket volatility.More recently, Fang et al. (2018) have related daily gold futures
volatilitywith themonthlyGlobal EPU index through theGARCH-MIDAS framework. They
provide evidence to support the strong positive effect of uncertainty on gold volatility and its
power in forecasting the monthly realized volatility of gold futures. Finally, Cho et al. (2018)
highlight the fact that high exchange rate volatility is linked with elevated EPU leading to
carry trade losses.

3 The econometric framework

Building on the benchmark HEAVY model of Shephard and Sheppard (2010) who com-
bine two volatility estimators in a bivariate system, we apply the HEAVY extension which
accounts for downside risk (asymmetries), power terms, and economic effects, and estimate
an augmented version including these three additional features to improve volatilitymodeling
and forecasting.

3.1 The benchmark specification

The HEAVY model uses two variables: the close-to-close stock returns (rt ) and the realized
measure of variation based on high-frequency data, RMt . We first calculate the signed square
rooted (SSR) realized measure as follows: ˜RMt = sign(rt )

√
RMt , where sign(rt ) = 1, if

rt ≥ 0 and sign(rt ) = −1, if rt < 0.
Weassume that the returns and theSSR realizedmeasure are characterized by the following

relations:
rt = ertσr t , ˜RMt = eRtσRt ,

where the stochastic term eit is independent and identically distributed (i.i.d), i = r , R; σi t
is positive with probability one for all t and it is a measurable function of F (XF)

t−1 , that is

the filtration generated by all available information through time t − 1. We will use F (HF)
t−1

(X = H ) for the high-frequency past data, i.e., for the case of the realized measure, or
F (LoF)
t−1 (X = Lo) for the low-frequency past data, i.e., for the case of the close-to-close

returns. Hereafter, for notational convenience, we will drop the superscript XF .
In the HEAVY/GARCH model eit has zero mean and unit variance. Therefore, the two

series have zero conditional means and their conditional variances are given by

E(r2t |Ft−1 ) = σ 2
r t and E(˜RMt

2 |Ft−1 ) = E(RMt |Ft−1 ) = σ 2
Rt ,

where E(·) denotes the expectation operator. The returns equation is called HEAVY-r and,
similarly, the realized measure equation is denoted as HEAVY-R.
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3.2 Themacro-augmented asymmetric power model

The asymmetric power (AP) specification for the HEAVY(1, 1) model consists of the fol-
lowing equations (in what follows, for notational simplicity, we drop the order of the model
if it is (1, 1)):

(1 − βi L)(σ 2
i t )

δi
2 = ωi + (αir + γir st−1)L(r2t )

δr
2 + (αi R + γi Rst−1)L(RMt )

δR
2 , (1)

where L is the lag operator, δi ∈ R>0 (the set of the positive real numbers), for i = r , R, are
the power parameters and st = 0.5[1 − sign(rt )], that is, st = 1 if rt < 0 and 0 otherwise;
γi i , γi j (i �= j) are the own and cross leverage parameters, respectively2; positive γi i , γi j
means a larger contribution of negative ‘shocks’ in the volatility process. In this specification
the powered conditional variance, (σ 2

i t )
δi /2, is a linear function of the lagged values of the

powered transformed squared returns and realized measure.
Wewill distinguish between three different asymmetric cases: the double one (DA:γi j �= 0

for all i and j) and two more, own asymmetry (OA: γi j = 0 for i �= j only) and cross
asymmetry (CA: γi i = 0).

The αi R and γi R are called the (four) Heavy parameters (own when i = R and cross when
i �= R). These parameters capture the impact of the realized measure on the two conditional
variances. Similarly, the αir and γir (four in total) are called the Arch parameters (own when
i = r and cross for i �= r ). They capture the influence of the squared returns on the two
conditional variances.

The asymmetric power model is equivalent to a bivariate AP-GARCH process for the
returns and the SSR realized measure (see, for example, Conrad and Karanasos 2010). If
all four Arch parameters are zero, then we have the AP version of the benchmark HEAVY
specification, where the only unconditional regressor is the first lag of the powered RMt .

Furthermore, we shouldmention that all the parameters in this bivariate system should take
non-negative values (see, for example, Conrad and Karanasos 2010). We extend the realized
measure equation with the non-negative macro-proxies: the volatility of US Economic Policy
Uncertainty, EPUvolt , the US financial uncertainty (the S&P 500 implied volatility index),
VIXt , the Bond market (the Merrill Lynch MOVE treasury bonds implied volatility index or
the Moody’s BAA over AAA corporate bonds spreads), BOt , the Commodity benchmarks
(the S&PGSCI all commodities index or the S&PGSCI crude oil index prices),COt , and the
infectious disease news effect on stock markets, IDt . The macro-augmented (m) AP-HEAVY
system is characterized by the following equation for the realized measure:

(1 − βRL)(σ 2
Rt )

δR
2 = ωR + (αRr + γRr st−1)L(r2t )

δr
2 + (αRR + γRRst−1)L(RMt )

δR
2

+ φREPUvolt−1 + λRVIXt−1 + ζRBOt−1 + ϑRCOt−1 + ηRIDt−1.

(2)

Equation (2) incorporates four Macro-parameters, φR , λR , ζR , ϑR , and ηR , which capture
the macro-effects on the power transformed realized measure. The returns equation remains
the same as in the non-augmented specification, without the direct effect from the macro-
variables (φr , λr , ζr , ϑr , ηr = 0).

To sum up, the benchmark model is characterized by two conditional variance equations,
the GARCH(1, 0)-X formulation for returns and the GARCH(1, 1) formulation for the SSR
realized measure:

2 This type of asymmetry was introduced by Glosten et al. (1993).
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HEAVY-r :(1 − βr L)σ 2
r t = ωr + αr R L(RMt ),

HEAVY-R:(1 − βRL)σ 2
Rt = ωR + αRRL(RMt )

Equation (2) gives the general formulation of our macro-augmented extension for RMt ,
which adds asymmetries and power transformations to the benchmark specification (see also
the Supplementary Appendix for our theoretical considerations). We use the existing Gaus-
sian quasi-maximum likelihood estimators (QMLE) and multistep-ahead predictors already
applied (Ding et al. 1993) in the APARCH framework (see, for example, He and Teräsvirta
1999; Laurent 2004; Karanasos and Kim 2006). We will first estimate both conditional vari-
ance equations in the general form with all Heavy, Arch, and their Asymmetry parameters
given by Eq. (2) and in case a parameter is insignificant, we will exclude it and this will result
in a reduced form that is statistically preferred for each volatility process. For example, in
the returns and realized measure conditional variances estimation, the own and cross Arch
parameters (αrr and αRr respectively) prove to be insignificant and, therefore, are excluded
(see Sect. 5.2, Table 3, Panels A and B) since this is the way to reach the returns and realized
measure formulations that are statistically preferred.

4 Data description

The HEAVY framework is estimated for five emerging stock index returns and realized
volatilities. According to the analysis in Shephard and Sheppard (2010), this formulation
considerably improves the volatility modeling by allowing momentum and mean reversion
effects and adjusting quickly to the structural breaks in volatility. We extend their benchmark
specification, by adding the features of power transformed conditional variances, leverage,
and macro-effects in the volatility process.

4.1 Stock index data

We use daily data for two American and three Asian stock market indices extracted from
the Oxford-Man Institute’s (OMI) realized library version 0.3 (Heber et al. 2009): Brazil’s
Bovespa index (BRAZIL) andMexico’s IPC index (MEXICO) from the Americas, Shanghai
Composite index (CHINA), India’s Nifty 50 index (INDIA), and South Korea’s KOSPI index
(KOREA) from Asia. We choose the particular emerging markets due to data (stock index
and sample size) availability in the OMI realized library. Our sample covers the period from
03/01/2000 to 30/11/2020 and three out of five indices belong to theBRICSgroup of emerging
markets (Brazil, India, and China). Regarding our research interest in the two Americas’
emerging markets, Brazil plays a dominant economic role internationally and Mexico is the
second largest economy in Latin America. For the three Asian countries included, China and
Korea are considered among the fastest growing economies while Indian stock markets have
progressively undergone a fundamental financial liberalization process since early 1990s.

TheOMI’s realized library includes daily stockmarket returns and several realized volatil-
ity measures calculated on high-frequency data from the Reuters DataScope Tick History
database. The data are first cleaned and then used in the realized measures calculations (see
also the library’s documentation in Heber et al. 2009). We use the daily closing prices, PC

t ,
to form the daily returns as follows: rt = [ln(PC

t ) − ln(PC
t−1)] × 100, and two realized

measures as drawn from the library: the 5-min realized variance and the realized kernel. The
estimation results using the two alternative measures are very similar, so we present only
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Table 1 Data description

Index Total sample period r2t RVt

Start date End date Obs. Avol SD Avol SD

BRAZIL 03/01/2000 30/11/2020 5146 0.290 0.098 0.199 0.028

MEXICO 03/01/2000 30/11/2020 5243 0.203 0.045 0.145 0.017

CHINA 04/01/2000 30/11/2020 5049 0.246 0.063 0.201 0.027

INDIA 03/01/2000 27/11/2020 5185 0.233 0.074 0.181 0.042

KOREA 04/01/2000 30/11/2020 5146 0.236 0.068 0.174 0.022

The table reports the sample period (start and end date) and the number of observations (Obs.) of each stock
index covered in this study. The reported statistics include the annualized volatility (Avol) and the standard
deviation (SD) of the stock index squared returns (r2t ) and realized variance (RVt ). BRAZIL stands for Brazil’s
Bovespa index, MEXICO for Mexico’s IPC index, CHINA for the Shanghai Composite index, INDIA for
India’s Nifty 50 index, and KOREA for South Korea’s KOSPI index

the ones with the realized variance (the results for the realized kernel are available upon
request). Table 1 presents the five stock indices extracted from the database and provides
volatility estimations for each one’s squared returns and realized variances time series for
the respective sample period (see also the stock index series graphs in the Supplementary
Appendix, Figure E.1). We calculate the standard deviation of the series and the annualized
volatility. Annualized volatility is the square rooted mean of 252 times the squared return or
the realized variance. The standard deviations are always lower than the annualized volatil-
ities. The realized variances have lower annualized volatilities and standard deviations than
the squared returns since they ignore the overnight effects and are affected by less noise.
The returns represent the close-to-close yield and the realized variances the open-to-close
variation. The annualized volatility of the realized measure is between 15 and 20%, while
the squared returns show figures from 20 to 29%.

4.2 Macroeconomic proxies

In order to shed light on the macro-financial linkages, we augment the financial volatility
HEAVY process with five non-negative macro-proxies of daily frequency. Research on the
economic drivers of financial volatility lacks evidence on daily macro-factors of the daily
or intra-daily stock index volatility pattern. Motivated by this literature gap, we augment
the model of both daily and intra-daily volatility with daily macro-variables that proxy the
business cycle conditions used in the existing monthly or quarterly studies of volatility deter-
minants. In line with Conrad and Loch (2015), we proxy the macroeconomic environment
through economic activity, monetary and business conditions, and sentiment daily variables
that could explain stock index realized variance. Since GDP, industrial production, unem-
ployment, inflation, consumer sentiment, or any commonly-used activity, monetary base, and
sentiment index are not measured with a daily frequency, we turn to relevant daily variables.
The EPU index is directly related to the business cycle with significant contractive effects on
investment and employment (Baker et al. 2016). It is used here in place of the activity vari-
ables included in all prior studies.We expect the opposite sign effect from the sign previously
observed for economic activity variables since uncertainty is negatively correlated to activity
and higher uncertainty is strongly associated with recessions. The EPU index applied is also
considered as an alternative to sentiment and macroeconomic volatility (Conrad and Loch
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2015). The S&P 500 implied volatility index is our financial uncertainty proxy (VIX index in
Corradi et al. 2013). Daily credit condition variables are chosen to account for the business
and monetary conditions’ impact on financial volatility, following Schwert (1989), who uses
financial leverage variables, interest rate and corporate bond returns volatility. We further
use daily commodity price indices motivated by the fact that commodity price increases and
oil, in particular, are often associated with recessions in the macroeconomy (Barsky and
Kilian 2004). Therefore, we expect a significant surge in stock market volatility following a
rise in commodity prices, which has proved harmful for real economic activity. Lastly, we
consider the infectious disease news effect on equity market volatility predicting a positive
relationship with emerging markets variability.

Our first macro-variable, the news-based Economic Policy Uncertainty index is estab-
lished by Baker et al. (2016) and retrieved from http://www.policyuncertainty.com/. The
site, maintained by Baker, Bloom, and Davis, provides daily EPU data for the US starting
from 1985. The EPU index effectively captures the broad ‘amorphous’ concept of economic
uncertainty (Bloom 2014). The 2008 global financial crisis has brought the previously over-
looked notion of economic uncertainty to the frontline of academics’, policymakers’ and
practitioners’ interest. We are now witnessing an extensive burgeoning literature with uncer-
tainty as its principal topic and exploring the widely-recognized countercyclical uncertainty
effects on macroeconomic and financial indicators across the business cycle. In particular,
for unique crisis events and long-lasting recession periods, academics try to scrutinize all
possible factors from their arsenal of indicators, which could prove to be forces behind the
poor economic performance. Uncertainty in the agents’ thoughts has been recently verified
as a crucial factor explaining a substantial part of economic fluctuations. Our motivation and
recognition of the relative merits of the news-based EPUmetric are discussed in the literature
review (Sect. 2). We further include one more US factor for financial uncertainty, the VIX
index of S&P 500 implied volatility.

Moving to the credit market conditions, we use two alternative Bondmarket global bench-
marks: the Merrill Lynch MOVE 1 month index (MOVE) and the Moody’s corporate bonds
default spread, defined as the difference of BAA over AAA bond yields (BAA_AAA). The
MOVE index is an estimate of the option implied volatility of US treasury bonds. It is the
treasury counterpart of the ‘fear’ index (VIX) for S&P 500 and captures the sovereign credit
market stance. Higher sovereign bond volatility denotes higher turbulence in the credit chan-
nel for sovereigns with direct spillovers to financial and non-financial corporations’ credit
conditions. The Moody’s index provides daily averages of global AAA and BAA corpo-
rate bond yields (higher spreads denote higher credit risk pricing for corporations, that is
higher cost of financing). The Moody’s default spread is used as an alternative to the MOVE
index for the credit channel. Moreover, the Commodity market conditions are proxied by
two alternative global factors: the S&P GSCI index (GSCI) and the S&P GSCI Crude Oil
subindex (GSCI_OIL). Both capture the cost of production for firms in the economy, where
rising commodity values can lead to production and investment deterioration due to increased
cost effects on economic activity. On the one hand, the S&P Goldman Sachs Commodity
Index (all commodities included) is the widely-recognized commodity markets performance
benchmark. On the other hand, GSCI crude oil subindex represents the most important com-
modity as an energy source across all economies. The GSCI_OIL is used as our alternative
macro-regressor to the GSCI, where, besides oil, most liquid commodities are incorporated.
VIX and the four bonds and commodities variables are retrieved from Thomson Reuters
Datastream. Finally, we include the infectious disease detrimental impact on equity mar-
ket volatility proxied by the Infectious Disease Equity Market Volatility Tracker (ID_EMV)
of Baker et al. (2020a). ID_EMV is a newspaper-based metric (available at https://www.
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Fig. 1 US EPU and KOSPI Realized Variance

policyuncertainty.com) that quantifies the crucial role of news about infectious diseases (e.g.
epidemics/pandemics, MERS, SARS, H1N1, Covid-19, etc.) on US stock market volatility.
Given that our sample covers the Coronavirus pandemic crash, we expect a significant impact
on realized volatility from disease outbreaks at least during the current health crisis.

VIX,MOVE,GSCI, andGSCI_OIL are log-transformed and togetherwith theBAA_AAA
spread and ID_EMV level, they are all included in the realized measure equation, where they
are shown to be jointly significant. The squared return series of the EPU index, signifying the
volatility of EPU (EPUvol), is added in the realized measure equation to estimate the direct
EPU volatility spillover effect, whereas for the indirect effect we use the log-level of EPU3

(see Sect. 7). In the macro-augmentation of the HEAVY model, we are restricted to using
only non-negative variables with estimated parameters of positive sign due to the GARCH
positivity constraints. Consequently, we focused our analysis of the macro-financial linkages
on the EPU and VIX indices for uncertainty, the four bonds and commodities variables, and
the disease proxy, which are characterized by non-negative values only and exert an inflating
impact on realized volatility. Increased uncertainty, bond spreads and volatility, commodity
prices, and disease impact, all contribute to financial volatility heightening, apparent espe-
cially during economic downturns. Figures 1, 2, 3, 4 and 5 clearly show that higher realized
volatility is observedmainly in times of elevated uncertainty, credit market turbulence, boosts
in commodity prices, and disease outbreaks (mostly during the Covid-19 period).

Before selecting the five macro-financial regressors for the realized variance equation, we
tested a plethora of real activity, monetary, and financial candidates in daily frequency as
discussed in the relevant literature. We chose the combination of jointly significant variables

3 The log-transformed series are always positive because all series’ values are higher than one. Since the lower
bound of our macro-regressors’ series is not one but zero, we, alternatively, included the regressors divided
by 100 (EPU, VIX, MOVE, WTI) and 10,000 (GSCI). This resulted in similar estimated coefficients in terms
of level and significance within the HEAVY framework (results available upon request).
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Fig. 2 US EPU and Financial uncertainty

Fig. 3 US EPU and the Credit market proxies
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Fig. 4 US EPU and the Commodity market proxies

Fig. 5 US EPU and the Infectious disease news impact on equity volatility

that minimize the information criteria and maximize the log-Likelihood score. Given the
GARCH positivity constraints, we had to exclude the variables with negative values and
the variables with a negative impact on volatility. For example, confidence indices (e.g. the
daily News Sentiment Index-NSI from the FRB San Francisco dataset, Buckman et al. 2020)
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were excluded given their negative-signed effect on volatility and replaced by the uncertainty
proxies (the sentiment antipode of confidence). Furthermore, the 3-month libor and treasury
bill yields, as well as the daily global Financial Stress Index-FSI of the Office of Financial
Research (OFR) could not be included as credit condition proxies since their time series take
negative values. We additionally tested a non-negative proxy of the real estate market (the
log-transformed Dow Jones [DJ] REIT index). This proved to be highly significant but we
should exclude it since the negative sign of the relevant parameter violates our econometric
framework constraints. Better performance of the real estate sector is associated with higher
REIT’s level mostly in economic growth periods and is consistently negatively related to
financial volatility. Finally, the realized variance receives sound negative impact from two
economic activity indicators with values not bounded to the positive territory of real numbers
and, therefore, theyhavebeen excluded.Weused theAruoba–Diebold–Scotti (ADS)Business
Conditions index (Aruoba et al. 2009) and the Yield Curve slope, which are among the unique
economic activity indicators available on a daily frequency. The ADS index tracks daily real
business conditions based on economic data releases and the Yield Curve slope, as calculated
by the difference of the 10-year minus the 3-month treasury bond yields, and it has proved
to be a powerful predictor of future economic activity (Estrella and Hardouvelis 1991).
Financial volatility receives a significant negative effect from both variables, as expected
since lower ADS and term structure slope values indicate economic worsening associated
with higher stock market volatility. This opens several paths for future research on macro-
financial linkages in the high-frequency domain to connect real activity variables (such as
DJ REIT, ADS, Yield Curve slope), excluded here, with realized variation measures in the
absence of positivity constraints of the econometric framework applied.4

5 Empirical findings

Building upon the introduction of the GARCH-X process by Engle (2002) to include realized
measures as exogenous regressors in the conditional variance equation, Han and Kristensen
(2014) and Han (2015) studied the asymptotic properties of this new specification with a
fractionally integrated (nonstationary) process included as covariate (see also Francq and
Thieu 2019). Moreover, Nakatani and Teräsvirta (2009) and Pedersen (2017) focused on the
multivariate case, the so-called extended constant conditional correlation, which allows for
volatility spillovers and they developed inference and testing for the QMLE parameters (see
also Ling andMcAleer 2003 for the asymptotic theory of vector ARMA-GARCH processes).
For the extended HEAVY models, we employ the existing Gaussian QMLE and multistep-
ahead predictors applied in the APARCH framework (see, for example, He and Teräsvirta
1999; Laurent 2004; Karanasos and Kim 2006). Following Pedersen and Rahbek (2019), we
first test for arch effects and after rejecting the conditional homoscedasticity hypothesis we
apply one-sided significance tests of the covariates added to the estimatedGARCHprocesses.

5.1 The benchmark HEAVY results

Within the HEAVY framework, we first estimate the benchmark formulation as in Shephard
andSheppard (2010), that is,without asymmetries, power transformations, andmacro-effects,
obtaining very similar results (Table 2). The only unconditional regressor in both equations

4 Further research could consider an exponential HEAVY specification to address the non-negativity limita-
tions.
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Table 2 The benchmark HEAVY model

BRAZIL MEXICO CHINA INDIA KOREA

Panel A. Stock returns: HEAVY-r

(1 − βr L)σ 2
r t = ωr + αr R L(RMt )

βr 0.63
(0.080)∗∗∗ 0.82

(0.032)∗∗∗ 0.80
(0.050)∗∗∗ 0.47

(0.070)∗∗∗ 0.64
(0.059)∗∗∗

αr R 0.65
(0.131)∗∗∗ 0.28

(0.053)∗∗∗ 0.28
(0.088)∗∗∗ 0.64

(0.098)∗∗∗ 0.67
(0.109)∗∗∗

SBT 2.69[0.00] 4.99[0.00] 2.99[0.00] 2.27[0.02] 2.03[0.04]
lnL −9781.47 −8051.11 −8573.58 −8517.40 −8054.15

Panel B. Realized measure: HEAVY-R

(1 − βRL)σ 2
Rt = ωR + αRRL(RMt )

βR 0.55
(0.051)∗∗∗ 0.67

(0.055)∗∗∗ 0.49
(0.041)∗∗∗ 0.52

(0.046)∗∗∗ 0.53
(0.037)∗∗∗

αRR 0.41
(0.045)∗∗∗ 0.32

(0.059)∗∗∗ 0.50
(0.042)∗∗∗ 0.47

(0.048)∗∗∗ 0.47
(0.041)∗∗∗

SBT 3.08[0.00] 4.90[0.00] 2.50[0.01] 2.37[0.02] 2.80[0.00]
lnL −7735.39 −6183.46 −7228.98 −6733.72 −6521.24

The table reports the estimation results of the Benchmark HEAVY model for each stock index. HEAVY-r is
the returns equation and HEAVY-R is the realized measure equation. SBT denotes the Sign Bias test of Engle
and Ng (1993). lnL denotes the log-Likelihood value for each specification. The numbers in parentheses are
robust standard errors. ∗∗∗, ∗∗, ∗ denote significance at the 0.01, 0.05, 0.10 level, respectively. The numbers in
square brackets are p-values. BRAZIL stands for Brazil’s Bovespa index, MEXICO for Mexico’s IPC index,
CHINA for the Shanghai Composite index, INDIA for India’s Nifty 50 index, and KOREA for South Korea’s
KOSPI index

is the first lag of the RMt . In other words, the chosen returns equation is a GARCH(1, 0)-X
process dropping out the own Arch effect, αrr , from lagged squared returns since it becomes
insignificant when we add the cross effect of the lagged realized measure as regressor, with
a Heavy parameter, αr R , high in value and significance across all indices. The momentum
parameter, βr , is estimated around 0.47–0.80. For the SSR realized variance, the best-chosen
model is the GARCH(1, 1) without the cross effect from lagged squared returns. The Heavy
term, αRR , is estimated between 0.32 and 0.50 and the momentum, βR , is around 0.49–
0.67. The benchmark HEAVY system of equations chosen, after testing all three alternative
GARCH models of order (1, 1), (1, 1)-X, and (1, 0)-X, is the same as in Shephard and
Sheppard (2010) with similar parameter values and the identical conclusion that the realized
measure of variation does all the work at moving around the conditional variances of stock
returns and the SSR realized variance. The benchmark’s conclusion, as we show in this
study, does not hold for the more richly parametrized macro-augmented asymmetric power
model. More importantly, according to the Sign Bias test (SBT) of Engle and Ng (1993),
the asymmetric effect is obviously omitted from the benchmark specification with the sign
parameter always significant (SBT p-values lower than 0.04).

5.2 Themacro-augmented asymmetric power HEAVY results

Moving to the extension of the benchmark HEAVY system, Table 3 presents the estima-
tion results for the chosen macro-augmented asymmetric power specifications. Wald and
t-tests are used to test the significance of the Heavy and Arch parameters, rejecting the null
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hypothesis at 10% in all cases. We should highlight the fact that since all the parameters take
non-negative values, we use one-sided tests (see, for example, Pedersen and Rahbek 2019).
For both returns and realized variance, we statistically prefer either the double asymmetric
power (DAP) specification since both power transformed conditional variances are signifi-
cantly affected by own and cross asymmetries or the cross (own) asymmetric power—CAP
(OAP)—model when only the cross (own) asymmetries are included. We estimate the power
terms separately with a two-stage procedure, as follows: We, first, estimate univariate asym-
metric power specifications for the returns and the realized measure. The Wald tests for the
estimated power terms (available upon request) reject the hypotheses of δi = 1 and δi = 2 in
most cases. In the second stage, we use the estimated powers, δr and δR , from the first step
to power transform each series’ conditional variance and incorporate them into the bivariate
model. The sequential procedure produces the fixed power term values, which are the same
for both specifications (δr and δR are common for Panels A and B).

For the returns (Panel A), the estimated power, δr , lies between 1.30 and 1.60 (see Panel
C). The Heavy cross effect parameter, αr R , is significant in most cases, except for Mexico.
The Heavy cross asymmetry, γr R , is insignificant and excluded in China and India equations.
Consequently, DAP returns specification is preferred for three out of five indices (Brazil,
Mexico, Korea) and OAP is chosen for the other two cases (China, India). Although αrr is
insignificant and is excluded in all cases, the own asymmetry parameter is always signifi-
cant with γrr ∈ [0.05, 0.14]. In other words, the lagged values of both powered variables,
that is, the realized measure and the squared negative returns, drive the model of the power
transformed conditional variance of the returns. Moreover, the momentum parameter, βr , is
estimated to be around 0.77 to 0.93. All five indices generated very similar DAP/OAP spec-
ifications without macro-effects since we statistically prefer to include the macro-regressors
in the realized measure equation. Similarly, for the realized measure the most preferred spec-
ification is the m-CAP one (for Mexico only, we choose the m-DAP model). The power, δR ,
is estimated from 1.00 to 1.20 and is consistently lower than the returns power term (see
Panel C). The Heavy parameter, αRR , is always significant and around 0.19 (min. value)
to 0.40 (max. value), while the own asymmetry, γRR , appears only in the realized measure
equation of Mexico (see Panel B). Moreover, the cross asymmetry Arch parameter is always
significant with γRr ∈ [0.02, 0.05]. This means that the power transformed conditional vari-
ance of ˜RMt is significantly affected by the lagged values of both powered variables: squared
negative returns and realized measure. Further, the momentum parameter, βR , is estimated
to be around 0.52 to 0.73.

Lastly, the lagged macro-effects are highly significant, with the expected positive sign in
all cases (see Panel B). The power transformed realized variance receives the boosting impact
from higher volatility of the US EPU index in all but one case (China), φR ∈ [0.01, 0.02], in
line with Pastor and Veronesi (2013), who were the first to associate stock market volatilities
with EPU, resulting in a positive link. The US financial uncertainty effect of VIX, λR , is
significant only for Brazil and Korea. The uncertainty effects confirm the finding of Conrad
and Loch (2015), among others, on the negative effect of consumer confidence (University of
Michigan Consumer Sentiment index), which is the opposite sentiment to uncertainty and is
estimated here with the expected opposite sign, as well. Regarding the bond and commodity
markets, we prefer to use common global proxies across all emerging stock markets. Bond
market conditions are captured by either the MOVE index (Brazil, Korea) or the Moody’s
default spread (Mexico, China, India). Increased US treasury implied volatility or elevated
corporate bond default spreads raise realized volatility in stock markets (ζR ∈ [0.01, 0.06]),
as expected since the turbulence in the credit markets always gives significant volatility
spillover effects to stock markets. Hereby, we confirm, among others, Engle and Rangel
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(2008), who estimate a positive effect of short-term government bond interest rate volatility
on stock market volatility through the Spline-GARCH specification. Turning to commodities
(ϑR ∈ [0.01, 0.04]), we prefer theGSCI all commodities index in three cases, while, forMex-
ico and India, the GSCI oil subindex is the chosen commodity regressor. Lower commodity
prices mean decreased cost of supplies for firms in the economy, propelling productivity,
investment, and, more generally, economic growth and, at the same time, reducing stock
market volatilities. Given that increased oil prices are mostly coincident with recession peri-
ods (Barsky and Kilian 2004), the positive link of realized variance and commodity prices,
captured by ϑR , supports the negative association of economic activity with stock market
volatility, in accordance with the existing literature. All prior volatility determinant studies
have provided sound evidence on the negative sign effect of economic activity proxies on
stock market volatility (see, for example, the GDP growth parameters in Engle and Rangel
2008). Finally, the coefficient of the fifth macro-regressor, ηR , is significant for three out of
five cases with the ID_EMV index tracking the infectious disease news impact on US equity
volatility and spreading the disease effect to Brazil’s, India’s, and Korea’s stock markets.

Overall, our results show strongHeavy effects (captured by theαr R , γr R , andαRR parame-
ters), as well as asymmetric Arch influences (the estimated γrr and γRr are always significant)
and macro-impacts (measured by φR , λR , ζR , ϑR , and ηR). According to the log-Likelihood
(lnL) values reported, the log-Likelihood is always higher for the m-DAP specifications com-
pared to the benchmark one, that is without asymmetries, powers, and macro-effects, proving
the superiority of our model’s in-sample estimation (see also the comparison of the two mod-
els in terms of the Bovespa standardized residuals graphs in the Supplementary Appendix,
Figure E.2). The SBT statistics further show that the asymmetric effect is not omitted any
more since the sign parameters are insignificant with p-values consistently higher than 0.17.
Table 9 (in the Appendix) provides additional results for the realized measure equation with
the DAP extension before including the macro-effects. We followed the particular stepwise
estimation procedure before selecting our final chosen model with powers, asymmetries, and
all five macro-factors.

5.3 Macro-effects discussion

From an economic point of view, the macro-effects on stock volatility observed through
the m-DAP framework confirm prior studies on the upward volatility trajectory during eco-
nomic downturns. This counter-cyclical behavior has been mainly shown by the negative
sign effect of economic activity leading or coincident indicators with a monthly or quar-
terly frequency (Engle and Rangel 2008). Turning to the high-frequency domain of the
macro-financial linkages, the monthly activity variables should be replaced by possible daily
proxies of economic activity to be included as explanatory variables in the realized variance
equation. Given the non-negativity restriction, we could not use, among others, the daily
term spread, a reliable predictor of GDP (Estrella and Hardouvelis 1991) and significant in
the monthly context as evidenced by Conrad and Loch (2015). Based on the rich empiri-
cal evidence of the adverse uncertainty effects on economic activity (Caggiano et al. 2017;
Colombo 2013; Jones and Olson 2013), we select the daily EPU index to associate stock
market volatility with a variable directly linked to economic activity contractive forces. The
positive sign consistently estimated here across all specifications for the EPUvol variable is
in accordance with prior findings on the positive sign given to macroeconomic uncertainty
(Schwert 1989) and unemployment, and the negative sign of the real GDP, industrial produc-
tion, and consumer sentiment growth (Conrad and Loch 2015). All forces associated with a

123



Annals of Operations Research (2022) 313:1077–1116 1095

Table 3 The m-DAP-HEAVY model

BRAZIL MEXICO CHINA INDIA KOREA

Panel A. Stock returns: m-DAP-HEAVY-r

(1 − βr L)(σ 2
rt )

δr
2 = ωr + γrr st−1L(r2t )

δr
2 + (αr R + γr Rst−1)L(RMt )

δR
2

βr 0.84
(0.039)∗∗∗ 0.93

(0.091)∗∗∗ 0.79
(0.059)∗∗∗ 0.87

(0.019)∗∗∗ 0.77
(0.033)∗∗∗

αr R 0.09
(0.046)∗∗ 0.20

(0.060)∗∗∗ 0.08
(0.016)∗∗∗ 0.21

(0.041)∗∗∗

γrr 0.09
(0.014)∗∗∗ 0.12

(0.013)∗∗∗ 0.05
(0.014)∗∗∗ 0.14

(0.016)∗∗∗ 0.08
(0.016)∗∗∗

γr R 0.08
(0.031)∗∗∗ 0.02

(0.010)∗∗ 0.11
(0.030)∗∗∗

SBT 1.16[0.24] 0.32[0.76] 1.01[0.31] 1.06[0.29] 1.39[0.17]
lnL −8483.63 −7339.96 −7400.55 −7433.72 −7148.60

Panel B. Realized measure: m-DAP-HEAVY-R

(1 − βR L)(σ 2
Rt )

δR
2 = ωR + (αRR + γRRst−1)L(RMt )

δR
2 + γRr st−1L(r2t )

δr
2

+φREPUvolt−1 + λRVIXt−1 + ζRBOt−1 + ϑRCOt−1 + ηRIDt−1

βR 0.57
(0.032)∗∗∗ 0.73

(0.023)∗∗∗ 0.52
(0.029)∗∗∗ 0.59

(0.027)∗∗∗ 0.60
(0.024)∗∗∗

αRR 0.30
(0.021)∗∗∗ 0.19

(0.018)∗∗∗ 0.40
(0.024)∗∗∗ 0.32

(0.020)∗∗∗ 0.32
(0.019)∗∗∗

γRR 0.03
(0.009)∗∗∗

γRr 0.05
(0.004)∗∗∗ 0.02

(0.004)∗∗∗ 0.05
(0.005)∗∗∗ 0.04

(0.005)∗∗∗ 0.05
(0.004)∗∗∗

φR 0.02
(0.007)∗∗∗ 0.01

(0.003)∗∗∗ 0.01
(0.004)∗∗ 0.01

(0.003)∗∗∗

λR 0.05
(0.023)∗∗ 0.02

(0.011)∗

ζR 0.06
(0.024)∗∗∗
MOVE

0.01
(0.004)∗∗∗
BAA_AAA

0.02
(0.007)∗∗∗
BAA_AAA

0.02
(0.007)∗∗∗
BAA_AAA

0.05
(0.012)∗∗∗
MOVE

ϑR 0.02
(0.007)∗∗
GSCI

0.01
(0.003)∗∗∗
GSCI_OIL

0.04
(0.013)∗∗∗

GSCI

0.04
(0.008)∗∗∗
GSCI_OIL

0.02
(0.007)∗∗
GSCI

ηR 0.02
(0.009)∗∗
ID_EMV

0.03
(0.007)∗∗∗
ID_EMV

0.02
(0.004)∗∗∗
ID_EMV

SBT 0.22[0.82] 1.25[0.19] 0.96[0.34] 0.73[0.47] 0.51[0.62]
lnL −7440.84 −5600.16 −7060.85 −6853.60 −6365.51

Panel C. Powers δi

δr 1.40 1.60 1.30 1.40 1.30

δR 1.20 1.00 1.10 1.10 1.10

The table reports the estimation results of the m-DAP-HEAVY model for each stock index. m-DAP-HEAVY-r is
the returns equation (Panel A) and m-DAP-HEAVY-R is the realized measure equation (Panel B). The estimated
powers (δi ) of returns (δr ) and realized measure (δR ) are reported in Panel C. SBT denotes the Sign Bias test of
Engle and Ng (1993). lnL denotes the log-Likelihood value for each specification. The numbers in parentheses are
robust standard errors. ∗∗∗, ∗∗, ∗ denote significance at the 0.01, 0.05, 0.10 level, respectively. The numbers in square
brackets are p-values. BRAZIL stands for Brazil’s Bovespa index, MEXICO for Mexico’s IPC index, CHINA for
the Shanghai Composite index, INDIA for India’s Nifty 50 index, and KOREA for South Korea’s KOSPI index.
The m-DAP-HEAVY-R equation includes five macro-effects proxied by the following variables: the volatility of
US Economic Policy Uncertainty, EPUvolt , the US financial uncertainty (the S&P 500 implied volatility), VIXt , the
Bonds effect, BOt , proxied by the Merrill Lynch MOVE index (MOVE) or the Moody’s BAA over AAA corporate
bonds spreads (BAA_AAA), alternatively, the Commodities effect, COt , proxied by the S&P GSCI all commodities
index (GSCI) or the S&P GSCI oil index (GSCI_OIL), alternatively, and the infectious disease effect (IDt ) on stock
markets captured by the Infectious Disease EquityMarket Volatility Tracker (ID_EMV). See also the realized variance
DAP specification without macro-factors, DAP-HEAVY-R, in the Appendix, Table 9
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positive real economic impact exert a negative influence on stock market fluctuations, while
the depressive forces exacerbate volatility and are estimated with a positive sign irrespective
of the specification chosen by different scholars. Therefore, it is economically plausible for
both uncertainty proxies to drive financial volatility higher, at the same time weakening the
prevailing macroeconomic conditions.

Against this backdrop, we also selected the sovereign bond yield volatility (or, alternately,
the corporate bond default spread level) to identify the credit channel effect on stock markets.
Increased volatility in the sovereign bond market (Engle and Rangel 2008) or corporate debt
spreads are reasonably correlated with macroeconomic turbulence since they increase the
cost of financing for firms and investors and, consequently, reduce activity. Accordingly,
the global bond factor parameters are consistently estimated with positive signs across all
stock market volatility models (see also Asgharian et al. 2013). Further, the commodity
index or, alternately, the oil subindex are included as a volatility determinant, which is found
positive and highly significant in all cases. Motivated by the widespread discussion and
empirical evidence about the commodity price effects on the macroeconomy in Kilian’s
research works (see, for example, Barsky and Kilian 2004), we complement the volatility
macro-determinants literature by enriching the set of significant macro-variables for the
volatility pattern with commodities and observe the destabilizing impact of higher daily
commodity prices, mostly associated with economic downturns, on stock market realized
variance. Increased commodity costs for firms’ production supplies impair economic activity
and exacerbate equities’ volatility. Finally, we demonstrate that the infectious disease effect
on US equities has a detrimental impact exacerbating emerging markets turbulence.

Hence, apart from contributing to the emerging markets realized variance modeling
research through the asymmetric, power, andmacro-augmentation of the benchmarkHEAVY
specification applied on emerging economies, we also contribute to the economic sources
of volatility by exploring the macro-financial linkages in the high-frequency domain with
daily macro-proxies. All daily economic variables that exacerbate developing stock market
volatility are associated with weak economic conditions: higher uncertainty, tighter credit
conditions, increased commodity prices, and significant disease news impact on equity mar-
kets. Moreover, we bridge the macro-finance literature with the high-frequency volatility
studies by using the sole economic uncertainty index computed daily. The daily US EPU
is applied in the present emerging markets study to reveal the uncertainty spillovers from
the US across emerging market economies in Asia and the Americas. The US-led spillover
is crucial given its direct connection to the turbulence that surrounds the policy initiatives
under Trump’s administration on trade relations or Covid-19 spread, for instance, and the
expected governance by the recent new President-elect, which trigger agents’ uncertainty
feelings spread over the whole world.

5.4 The crisis effect on realized volatility

After investigating the significant macro-financial linkages in emerging economies, we fur-
ther explore the significant effect of two crisis events on equity markets, one financial and
one health crisis: the 2008 Global Financial Crisis (GFC) and the Covid-19 pandemic period
(COVID). The current pandemic has already ignited a new and probably deeper global socio-
economic crisis with massive fiscal and monetary stimulus provided by governments, by far
larger than the response to the 2008 crisis (Snower 2020). Market turbulence is already
observed through markedly increased volatilities close to the peak reached during the 2008
global crisis. Markets are seriously affected by the generalized fear about controversial eco-
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nomic policies to support societies and the financial system, especially in the case of the
heavily criticized US government’s delayed and deficient response. Given an unprecedented
and challenging threat, namely the rapidly contagious virus across the whole universe, eco-
nomic agents feel uncertainty about future government policy choices, their implementation,
and their potential impact, as well. Even if governments reassure them that the harmful effects
of Covid-19 are manageable, skepticism, criticism, and loss of confidence are still there and
captured by soaring uncertainty index levels.

Stock market volatility reached a record peak in mid-March when the World Health
Organization (WHO) characterized the Coronavirus outbreak as a pandemic while daily
EPU levels jumped and still remain in higher territories than during the pre-Covid era. In this
vein, we assess the GFC and COVID effect on the daily macro-financial linkages explored
in this study by enriching the m-DAP-HEAVY-R equation [see Eq. (2)] with the crisis slope
dummies (DCRISIS,t ) on each Heavy, Arch, and Macro parameter [see Eq. (3)], capturing the
two crises impact. Based on the Bank for International Settlements (BIS) andWHO timelines
the two crisis subsamples are defined as follows:

• GFC: 09/08/2007–31/03/2009. The GFC period starts with the announcement that three
major BNP Paribas investment funds are suspended and ends in the first quarter of 2009
with gradual restoration of markets’ ‘tranquillity’.

• COVID: 09/01/2020–30/11/2020. The COVID period starts with the first death reported
by China in January 2020 while the pandemic crisis is still in place until the end of our
sample.

Following the GFC and COVID timelines, we first construct the respective crisis dummies
DCRISIS,t , with CRISIS = GFC,COVID, as follows:

• DGFC,t = 1, if t in the GFC period else DGFC,t = 0
• DCOVID,t = 1, if t in the COVID period else DCOVID,t = 0.

Second, we multiply the crisis dummies with the m-DAP-HEAVY-R equation’s variables
to construct the slope dummies for the respectiveHeavy, Arch, andMacro effect. The realized
variance equation with the crisis impact is estimated as follows:

(1 − βRL)(σ 2
Rt )

δR
2 = ωR + [αRR + αCRISIS

RR DCRISIS,t−1 + (γRR

+ γ CRISIS
RR DCRISIS,t−1)st−1]L(RMt )

δR
2

+ (γRr + γ CRISIS
Rr DCRISIS,t−1)st−1L(r2t )

δr
2

+ (φR + φCRISIS
R DCRISIS,t−1)EPUvolt−1

+ (λR+λCRISISR DCRISIS,t−1)VIXt−1+(ζR+ζCRISIS
R DCRISIS,t−1)BOt−1

+ (ϑR + ϑCRISIS
R DCRISIS,t−1)COt−1

+ (ηR + ηCRISISR DCRISIS,t−1)IDt−1, (3)

where the superscript CRISIS denotes the coefficients of the crisis slope dummies.
Table 4 summarizes the financial and health crisis effect as estimated through alternative

restricted forms of Eq. (3) by including separately each crisis slope dummy of the Heavy,
Arch, andMacro parameters. The GFC and COVID impacts (Table 4, Panel A and B, respec-
tively) magnify most Heavy terms (αGFC

RR , αCOVID
RR ) and Arch asymmetries (γGFC

Rr , γ COVID
Rr ).

Additional results with both crises dummies jointly significant in the bivariatem-DAP system
are reported in Table 10 of the Appendix, where we present the whole equations’ estima-
tionswith the preferred combination ofGFC andCOVIDdummies incorporated in the returns
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and realized measure specifications. The log-Likelihood score of the m-DAP-HEAVYmodel
with crisis dummies demonstrates a slight improvement of themodel’s in-sample fit (compare
Tables 3 and 10) which is not transferred to the out-of-sample forecasting performance (see
Sect. 6). Turning to the crisis impact on the macro-drivers of realized variance, we observe
that both GFC- and Covid-induced turbulence in equity markets is important with an inflating
impact on the positive effect of the Macro parameters, similarly to the crisis increment esti-
mated for the Heavy and Arch terms. Interestingly, the EPU crisis coefficient (φGFC

R , φCOVID
R )

is always significant, even in the Chinese case, which is estimated insignificant for the whole
sample (Table 3, Panel B). Financial uncertainty during GFC and COVID (λGFCR , λCOVIDR )
is estimated for Brazil and Korea only and remains insignificant in the Korean case during
GFC. The credit conditions proxies (ζGFC

R , ζCOVID
R ) are also amplified in crisis periods for

all indices whereas the commodity factors (ϑCRISIS
R ) become insignificant during the current

pandemic in most emerging markets (except for Korea where the crisis effect on commodity
regressors is insignificant for both GFC and COVID). The lack of a commodity effect during
COVID is rather expected given the sharp drop of crude oil prices following the Covid-19
outbreak (the West Texas Intermediate-WTI crude oil price fell to negative territory instantly
in April 2020 for the first time in history), which was partly rebounded with a moderate
increase after April 2020 (see also Fig. 4). The GSCI indices remained non-negative during
the drop phase and therefore they were preferred compared to alternative commodity vari-
ables such as theWTI crude oil price. Finally, the infectious disease devastating news impact
is more important during COVID, as expected, while in the GFC subsample, a period closer
to the H1N1 pandemic started from the US, the ID_EMV crisis dummy is significant only
for India.

Overall, the financial and health crisis detrimental impact on the realized variance is
demonstrated through the positive increments added to the variance parameters by the slope
dummies included inEq. (3). Along this line,we, hereby, showoncemore the counter-cyclical
volatility pattern given that themacro-factors associatedwithweaker economic stance (higher
uncertainty, tighter credit, elevated commodity prices, and heavier infectious disease news
impact) exacerbate volatility with an upshot intensified during crisis periods.

6 Forecasting performance

Beyond demonstrating the in-sample superiority of the m-DAP extension compared to the
benchmark model, we investigate the out-of-sample performance of the augmented specifi-
cation. From a utilitarian point of view, the success of our model can only be claimed through
the strong evidence of its superior predictive power. Therefore, we calculate multistep-ahead
out-of-sample forecasts in order to compare the forecasting accuracy of our proposed spec-
ification with the benchmark model of Shephard and Sheppard (2010) for both returns and
realized variance, and the three standard models: the GARCH(1, 1) for returns and the com-
mon ARFIMA(1, d, 1) and HAR-RV specification for realized variance.

We compute 1-, 5-, 10-, 20-, and 100-step-ahead variance forecasts for the benchmark
HEAVY, the DAP, its macro-augmented extension, the m-DAP with crisis dummies (see
Table 10, in the Appendix), and the standard models [GARCH(1, 1), ARFIMA(1, d, 1) and
HAR-RV]. We apply a rolling window in-sample estimation using 3000 observations (the
initial in-sample estimation period for BRAZIL spans from 3/1/2000 until 7/3/2012). Each
model is re-estimated daily based on a 3000-day rolling sample. The resulted out-of-sample
forecasts of each specification calculated for BRAZIL are as follows: 2146 one-step-ahead,
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2142 five-step-ahead, 2137 ten-step-ahead, 2127 twenty-step-ahead, and 2047 one-hundred-
step-ahead forecasted variances. We then use the time series of the forecasted values to
compute the mean square error (MSE) and the QLIKE Loss Function (Patton 2011) of each
point forecast compared to the respective actual value. For each formulation and each forecast
horizon, we calculate the averageMSE and QLIKE to build the ratio of the forecast losses for
each extended HEAVY specification (DAP and m-DAP) and each standard model (GARCH,
ARFIMA, HAR) to the loss of the benchmark one. A ratio lower than the unity indicates
the forecasting superiority of the extended models relative to the benchmark one. A ratio
higher than the unity indicates the forecasting superiority of the benchmark model relative
to the standard ones. The lowest ratio means the lowest forecast losses, that is the model
with the best forecasting performance. Based on the MSE calculations, we further apply the
test for the pairwise comparison of competing models (here the benchmark specification vs.
the DAP extensions) suggested by Harvey et al. (1998), HLN thereafter. The HLN forecast
encompassing test was introduced as a modification to the Diebold-Mariano test (Diebold
and Mariano 1995) to account for the fact that models are nested (here the DAP nests the
benchmark specification). HLN test whether the differences between the two formulations’
forecasts are statistically significant and the larger model’s forecast losses are lower than the
nested model’s ones (see also Clark and McCracken 2001).

We apply the optimal predictor |rt |∧δ (see also the optimal predictors derivation in Section
B.3, Proposition 3 of the SupplementaryAppendix) and calculate the out-of-sample forecasts.
The results, presented in Tables 5 and 6 for Brazil’s Bovespa index (similar forecasting results
for the other four indices available upon request), clearly show the preference for the macro-
augmented extensions over the benchmark models across all time horizons. The m-DAP
specification dominates the benchmark model with the lowest MSE and QLIKE (Table 5).
For the returns equations (see Table 5, Panel A), the m-DAP formulation dominates the
alternative benchmark HEAVY-r with the lowest MSE and QLIKE in all forecasting periods
and the five- and ten-day forecast losses slightly lower for the m-DAP specification with
crisis dummies. In the realized measure equation (see Table 5, Panel B), we obtain the
best forecasting performance in the m-DAP specification without crisis dummies in most
cases. Comparing the forecast losses of the macro-augmented models with and without crisis
dummies, we observe that the differences are small, similarly to the slight differences of
their in-sample fit (log-Likelihood scores in Tables 3, 4, and 10). Given the HLN test, the
Asymmetric Power formulations perform significantly better than the benchmark models.
HLN test results (Table 6) reject the null hypothesis of equal forecasts in favor of the DAP
models’ lower forecast losses at 5% significance level while the difference of the forecast
losses between the m-DAP specifications with and without crisis dummies is not significant
for both returns and realized measure (p-values > 0.100).

Overall, the extended specifications perform better than the benchmark HEAVY and stan-
dard models in the short- and long-term horizons, with the forecasts significantly closer to
the actual values for the enriched formulations. Our enhanced in-sample estimations with
asymmetries, leverage, and macro-effects have transferred their predictive superiority to the
out-of-sample computations. Investors and risk managers should utilize our macro-informed
framework’s short-term predictions. At the same time, policymakers can benefit from our
superior longer-term forecasts to build reliable scenarios on future financial volatility given
the important informational contribution of the daily macro-effects.
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Table 6 HLN Forecast encompassing test results for BRAZIL (p-values)

Specifications↓ m-steps→ 1 5 10 20 100

Panel A: Stock returns (HEAVY-r )

Benchmark vs. m-DAP 0.004 0.025 0.034 0.050 0.049

Benchmark vs. m-DAP-crisis 0.008 0.021 0.030 0.056 0.053

m-DAP vs. m-DAP-crisis 0.256 0.589 0.888 0.754 0.432

Panel B: Realized measure (HEAVY-R)

Benchmark vs. DAP 0.025 0.027 0.046 0.041 0.051

Benchmark vs. m-DAP 0.006 0.016 0.039 0.040 0.045

Benchmark vs. m-DAP-crisis 0.005 0.018 0.042 0.043 0.044

m-DAP vs. m-DAP-crisis 0.238 0.411 0.657 0.698 0.626

The table reports the p-values of the Harvey et al. (1998) test (HLN). The HLN forecast encompassing
test indicates whether the differences between two nested models’ forecasts are statistically significant. The
test’s null hypothesis of equal forecasting performance against the one-sided alternative that the extended
outperforms the nested specification is rejected when we observe low p-values (< 0.100). All DAP models
(extended) outperform the benchmark (nested) ones (p-values < 0.056). The comparison of the m-DAP and
the m-DAP with crisis dummies shows that the difference between their respective forecasts is not statistically
significant (p-values > 0.100)

7 The indirect uncertainty effect

Following the estimation of the benchmark HEAVY system with asymmetries, power trans-
formations, and macroeconomic effects, and its sensitivity to financial and health crises, we
investigate the drastic influence of uncertainty on financial volatility. Over the decade follow-
ing the global turmoil, which sharply sparked the interest in the role of uncertainty and the
relevant research increasingly gained momentum following an accelerating pace, the most
widespread metrics documented, or proxies used, have referred to macroeconomic, financial,
and policy uncertainty. They all share a common and highly plausible stylized fact: their guid-
ing significancewith a detrimental impact on the health of the economy and financialmarkets,
which is stage-contingent (dampening economic activity with higher magnitude in shakier
times—see also our crisis sensitivity analysis in Sect. 5.4). Despite the rapidly growing EPU
literature, it appears that the empirical work on the realized volatility dynamics driven by
EPU is limited, with evidence still scant for the emerging world, in particular. Consequently,
the present study fills a notable gap in the extant EPU literature. We elucidate whether EPU
exerts considerable influence on the HEAVY volatility modeling framework and on specific
parameters of the macro-augmented asymmetric power specification. Our work differs from
the existing literature in the use of the daily EPU index as a daily realized volatility deter-
minant in emerging stock markets, with major implications for macro-informed trading in
financial markets and policymakers’ financial stability concerns and systemic risk oversight.
Obviously, the particular EPU-volatility link has not yet been thoroughly assessed.

7.1 The indirect EPU impact on realized volatility

Against this backdrop, we have already highlighted the direct positive effect, in line with
Pastor and Veronesi (2013), and the forecasting power of daily EPUvol on realized volatility
within the m-DAP framework in Sects. 5 and 6. In this Section, we extend our empirical
analysis by focusingmore specifically on the first volatilitymacro-determinant of the realized
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measure equation, that is the economic uncertainty impact on stock indices realized variance.
In what follows, we prove the significant EPU effect on the Heavy, Arch, uncertainty, bonds,
commodities, and infectious disease news impact on the stock market realized variance. The
m-DAP realized volatility equation is estimated using eight restricted forms alternately to
examine each EPU effect separately with the following interaction terms: (i)–(iii) αEPU

RR ,
γ EPU
RR , and γ EPU

Rr , are the parameters of the lagged EPU multiplied by the lagged realized
variance and the two asymmetric effects, capturing the EPU effect on the Heavy (αRR and
γRR) and asymmetric Arch (γRr ) parameters, (iv)–(viii) φEPU

R , λEPUR , ζEPU
R , ϑEPU

R , and
ηEPUR measure the EPU effect on EPUvol, financial uncertainty, bonds, commodities, and
disease news proxies, respectively. The interaction terms are again calculated through the
multiplication of the log-transformed EPU index level by the respective variable and included
in Eq. (2) as follows:

(1 − βRL)(σ 2
Rt )

δR
2 = ωR + [αRR + αEPU

RR EPUt−1 + (γRR + γ EPU
RR EPUt−1)st−1]L(RMt )

δR
2

+ (γRr + γ EPU
Rr EPUt−1)st−1L(r2t )

δr
2

+ (φR + φEPU
R EPUt−1)EPUvolt−1 + (λR + λEPUR EPUt−1)VIXt−1

+ (ζR + ζEPU
R EPUt−1)BOt−1

+ (ϑR + ϑEPU
R EPUt−1)COt−1 + (ηR + ηEPUR EPUt−1)IDt−1, (4)

where the superscript EPU denotes the coefficients of the EPU interaction terms.
The direct EPUvol effect is already apparent through the significant φR estimated in them-

DAP-HEAVY-R equation (Sect. 5.2, Table 3, Panel B). Table 7 summarizes the indirect EPU
effects on realized volatility of the five emerging stock indices. We present the uncertainty
impact on each parameter given by the alternative restricted forms of Eq. (4), including each
interaction term one by one. They are all estimated with highly significant positive signed
coefficients, signifying the amplifying EPU impact on each parameter. Intriguingly, within
the macro-enriched DAP specification, we demonstrate that higher economic policy uncer-
tainty means a stronger influence of EPU volatility, financial uncertainty, credit conditions,
commodity market benchmarks, and infectious disease news on the realized measure. It is
noticeable that EPU absorbs a significant part of the Heavy, Arch, and Macro-effects. Within
the uncertainty literature, the link between credit condition tightening and uncertainty has
recently been investigated byAlessandri andMumtaz (2019), who associate the rising financ-
ing costs for firms with credit market uncertainty, while the commodities-uncertainty relation
is widely explored by Antonakakis et al. (2014), Aloui et al. (2016), and Fang et al. (2018)
among others. Most notably, Antonakakis et al. (2017) focus on the oil prices-stock market
volatility link. According to our review of the flourishing research on uncertainty effects,
academics have not yet covered the EPU, credit, commodities, and disease macro-effects on
intra-daily emerging markets’ financial volatility and the EPU amplifying role on the credit
and production cost channel, alongside the pandemic news impact, as well, which is plainly
visible here through the HEAVY framework.

7.2 The indirect EPU impact on realized volatility during crisis

Next, we combine the EPU with the crisis impact to estimate the uncertainty effect on
each realized variance parameter during crisis periods, separately. The in-crisis EPU impact
on emerging equity realized volatility dynamics is captured by the coefficients with the
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Table 7 The EPU effect on the Heavy, Arch, and Macro parameters of the m-DAP-HEAVY-R equation

BRAZIL MEXICO CHINA INDIA KOREA

(1 − βRL)(σ 2
Rt )

δR
2 = ωR + [αRR + αEPURR EPUt−1 + (γRR + γ EPU

RR EPUt−1)st−1]L(RMt )
δR
2

+(γRr + γ EPU
Rr EPUt−1)st−1L(r2t )

δr
2 + (φR + φEPU

R EPUt−1)EPUvolt−1 + (λR + λEPUR EPUt−1)VIXt−1
+(ζR + ζEPUR EPUt−1)BOt−1 + (ϑR + ϑEPU

R EPUt−1)COt−1 + (ηR + ηEPUR EPUt−1)IDt−1

αEPURR 0.12
(0.010)∗∗∗ 0.05

(0.005)∗∗∗ 0.16
(0.011)∗∗∗ 0.11

(0.005)∗∗∗ 0.12
(0.009)∗∗∗

γ EPU
RR 0.01

(0.004)∗∗∗

γ EPU
Rr 0.03

(0.002)∗∗∗ 0.01
(0.002)∗∗∗ 0.02

(0.002)∗∗∗ 0.02
(0.003)∗∗∗ 0.02

(0.002)∗∗∗

φEPU
R 0.01

(0.004)∗∗∗ 0.01
(0.002)∗∗∗ 0.01

(0.002)∗∗∗ 0.01
(0.002)∗∗∗

λEPU
R 0.01

(0.005)∗∗ 0.01
(0.003)∗∗

ζEPUR 0.01
(0.004)∗∗∗
MOVE

0.01
(0.001)∗∗∗
BAA_AAA

0.01
(0.003)∗∗∗
BAA_AAA

0.01
(0.004)∗∗
BAA_AAA

0.01
(0.002)∗∗∗
MOVE

ϑEPU
R 0.02

(0.002)∗∗∗
GSCI

0.01
(0.001)∗∗∗
GSCI_OIL

0.02
(0.006)∗∗∗

GSCI

0.01
(0.002)∗∗∗
GSCI_OIL

0.01
(0.004)∗∗
GSCI

ηEPUR 0.01
(0.004)∗
ID_EMV

0.01
(0.003)∗∗∗
ID_EMV

0.01
(0.001)∗∗∗
ID_EMV

The table reports the indirect EPU effect on the Heavy, Arch, andMacro parameters of the m-DAP-HEAVY-R
equation. We estimate Eq. (4) including each EPU interaction term separately and present their estimated
coefficients for each stock index realized variance. The interaction terms are calculated by multiplying the
Heavy, Arch, and Macro variables with the EPU log-level (EPUt ) and the corresponding coefficients are
denoted with the superscript EPU. BRAZIL stands for Brazil’s Bovespa index, MEXICO for Mexico’s IPC
index, CHINA for the Shanghai Composite index, INDIA for India’s Nifty 50 index, and KOREA for South
Korea’s KOSPI index. The m-DAP-HEAVY-R equation includes five macro-effects proxied by the following
variables: the volatility of US Economic Policy Uncertainty, EPUvolt , the US financial uncertainty (the S&P
500 implied volatility), VIXt , the Bonds effect, BOt , proxied by the Merrill Lynch MOVE index (MOVE)
or the Moody’s BAA over AAA corporate bonds spreads (BAA_AAA), alternatively, the Commodities effect,
COt , proxied by the S&P GSCI all commodities index (GSCI) or the S&P GSCI oil index (GSCI_OIL),
alternatively, and the infectious disease effect (IDt ) on stock markets captured by the Infectious Disease
Equity Market Volatility Tracker (ID_EMV)

superscript EPU_CR in the following equation:

(1 − βRL)(σ 2
Rt )

δR
2 = ωR + [αRR + α

EPU_CR
RR DCRISIS,t−1EPUt−1

+ (γRR + γ
EPU_CR
RR DCRISIS,t−1EPUt−1)st−1]L(RMt )

δR
2

+ (γRr + γ
EPU_CR
Rr DCRISIS,t−1EPUt−1)st−1L(r2t )

δr
2

+ (φR + φ
EPU_CR
R DCRISIS,t−1EPUt−1)EPUvolt−1

+ (λR + λ
EPU_CR
R DCRISIS,t−1EPUt−1)VIXt−1

+ (ζR + ζ
EPU_CR
R DCRISIS,t−1EPUt−1)BOt−1

+ (ϑR + ϑ
EPU_CR
R DCRISIS,t−1EPUt−1)COt−1

+ (ηR + η
EPU_CR
R DCRISIS,t−1EPUt−1)IDt−1. (5)
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where CRISIS and CR = GFC,COVID. Each EPU interaction term of Eq. (4) is multiplied
with the crisis slope dummies applied in Eq. (3) in order to identify the indirect EPU effect
during crises.

Table 8 reports the crisis impact on the EPU interaction terms as estimated through
restricted forms of Eq. (5) by including each crisis-EPU term separately.5 Similar to our
crisis analysis (Table 4), we observe that the EPU interaction terms are significantly inflated
during the 2008 financial turmoil (Panel A) in most cases. The Heavy, Arch, and EPUvol
effects are augmented through the uncertainty (level) channel in theGFCperiod for all indices
included, and the Chinese market as well, contrary to the EPUvol impact whose EPU interac-
tion term is estimated insignificant and excluded in the whole sample for China (see Table 7,
φEPU
Rr insignificant for the Chinese index). US financial uncertainty, credit, and commodity

conditions are also intensified for the models where they are incorporated apart from the
Korean case. The indirect EPU effect on infectious disease news is important only for India
in the GFC period while, during COVID (Panel B), it is significant for Brazil, India, and
Korea. Furthermore, in the COVID period, most Heavy, credit, and commodity factors do
not receive a statistically significant EPU impact, whereas Arch asymmetries and EPUvol
interaction terms escalate the respective effect across all markets.

All in all, our contribution to the EPU literature consists of the new empirical evidence
we provide on the positive link between daily EPU and emerging markets realized volatility
and the US EPU volatility spillovers across emerging economies which are sensitive to crisis
periods and higher EPU levels. Within the HEAVY framework, we firstly demonstrate the
US EPUvol destabilizing impact on emerging stock markets with financial volatility investi-
gated in a daily frequency. Secondly, we show that the leverage and heavy effects on realized
variance are considerably magnified in financial and health crisis events and under higher
prevailing uncertainty conditions. Thirdly, andmost interestingly from an economic perspec-
tive, the increasedVIX and volatility in credit conditions (or higher credit risk pricing in cases
where the Moody’s corporate default spreads are applied), the rising prices in commodities,
the disease news overflow, all three phenomena associated with economic downturns, exac-
erbate realized volatility to a degree intensified by elevated US EPU and crisis turbulence.
Finally, we complement the literature on EPU spillovers (see, for example, Gabauer and
Gupta 2018; Balli et al. 2017, and Klößner and Sekkel 2014) by providing evidence of the
daily uncertainty spillover effects from the US to emerging stock markets’ intra-daily volatil-
ity. We have demonstrated that policy uncertainty in a specific country is not confined to the
country’s borders but is propagated across the whole world immediately (only the first EPU
lag is examined in this study).

8 Policy implications discussion

Nowadays, our results should urge policymakers to consider and closely investigate the side
effects of US policy uncertainty generated in recent years mostly by Trump’s controversial
rhetoric and administration for the whole developing world. Overall, we demonstrate that
emerging financial markets in Asia and the Americas are destabilized by higher policy uncer-
tainty in the US economy directly (EPU volatility) and indirectly (EPU log-level), besides
US financial uncertainty, global commodity and credit market conditions, and the infectious
disease news impact, as well. The macro-effects on index volatility are significantly inflated

5 The estimation results of the whole Eqs. (3), (4), and (5), when each EPU, crisis, and EPU under crisis
effect, is included separately, are omitted due to space considerations. They are available upon request by the
authors.
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by elevated EPU levels and the detrimental impact of crisis events, both financial and health
emergencies. Turning to the policy implications of the macro-augmented high-frequency
volatility model, our findings suggest that policymakers and authorities supervising and reg-
ulating the financial system should take into account reliable volatility forecasts in designing
macro- andmicro-prudential policy responses.Regulators could consider themacro-informed
financial volatility forecasts of the m-DAP-HEAVY model across the whole risk manage-
ment process of the financial system (identification of risk sources, assessment of the nature
of risk factors, risk measurement, and risk mitigation) and the financial stability oversight
tools, such as early warning systems, macro stress tests on financial institutions, and bank
capital frameworks.

For example, based on our sensitivity analysis with the crisis magnifying impact and the
EPU spillover effect on volatility macro-determinants, early warning systems for emerging
economies should consider theUSuncertainty channel andpast global turmoil periods in iden-
tifying forward-looking signals which could imply a future market crash. Further, the macro
stress test scenario inputs,which include, amongothers, stockmarket volatility predictions for
the financial institutions’ trading books, should consider macro-informed volatility estimates
to account for the macro-effects on financial markets. Economic uncertainty in one major
country has been shown to play a decisive role acrossmultiple regions’ equities. Accordingly,
it is essential for supervisory authorities to add the US uncertainty factor in banks’ stress
tests while facing the US policy turbulence. Moreover, complying with the capital and risk
frameworks set by supervisors (Basel committee and central banks), financial institutions
measure their trading portfolio’s market risk through internal models of daily Value-at-Risk
(VaR) in order to estimate the potential trading losses over a pre-defined holding period for
a given confidence level and define the corresponding capital charges. The most important
input in the VaR calculation is the one-day volatility forecast of each risk factor relevant to the
financial instruments under scope. Stock index price volatilities are widely used in the VaR
computation of stock portfolios. Thus, reliable macro-informed volatility forecasts, provided
by a macro-augmented volatility modeling framework, improve the VaR estimates consider-
ably. Given that the market risk capital requirement is calculated on the trading portfolio’s
total 99% VaR (absolute value, 60-day average) adjusted by the penalty of the backtest-
ing exceptions (higher than 4 in the 250-day sample), supervisors should encourage banks
to improve their market risk internal models with more accurate macro-informed volatility
forecasts which better capture the loss distribution without inflating the capital charges.

Beyond our tangible results’ implications for policymakers, the volatility forecasts pro-
duced by the m-DAP-HEAVY model are directly applicable to a wide range of business
finance operations. Alongside the well-established risk management practice of the trading
VaR estimation, portfolio managers should rely on the proposed framework to predict future
volatility in asset allocation and minimum-variance portfolio selection complying with their
clients’ risk appetite. Risk-averse investors’ mandates specify low volatility boundaries on
their portfolio positions, while risk lovers allow for higher volatilities on the risk-return
trade-off of their investments. Accurate volatility predictions can also be used in a forward-
looking performance evaluation context, through the risk-adjusted metrics, i.e. the Sharpe or
the Treynor risk-adjusted return ratios (see, for example, Ben Ameur et al. 2018). Traders
and risk managers focus on the volatility trajectory in derivatives pricing, volatility targeting
strategies, and macro-informed trading decisions. Trading and hedging in financial markets
depend on risk factors whose predicted volatilities are the main input of any pricing function
applied. Lastly, financial chiefs consider volatility forecasts when they decide on investment
projects or funding choices (bond and equity valuation defining the cost of capital) given that
expected future cash-flow variation is a critical factor in business analytics.
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9 Conclusions

Our study has examined the HEAVY model and its extension with leverage, power trans-
formations, and macro-characteristics. For the realized measure, our empirical results favor
the macro-augmented cross asymmetric power specification, where the lags of both pow-
ered variables—squared negative returns, and realized variance—move the dynamics of the
power transformed conditional variance of the latter. Similarly, modeling the returns with
a double asymmetric power process, we found that not only the powered realized measure
asymmetry but the power transformed squared negative returns, as well, help to forecast the
conditional variance of the latter. The macro-augmentation of the asymmetric power model
ensures the superiority of our contribution, which can be implemented in several investment
and risk management practices. We further demonstrated the forecasting dominance of the
extended specifications over the benchmark HEAVY and standard volatility models through
the out-of-sample forecasting across multiple short- and long-term horizons.

Moreover, we demarcate our study from previous literature by estimating the significant
USuncertainty effect on the power of leverage (Heavy andArch), and themacro-determinants
of emerging markets realized variance. The US-led uncertainty spillovers shed light on new
evidence for volatilitymodeling andmacro-financial linkages literature.Our findings’ novelty
is twofold: Given higher (lower) daily US policy uncertainty levels, mostly associated with
economic downturns (upturns), (i) heavy and leverage effects become more (less) acute in
realizedvariancemodeling, and (ii)USEPUvolatility, financial uncertainty, credit conditions,
commodity market benchmarks, and disease news impact on emerging financial volatility
increases (decreases). Similarly, financial and health crisis events magnify further the Heavy,
Arch, and Macro parameters of the bivariate system and the EPU indirect impact on the
volatility drivers, as well.

Our empirical findings on the nexus between low-frequency daily squared returns,
high-frequency intra-daily realized measures, and daily macro-proxies provide a volatility
forecasting framework with important implications for policymakers and market practition-
ers, from investors, risk and portfolio managers up to financial chiefs, leaving ample room for
future research on further HEAVY model extensions. Therefore, policymakers and market
players may use the more general framework to closely track and forecast financial volatility
patterns in the process of devising stringent policies, enforcing the financial system’s reg-
ulations to preserve financial stability, deciding on asset allocation, hedging strategies, and
investment projects. This US-led uncertainty spillover phenomenon, in particular, should be
immediately recognized, monitored, and mitigated by regulators amid inconceivable fears
stimulated by US politics, such as controversial policy initiatives on trade relations and the
recent Covid-19 tragedy, among other critical issues. As part of future research, it would
be interesting to extend our study to exchange rate market volatility and several other asset
classes using alternative macro-proxies for each type of asset.
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Appendix

See Appendix Tables 9 and 10.

Table 9 The DAP-HEAVY-R equation (without macro-financial factors)

(1 − βRL)(σ 2
Rt )

δR
2 = ωR + (αRR + γRRst−1)L(RMt )

δR
2 + γRr st−1L(r2t )

δr
2

BRAZIL MEXICO CHINA INDIA KOREA

βR 0.62
(0.028)∗∗∗ 0.74

(0.022)∗∗∗ 0.54
(0.028)∗∗∗ 0.62

(0.024)∗∗∗ 0.63
(0.022)∗∗∗

αRR 0.29
(0.021)∗∗∗ 0.19

(0.018)∗∗∗ 0.40
(0.024)∗∗∗ 0.33

(0.021)∗∗∗ 0.32
(0.020)∗∗∗

γRR 0.03
(0.008)∗∗∗

γRr 0.05
(0.004)∗∗∗ 0.02

(0.003)∗∗∗ 0.05
(0.005)∗∗∗ 0.03

(0.005)∗∗∗ 0.04
(0.004)∗∗∗

lnL −7442.81 −5609.61 −7066.53 −6555.89 −6372.53

Powers δi

δr 1.40 1.60 1.30 1.40 1.30

δR 1.20 1.00 1.10 1.10 1.10

The table reports the estimation results of the DAP-HEAVY-R equation for each stock index realized measure
withoutmacro-regressors (Table 3, PanelB reports the correspondingm-DAP-HEAVY-R equationwithmacro-
effects). The estimated powers (δi ) of returns (δr ) and realized measure (δR ) are reported in lower Panel. lnL
denotes the log-Likelihood value for each specification. The numbers in parentheses are robust standard errors.
∗∗∗, ∗∗, ∗ denote significance at the 0.01, 0.05, 0.10 level, respectively. The numbers in square brackets are
p-values. BRAZIL stands for Brazil’s Bovespa index, MEXICO for Mexico’s IPC index, CHINA for the
Shanghai Composite index, INDIA for India’s Nifty 50 index, and KOREA for South Korea’s KOSPI index
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Table 10 The m-DAP-HEAVY model with the Crisis effect

BRAZIL MEXICO CHINA INDIA KOREA

Panel A. Stock returns: m-DAP-HEAVY-r with crisis dummies

(1 − βr L)(σ 2
r t )

δr
2 = ωr + (γrr + γGFC

rr DGFC,t−1)st−1L(r2t )
δr
2

+[αr R + αCOVIDr R DCOVID,t−1 + (γr R + γCOVID
r R DCOVID,t−1)st−1]L(RMt )

δR
2

βr 0.84
(0.040)∗∗∗ 0.93

(0.090)∗∗∗ 0.78
(0.068)∗∗∗ 0.86

(0.020)∗∗∗ 0.77
(0.034)∗∗∗

αr R 0.09
(0.046)∗∗ 0.21

(0.066)∗∗∗ 0.07
(0.016)∗∗∗ 0.21

(0.041)∗∗∗

αCOVIDr R 0.05
(0.027)∗

0.04
(0.018)∗∗ 0.02

(0.010)∗∗ 0.02
(0.009)∗∗

γrr 0.08
(0.014)∗∗∗ 0.10

(0.011)∗∗∗ 0.05
(0.013)∗∗∗ 0.14

(0.016)∗∗∗ 0.08
(0.017)∗∗∗

γGFC
rr 0.03

(0.011)∗∗∗ 0.04
(0.020)∗∗ 0.04

(0.022)∗∗ 0.03
(0.012)∗∗∗

γr R 0.09
(0.032)∗∗∗ 0.02

(0.010)∗∗ 0.11
(0.030)∗∗∗

γCOVID
r R 0.003

(0.001)∗∗∗ 0.04
(0.018)∗∗∗

lnL −8481.33 −7338.11 −7398.45 −7432.34 −7148.07

Panel B. Realized measure: m-DAP-HEAVY-R with crisis dummies

(1 − βRL)(σ 2
Rt )

δR
2 = ωR + [αRR + αGFCRR DGFC,t−1

+(γRR + γGFC
RR DGFC,t−1)st−1]L(RMt )

δR
2 + (γRr + γCOVID

Rr DCOVID,t−1)st−1L(r2t )
δr
2

+φREPUvolt−1 + λRVIXt−1 + ζRBOt−1 + ϑRCOt−1 + ηRIDt−1

βR 0.51
(0.039)∗∗∗ 0.73

(0.024)∗∗∗ 0.50
(0.032)∗∗∗ 0.59

(0.029)∗∗∗ 0.59
(0.027)∗∗∗

αRR 0.38
(0.026)∗∗∗ 0.20

(0.020)∗∗∗ 0.45
(0.024)∗∗∗ 0.35

(0.024)∗∗∗ 0.34
(0.016)∗∗∗

αGFCRR 0.02
(0.006)∗∗∗ 0.02

(0.010)∗∗ 0.03
(0.014)∗∗ 0.02

(0.010)∗∗
γRR 0.02

(0.009)∗∗

γGFC
RR 0.03

(0.011)∗∗
γRr 0.02

(0.005)∗∗∗ 0.01
(0.002)∗∗∗ 0.04

(0.005)∗∗∗ 0.03
(0.006)∗∗∗ 0.05

(0.004)∗∗∗

γCOVID
Rr 0.04

(0.017)∗∗ 0.01
(0.005)∗∗ 0.03

(0.016)∗
0.06

(0.026)∗∗∗ 0.03
(0.008)∗∗∗

φR 0.02
(0.008)∗∗∗ 0.01

(0.004)∗∗∗ 0.01
(0.004)∗∗ 0.01

(0.003)∗∗
λR 0.11

(0.029)∗∗∗ 0.06
(0.018)∗∗∗

ζR 0.05
(0.028)∗
MOVE

0.01
(0.004)∗∗
BAA_AAA

0.02
(0.008)∗∗∗
BAA_AAA

0.01
(0.005)∗∗
BAA_AAA

0.03
(0.014)∗∗
MOVE

ϑR 0.02
(0.010)∗∗
GSCI

0.01
(0.002)∗∗∗
GSCI_OIL

0.05
(0.014)∗∗∗

GSCI

0.05
(0.010)∗∗∗
GSCI_OIL

0.01
(0.008)∗
GSCI

ηR 0.02
(0.009)∗∗
ID_EMV

0.02
(0.008)∗∗∗
ID_EMV

0.01
(0.005)∗∗
ID_EMV
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Table 10 continued

BRAZIL MEXICO CHINA INDIA KOREA

lnL −7440.66 −5600.11 −7060.04 −6853.20 −6365.10

Panel C: Powers δi

δr 1.40 1.60 1.30 1.40 1.30

δR 1.20 1.00 1.10 1.10 1.10

The table reports the estimation results of the m-DAP-HEAVY model with crisis dummies for each stock
index. m-DAP-HEAVY-r with crisis dummies is the returns equation (Panel A) and m-DAP-HEAVY-R with
crisis dummies is the realized measure equation (Panel B). The estimated powers (δi ) of returns (δr ) and
realized measure (δR ) are reported in Panel C. The crisis slope dummies included in each equation arethe
ones jointly significant and statistically preferred. The slope dummies are calculated by multiplying the Heavy
and Arch variables with the crisis dummies (DCRISIS,t ) and the corresponding coefficients are denoted with
the superscript CRISIS = GFC,COVID, for the Global Financial Crisis and the Covid-19 pandemic period,
respectively. lnL denotes the log-Likelihood value for each specification. The numbers in parentheses are
robust standard errors. ∗∗∗, ∗∗, ∗ denote significance at the 0.01, 0.05, 0.10 level, respectively. The numbers
in square brackets are p-values. BRAZIL stands for Brazil’s Bovespa index,MEXICO forMexico’s IPC index,
CHINA for the Shanghai Composite index, INDIA for India’s Nifty 50 index, and KOREA for South Korea’s
KOSPI index. Them-DAP-HEAVY-R with crisis dummies equation includes fivemacro-effects proxied by the
following variables: the volatility of US Economic Policy Uncertainty, EPUvolt , the US financial uncertainty
(the S&P 500 implied volatility), VIXt , the Bonds effect, BOt , proxied by the Merrill Lynch MOVE index
(MOVE) or theMoody’s BAA over AAA corporate bonds spreads (BAA_AAA), alternatively, the Commodities
effect, COt , proxied by the S&P GSCI all commodities index (GSCI) or the S&P GSCI oil index (GSCI_OIL),
alternatively, and the infectious disease effect (IDt ) on stockmarkets captured by the Infectious Disease Equity
Market Volatility Tracker (ID_EMV)
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