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A B S T R A C T

Modern and future high precision pointing space missions face increasingly high challenges
related to the widespread use of large flexible structures. The development of new modeling
tools which are able to account for the multidisciplinary nature of this problem becomes
extremely relevant in order to meet both structure and control performance criteria. This paper
proposes a novel methodology to analytically model large truss structures in a sub-structuring
framework. A three dimensional unit cube element has been designed and validated with a
Finite Element commercial software. This model is composed by multiple two-dimensional
sub-mechanisms assembled using block-diagram models. This constitutes the building block
for constructing complex truss structures by repetitions of the element. The accurate vibration
description of the system and its minimal representation, as well as the possibility of accounting
for parametric uncertainties in its mechanical parameters, make it an appropriate tool to
perform robust Structure/Control co-design. In order to demonstrate the strengths of the
proposed approach, a structure/control co-design study case is proposed and solved using
structured robust 𝐻∞-synthesis. The objective is to optimize the pointing performances of
an antenna, minimizing the perturbations coming from the Solar Array Driving Mechanisms
(SADM) of two solar panels, performing active control by means of multiple Proof Mass
Actuators (PMA), and simultaneously reduce the mass of the truss-structure which connects
the antenna to the main spacecraft body.

1. Introduction

In order to systematically face the challenges associated with the next generation of satellites, the European Space Agency (ESA)
nd NASA have combined their past experiences to cope with the fine pointing requirements of high accuracy observation and
cience missions [1]. This represent a domain which is extremely multi-disciplinary: structural, control and system engineering
onsiderations must coalesce to limit the propagation and amplification of internally generated disturbances through the satellite’s
lexible structures. For these reasons, the development of rigorous methodologies and design tools that can handle all these domains
s crucial at early stages of design. The works of Preda et al. [2] and Sanfedino et al. [3,4] are example or this approach.

In the past decades, structural and control co-design has attracted a lot of attention due to its ability of merging these multiple
ultidisciplinary requirements into a single design flow. Moreover, the increasing use of large structures and appendages for Space

pplications has rendered flexible modal analysis mandatory for the design of proper spacecraft control laws.
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In order to tackle the non-trivial modeling and analysis of these large and complex space systems, a sub-structuring technique
sing a multi-body approach is often considered to conceptually simplify the model. Seeing the overall structure as an assembly of
ultiple simpler sub-systems with increasing complexity has also the advantages of handling different types of boundary conditions

t block assemblage level and easing sub-system validation.
The wide use of this approach for space applications has raised a significant interest in the development of proper modeling

echniques that can prove to be versatile enough to account for multiple multi-body configurations, ranging from open-loop chains
o closed-loops mechanisms.

Many sub-structuring techniques can be found in literature. A common approach relies on approximations linked to the Finite
lement Method (FEM) or the Assumed Modes Method (AMM) [5]. However, these methods are heavily influenced by the set of
redetermined boundary conditions assigned to the model, which may be drastically variable, for example in mass time-varying
ystems. Nevertheless, the FEM is currently the most popular method in structural analysis and it has had a deep impact in almost
ll multi-body modeling methods, such as the transfer matrix (TM) method and the component modes synthesis (CMS).

The Transfer Matrix (TM) Method, introduced by Holzer [6] and later independently by Myklestad [7] creates a transfer matrix
hat links up the state vectors (generalized accelerations and forces) of the two extremities of the flexible body. These methods are
articularly well suited for serially connected bodies and open-chain structures. Their major drawback is the inversion problems of
he matrices composing the model [8], whose matrices may be non-square or non-invertible depending on the boundary conditions.
oreover, these approaches are not optimal for a multi-body tree-like structures, where multiple inputs and multiple outputs are

equired at each end of the model [9]. This drawback is particularly significant for space applications, where multiple bodies and
lexible appendages, such as antennas and solar panels, are attached to a central spacecraft body.

Component mode synthesis (CMS) approaches has been quite popular in the modeling of multi-body systems [10–12] thanks
o matrix condensation reduction, which render this method particularly suited for sub-structuring problems [13–15]. However, in
his approach, the sub-component matrices overlap with each other to create a complex model, difficult to understand to extend to
ystems with varying sizing parameters.

Methods based on effective mass/inertia of the appendages [16] and effective impedance matrix [17] represent another viable
ption to represent multi-body systems and have had significant space applications in [18–20] for attitude control purposes. These
ethods, however, lose the complete vibration behavior description of the systems, as they aim at delivering only the dynamic

elation of state variable at the appendage root point. The application of these methods to design chain-like mechanisms is therefore
ot possible.

The Two-Input-Two-Output Port (TITOP) Model, a direct dynamic approach initially proposed in [21], overcomes these issues.
he structure is conceived as a minimal state–space transfer between the accelerations and wrenches at the extremity points of the
ppendage and embeds both the direct and inverse dynamics: the IN/OUT channels are easily numerically invertible to account
or multiple boundary conditions. Moreover this approach in a block-diagram model permits the design of closed-chain multi-body
ystems for any boundary conditions by creating feedback loops and inverting IN/OUT channels. An analytical uniform beam model
n the TITOP approach was proposed by Mural et al. [22], while Perez et al. [23,24] introduced model parametrization in the
inear Fractional Transformation (LFT) form for co-design and robust control applications. A complete formulation of the TITOP
eam model was proposed by Chebbi et al. [25], who performed a rigorous comparison with the Euler–Bernoulli beam theory for
ll boundary conditions. This work provided the first application of the TITOP model with inverted channels, which was used to
odel the four-bar mechanism by assembling multiple TITOP blocks. Sanfedino et al. [26] validated the inversion operation not

nly for analytical TITOP models but also for numerical ones provided by FEM commercial software and then extended the TITOP
ormalism for N-Input-N-Output Port (NINOP) models.

All the models derived in TITOP approach have been implemented in the last release of the Satellite Dynamics Toolbox
SDT) [27,28], which allows the user to easily build models of multi-body systems, parametrized according to mechanical sizing
arameters and uncertain parameters of each body or substructure, following and generalizing the first idea introduced in [29]. Such
odels are fully compliant with the MATLAB®routines of the Robust Control Toolbox [30] to perform parametric robust control

design and analysis.
All previous work, however, dealt only with simple systems when considering closed-loop kinematic chains. The main contri-

bution of this work is to present a novel methodology to analytically model complex truss structures in the TITOP sub-structuring
approach. These 3D system models represent a new set of tools which can be used to perform Structure/Control co-design, as they
accurately describe the vibration dynamics response of the flexible bodies and have a minimal representation, limiting the number
of DOFs present in the model. In particular, following a procedure similar to the one found in [25], multiple TITOP elements
are assembled to form complex mechanical systems that can later be re-assembled to form large scale structures: multiple two
dimensional (2D) and three dimensional (3D) multi-body systems will be presented with the aim of assembling a cubic structural
element. The latter represents the minimal model of a complex 3D structure which can be used as the building block for the
construction of large space truss structures.

In order to showcase the strength of the proposed approach, this work proposes a case study to display the ability of these
parametric models of performing robust Structure/Control co-design or integrated design as proposed in [31]. The dual optimization
of the structural design and the control performance fits the framework of the Multidisciplinary Design Optimization (MDO), which
originated from the work of Schmit and Haftka [32,33]. The multidisciplinary approach is used when conflicting optimizations
objectives stem from different disciplines and when a classical sequential optimization may fail to find the global optima of the
problem. This is the case for Structure/Control co-design problems, where usually structural optimization is performed before the
2

control one, iterating the process multiple time. This can be a long process and convergence is not granted due to the concurrent
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nature of the two sub-problems: mass reduction can increase significantly the flexibility of the system, whose low frequency modes
may interfere with the satellite’s Attitude Control System (ACS), as seen in [34].

When an analytical model of the structure is available, the integration of the design variables as uncertain parameters opens the
ossibility of achieving control/structure co-design in a unique iteration, using the non-smooth techniques available in the robust
tructured 𝐻∞ control framework [35], as shown in several aerospace applications [23,36,37]. A drawback of such a direct co-design
s that it could provide a non-global optimal design, by risking to fall within one of the many local minima. On the other hand, this
pproach has the advantage to be very easy to implement and very efficient from the computational time point of view when the
umber of sizing parameters is not too high. This work uses this approach for the structure/control co-design problem presented in
he case study.

The main contributions of this paper are:

• development of a sub-structured model fully parametrized by both mechanical sizing parameters and uncertain parameters,
allowing the complex truss structure to be assembled by block-diagram interconnection,

• validation of a 3D-cube element by a detailed comparison with a NASTRAN model,
• co-design of a complex space truss structure holding an optical payload and of the LOS (Line Of Sight) stabilization controller

using multiple PMAs.

This work must also be positioned in the field of the Control Structure Interactions (CSI) which motivates lots of contributions
ince the 90’s with a particular emphasize on model uncertainties. In [38], G. Balas already addressed the control of an experimental

flexible truss structure (named Caltech Flexible Structure) using PMAs with a deep insight on the quantization of the uncertainties
between the mathematical (or knowledge-based) model and the physical model. Uncertainties is also largely addressed in [39] and
discussed on the MACE (Middeck Active Control Experiment) considering the impact of the suspension system required under 1-g
environment on the system dynamical behavior under 0-g environment. A first toolbox for Uncertainty Bound IDentification (UBID)
was proposed in [40]. More generally, such uncertainty quantization was required to feed robust control and analysis methods. The
robust control design methods available till 2010 addressed only the full order design (i.e. the optimal controller have the same order
than the design model). Thus, one can also find many contributions on reduction and associated reduction error bounds to reduce
the order of the design model (and therefore of the controller). Today, effective methods to design robust structured controllers [35]
where the order and/or the structure of the controller can be fixed rekindle the debate. In the present work, the general guideline is
to push the knowledge-based model as far as possible and to consider it as the design model even if this model is a high-order model
with a complex dependence on uncertain (real) parameters. Such an approach can be justified in the context of control/structure
co-design during early design phases [41] when ground-based experimental mock-ups are not available. In addition, in the field of
space engineering, the experiments for controls/structure interactions are very sensitive to the 1 g environment or to the gravity
compensation mechanisms.

After a brief introduction on the TITOP approach used to model a flexible appendage in Section 2, the modeling of all 2D
echanism is detailed in Section 2.1. The introduction and validation of the cubic structural element is performed in Section 2.2. The

n-depth description of the co-design study case is performed in Section 3. Sections 3.1 to 3.3 presents the model of the whole system
rom the various sub-structures. Section 3.4 details the closed-loop control strategy. Sections 3.5 to 3.7 presents the control/structure
o-design formulation, results and validation.

. TITOP approach

Let us consider a flexible body 𝑖 as seen in Fig. 1 (left) connected to a parent structure 𝑖−1 at the point 𝑃 and to a child
tructure 𝑖+1 at the point 𝐶. The resulting TITOP model D𝑖

𝑃𝐶 (s), schematized in Fig. 1 (right), is a {12 × 12} linear dynamic model
hose inputs are:

• W𝑖+1∕𝑖 , 𝐶 : the {6 × 1} wrench (forces and torques) applied by the body 𝑖+1 to 𝑖 at point C;
• ü𝑃 : the {6 × 1} inertial acceleration (linear and angular) imposed by the parent body 𝑖−1 at point 𝑃 to 𝑖;

nd the conjugated outputs are:

• ü𝐶 : the {6 × 1} components of the inertial acceleration of point 𝐶;
• W𝑖∕𝑖−1 , 𝑃 : the {6 × 1} wrench applied by 𝑖 to the parent structure 𝑖−1 at point P.

ll these input/output variables are projected in the body frame. Thus, to lighten the notations, the projection frame is not mentioned
n the various block-diagrams presented hereafter.

As described in [25], the state–space representation of D𝑖
𝑃𝐶 (s) can be directly built from the data (flexible mode frequencies,

odal participation factors and modal shapes) of the clamped at 𝑃 - free at 𝐶 model of the body 𝑖. Then channel inversion operations
an be used to derive the model under different boundary conditions.

Let us denote [M(s)]−1I the modelM(s) where the channel numbered in the vector of indexes I are inverted following the procedure
escribed in [25] (Appendix 1), then for instance:

• [D𝑖
𝑃𝐶 (s)]

−1[1:6] models the body 𝑖 under the clamped at 𝑃 - clamped at 𝐶 boundary conditions,
• [D𝑖

𝑃𝐶 (s)]
−1[1 2 3 4 6 11] models the body 𝑖 under the pinned at 𝑃 and 𝐶 boundary conditions. Both pinned axes are the y-axis of
3

the body frame used to project the model (Fig. 1 (left)).
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Fig. 1. TITOP scheme and nomenclature for a generic flexible appendage 𝑖.

A multibody system composed of several flexible bodies and several revolute or clamped joints can then be built by the
interconnection of the TITOP models of each body and the twice 6 × 6 DCM (Direction Cosine Matrix) between the various body
frames. This approach was embedded in the Satellite Dynamics Toolbox (SDT) with various features:

• a NASTRAN/SDT interface to build the TITOP model directly from the output files (.f06 and .bdf) of the NASTRAN/PATRAN
model,

• an analytical TITOP model of the Euler–Bernoulli beam in the 6 d.o.fs (degree-of-freedom) case fully parametrized according
to its length 𝑙 (along the x-axis of the beam reference frame), its section area 𝑆, its second moments of area 𝐼𝑧 and 𝐼𝑦, its Young
modulus 𝐸 and its mass density 𝜌. These parameters can be declared as varying parameters to obtain an LPV (Linear Parameter
Varying) model fully compliant with the MATLAB®Robust Control Toolbox to perform robust design and performance analysis.

This beam model, fully detailed in [25], is used as the basic element for the truss structure models presented in the sequel. The
reader is advised to read the SDTlib Users’ Manual to have a deep insight in the SDT [28].

2.1. 2D mechanisms

In this section, a series of two-dimensional mechanisms is presented. The main goal of these kinematics is to act as intermediate
step towards building complex three-dimensional structures. By exploiting the assembly of multiple elementary TITOP beam blocks,
several multi-body mechanical systems have been implemented: the so called L-Chain mechanism, the Triangle mechanism and
the Square mechanism. This section will detail the geometrical characteristics of these kinematics and their modeling using a
block-diagram approach.

2.1.1. L-Chain mechanism
The L-Chain mechanism  is composed by two beams 𝐴𝐵 (body 1) and 𝐶𝐵 (body 2) connected at point 𝐵 in a given angular

configuration 𝛼, as seen in Fig. 2(a) (in the case 𝛼 = 𝜋∕2 (𝑟𝑎𝑑)). This mechanism is linked:

• to two parent bodies 𝐴 and 𝐶 at the point 𝐴 and 𝐶, imposing accelerations ü𝐴 and ü𝐶 ,
• to a child body 𝐵 at point 𝐵 applying a wrench W𝐵∕, 𝐵 .

he 3 input - 3 output ports model of the mechanism  is then described by the block-diagram depicted in Fig. 2(b). This model
nvolves the clamped at 𝐴 - free at 𝐵 model D1

𝐴,𝐵(s) of the beam 1 and the clamped at 𝐶 - clamped at 𝐵 model [D2
𝐴,𝐵(s)]

−1[1∶6] of the
eam 2. The upper ports of these to sub-model are connected in a feedback loop to take into account:

• the loop closure constraint: the point 𝐵 on the 2 bodies must have the same accelerations ü𝐵 ,
• the wrench balance at the point 𝐵 of beam 1 : W(2+𝐵 )∕1 ,𝐵 =W𝐵∕,𝐵 − 𝑅2,1W1∕2 ,𝐵 .

ote that in Fig. 2 the blocks 𝑅𝑖,𝑗 correspond to the twice 6 × 6 DCM from the body frame of beam 𝑖 to the body frame of beam
𝑗 .

This model is named clamped–free–clamped (CFC) L-Chain model and is denoted 𝐶𝐹𝐶 (s). Indeed when the three inputs ü𝐴,
𝐵∕ , 𝐵 and ü𝐶 (in this order) are null, the  mechanism is clamped at point 𝐴, free at point 𝐵 and clamped at point 𝐶. This model

escribed the dynamic behavior between three conjugated input–output pairs associated to the three ports (connection points) of
he mechanism. Thus, using the channel inversion operation, one can also define:

𝐶𝐶𝐶 (s) = [𝐶𝐹𝐶 (s)]−1[7∶12] , 𝐹𝐹𝐶 (s) = [𝐶𝐹𝐶 (s)]−1[1∶6] ,…

ll the inputs and outputs of the model 𝐶𝐹𝐶 (s) are projected in the body frame (x, y, z) of the mechanism , chosen aligned
4

ith the frame of body 1 (see Fig. 2(a)).



Mechanical Systems and Signal Processing 180 (2022) 109427A. Finozzi et al.

i
a
e


r

Fig. 2. Representation of the Clamped–Free–Clamped (CFC) L-Chain Mechanism 𝐶𝐹𝐶 (𝑠) (Fig. 3(a)) and its block-diagram model (Fig. 3(b)).

Fig. 3. Representation of the Clamped–Free–Free (CFF) Triangle Mechanism (Fig. 3(a)) and corresponding block-diagram model of the system (Fig. 3(b)).

2.1.2. Triangle mechanism
The modeling of a basic triangular closed-loop mechanism is hereby considered. This mechanism is first modeled in the clamped

at 𝐴, free at 𝐵, free at 𝐶 boundary conditions considering the acceleration ü𝐴, the wrenches W𝐵∕ , 𝐵 and W𝐶∕ , 𝐶 as inputs applied
by the external bodies 𝐴, 𝐵 and 𝐶 at points 𝐴, 𝐵 and 𝐶, respectively (see Fig. 3(a)).

This model, denoted  𝐶𝐹𝐹 (s) can then be represented by the block-diagram depicted in Fig. 3(b). Indeed, since the loop
closure constraint at the point 𝐵 is already taken into account in the model 𝐶𝐹𝐶 (s) previously presented (considering now that
𝛼 = 𝜋∕4 (𝑟𝑎𝑑)), the model  𝐶𝐹𝐹 (s) can be built by adding the model D3

𝐴,𝐶 (s) of the third beam 𝐴𝐶 (body 3) connected to the model
𝐶𝐹𝐶 (s) to satisfy the new constraints:

• the kinematic constraint: the point 𝐴 on the 2 bodies 1 and 3 must have the same accelerations ü𝐴,
• the wrench balance at the point 𝐴: W ∕𝐴 ,𝐴 =W1∕𝐴 ,𝐴 + 𝑅3, 1W3∕𝐴 ,𝐴,
• the wrench balance at the point 𝐶: W(𝐶+2)∕3 ,𝐶 = 𝑅1, 3

(

W𝐶∕ ,𝐶 + 𝑅2, 1W2∕3 ,𝐶

)

.

All the inputs and outputs of this 3 input- 3 output port model  𝐶𝐹𝐹 (s) are projected in the body frame (x , y , z ) of the
mechanism  , chosen aligned with the frame of body 1 (see Fig. 3(a)).

2.1.3. Square mechanism
The square mechanism presented in Fig. 4 is composed of five beams: four of them form a polygonal perimeter and the last one

s positioned diagonally to create two closed loop chains. This mechanism is modeled in the clamped at 𝐴, free at 𝐵, free at 𝐶, free
t 𝐶 boundary conditions considering the acceleration ü𝐴, the wrenches W𝐵∕ , 𝐵 , W𝐶∕ , 𝐶 and W𝐷∕ , 𝐷 as inputs applied by the
xternal bodies 𝐴, 𝐵 , 𝐶 and 𝐷 at points 𝐴, 𝐵, 𝐶 and 𝐷, respectively (see Fig. 4(a)).

This model, denoted 𝐶𝐹𝐹𝐹 (s) can then be represented by the block-diagram depicted in Fig. 4(b). It involves directly the model
𝐶𝐹𝐹 (s) of the triangular mechanism and the model 𝐶𝐹𝐶 (s) of the L-chain mechanism with two feedback loops between their ports
5

elative to the points 𝐵 and 𝐶, allowing to take into kinematics constraints and wrench balances at these two connection points.
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Fig. 4. Representation of the Clamped–Free–Free–Free (CFFF) Square Mechanism 𝐶𝐹𝐹𝐹 (s) (a) and corresponding block-diagram model of the system (b).

This allows for a drastic reduction in the assembly complexity: the model is composed only by two blocks while representing five
flexible bodies in total. This showcases the power of this modular approach in structural design, whose advantages will be fully
displayed in the three-dimensional approach introduced in Section 2.2.

All the inputs and outputs of this 4 input - 4 output port model 𝐶𝐹𝐹𝐹 (s) are projected in the body frame (x , y , z ) of the
mechanism , chosen aligned with the frame of the  mechanism (see Fig. 4(a)). Using the channel inversion operation, one can
also defined:

𝐶𝐶𝐶𝐶 (s) = [𝐶𝐹𝐹𝐹 (s)]−1[7∶24] .

2.2. 3D Mechanisms

The two-dimensional elements introduced in Section 2.1 ans the channel inversion operation are powerful tools that can be used
or the creation and assembly of complex three-dimensional structures. In the context of the multi-body approach followed in this
aper, the mechanical conception focused on the definition of a unit-cube 3D module which could represent the basic building block
or large space truss structures.

.2.1. Cube mechanism
The Cube Mechanism  is a multi-body structure composed by 13 flexible appendages, assembled at 8 nodes to form a cubic

utline with diagonal elements along the faces. A representation of its complex kinematics is given in Fig. 5(a). Each node 𝑖,
= 1,… , 8 of the cube is connected to an external body 𝑖 imposing an acceleration ü𝑁𝑖

(case of a parent body) or applying a
rench W𝑖∕,𝑁𝑖

(case of child body).
At a first glance, it can be noticed that no flexible appendix can be found to form the side of the bottom face of the Cube, along

he (𝑥, 𝑦) plane. This has been done to facilitate the construction of complex mechanical systems: this structure is conceived as a
nit-cube-module which can be stacked on top of other elements, serially connecting them to create an elongated system. In the
ame fashion, multiple cubes can then be added on the sides as well. An example of this sub-structuring modeling technique will
e outlined in the case study of Section 3.

In order to facilitate this serial connection of cubes along the 𝑧-axis, the design of this mechanical system has been carried out to
resent four lower nodes (from 𝑁1 to 𝑁4) with accelerations imposed on the structure by the external parent bodies 𝑖 (𝑖 = 1,… , 4),
hile the upper nodes of the structure (from 𝑁5 to 𝑁8) are subjected to the wrenches transmitted by the external child bodies
𝑖 (𝑖 = 5,… , 8). These excitation acting on the system, highlighted in red in Fig. 5(a), will represent the inputs of the 8 input - 8
utput port model of the cube, denoted 𝐶𝐶𝐶𝐶−𝐹𝐹𝐹𝐹 (s). Following the general NINOP model formalism, the outputs are the conjugate
f the inputs.

As it can be seen in Fig. 5(b), the model 𝐶𝐶𝐶𝐶−𝐹𝐹𝐹𝐹 (s) of this complex three-dimensional structure can be easily modeled by
eans of only two different 2D mechanisms: Clamped–Free–Clamped (CFC) L-Chains 𝐶𝐹𝐶

𝑗 (s), repeated four times, and one single
lamped–Clamped–Clamped–Clamped (CCCC) Square Mechanism 𝐶𝐶𝐶𝐶 (s). The imposed accelerations at nodes 𝑁1 to 𝑁4 have been

nputted directly to the two clamped ends of the L-Chains, while their free vertex receives the combined effort of the external forces
pplied by 𝐵𝑖 (𝑖 = 5,… , 8), and 𝐶𝐶𝐶𝐶 (s). Exactly like in the previous cases, the feedback loops between the sub-blocks allows to
atisfy the kinematics constraints and the wrench balances.

Finally, in Fig. 5(b) it can be noted that this model does not present DCM between the blocks. This is made possible by the
act that the changes of reference frames are handled internally within the elementary blocks, allowing the possibility to express all
ectors in any generic common frame (for instance, the frame (𝑁 , x, y, z) for the cube).
6

1



Mechanical Systems and Signal Processing 180 (2022) 109427A. Finozzi et al.

N
b

f
t
a

G
v
r
h
w

t

T

a
P
c

m

t

Fig. 5. Geometrical representation (a) and block diagram system (b) of the Cubic Element (s).

Table 1
Parameters of the cube sides and TITOP Beams used for the validation of Cube model.
𝑙𝑥 [m] 𝑙𝑦 [m] 𝑙𝑧 [m] 𝑆 [m2] 𝜌 [kg∕m2] 𝐸 [GPa] 𝜈 𝐼𝑦 [m−4] 𝐼𝑧 [m−4] 𝜉

1.0 1.0 1.0 9e−4 2700 70 0.35 6.75e−08 6.75e−08 0.001

2.2.2. System validation
The sub-structuring technique presented in the previous sections has been implemented in MATLAB®SIMULINK®in the form of

-Input-N-Output Port block models, which depict the dynamical behavior of each mechanism. These blocks integrate the analytical
eam model of the SDT library [28].

These new models of elementary truss structures are now validated by comparison with the models obtained from a widespread
inite-element-model commercial software: MSC Patran/Nastran. This validation is performed on the Cube structure. Since it embeds
he three elementary (L-chain, Triangle and Square) sub-structures, the validation of the Cube model acts as a general validation of
ll its sub-structural components.

eometry definition and Patran/Nastran modeling. A cube mechanism, as described in Section 2.2.1 is hereby considered for
erification purposes. Its geometry is fixed by means of the length of its sides, 𝑙𝑥, 𝑙𝑦 and 𝑙𝑧, along the axis of the (𝑁1, 𝑥, 𝑦, 𝑧)
eference frame and by the mechanical characteristics of each appendage composing the kinematics. The same homogeneous beam
as been repeated for each flexible body. The full mechanical characterization of the validation model is described by Table 1,
here 𝜈 is the Poisson’s coefficient and 𝜉 is the damping factor.

For the comparison with the Nastran model, the cube is only clamped at node 𝑁1 whose model (labeled SDT ) is obtained using
he channel inversion operation:

𝐶𝐹𝐹𝐹−𝐹𝐹𝐹𝐹 (s) = [𝐶𝐶𝐶𝐶−𝐹𝐹𝐹𝐹 (s)]−1[7∶24] .

hat allows to compare not only the flexible mode frequencies but also their modal participation factors at this node.
The same mechanical system has been implemented in MSC/Patran, using the same mechanical characteristics of the SDT model

nd modeling each beam using the CBEAM element property, in order to take torsional behavior into account. The 3D model (labeled
atran) created in MSC/Patran is displayed in Fig. 6, where the 5 elements used for each beam can be distinguished. The structure
an be seen clamped at the origin of the (𝑥, 𝑦, 𝑧) axis, which corresponds to node 𝑁1.

Table 2 describes the first ten modes of the two models (SDT and Patran) by means of their natural frequencies 𝜔𝑘 and their
odal participation factors. The comparison shows a good match in both physical properties.

A more detailed validation is possible thanks to the interface between MSC/Nastran and SDT library which allows to import
he MSC/Patran model directly in MATLAB®/SIMULINK®. From the Nastran .f06 analysis file, this interface provides the 6 × 6
7
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p

Fig. 6. Validation FEM model implemented in MSC/Patran.

Fig. 7. Verification of the Cube element’s frequency response (SDT) by comparison with the MSC Patran/Nastran model (P/N).

Table 2
Comparison between the Patran/Nastran model and the SDT cube: modal frequency 𝜔𝑘 and participation factors (𝑇1 , 𝑇2 , 𝑇3 , 𝑅1 , 𝑅2 , 𝑅3).

Mode 𝝎k [rad/s] T1 T2 T3 R1 R2 R3

Patran SDT Patran SDT Patran SDT Patran SDT Patran SDT Patran SDT Patran SDT

1 16.77 17.43 −3.830 −3.912 2.040 2.207 1.714 1.474 0.113 −0.292 −3.746 −3.704 5.127 5.236
2 17.51 17.75 −0.716 −0.432 2.211 2.091 −3.890 −4.021 −5.495 −5.475 1.684 1.964 2.167 1.815
3 34.37 34.90 2.279 −2.271 1.111 −1.256 −0.993 0.921 0.069 −0.018 4.423 −4.315 0.676 −0.765
4 43.66 44.34 2.066 −2.004 4.546 −4.534 0.749 −0.824 −2.424 2.421 0.031 0.074 0.503 −0.439
5 70.36 72.18 1.711 −1.746 1.737 1.616 1.288 1.239 −0.897 −0.844 −0.677 −0.651 −0.128 −0.149
6 97.26 99.54 0.482 −0,428 0.402 −0.389 0.398 −0.392 −0.192 0.187 −0.079 0.086 0.007 −0.002
7 112.83 115.31 0.667 −0.656 0.401 −0.398 0.561 −0.567 −0.144 0.140 0.173 −0.168 0.129 −0.132
8 117.91 120.84 −0.554 −0.552 0.067 0.059 −0.074 −0.095 −0.026 −0.022 −0.005 −0.005 0.043 0.042
9 348.92 354.30 −0.184 −0.139 0.126 0.118 0.386 0.472 −0.034 −0.031 −0.071 −0.077 0.031 0.032
10 361.72 365.24 −0.727 −0.761 −0.108 −0.123 −1.101 −1.078 0.023 0.027 0.035 0.026 −0.042 −0.047

transfer from the acceleration üN1 at the node 𝑁1 to the reaction wrench W∕1 ,N1 at this node. The frequency-domain response
for the 3 translation degrees of freedom of this transfer is depicted in Fig. 7 (labeled P/N) and compared with the ones from the
8

roposed model (labeled SDT ). The analysis of these plots confirms a good match between the two models. In the [0, 500] rad∕s
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Fig. 8. Overall view of satellite’s case study. The spacecraft composed by a main central spacecraft body (𝑆∕𝐶), two Solar Panels (𝑆𝑃 1 , 𝑆𝑃 2) rotated around
axis 𝑥 of an angle 𝜃. The HPP antenna (𝐴𝑁𝑇 ) and the 4 PMAs are both placed on top of the truss structure 𝑇𝑠𝑡𝑟.

requency range, the relative error on each transfer is below 5% except of course on the resonances which are not exactly at the
ame frequencies (see Table 2).

. Application on space structural and control co-design study case

This section introduces a study case on a space application to demonstrate the power of the proposed multi-body sub-structuring
pproach for modeling and control of flexible structures. Let us consider a Telecom satellite having one High-Precision-Pointing
HPP) antenna connected to the main spacecraft (S/C) body by means of a large truss structure as in Fig. 8. Two Solar Panel Arrays
re connected to the sides of the satellite and are able to rotate thanks to Solar Array Driving Mechanisms (SADM), which on the
ther hand introduce perturbations in the attitude of the spacecraft and in the pointing of the antenna.

In this context, the blocks introduced in Sections 2.1 and 2.2 have been used to construct the large T-Shaped truss structure 𝑇𝑠𝑡𝑟,
hich support the high-precision antenna. Given that the multi-body design is based on the TITOP beam model, this complex flexible

ystem can be fully parametrized for any physical property characterizing the beams. A structural and robust control co-design
as been implemented for the system, to showcase the strength of a parametric structural model by achieving the two following
oncurrent goals:

1. Reject the perturbations introduced by the SADMs acting on the Line-of-Sight (LOS) of the Antenna by performing an active
control using 4 PMAs, distributed on the structure.

2. Minimize the mass of the T-Truss structure 𝑇𝑠𝑡𝑟 by reducing the section of the beams composing the system, all while
complying with the pointing and vibration rejection requirements.

The following sections will detail the design and assemblage of the T-Truss structure and the procedure chosen to implement
he co-design.

.1. Flexible T-Truss structure

The T-shaped Truss antenna support has been modeled by means of five Cube mechanism elements, connected to each other to
9

orm the structure seen in Fig. 9, where the diagonal beams on the faces have been hidden to facilitate reader’s understanding of the
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Fig. 9. Simplified representation of the T-Shaped Truss Structure, without any diagonal beam in the cubes’ faces, and the beams square sections. For clarity
ake, the Cube elements 𝑖 are represented with their local reference frames 𝑖 to indicate their orientation in the global reference frame 𝑔𝑙(𝑁1 , x𝑔𝑙 , y𝑔𝑙 , z𝑔𝑙).

The section area 𝑆 and bending inertia 𝐼𝑦 , 𝐼𝑧 of each beam is expressed in the generic beam local reference of frame 𝑙(𝑁𝑙 , 𝑥𝑙 , 𝑦𝑙 , 𝑧𝑙) as function of the side
parameter ℎ.

Table 3
Parameters of TITOP Beams used for the T-Truss Structure.
𝑆 [m2] 𝜌 [kg∕m2] 𝐸 [GPa] 𝜈 𝐼𝑦 [m−4] 𝐼𝑧 [m−4] 𝜉

ℎ2 2700 70 0.35 ℎ4∕12 ℎ4∕12 0.001

architecture. Overall, this complex mechanical system is composed by 65 flexible beams. Among them, it is possible to identify a
core assembly of three cubes (1, 2 and 3) which are simply serially stacked on top of each other, along the z𝑔𝑙 axis on the global
frame of reference (𝑁1, x𝑔𝑙 ,y𝑔𝑙 , z𝑔𝑙). The remaining two cubes are then placed on the sides of the previous assembly, developing
along the y𝑔𝑙 axis direction. This is achieved by the use of two direction cosine matrices, which perform a rotation of the cubes
around the x𝑔𝑙 axis. This results in cube 4 facing towards the negative direction of y𝑔𝑙 while 5 towards the positive one.

The overall structure is composed by 24 nodes in total. Four of them – nodes from 𝑁1 to 𝑁4 – are connected to the S/C main
body and therefore are designed to have an acceleration imposed onto them. The rest of the points on the other hand can receive
an external input in the form of an external wrench.

This is the case for nodes 𝑁17 and 𝑁20, where the PMAs and the antenna is connected, while no external forcing term are
applied to other points of the structure. In terms of physical and geometrical characterization of the system, it has a total envelope
of 1 m×3 m×3 m, with each single cube having a volume of 1 m×1 m×1 m. The same beam properties have been repeated for all the
65 beams composing the structure. Given an aluminum beam with a square section, a parametric model has been implemented by
means of the section length ℎ. This variable drives both the section area and the second moments of area of the beam, as displayed
in Fig. 9. The parameter will then be at the center of the structural-control co-design of Section 3, as it is directly related to both
mass and stiffness properties of the system. Finally, the mechanical characterization of all the beams is given in Table 3.

3.2. Proof Mass Actuators (PMAs) model

The PMA mechanical system has been modeled in Fig. 10 as the body , composed by a rigid casing and a one-dimensional
spring–mass–damper system. Under these assumptions, the mechanical actuator is fully defined by the following set of parameters:

• 𝑎: local reference frame attached to the PMA at the reference point 𝑂;
• v: the unit vector along the PMA axis, expressed in 𝑎;
• 𝐺 and 𝑃 : the center of mass of the PMA (at rest) and the connection point to the parent body, respectively;
• 𝑀 and I𝐺: respectively, the mass and the inertia matrix at 𝐺 of the PMA casing;
• 𝑚𝑝, 𝑘𝑝, 𝑑𝑝.: the mass, stiffness and damper of the spring–mass–damper system describing the dynamics of the PMA along the

axis v;
• 𝑢: control effort applied on the proof mass along the axis v;
• 𝛿𝑥. Relative displacement of the proof mass with respect to the casing;
̈

10

• u𝑃 : {6 × 1} acceleration twist of the PMA at the connection point expressed in the 𝑎 frame;
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Fig. 10. PMA mechanical system and its associated block diagram system D
𝑃 (s) in the TITOP approach.

• W∕.,𝑃 : {6 × 1} wrench applied by the PMA at point 𝑃 , expressed in the 𝑎 frame;

The PMA mechanical system  has then been modeled as D
𝑃 (s), a {7 × 7} linear dynamic model in the TITOP approach. The

system is obtained by means of the governing equations of the mechanical dynamics, defined as follows:

𝑚([v𝑇 01×3]ü𝐺 + 𝛿𝑥) = −𝑘𝛿𝑥 − 𝑑𝛿̇𝑥 + 𝑢 (1)

ü𝐺 = 𝝉GP ü𝑃 (2)

W∕.,𝑃 = −𝝉𝑇GP

([

𝑀I3 03
03 I𝐺

]

𝝉GP ü𝑃 + 𝑚
[

v
0

]

𝛿𝑥

)

(3)

𝝉GP =
[

I3 [rGP]×
03×3 I3

]

(4)

where 𝝉𝐺𝑃 is the Kinematic Model of the rigid link between point 𝐺 and point 𝑃 , defined thanks to the skew matrix [r𝐺𝑃 ]× associated
to the vector r𝐺𝑃 from node 𝐺 to node 𝑃 .

The PMA 7 × 7 block-diagram model D
𝑃 (s) is showcased in Fig. 10. The first 6 × 6 port of the model defines the transfer between

the acceleration ü𝑃 and the wrench W∕.,𝑃 , while the last describes the one between the control effort 𝑢 and the proof mass relative
displacement 𝛿𝑥. The mechanical parameters which describe the PMAs used in the current case study are given in appendix, Table 6.

3.3. System modelization

3.3.1. Full order Linear Parameter Varying (LPV) model
The complete system in Fig. 8 is modeled by means of a block-diagram approach using elements derived from the SDT library

introduced in [28]. The block-diagram representation of the whole spacecraft is then depicted in Fig. 11 and is detailed by:

• Central body (𝑆∕𝐶). This block is a static 42 × 42 multi-port rigid body model. It models the dynamics of a rigid body subjected
to multiple wrenches applied at connection points 𝑃1, the center of mass where is located the Attitude Control System (ACS),
𝑃2, 𝑃3, 𝑃4, 𝑃5 the 4 connection points with the T-truss structure, and 𝑃6, 𝑃7 the connection points with the 2 solar panels. The
geometry of these points is detailed in Appendix, Table 7.

• Solar Panels (𝑆𝑃𝑖, 𝑖 = 1, 2). These 2 blocks are 6-th order single port flexible body models. Each solar panel model takes into
account 3 flexible modes and is connected to the central body by a revolute joint driven along the 𝑥-axis by the SADM. The
two solar panels are identical. The joint angular configuration 𝜃 is taken into account in the DCM 𝑅𝑆𝐶∕𝑆𝑃𝑖 . The SADM is the
main source of disturbance and is modeled by a local stiffness 𝑘𝑆𝑃𝑖 , a viscous friction 𝑓𝑆𝑃𝑖 and an internal disturbing torque
𝑝𝑆𝑃𝑖 . The overall torque acting on the mechanisms is:

𝑢𝑆𝑃𝑖 = 𝑘𝑆𝑃𝑖𝛿𝜃𝑖 + 𝑓𝑆𝑃𝑖𝛿𝜃̇𝑖 + 𝑝𝑆𝑃𝑖 (5)

where 𝛿𝜃𝑖 and 𝛿𝜃̇𝑖 are obtained integrating the relative acceleration 𝛿𝜃̈𝑖 of 𝑆𝑃𝑖 with respect to 𝑆∕𝐶. The two coefficients 𝑘𝑆𝑃𝑖 ,
𝑓𝑆𝑃𝑖 are contained in the matrices: K𝑆𝑃𝑖 = [𝑓𝑆𝑃𝑖 , 𝑘𝑆𝑃𝑖 ].

• Antenna (𝐴𝑁𝑇 ). The antenna is modeled as a rigid body described by its mass 𝑀𝐴𝑁𝑇 and its inertia matrix 𝐼𝐴𝑁𝑇 at the node
𝑁20 in its local frame aligned with the S/C reference frame. The LOS direction of the antenna therefore coincides with the
𝑧-axis of the global reference frame 𝑆∕𝐶 (𝑃1, x, y, z).

• T-truss structure (𝑇𝑠𝑡𝑟). This 36 × 36 block is the 6 input - 6 output port model described in Section 3.1. The 6 connection points
are 𝑁1, 𝑁2, 𝑁3, 𝑁4 (with the parent central body), 𝑁17 and 𝑁20 (with the child antenna and PMAs). Since it is composed of
11

65 flexible beams and since the SDT analytical model of a beam is a 20-th order model, this block is a 1300-th order model.
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Fig. 11. Open Loop System of the spacecraft in Fig. 8.

• 4 PMAs subsystem (𝑃𝑀𝐴𝑠). This 16 × 16, 8-th order block embeds the 4 PMAs as described in 3.2. The positioning of these
PMAs at node 𝑁20 and 𝑁17 has been selected to maximize the control effect over the orientation of the LOS. Thanks to the
use of two couples of PMAs acting in the same direction, the control system is able to control the elevation and the azimuth
of the LOS and the 2 translations in the plane orthogonal to the LOS.

The data of all spacecraft sub-components can be found in Appendix, Table 6.
The full order model of the whole system is thus a 1324-th order model. Its 20 outputs y, seen in blue in Fig. 11 are:

• ̈LOS: 2 × 1 vector with LOS elevation and azimuth angular accelerations. This is one of the parameters taken into account in
the performance index of the co-design,

• xPMAsu : 4 × 1 vector of the linear internal displacements of the 4 PMAs.
• üP1 : 6 × 1 acceleration dual vector of the center of mass of the central body,
• 𝜽̈PMAs : 8 × 1 vector of the linear and angular accelerations at nodes 𝑁17 and 𝑁20 along and around the x and y axes.

he 12 inputs u of the model, highlighted in red in Fig. 11, are:

• 𝑝𝑆𝑃1 , 𝑝𝑆𝑃2 : the two internal perturbation torques acting at the revolute joints of the each SADM,
• WP1 : 6 × 1 wrench vector at the center of mass of the spacecraft 𝑃1,
• WPMAs

u : 4 × 1 vector of linear forces applied to the system at nodes 𝑁17 and 𝑁20 by the four PMAs.

ne of the main interest of the SDT lies in the possibility of declaring the various mechanical and geometrical parameters as
arying parameters or uncertain parameters. Thus, the LPV model directly computed from the block-diagram description is fully
ompatible with the MATLAB®robust control toolbox to perform robust performance analyzes and robust control designs. That is
articularly relevant during preliminary design of Space systems to face fabrication unpredictable inaccuracies and also uncertainties
r misknowledges on some sub-systems whose the design is not finalized. It is all the more relevant for preliminary co-design where
ome of these parameters are tunable parameters. In this case study, two kinds of parameters are considered:

• the uncertain parameters: 𝜹 = [𝛿𝑀𝑆𝐶
, 𝛿𝐼𝑦𝑦𝑆𝐶 , 𝛿𝜔1𝑆𝑃

, 𝜏]𝑇 composed of normalized (∈ [−1, 1]) uncertainties on the mass of the
main spacecraft hub 𝑀𝑆𝐶 , the inertia along the 𝑦-axis of the same body 𝐼𝑦𝑦𝑆𝐶 , the first natural frequency of both solar panels
𝜔1𝑆𝑃 and the angular configuration 𝜃 ∈ [−𝜋, ±𝜋] of the solar panels parametrized by 𝜏 = tan(𝜃∕4) ∈ [−1, 1] as introduced
in [42,43]. The uncertainty values are defined in Appendix, Table 6,

• the tunable parameter: 𝜣 = ℎ = ℎ0(1 + 0.95 𝛿ℎ), the side of the T-truss beam section with:
12

ℎ0 = 2 𝑐𝑚 𝛿ℎ ∈ [−1, 1] . (6)
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Fig. 12. LFT representation of the LPV full order model (𝜣, 𝜹).

Remark. the variation of the beam section side is quite wide. Note that the lower bound (1 mm) is certainly not representative.
Constraints on ℎ required for the truss structure (in a stowed configuration) to support launch loads are not considered in this
study. The main objective of this paper is to illustrate the interest of the parametric model approach for optimization and co-design
purposes.

From the block-diagram model depicted in Fig. 8, the LPV full order model (𝜣, 𝜹) is directly computed thanks to the
MATLAB®function ulinearize and fully characterized by the arguments of the following Linear Fractional Transformation (LFT):

(𝜣, 𝜹) = 𝑢((Θ),𝜟) and (Θ) = 𝑢(G(s),∆Θ) (7)

with 𝜟 the uncertain parameter block and ∆Θ the tunable parameter block defined by:

𝜟 = diag
(

𝜟𝜏 ,∆𝑝
)

, 𝜟𝜏 = 𝜏 I16, ∆𝑝 = diag
(

𝛿𝑀𝑆𝐶
I3, 𝛿𝐼𝑦𝑦𝑆𝐶 , 𝛿𝜔1𝑆𝑃

I4
)

, ∆Θ = 𝛿ℎI877 (8)

here I𝑛 is the identity matrix of size 𝑛. This size indicates the number of occurrences of each parameters. Thus the system presents
n extremely high number of occurrences for the tunable parameter ℎ, amounting to 877 occurrences.

These upper LFTs 𝑢(., .) can be interpreted by the block-diagram interconnections as depicted in Fig. 12.

.3.2. System reduction
As mentioned in the previous section, the order of G(s) is very high (1324). A reduction in the modal state–space representation of

(s) is thus performed to remove the very slow poles and the high frequency flexible modes based on the following considerations:

• in the modeling of the T-truss structure, the numerous loop closure constraint are solved thanks to the channel inversion
operation. Each closed-loop kinematic chain concerns the 6 d.o..fs and leads to 12 poles at 0. But numerical errors during the
inversion make that these poles ar not exactly at 0. These very slow poles do not contribute in the input–output transfer of G(s)
and they can be removed by a reduction in the modal realization of G(s) of all the stable poles with a magnitude lower than
0.01 rad∕s. This reduction removes 540 (= 45×12 considering the 45 closed-loop kinematic chains inside the T-truss structure)
poles. This reduced order model is denoted Gr𝑙𝑜𝑤(s),

• very high frequency flexible mode, with a frequency greater than 700 rad∕s, are out of the frequency range considered for
the active control with the PMAs. They are also reduced in the modal realization of G(s). This final reduced order model is
denoted Gr(s) and its order is 296.

The goodness of the reduction can be appreciated by comparing the frequency-domain responses of the input–output transfer
(u → y) between the full order model G(s) and the 2 reduced order models Gr𝑙𝑜𝑤(𝑠) and Gr(s), as done in Fig. 13. The magnitude
of G(s) − Gr𝑙𝑜𝑤(s) is totally neglectable, showing the irrelevance of the loop-closure poles, while the magnitude G(s) − Gr(s) shows
an acceptable error. The final model Gr(𝑠) correctly represents the dynamics of the open-loop system in the frequency domain of
interest and will be used to perform all further analysis and controller synthesis using the upper linear fractional transformations
𝑟(Θ) = 𝑢(Gr(s),Θ) for the LPV system and 𝑢(𝑟(Θ),𝜟) for the overall uncertain open-loop system.

Nevertheless, the performance robustness analysis proposed in Section 3.7 will consider the model Gr𝑙𝑜𝑤(s) with all the flexible
modes.

3.4. Closed-loop system

As previously stated, the main objective of this case study is to demonstrate the capability of performing structural and control co-
design using parametric models for the flexible appendages, suited for robust analysis. In this context, the reduced open-loop linear
model described in the previous section can be augmented with the controllers acting on the system and the pointing performance
indexes as shown in Fig. 14.

The closed loop system is composed by two controllers:
13
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Fig. 13. Comparison on the input–output transfer singular value responses between the full order model G𝑟(𝑠), and the reduced order models Gr𝑙𝑜𝑤(𝑠), truncated
at low frequencies, and G𝑟(𝑠), truncated both at low and high frequencies.

Fig. 14. Closed Loop System for Synthesis.

• The Attitude Control System 𝐴𝐶𝑆. The ACS implemented for this mission is a basic proportional–derivative (PD) controller
aimed at fixing the attitude of the satellite in space.

K𝐴𝐶𝑆 (s) = −[03×3 I3]𝑇
k𝑝 + k𝑣 s

s2
[03×3 I3] (9)

K𝐴𝐶𝑆 (s) includes the rigid motion of the whole spacecraft. The decentralized (diagonal) controller gains have been chosen
in order to fix the poles of the ACS at a frequency of 𝜔𝐴𝐶𝑆 = 0.1 rad/s with a damping of 𝜉𝐴𝐶𝑆 = 0.7 assuming the whole
spacecraft is rigid:

k𝑝 = 𝜔2
𝐴𝐶𝑆diag(J𝑡𝑜𝑡), k𝑣 = 2𝜉𝐴𝐶𝑆𝜔𝐴𝐶𝑆diag(J𝑡𝑜𝑡) (10)

where J𝑡𝑜𝑡 is the total inertia matrix of the satellite computed at point 𝑃1.
• PMAs Controller. The controller for the actuator was implemented as by means of the filter FPMAs(s) and a static gain given by

matrix K . F (s) is a diagonal 4 × 4 filter composed of an integrator, required to estimate the velocity from the measured
14
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acceleration, a wash-out filter with a cut-off frequency 𝜔𝑃𝑀𝐴 = 5𝜔𝐴𝐶𝑆 = 0.5 rad/s and a low-pass filter to prevent spillover
on neglected flexible modes with a cut-off frequency 𝜔𝐿𝑃 = 400 rad/s:

F𝑃𝑀𝐴(s) =
s

s2 + 1.4𝜔𝑃𝑀𝐴s + 𝜔2
𝑃𝑀𝐴

𝜔2
𝐿𝑃

s2 + 1.4𝜔𝐿𝑃 s + 𝜔2
𝐿𝑃

I4 . (11)

The fine pointing performance is expressed in form of Relative Performance Error (RPE) as defined in [44]. The RPE index
epresents the statistics of the instantaneous angular difference between the pointing vector LOS and its short-time average in a
ime interval 𝑡𝛥. In the frequency domain this filter corresponds to an high-pass weight [44–46] applied to the system:

F𝑅𝑃𝐸 (s) = 𝜖−1𝑚𝑎𝑥
𝑡𝛥s (𝑡𝛥s +

√

12)
(𝑡𝛥s)2 + 6(𝑡𝛥s) + 12

I2 (12)

where 𝜖𝑚𝑎𝑥 is the maximum RPE deviation allowed, which bounds the transfer of the filter. For the present study case the following
values were selected: 𝜖𝑚𝑎𝑥 = 50 μrad, 𝑡𝛥 = 3 ms.

Moreover, the SADM perturbation inputs 𝑝𝑆𝑃1 and 𝑝𝑆𝑃2 on the system have been normalized by an estimated maximum torque
cting on the system, indicated by the upper bound 𝑝𝑚𝑎𝑥: 𝑇𝑝,𝑛𝑜𝑟𝑚 = 𝑝𝑚𝑎𝑥 = 0.3820 Nm. The output xPMAu is used to monitor and limit

the internal displacements of the 4 PMAs.
Finally the transfer from pPMA to WPMA

u is the input sensitivity function of the PMA control loop and can be used to impose
stability margins (disc margin).

By assembling all these blocks, the closed-loop LPV system Mr(Θ) displayed in Fig. 14 is obtained. The uncertainties are added
o the model by means of the LFT form 𝑢(Mr(Θ),𝜟). The model can then be augmented with the PMAs controller gains contained
n the {4 × 8} scalar matrix KPMA by means of a lower Linear Fractional Transformation 𝑙

(

𝑢
(

Mr(Θ),𝜟
)

, KPMA
)

. The selection of
he proper gains to drive the actuation of the PMAs will be the main focus of the structural and control co-design of Section 3.5.

.5. Robust structure - control co-design

The objective of this study case is to implement a robust co-design of both the 𝑇𝑠𝑡𝑟 structure and control laws of the PMAs to
aximize pointing performances and minimize the mass 𝑚(Θ) of the T-truss structure at the same time. For our study, this means
inimizing the reducing the side ℎ of the T-truss beam while constraining the transfer between the normalized SADM perturbation

orques p̃ = [𝑝𝑆𝑃1 , 𝑝𝑆𝑃1 ] and the normalized 𝑅𝑃𝐸 index below 1 for any values of the uncertain parameters 𝜹. In addition, two hard
onstraints are taken into account:

• the internal displacement of each PMA in response to the SDM disturbance torques must be lower that the maximal value
𝑥PMA = 3 mm,

• the PMA control loop must satisfied stability margins expressed as a disc margin on the input sensitivity function.

Let us consider the LFT closed-loop system 𝑙

(

𝑢
(

Mr(Θ),𝜟
)

, K𝑃𝑀𝐴

)

depicted in Fig. 14, the robust co-design problem reads:

{Θ̂, K̂𝑃𝑀𝐴} = arg min
Θ,K𝑃𝑀𝐴

𝑚(Θ) = arg min
ℎ,K𝑃𝑀𝐴

ℎ such that: (13)

𝛾1 = max
𝜟

‖

‖

‖

𝑙

(

𝑢
(

Mr(Θ),𝜟
)

, K𝑃𝑀𝐴

)

p̃→RPE
‖

‖

‖∞
≤ 1 (worst-case pointing performance requirement) (14)

𝛾2 = max
𝜟

‖

‖

‖

𝑙

(

𝑢
(

Mr(Θ),𝜟
)

, K𝑃𝑀𝐴

)

p̃→xPMAu

‖

‖

‖∞
≤ 𝑥PMA (worst-case PMA displacement requirement) (15)

𝛾3 = max
𝜟

‖

‖

‖

𝑙

(

𝑢
(

Mr(Θ),𝜟
)

, K𝑃𝑀𝐴

)

pPMA→WPMA
u

‖

‖

‖

∞ ≤ 𝛾𝐷𝑀 (worst-case disc margin requirement) (16)

where ⋆i→o denotes the subsystem from input i to output o in the system ⋆.
In the following application 𝛾𝐷𝑀 = 1.5. This value ensures:

• a modulus margin > 1∕𝛾𝐷𝑀 = 0.666,
• a gain margin > 𝛾𝐷𝑀

𝛾𝐷𝑀−1 = 3 (6 dB),

• a phase margin > 2 arcsin 1
2𝛾𝐷𝑀

= 38.9 (deg).

The Fig. 15 displays the frequency-domain response relative the pointing performance requirement for the nominal value of the
eam side Θ0 = ℎ0 = 2 cm without PMA control. One can check that some flexible modes do not meet the constraint.

.6. Co-design optimization results

The non-smooth robust structured 𝐻∞ problem defined by the performance index (13) and the 3 hard constraints (14), (15)
and (16) is solved using MATLAB®’s systune routine [35]. In terms of computational efficiency, the optimization takes around
120 min on a standard laptop computer to converge to the solution summarized in Table 4. This yields to a mass reduction of 76%
of the T-Truss structure original mass, saving a total of 62.15 kg with respect to the initial design having 𝑚 = 81.38 kg. The impact
15
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Fig. 15. Frequency-domain illustration of the hard constraint (14) for the nominal side ℎ0 without PMA control K𝑃𝑀𝐴 = 04×8.

Table 4
Co-design results in terms of ℎ̂, structural mass reduction of 𝑇𝑠𝑡𝑟 and normalized constraints.

Θ̂ [cm] 𝑚(Θ̂) [kg] 𝑚0 [kg]
(

𝑚(Θ̂) − 𝑚0

)

∕𝑚0 𝛾1 𝛾2∕𝑥̄PMA 𝛾3∕𝛾𝐷𝑀

0.972 19.23 81.38 −76.37% 0.999 0.957 0.999

of the saved T-truss mass/inertia on the whole spacecraft inertia J𝑡𝑜𝑡 involved in the tuning of the ACS gains (Eq. (10)) is very small
so that the ACS gains do not need to be updated to the new optimal mass/inertia.

The 3 hard constraints are saturated since the weighted 𝛾𝑖, 𝑖 = 1, 2, 3 values are very close to 1. The frequency domain
interpretation of the 3 hard constraints presented in Fig. 16 for several models randomly sampled in the uncertain parametric space
highlights the frequencies of interest limiting the performances. The PMA control allows to damp pointing performance critical
flexible modes (around 100 rad∕s as showcased in Fig. 15 and around 20 rad∕s in Fig. 16). thanks to the positivity between the 4
PMAs and the integration of the 4 linear accelerometers but this positivity is limited by the low-pass filter introduced to prevent
the spillover on the neglected modes. In addition, this positivity is no more guaranteed regarding the feedback of the 4 angular
accelerator (integrated) to the 4 PMAs. That is why the disc margin requirement is very determining for the control design. A more
accurate robust performance analysis on the full order model, is presented in the next section.

3.7. Worst-case pointing analysis

Let us consider the closed-loop model described in Section 3.4. Previously, the model Mr(Θ) displayed in Fig. 14 used for the
odesign has been constructed based on the reduced order model Gr(s). Let us now consider the full order model Mr𝑙𝑜𝑤(Θ) obtained
ust simply changing Gr(s) by Gr𝑙𝑜𝑤(s) in the block diagram interconnection shown in Fig. 14.

In order to fully validate the performance of the optimal solution {Θ̂, K̂𝑃𝑀𝐴}, a worst-case analysis has been implemented
n the optimal closed-loop system. The objective is to find the worst-case values of the uncertain parametric vector 𝜹 =
𝛿𝑀𝑆𝐶

, 𝛿𝐼𝑦𝑦𝑆𝐶 , 𝛿𝜔1𝑆𝑃
, 𝜏]𝑇 for the 3 hard constraints (14), (15) and (16) evaluated on the full-order optimal closed-loop system.

The solar panel geometrical configuration parameter 𝜏 = tan 𝜃∕4 is repeated 16 times in the uncertain block ∆ (Eq. (8)) leading
to unacceptable computational time using the standard worst-case analysis tools. This problem is circumvented by computing the
whole closed-loop model for a given value of 𝜏 and by sampling 𝜏 on a grid of 𝑁𝜏 = 50 points regularly distributed on [0, 1] (or 50
values of 𝜃 in [0, 180]◦). This subset has been chosen to account for the symmetric configuration of the model in the 𝜃 ∈ [0, 180]◦

and 𝜃 ∈ [−180, 0]◦ intervals. By defining (𝜃) = 𝑢

(

Mr𝑙𝑜𝑤(Θ̂), tan(𝜃∕4)I16
)

, the full uncertain closed-loop system associated with
the optimal solution reads:

𝐶𝐿(𝜃,𝜟𝑝) = 𝑙

(

𝑢
(

(𝜃),𝜟𝑝
)

, K̂𝑃𝑀𝐴

)

(17)

where all the remaining uncertainties on 𝑀𝑆𝐶 , 𝐼𝑦𝑦𝑆𝐶 and 𝜔1𝑆𝑃 are contained in the matrix 𝜟𝑝.
The objective is thus to solve the 3 𝜇-analysis problems:

𝜇1(𝜃) = max
𝜟𝑝

‖

‖

‖

𝐶𝐿(𝜃,𝜟𝑝)p̃→RPE
‖

‖

‖∞
, (18)

𝜇2(𝜃) = max ‖

‖

1 𝐶𝐿(𝜃,𝜟𝑝)p̃→xPMA
‖

‖ , (19)
16
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Fig. 16. Frequency-domain illustrations of the hard constraints (14), (15) and (16) for the optimal side Θ̂0 and the optimal PMA control K̂𝑃𝑀𝐴.
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Table 5
Worst-case analysis results for the three transfers of interest (𝜃𝑊𝐶 is the worst-case solar panel geometrical configuration).
𝑖 max𝜃 𝜇𝑖(𝜃) 𝜃𝑊𝐶 = argmax𝜃 𝜇𝑖(𝜃) [deg] 𝜇

𝑖
(𝜃𝑊𝐶 ) Critical freq. [rad/s] Worst-case 𝑀𝑆𝐶 [kg] Worst-case 𝐼𝑦𝑦𝑆𝐶 [kg m2] Worst-case 𝜔1𝑆𝑃 [rad/s]

1 0.9767 94.5 0.9754 20.4 945 871 2.854
2 0.974563 42.5 0.97234 3.99 720 1100 2.254
3 1.0471 0 1.0469 473. 800 990 2.472

Fig. 17. Worst-case analysis for the pointing performance transfer 𝐶𝐿(𝜃,𝜟𝑝)p̃→RPE as a function of 𝜃. On the top part of the figure, the 𝜇-bounds are displayed
together with the worst-case parameter combinations. Down below, the singular values of the transfer and its worst-case are showcased.

𝜇3(𝜃) = max
𝜟𝑝

‖

‖

‖

1
𝛾𝐷𝑀

𝐶𝐿(𝜃,𝜟𝑝)p̃→WPMA
u

‖

‖

‖∞
. (20)

For the 𝑖 = 1, 2, 3 and for the 𝑁𝜏 values of 𝜏 (or 𝜃), these 𝜇-analysis problems 𝜇𝑖(𝜃) are solved by means of the wcgain routine
in MATLAB®’s Robust Control Toolbox [30]. This function provides an upper bound 𝜇𝑖(𝜃) and a lower bound 𝜇

𝑖
(𝜃) of 𝜇𝑖(𝜃). The

orst-case parametric configuration is associated to this lower bound. The function also returns the critical frequency where the
orst gain occurs. The worst-case performances and the associated worst-case parametric combinations are summarized in Table 5.
ne can check that the gaps between the upper bounds and the lower bounds are very small for the 3 transfers of interest showing

hat the worst-case performance is accurately evaluated. The hard constraints for the pointing performance (𝑖 = 1) and the PMAs
isplacements (𝑖 = 2) are thus validated on the full order model. The hard constraint on the disc margin (𝑖 = 3) is slightly above 1
ut can be considered as satisfying.

In Fig. 17 a complete representation on the worst-case analysis results is presented for the main transfer of interest, i.e. the
ointing performance (𝜇1(𝜃)), in terms of its 𝜇-bounds as a function of 𝜃, the frequency-domain response and the worst case
arameter combination. It can be seen that the 𝜇 analysis identified the two bounds close to each other and always with a value
elow the unity, successfully validating the robustness of the design. Moreover, it can be remarked that the bounds show a visible
rend, which justifies the choice of a relative low number of 𝑁𝜏 for this analysis. Furthermore, the study of the singular value
esponses reveals that the worst-case frequency response of the system remains always below requirement.

. Conclusions

This paper aimed at introducing new analytical tools to model large complex truss structures for space applications in the
ITOP/NINOP framework with the specific objective of developing models for structure/control co-design and robust analysis and
ontrol. A series of 2D mechanisms block has been introduced to build a unitary 3D cubic element which serves as a building
18
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Table 6
Spacecraft mechanical characteristics.

Parameter Description Value & Uncertainty

Spacecraft 𝑆∕𝐶
𝑃1 Spacecraft C.o.G. [0, 0, 0] m

𝑀𝑆𝐶 Mass 800 kg ± 20%
⎡

⎢

⎢

⎢

⎢

⎣

𝐼𝑥𝑥𝑆𝐶 𝐼𝑥𝑦𝑆𝐶 𝐼𝑥𝑧𝑆𝐶
𝐼𝑦𝑦𝑆𝐶 𝐼𝑦𝑧𝑆𝐶

𝐼𝑧𝑧𝑆𝐶

⎤

⎥

⎥

⎥

⎥

⎦

Inertia in 𝑆𝐶 frame

⎡

⎢

⎢

⎢

⎢

⎣

1000 0 0

1000 ± 20% 0

200

⎤

⎥

⎥

⎥

⎥

⎦

kg m2

Solar Panels 𝑆𝑃

r𝑆𝑃𝑂𝐺 Solar panel C.o.G. in 𝑆𝑃 [0; −2; 0.03] m

𝑀𝑆𝑃 1
Mass 80 kg

⎡

⎢

⎢

⎢

⎢

⎣

𝐼𝑥𝑥𝑆𝑃 𝐼𝑥𝑦𝑆𝑃 𝐼𝑥𝑧𝑆𝑃
𝐼𝑦𝑦𝑆𝑃 𝐼𝑦𝑧𝑆𝑃

𝐼𝑧𝑧𝑆𝑃

⎤

⎥

⎥

⎥

⎥

⎦

Inertia in 𝑆𝑃

⎡

⎢

⎢

⎢

⎢

⎣

80 0 −0.1

20 22

100

⎤

⎥

⎥

⎥

⎥

⎦

kg m2

[𝜔1𝑆𝑃 , 𝜔2𝑆𝑃 , 𝜔3𝑆𝑃 ] Flexible modes’ frequencies [2.51 ± 20%, 3.77, 9.42] rad∕s

[𝜉1𝑆𝑃 , 𝜉2𝑆𝑃 , 𝜉3𝑆𝑃 ] Flexible modes’ damping 0.003

L𝑆𝑃 Modal participation factors

⎡

⎢

⎢

⎢

⎢

⎣

−0.002 −1.5 −5 14 0.02 −0.01

5 1 −0.1 0 2 15

0.3 0.002 0.03 −0.02 3.2 −0.2

⎤

⎥

⎥

⎥

⎥

⎦

HPP Antenna 𝐴𝑁𝑇
𝑀𝐴𝑁𝑇 Mass 20 kg
⎡

⎢

⎢

⎢

⎢

⎣

𝐼𝑥𝑥𝐴𝑁𝑇
𝐼𝑥𝑦𝐴𝑁𝑇

𝐼𝑥𝑧𝐴𝑁𝑇

𝐼𝑦𝑦𝐴𝑁𝑇
𝐼𝑦𝑧𝐴𝑁𝑇

𝐼𝑧𝑧𝐴𝑁𝑇

⎤

⎥

⎥

⎥

⎥

⎦

Inertia in 

⎡

⎢

⎢

⎢

⎢

⎣

1.32 0 0

1.32 0

2.5

⎤

⎥

⎥

⎥

⎥

⎦

kg m2

PMAs

𝑀𝐵 Casing mass 0.5 kg
⎡

⎢

⎢

⎢

⎢

⎣

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑦𝑦 𝐼𝑦𝑧

𝐼𝑧𝑧

⎤

⎥

⎥

⎥

⎥

⎦

Casing Inertia in the PMA frame at 𝐺

⎡

⎢

⎢

⎢

⎢

⎣

5𝑒 − 3 0 0

5𝑒 − 3 0

1.6𝑒 − 4

⎤

⎥

⎥

⎥

⎥

⎦

kg m2

r𝑃𝑀𝐴
0𝐺 PMA C.o.G. in  [0; 0.05; 0] m

r𝑃𝑀𝐴
0𝑃 PMA connection point in  [0; 0; 0] m

v Spring–damper direction in  [0; 1; 0] m

𝑚𝑝 Proof mass 0.1 kg

𝑘𝑝 Spring stiffness 10 N∕m

𝑑𝑝 Damper 1.4 Ns∕m

composed by a high number of beam elements can be easily assembled by using blocks of decreasing complexity. In addition, a full
validation campaign by comparison with Nastran validated the representativeness of these models.

A case study was then introduced to represent the strengths of the TITOP/NINOP approach in performing robust structure/control
o-design in presence of parametric uncertainties. A complex 3D truss structure was built using the previously introduced cube
lements and attached to a spacecraft to act as support for an high precision antenna. The objective of the co-design was to reduce
he structural mass of the system while satisfying a fine pointing requirement. This study case highlighted the potential of these
nalytical blocks in performing complex multi disciplinary optimization problems. The direct co-design using structured 𝐻∞ control

synthesis allowed for computational cost reduction and brought to a mass saving of almost 76% of the original structural mass,
while coping with stringent pointing performances and a large set of uncertainties in the mechanical design parameters. The main
conclusion of this work is that it is possible to develop knowledge-based models for complex truss structures with an analytical
dependence on the sizing, variable or uncertain parameters. These models can be directly used for robust design, robustness analysis
or parametric optimization, thus simplifying model uncertainty quantification and model reduction in the overall control/structure
integrated design process.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Appendix
19

See Tables 6 and 7.



Mechanical Systems and Signal Processing 180 (2022) 109427A. Finozzi et al.
Table 7
Definition of connection points for the spacecraft sub-systems in the spacecraft reference frame 𝑆𝐶 (𝑃1 , 𝑥, 𝑦, 𝑧).

Description Point Coordinates Unit Description Point Coordinates Unit

𝑇𝑠𝑡𝑟 connection to 𝑆∕𝐶 at Node 1 𝑃2 [−0.5, −0.5, 1] m 𝑇𝑠𝑡𝑟 connection to 𝑆∕𝐶 at Node 4 𝑃5 [−0.5, 0.5, 1] m
𝑇𝑠𝑡𝑟 connection to 𝑆∕𝐶 at Node 2 𝑃3 [0.5, −0.5, 1] m Solar Panel 1 𝑆𝑃1 connection to 𝑆∕𝐶 𝑃6 [1, 0, 0] m
𝑇𝑠𝑡𝑟 connection to 𝑆∕𝐶 at Node 3 𝑃4 [0.5, 0.5, 1] m Solar Panel 2 𝑆𝑃2 connection to 𝑆∕𝐶 𝑃7 [−1, 0, 0] m
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