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Introduction: An engineering system consists of properly established activities and is put together to
achieve a predefined goal. These activities include analysis, design, construction, research, and develop-
ment. Designing and assembling structural systems, including buildings, bridges, highways, and other
complex systems, have been developed over centuries. However, the evolution of these systems has been
prolonged because the overall process is very costly and time-consuming, requiring primary human and
material resources to be utilized. One of the options for overcoming these shortcomings is the use of
metaheuristic algorithms as recently developed intelligent techniques. These algorithms can be utilized
as upper-level search techniques for optimization procedures to achieve better results.
Objectives: Shape and size optimization of truss structures are considered in this paper, utilizing the
Chaos Game Optimization (CGO) as one of the recently developed metaheuristic algorithms. The princi-
ples of chaos theory and fractal configuration are considered inspirational concepts. For the numerical
purpose, the 10-bar, 37-bar, 52-bar, 72-bar, and 120-bar truss structures as five of the benchmark prob-
lems in this field are considered as design examples in which the frequency constraints are considered as
limits that have to be dealt with during the optimization procedure. Multiple optimization runs are also
conducted for having a comprehensive statistical analysis, while a comparative investigation is also con-
ducted with other algorithms in the literature.
Results: Based on the results of the CGO and other approaches from the literature, the CGO can provide
better and competitive results in dealing with the considered truss design problems.
Conclusion: In summary, the CGO can provide better solutions in dealing with the considered real-size
structural design problems with higher levels of complexity.
� 2022 Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Over the past decades, human beings have put so much effort
into maximizing the use of limited available resources. For exam-
ple, one challenge is selecting design variables to consider design
constraints in engineering designs and having the lowest constric-
tion and material costs. In fact, the main goal is to properly meet
the basic and advanced design standards by considering the pro-
ject’s economic aspects. Recent advances in structural engineering
reveal the need to consider greater accuracy, better performance,
and higher construction speeds in the design of structural systems.
Therefore, to address each of the above factors it is necessary to
introduce new methods for design and optimization and imple-
ment them on complex and real-world systems. Optimization
problems normally search for the minimum values of a cost func-
tion to systematically select the values for the variables that lead to
the lowest cost. Metaheuristic algorithms are optimization meth-
ods that combine global and local search techniques to get the
answers as close as possible to the optimal answer. Indeed, meta-
heuristic algorithms are types of approximate optimization algo-
rithms capable of providing acceptable solutions and avoiding
entrapment in local optimal points. Firefly Algorithm (FA) [1],
Genetic Algorithm (GA) [2], Material Generation Algorithm
(MGA) [3], Cuckoo Search Algorithm (CSA) [4], Chaos Game Opti-
mization (CGO) [5,6], Slime Mould Algorithm (SMA) [7], Atomic
Orbital Search (AOS) [8], Particle Swarm Optimizer (PSO) [9], and
Crystal Structure Algorithm (CSA) [10] are some of the recently
developed metaheuristic algorithms. Nevertheless, the application
of these algorithms alongside the improved or hybrid versions has
been investigated in different fields. Investigation of Lévy flight
distribution for engineering optimization [11], optimum design
of engineering problems with dynamic differential annealed opti-
mization [12], optimum design of reinforced concrete footings
with metaheuristic algorithms [13], investigation of nature-
inspired algorithms for getting of bridge scour information [14],
performance assessments of an artificial bee colony in optimal
design of steel skeletal structures [15], design optimization of rein-
forced concrete building structures with metaheuristics [16], and
estimation of solar photovoltaic cell parameters with a new
stochastic slime mould metaheuristic algorithm [17], are some of
the recent researches in this field.

Designing a well-established system is an iterative procedure in
which the designer’s experience, understanding, and artistry are
essential for designing systems with better performance in most
engineering fields. The iterative procedure aims to analyze several
experimental systems one by one before an acceptable design can
be obtained. Engineers strive to design the best systems, while the
meaning of ‘best’ for different systems varies according to their
characteristics. In general, the best system is a less expensive, more
efficient, more reliable, and more durable system. In recent dec-
ades, these goals have been accomplished by utilizing metaheuris-
tic algorithms in design procedures in which an iterative
optimization procedure is conducted to achieve a system with bet-
ter performance. Xia, Zhang, Xia and Shi [18] utilized a bi-
directional evolutionary strategy for structural topology optimiza-
tion of stress-based structures. Abd Elrehim, Eid and Sayed [19]
investigated the optimization of concrete structural systems,
including the arch bridges through the GAs. Ho-Huu, Hartjes, Vis-
ser and Curran [20] developed a multi-objective optimization algo-
rithm for structural optimization purposes. Sakata, Suzuki and Ben
[21] utilized GA as an intelligent technique for optimum design of
structural CFRP isogrid cylindrical shell systems. Brütting, Sena-
tore, Schevenels and Fivet [22] developed mixed-integer linear
programming for the optimal design of frame structures with stock
constraints. Aydogdu, Carbas and Akin [23] discussed the overall
2

efficiencies of Levy Flight as a stochastic procedure for perfor-
mance improvements of the metaheuristic algorithms in structural
optimization. Artar and Daloglu [24] utilized the Jaya algorithm to
optimize steel space truss towers by considering the seismic
effects. Fenu, Marano, Congiu and Briseghella [25] investigated
the optimum design of an arched truss by applying horizontal
and vertical multi-load cases. Kok, Lau, Phan and Ting [26] used
GA for optimum steel residential roof truss design with cold-
formed sections. Li and Xu [27] developed an improved wolf pack
algorithm to optimize truss structures. Some of the recent chal-
lenges in the structural optimization area are modified subpopula-
tion teaching–learning-based algorithms for topology optimization
of truss problems [28], optimum structural design by the adaptive
version of the symbiotic organisms search (SOS) method [29],
topology optimization with different metaheuristics [30], Struc-
tural Optimization with plasma generation optimizer [31],and
some other research [32–38]. Furthermore, some studies have con-
sidered this method in medicine. Jajarmi, Baleanu, Zarghami Vahid
and Mobayen [39] examined immunogenic tumor dynamics’
asymptotic behavior using a novel fractional model, which was
built using the general fractional operators approach. The fulfill-
ment of the control goal, according to the authors, is corroborated
by certain simulation findings since the controlled variables follow
the tumor-free steady state in all actual scenarios. Baleanu, Zibaei,
Namjoo and Jajarmi [40] proposed and investigated a new frac-
tional chaotic system with quadratic and cubic nonlinearities. To
build the novel model and explore its chaotic behavior in both
the time domain and the phase plane, the authors used an efficient
nonstandard finite difference (NSFD) approach. In another study,
Baleanu, Hassan Abadi, Jajarmi, Zarghami Vahid and Nieto [41]
made an introduction for the COVID-19 pandemic where a broader
version of fractional models was developed, which included the
impacts of isolation and quarantine. Based on the findings, the
authors concluded that a specific instance of the general fractional
formula fit the actual data better than the other classical and frac-
tional models.

In this paper, shape and size optimization of truss structures are
considered through the Chaos Game Optimization (CGO) as one of
the recently developed metaheuristic algorithms by Talatahari and
Azizi [6]. The principles of chaos theory and the configuration of
fractals are utilized as inspirational concepts. Metaheuristic algo-
rithms have been utilized for optimization purposes in various
areas, but the capability of these metaheuristics is entirely depen-
dent on the preciseness of the mathematical presentation of the
considered system problems. In most cases, the metaheuristic
algorithms require a proper definition of the supposed problem,
including a clear mathematical formulation. So considering these
algorithms for optimum design purposes will lead to appropriate
optimum design if the experts can interpret the system problem
and implement it in the optimization problem. However a proper
selection of the metaheuristic algorithm is another issue. Most of
the time, the optimum results are unsatisfactory because the
selected metaheuristic algorithm is not well-formulated and is
unable to conduct query through the search space. To summarize,
the applicability of the metaheuristic algorithms in different prob-
lems could be deemed as a primary challenge by means of these
two aspects that should be selected and determined wisely. Since
most of the novel optimization algorithms are evaluated through
mathematical test problems and simple engineering design, the
capability of these methods should be assessed in dealing with
complex optimization problems to have a better perspective on
the overall capability of the algorithm. In this regard, the applica-
bility of the CGO is evaluated in dealing with truss optimization
problems. For the numerical purpose, the 10-bar, 37-bar, 52-bar,
72-bar, and 120-bar truss structures as five of the benchmark prob-
lems in this field are considered design examples. The frequency
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constraints are considered limits that must be dealt with during
the optimization procedure. Multiple optimization runs are also
conducted for having a comprehensive statistical analysis, while
a comparative investigation is also conducted with other algo-
rithms in the literature. The purpose of this paper is to evaluate
the feasibility of using the CGO algorithm in dealing with intricate
optimization problems such as the optimum design of truss struc-
tures, which due to the novelty of this algorithm, has not been used
by researchers in recent years.

The rest of the paper is divided into the following sections. In
section 2, the inspiration and mathematical model of the CGO algo-
rithm are presented, and also the problem statement of the study is
indicated in section 3. In sections 4 and 5, design examples, includ-
ing 10, 37, 52, 72, 120-bar truss structures, alongside numerical
investigations of the mentioned structures are illustrated. Finally
in section 6, the core findings of this study are presented as con-
cluding remarks.

Chaos Game optimization (CGO)

As one of the main branches of mathematics, chaos theory con-
cerns the investigation of dynamic systems in which chaotic and
unordered states are seemingly random, but in practice are gov-
erned by hidden patterns and definite rules with higher levels of
sensitivity to the preliminary conditions of the considered system.
Chaos theory refers to an interdisciplinary branch that states the
interconnections, feedback loops, patterns, repetition, fractals,
self-similarity, and self-organization in complex systems regard-
less of the apparent randomness in the general aspects of these
systems. The butterfly effect is one of the basic principles of chaos
theory, which denotes how small changes in a definite, nonlinear
complex system can lead to significant differences in other subsys-
tems. A metaphor for this behavior is a butterfly flying in Texas
that could create a storm in China.

A fractal is a geometric structure obtained by enlarging each
part of a structure in a predefined proportion to the original struc-
ture. Alternatively, a fractal is a structure with the same configura-
tion as the whole and is seen the same from both far and near,
which is called self-similarity. A Sierpiński fractal is generally an
equilateral triangle that is inversely divided into smaller equilat-
eral triangles. This fractal is one of the basic examples of the self-
similar set, and it is named in honor of Polish mathematician Sier-
piński. However, it was used as a decorative pattern centuries
earlier.

The CGO is mathematically formulated based on the self-
similarity aspects of fractals in chaos theory and the general
aspects of generating the Sierpiński triangle. First, an initialization
procedure is configured as follows by determining the solution
candidates’ initial positions (Xi) inside the predefined search space,
which is assumed to be a Sierpiński triangle:
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;

i ¼ 1;2; � � � ;n:
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ð2Þ
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where d is the problem’s dimension; n is the total number of
initialized candidates inside the search space (Sierpinski triangle);

xjið0Þ is the jth design variable in the ith point inside search space;

xji;min and xji;max denote the lower and upper bounds of the decision
variables; rand represents a randomly created number in the range
of [0,1].

The leading search loop of the CGO is configured by considering
that the initially created points are moved to change their positions
to achieve the complete shape of a Sierpinski triangle. For this pur-
pose, each of the points or solution candidates inside the triangle is
joined by two other points to form a temporary triangle. These
points are the Global Best (GB) vector which represents the best
solution candidate found in the search space so far, and the Mean
Group (MGi) which is achieved by considering the means of a
bunch of points selected randomly near the considered solution
candidate (ith point).

For each of the temporary triangles inside the search space, a
position updating process is conducted by employing three indi-
vidual seeds positioned in the three points of the triangles. For
the seed positioned in the point of ith candidate (Xi), a dice is uti-
lized with three red and three green faces. When the dice is rolled,
if the green face is shown, the seed is moved towards the global
best solution as GB while for the red face, a movement towards
the ith mean group as MGi is determined. This aspect is mathemat-
ically modeled by generating two random integers between 0 and
1 in which the possibility of generating two equal integers is also
determined ,so the seed can also move along the connected line
between the GB and MGi. This aspect is shown in Fig. 1.a while
the mathematical representation is as follows:

Seed1
i ¼ Xi þ ai � bi � GB� ci �MGi

� �
; i ¼ 1;2; � � � ;n: ð3Þ

where Seed1
i is the seed positioned in the point of ith solution

candidate; GB represents the global best; MGi represents the ith
candidate’s mean group; ai is the movement limitation factor; bi,
and ci are vectors including randomly created numbers in the
range of [0, 1].

For the seed positioned in the point of the global best solution
as GB, a dice is utilized with three red and three blue faces. When
the dice is rolled, if the blue face is shown, the seed is moved
towards the ith candidate (Xi) while for the red face, a movement
towards the ith mean group as MGi is determined. By considering
the possibility of generating two equal integers, the seed can also
move along the connected line between the Xi andMGi. This aspect
is shown in Fig. 1.b while the mathematical representation is as
follows:

Seed2
i ¼ GBþ ai � bi � Xi � ci �MGi

� �
; i ¼ 1;2; � � � ;n: ð4Þ

where Seed2
i is the seed positioned in the point of GB as the glo-

bal best; MGi represents the ith candidate’s mean group (Xi); ai is
the movement limitation factor; bi, and ci are vectors including
randomly created numbers in the range of [0, 1].

For the seed positioned in the point of the mean group as MGi, a
dice is utilized with three blue and three green faces. When the
dice is rolled, if the blue face is shown, the seed is moved towards
the ith candidate (Xi) while for the green face, a movement towards
the GB is determined. By considering the possibility of generating
two equal integers, the seed can also move along the connected
line between the Xi and GB. This aspect is shown in Fig. 1.c while
the mathematical representation is as follows:

Seed3
i ¼ MGi þ ai � bi � Xi � ci � GBð Þ; i ¼ 1;2; � � � ;n: ð5Þ



Fig. 1. Position updating process for the temporary triangles [6].
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where Seed3
i is the seed positioned at the point of MGi as the ith

candidate’s mean group (Xi); GB is the global best; ai is the move-
ment limitation factor; bi, and ci are vectors including randomly
created numbers in the range of [0, 1].

To enhance the mutation phase of the CGO a fourth seed is con-
sidered, which is deemed for position updating purposes posi-
tioned in the point of the ith candidate (Xi) and is moved
randomly and freely in the search space. This aspect is shown in
Fig. 1.d while the mathematical representation is as follows:
Seed4
i ¼ Xi xki ¼ xki þ R

� �
; k ¼ ½1;2; � � � ;d�: ð6Þ

where Seed4
i is the seed positioned in the point of ith candidate

(Xi); R is a vector with random numbers in the range of [0, 1].
The movement limitation factor as ai is delicately implemented

into the position updating process to tune the exploration and
exploitation rate of the CGO, which is determined randomly by
choosing one of the following scenarios:
ai ¼

Rand
2� Rand

d� Randð Þ þ 1
e� Randð Þ þ ð eÞ

8>>><
>>>:

ð7Þ

where Rand represent a random number which is distributed
uniformly in the range of [0,1]; d and e are two random integers
in the range of [0,1].
4

Problem statement

In this section, the general formulation of the structural design
optimization problems is presented in which a weight minimiza-
tion procedure is conducted by considering the frequency design
constraints. For objective function, the overall weight of the struc-
ture is determined. At the same time, the cross-sectional areas of
the structural elements are considered as the design variables in
size optimization problems, and the nodal coordinates of struc-
tures are determined as the design variables in the shape optimiza-
tion problems. In the problems in which the shape and size
optimization procedures are considered simultaneously, both of
these aspects are utilized as decision variables in the structural
optimization procedure. The aspects are mathematically formu-
lated as follows:

Weight A;Xð Þ ¼
Xe

i¼1

qiLi xið ÞAi; i ¼ 1;2; � � � ;n: ð8Þ

xj � x�
j ; j ¼ 1;2; � � � ;p: ð9Þ

xk 	 x�
k; k ¼ 1;2; � � � ; p: ð10Þ

Alow
l 	 Al 	 Aup

l ; l ¼ 1;2; � � � ;n: ð11Þ

xlowm 	 xm 	 xupm ;m ¼ 1;2; � � � ; r: ð12Þ
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where A represents a vector including the design variables for
the cross-sectional areas of the structural elements with a total
number of n structural elements;X represents a vector including
the design variables for the nodal coordinates of the structure with
a total number of r nodes; qi is the density of the utilized material;
Li is the length of the structural elements;xj andxk are the jth and
kth natural frequency of the structure with a total number of p fre-
quencies; x�

j and x�
k are the lower bound and upper bound of the

jth and kth natural frequency of the structure, respectively;Alow
l and

Aup
l are the lower bound and upper bound of the design variables

regarding the cross-sectional area of the lth member (Al), respec-
tively;xlowm and xupm are the lower and upper bounds of the design
variables for nodal coordinates of the mth node (xm) in the struc-
ture, respectively.

Since structural design optimization is a constraint optimiza-
tion problem, a well-defined constraint handling approach should
be utilized for conducting the optimization procedure. For this pur-
pose, the penalty constraint handling method is utilized in this
paper with a penalty function as follows:

f penalty Að Þ ¼ ð1þ e1:vÞe2 �WeigthðA;XÞ ð13Þ

v ¼
Xq

i¼1

max 0; giðA;XÞf g ð14Þ

where v is the summation of the violated design constraints; q
represents the total number of design constraints; e1 and e2
denotes the control values for determining the penalty value dur-
ing the process of optimization; and giðAÞ represents the ith design
constraint.

As presented in Eqs. (13) and (14), the penalty handling con-
straint method is utilized in this paper for constraint handling pur-
poses, in which a summation of inequality constraint is considered.
So multiple natural frequency constraints are determined in this
paper by means of doing a summation for the supposed first five
natural frequency of the structure.
Design examples

10-bar truss structure

This truss structure is the first size optimization problem in this
paper which has ten members and six nodes with constraint limi-
tations of 7, 15, and 20 Hz for the first three natural frequencies of
the structure. 6.89 � 1010N/m2 is considered as the modulus of
elasticity, and the density of the utilized steel material is
2770 kg/m3. The lower bound for the structural elements’ cross-
sectional area is set to 0.645 � 10-4 m2, while the upper bound is
determined as 50 � 10-4 m2. The added mass to the free nodes is
454 kg. The schematic view of this structure is illustrated in
Fig. 2.a.

37-bar truss structure

The second design example in this paper is a truss structure
with 37 structural members and 20 nodes in which a simultaneous
process of size and shape optimization in the structure is consid-
ered. The modulus of elasticity for the material is set to
2.1 � 1011N/m2, and the density of the utilized steel material is
7800 kg/m3. The lower bound for the structural elements’ cross-
sectional area is set to 0.0001 m2, while the upper bound is deter-
mined as 0.001 m2. The added mass to the free nodes is 10 kg. The
constraint limitations of 20, 40, and 60 Hz for the first three natural
frequencies of the structure are considered, while a total number of
19 design variables are determined for size the (14) and shape (5)
5

optimization of the structure. The schematic view of this structure
is illustrated in Fig. 2.b.

52-bar truss structure

This design example is the second shape and size optimization
problem in this paper, which has 52 structural members and 21
nodes. The optimization processes are conducted simultaneously
by considering five shape and eight sizing design variables. All of
the free nodes in the structure are free to move within a maximum
allowable tolerance of ± 2 m, while the constraint limitations of
15.961 and 28.648 Hz for the first two natural frequencies of the
structure are considered. The modulus of elasticity is
2.1 � 1011N/m2, and the density of the utilized steel material is
7800 kg/m3. The lower bound is set to 0.0001 m2 and the upper
bound is determined as 0.001 m2 for the cross-sectional area of
the structural elements, while the added mass to the free nodes
is 50 kg. The schematic view of this structure is illustrated in
Fig. 2.c.

72-bar truss structure

This truss structure is the next size optimization problem in this
paper which has 72 members and 20 nodes with constraint limita-
tions of 4 and 6 Hz for the first and third natural frequencies of the
structure. 6.89 � 1010N/m2 is determined as the modulus of elas-
ticity, while the density of the utilized steel material is 2770 kg/
m3. The lower bound is set to 0.645 � 10-4 m2 while the upper
bound for the cross-sectional area of the structural elements is
20� 10-4 m2. The added mass to the four top nodes of the structure
is 2270 kg. The schematic view of this structure is illustrated in
Fig. 2.d.

120-bar truss structure

The 120-bar truss problem is one of the complex size optimiza-
tion problems in which node 1 has non-structural masses of
3000 kg, nodes 2 to 13 have 1500 kg, and 100 kg is determined
for the rest of the nodes. The constraint limitations of 9 and
11 Hz are considered for the first two natural frequencies of the
structure. 2.1 � 1011N/m2 is set as the modulus of elasticity, and
the density of the utilized steel material is set to 7971.81 kg/m3.
The lower bound for the cross-sectional area of the structural
members is set to 0.0001 m2, while the upper bound is considered
0.01293 m2. The complete description of the loading scenario and
other characteristics of this problem are provided in the literature,
and the schematic view of this structure is illustrated in Fig. 2.e.

Numerical investigations

The specific structural details of the considered truss design
problems are presented in this section alongside the best results
and convergence histories of the optimization procedures. For sta-
tistical purposes, 30 independent optimization runs are conducted
in each case. The results of the CGO are compared with other meta-
heuristic approaches in the literature for having a valid judgment.

10-bar truss structure

The convergence history of the CGO in dealing with the 10-bar
truss design example is illustrated in Fig. 3.a, where the conver-
gence curves for the best and worst optimization runs alongside
the mean of 30 independent runs.

In table 1, the best results of the CGO and other metaheuristic
approaches regarding the conducted multiple optimization runs,



Fig. 2. Schematic presentation of the considered truss design examples.
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optimum design variables, and the statistical results for the 10-bar
truss problem are presented. The CGO can reach 524.4545 kg,
which is better than the previously calculated weights of
524.4627 kg by Ho-Huu, Vo-Duy, Luu-Van, Le-Anh and Nguyen-
Thoi [42] utilizing the Improved Differential Evolution (IDE) algo-
rithm. The CGO can provide 524.5099 kg as the mean of 30 inde-
pendent runs with 524.7488 kg as the worst run, which are the
best statistical results among other approaches.

Based on the fact that frequency constraints have to be satisfied
during the truss optimization process, the first five natural fre-
quencies of the CGO presented in Table 1 are derived from the best
6

results of 30 conducted optimization runs. The results of other
algorithms have also been provided from the literature. The capa-
bility of the CGO satisfying the constraints alongside other meth-
ods is demonstrated by considering the constraint limitations of
7, 15, and 20 Hz for the first three natural frequencies of the
structure.

37-bar truss structure

In Fig. 3.b, the convergence results of the CGO are presented
considering the 37-bar truss design example. In this figure, the best



(e) 

(f) 

(g)

0

2

66

4

44

6

22
00

-2-2
-4-4

-6-6

Fig. 2 (continued)

M. Azizi, U. Aickelin, H.A. Khorshidi et al. Journal of Advanced Research xxx (xxxx) xxx
and worst optimization runs alongside the means of multiple runs
are provided accordingly. Regarding the fact that a simultaneous
procedure of shape and size optimization is conducted in this prob-
lem, the final optimal shape of the structure is illustrated in Fig. 2.f
where the overall shape of the structure is different from the one
presented in Fig. 2.b.

The best results of CGO in dealing with the 37-bar truss prob-
lem are presented in Table 2, where 30 independent optimization
runs were conducted for comparative purposes. Furthermore the
results of other optimization methods are provided from the liter-
ature, while the statistical results are also presented to provide a
fair judgment in this case. Based on the results, the CGO provides
7

a best optimum weight of 359.7893 kg for this structure while
the other attempts in this case, such as IDE, calculate
359.8194 kg, which demonstrates the capability of the CGO. Addi-
tionally, the CGO can provide 359.8842 kg as the mean of 30 inde-
pendent runs with 360.0873 kg as the worst run, which are the
best statistical results among other approaches.

In Table 2, the first five natural frequencies of the 37-bar truss
problem are presented through the CGO and other literature
approaches for a better perspective on the design constraints. It
is obvious that the CGO is capable of satisfying these constraints
properly.



Fig. 3. Convergence history of CGO for 10-, 37-, 52-, 72- and 120-bar truss structures.

Table 1
Results of CGO and other approaches in dealing with the 10-bar truss problem.

Element Number Gomes [43] Miguel and Fadel Miguel [44] Kaveh and Zolghadr [45] Zuo et al. [46] Ho-Huu et al. [42] CGO

1 37.712 36.198 35.944 37.284 35.06057 35.1817
2 9.959 14.030 15.530 9.445 14.68508 14.6761
3 40.265 34.754 35.285 35.051 35.06875 35.0741
4 16.788 14.900 15.385 19.262 14.80946 14.6346
5 11.576 0.654 0.648 2.783 0.645136 0.6450
6 3.955 4.672 4.583 5.450 4.557799 4.5651
7 25.308 23.467 23.610 19.041 23.52708 23.8048
8 21.613 25.508 23.599 27.939 23.79982 23.7043
9 11.576 12.707 13.135 14.95 12.50381 12.3864
10 11.186 12.351 12.357 10.361 12.45989 12.4282
Weight (kg) 537.98 531.28 532.39 535.73 524.4627 524.4545
Worst weight (kg) – – – – 530.8448 524.7488
Average weight (kg) 540.89 535.07 537.8 – 525.6162 524.5099
Standard deviation 6.84 3.64 4.02 – 2.3041 0.0643
Frequency 1 7.0000 7.0002 7.0000 7.0007 7.0000 7.0000
Frequency 2 17.7860 16.1640 16.1870 17.030 16.1853 16.1896
Frequency 3 20.0000 20.0029 20.0000 20.156 20.0000 20.0000
Frequency 4 20.0630 20.0221 20.0210 – 20.0006 20.0001
Frequency 5 27.7760 28.5428 28.4700 – 28.5775 28.5625
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Table 2
Results of CGO and other approaches in dealing with the 37-bar truss problem.

Variables Lingyun et al. [47] Gomes [43] Kaveh and Zolghadr [45] Kaveh and Ghazaan [48] Ho-Huu et al. [42] Tejani et al. [49] CGO

Y3, Y19 1.1998 0.9637 0.9482 0.975 0.9564 0.9581 0.9494
Y5, Y17 1.6553 1.3978 1.3439 1.3577 1.3481 1.3614 1.3294
Y7, Y15 1.9652 1.5929 1.5043 1.5520 1.5308 1.5262 1.5149
Y9, Y13 2.0737 1.8812 1.6350 1.6920 1.6666 1.6429 1.6560
Y11 2.3050 2.0856 1.7182 1.7688 1.7402 1.7167 1.7281
A1, A27 2.8932 2.6797 2.6208 2.9652 2.8504 3.0754 2.9769
A2, A26 1.1201 1.1568 1.0397 1.0114 1.0043 1.0000 1.0000
A3, A24 1.0000 2.3476 1.0464 1.0090 1.0021 1.0001 1.0000
A4, A25 1.8655 1.7182 2.7163 2.4601 2.5221 2.7449 2.6348
A5, A23 1.5962 1.2751 1.0252 1.2300 1.2227 1.2446 1.1646
A6, A21 1.2642 1.4819 1.5081 1.2064 1.2618 1.2466 1.2288
A7, A22 1.8254 4.6850 2.3750 2.4245 2.5059 2.4648 2.5472
A8, A20 2.0009 1.1246 1.4498 1.4618 1.3466 1.3055 1.3477
A9, A18 1.9526 2.1214 1.4499 1.4328 1.5158 1.4983 1.5061
A10, A19 1.9705 3.8600 2.5327 2.5000 2.4482 2.5125 2.4786
A11, A17 1.8294 2.9817 1.2358 1.2319 1.2144 1.2255 1.2345
A12, A15 1.2358 1.2021 1.3528 1.3669 1.3663 1.2299 1.3295
A13, A16 1.4049 1.2563 2.9144 2.2801 2.4782 2.3904 2.4340
A14 1.0000 3.3276 1.0085 1.0011 1.0019 1.0025 1.0000
Weight (kg) 368.84 377.20 360.40 359.93 359.8194 359.9735 359.7893
Worst weight (kg) – – – – 360.3859 – 360.0873
Average weight (kg) – – – 360.23 359.9767 361.3068 359.8842
Standard deviation – – – 0.24 0.1473 1.0731 0.0662
Frequency 1 20.0013 20.0001 20.0194 20.0216 20.0001 20.0015 20.0000
Frequency 2 40.0305 40.0003 40.0113 40.0098 40.0037 40.0251 40.0012
Frequency 3 60.0000 60.0001 60.0082 60.0017 60.0001 60.1208 60.0000
Frequency 4 73.0444 73.0440 76.9896 76.7857 76.8632 76.4775 76.5596
Frequency 5 89.8244 89.8240 97.2222 96.3543 96.4625 95.9485 96.3753
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52-bar truss structure

The convergence results of CGO in dealing with the 52-bar truss
design example are provided in Fig. 3.c. The convergence histories
of the best and worst optimization runs alongside the mean of 30
independent runs are presented accordingly, to have a better sche-
matic perspective on the performance of the CGO in dealing with
this real-size optimization problem. Since the 52-bar truss problem
is a simultaneous shape and size optimization procedure, the final
optimum shape of the structure is demonstrated in Fig. 2.g in
which the overall shape of the structure is different from the one
presented in Fig. 2.c.
Table 3
Comparative results of CGO and other approaches in dealing with the 52-bar truss proble

Variables Lingyun et al. [47] Gomes
[43]

Kaveh and Ghazaan [48] M

ZA 5.8851 5.5344 5.9362
XB 1.7623 2.0885 2.2416
ZB 4.4091 3.9283 3.7309
XF 3.4406 4.0255 3.963
ZF 3.1874 2.4575 2.500
A1 1.0000 0.3696 1.0001
A2 2.1417 4.1912 1.1654
A3 1.4858 1.5123 1.2323
A4 1.4018 1.5620 1.4323
A5 1.9110 1.9154 1.3901
A6 1.0109 1.1315 1.0001
A7 1.4693 1.8233 1.6024
A8 2.1411 1.0904 1.4131
Weight (kg) 236.046 228.381 194.85 1
Worst weight (kg) – – –
Average weight (kg) – 234.3 196.85 2
Standard deviation – 5.22 2.38
Frequency 1 12.8100 12.7510 11.4339
Frequency 2 28.6500 28.6490 28.6480
Frequency 3 28.6500 28.6490 28.6480
Frequency 4 29.5400 28.8030 28.6482
Frequency 5 30.2400 29.2300 28.6848
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By conducting 30 independent optimization runs, the best and
statistical results of the CGO in dealing with the 52-bar truss prob-
lem are derived and presented in Table 3. Based on the results of
other algorithms from the literature, CGO can reach 193.1876 kg
which is the best among other approaches, while the IDE with
193.2085 kg is the following competitive result. The mean, worst,
and standard deviation of the conducted runs demonstrate that
CGO provides very stable results with a mean of 195.4586 kg and
a standard deviation of 3.8183.

The first five natural frequencies of the 52-bar truss problem are
presented in Table 3 for different methods alongside the CGO. It is
evident that the CGO is capable of satisfying these constraints
properly.
m.

iguel and Fadel Miguel [44] Ho-Huu et al. [42] Tejani et al. [49] CGO

6.4332 6.0052 5.8481 6.0139
2.2208 2.3004 2.2609 2.3007
3.9202 3.7332 3.7000 3.7397
4.0296 4.0000 5.8481 4.0000
2.5200 2.5000 3.9446 2.5000
1.0050 1.0001 2.5009 1.0000
1.3823 1.0875 1.0000 1.0821
1.2295 1.2135 1.1097 1.1977
1.2662 1.4460 1.2279 1.4358
1.4478 1.4315 1.5145 1.4150
1.0000 1.0000 1.4136 1.0000
1.5728 1.5623 1.0000 1.5713
1.4153 1.3724 1.6206 1.3863

97.53 193.2085 193.3465 193.1876
– 202.4215 – 202.2312

12.8 196.0478 212.7035 195.4586
17.98 4.1823 32.8481 3.8183
11.3119 11.6033 11.6331 11.6384
28.6529 28.6481 28.6492 28.6480
28.6529 28.6481 28.6492 28.6480
28.8030 28.6490 28.6495 28.6480
28.8030 28.6530 29.076 28.6482



Table 4
Results of CGO and other approaches in dealing with the 72-bar truss problem.

Variable Gomes
[43]

Kaveh and Zolghadr
[45]

Khatibinia and
Naseralavi [50]

Kaveh and Ghazaan
[48]

Ho-Huu et al.
[42]

Sedaghati
[51]

Tejani et al.
[49]

CGO

1–4 2.987 2.854 3.5142 3.3437 3.5863 3.499 3.3335 3.462923
5–12 7.849 8.301 7.9464 7.8688 7.8278 7.932 7.9054 7.849892
13–16 0.645 0.645 0.6450 0.6450 0.6450 0.645 0.6469 0.645
17–18 0.645 0.645 0.6450 0.6450 0.6450 0.645 0.6451 0.645
19–22 8.765 8.202 8.0641 8.1626 8.1052 8.056 7.9980 7.952499
23–30 8.153 7.043 8.0278 7.9502 7.8788 8.011 7.7682 7.9253
31–34 0.645 0.645 0.6450 0.6452 0.6451 0.645 0.6450 0.645
35–36 0.645 0.645 0.6450 0.6450 0.6450 0.645 0.6450 0.645
37–40 13.45 16.328 12.8493 12.2668 12.5157 12.812 12.8748 12.66778
41–48 8.073 8.299 8.0888 8.1845 8.0102 8.061 8.0855 7.974555
49–52 0.645 0.645 0.6450 0.6451 0.6450 0.645 0.6450 0.645
53–54 0.645 0.645 0.6450 0.6451 0.6452 0.645 0.6450 0.645017
55–58 16.684 15.048 17.317 17.9632 16.9997 17.279 17.0410 17.1044
59–66 8.159 8.268 8.1104 8.1292 8.0362 8.088 8.0003 8.001567
67–70 0.645 0.645 0.6450 0.6450 0.6451 0.645 0.6450 0.645
71–72 0.645 0.645 0.6450 0.6450 0.6453 0.645 0.6495 0.645
Weight (kg) 328.823 327.507 328.32 327.77 324.2441 327.605 324.3754 324.197
Worst weight

(kg)
– – – – 324.6444 – – 324.2064

Average weight
(kg)

– – 329.12 327.99 324.3379 – 325.7494 324.1981

Standard
deviation

– – 1.496 0.19 0.1023 – 0.9186 0.002176

Frequency 1 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0011 4.0000
Frequency 2 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0011 4.0000
Frequency 3 6.0000 6.0040 6.0000 6.0000 6.0000 6.0000 6.0003 6.0000
Frequency 4 6.2190 6.2491 6.2410 6.2300 6.2779 6.2470 6.2625 6.267403
Frequency 5 8.9760 8.9726 9.0680 9.0410 9.1120 9.0740 9.0871 9.099443
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72-bar truss structure

In Fig. 3.d, the convergence history of the CGO in dealing with
the 72-bar truss design example is illustrated by including the con-
vergence histories for the best and worst optimization runs along-
side the mean of 30 independent runs.

The best results of multiple optimization runs for the CGO and
other metaheuristic approaches are prepared in Table 4 for the 75-
bar truss problem. The statistical results alongside the optimum
design variables are also provided. The CGO can reach
324.197 kg, which is the best among other methods. The CGO
can also provide 324.1981 kg as the mean of 30 independent runs
with 324.2064 kg as the worst run, which are the best statistical
results among other approaches.

Based on the knowledge that frequency constraints have to be
satisfied during the truss optimization process, the first five natural
frequencies of the CGO are presented in table 4 and are derived
from the best results of 30 conducted optimization runs. Further-
more, the results of other algorithms have also been provided from
the literature. The capability of the CGO in satisfying the con-
straints alongside other methods is demonstrated by considering
the constraint limitations of 4 and 6 Hz for the first and third nat-
ural frequencies of the considered truss structure.
120-bar truss structure

The best, worst and mean convergence history of the CGO in
dealing with the 120-bar truss design example is presented in
Fig. 3.e, where the convergence curves for the mean of 30 indepen-
dent runs are also shown.

For the 120-bar truss problem, the best results of multiple opti-
mization runs for the CGO and other metaheuristic approaches are
provided in Table 5. Based on the obtained results, it can be con-
cluded that CGO performs a much better optimization process
and prepares 8707.2454 kg for the overall weight of this truss
structure. In contrast, the results of other approaches are higher
10
than this value. CGO also provides better statistical results, such
as the mean (8707.3689 kg) and standard deviation (0.1510).

The first five natural frequencies of the CGO and other methods
in dealing with the 120-bar truss problem are provided in table 5
for comparative purposes. The capability of the CGO in handling
the constraints is in perspective.
Conclusion

Shape and size optimization of different large-scale truss struc-
tures are considered in this paper using the Chaos Game Optimiza-
tion (CGO) as one of the recently proposed metaheuristic
optimization algorithms. In this algorithm, the principles of chaos
theory and the configuration of fractals are utilized as inspirational
concepts. For the numerical purpose, the 10-bar, 37-bar, 52-bar,
72-bar and 120-bar truss structures as five of the benchmark prob-
lems in this field are considered design examples, in which the fre-
quency constraints are considered as limits to be dealt with during
the optimization procedure. Multiple optimization runs are also
conducted for having a comprehensive statistical analysis, while
a comparative investigation is also performed with other algo-
rithms in the literature. Based on the results, the CGO can reach
524.4545 kg in dealing with the 10-bar truss problem, which is
better than the previously calculated weights. The CGO can provide
524.5099 kg as the mean of 30 independent runs with 524.7488 kg
as the worst run, which are the best statistical results among other
approaches for this structure. The CGO provides a best optimum
weight of 359.7893 kg for the 37-bar truss structure, while the
other attempts in this case, such as IDE, calculate 359.8194 kg,
which demonstrates the capability of the CGO. The CGO can pro-
vide 359.8842 kg as the mean of 30 independent runs with
360.0873 kg as the worst run, which are the best statistical results
among other approaches. Based on the results of other algorithms
from the literature for the 52-bar truss problem, CGO can reach
193.1876 kg which is the best among other approaches, while
the IDE with 193.2085 kg is the next competitive result. The mean,



Table 5
Results of CGO and other approaches in dealing with the 120-bar truss problem.

Element number Kaveh and
Zolghadr [45]

Khatibinia and
Naseralavi [50]

Kaveh and
Ghazaan [48]

Ho-Huu et al. [42] Tejani et al. [49] CGO

1 19.607 20.263 19.8905 19.4670 19.4486 19.5089
2 41.290 39.294 40.4045 40.5004 40.3949 40.3698
3 11.136 9.989 11.2057 10.6136 10.6921 10.6034
4 21.025 20.563 21.3768 21.1073 21.3139 21.1148
5 10.060 9.603 9.8669 9.8417 9.8943 9.8343
6 12.758 11.738 12.7200 11.7735 11.7810 11.7734
7 15.414 15.877 15.2236 14.8264 14.5979 14.8415
Weight (kg) 8,890.48 8,724.97 8,889.96 8,707.2898 8708.729 8,707.2454
Worst weight (kg) – – – 8,709.5109 – 8,707.8439
Average weight (kg) – 8,745.58 8,900.39 8,707.8147 8734.74 8,707.3689

Standard deviation – 1.183 6.38 0.5057 27.0503 0.1510
Frequency 1 9.0001 9.0020 9.0000 9.0000 9.0002 9.0000
Frequency 2 11.0007 11.0030 11.0000 11.0000 11.0000 11.0000
Frequency 3 11.0053 11.0030 11.0000 11.0000 11.0000 11.0000
Frequency 4 11.0129 11.0070 11.0100 11.0100 11.0006 11.0000
Frequency 5 11.0471 11.0760 11.0500 11.0669 11.0672 11.0669
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worst and standard deviation of the conducted runs demonstrate
that CGO provides very stable results with mean of 195.4586 kg
and standard deviation of 3.8183. The CGO can reach 324.197 kg
for the 72-bar truss structure, which is better than the results of
other methods.

In comparison, this algorithm can provide 324.1981 kg as mean
of 30 independent runs with 324.2064 kg as the worst run, which
are the best statistical results among other approaches. It can be
concluded that CGO performs a much better optimization process
and prepares 8707.2454 kg for the overall weight of the 120-bar
structure, while the results of other approaches are higher than
this value. CGO also provides better statistical results, including
the mean (8707.3689 kg) and standard deviation (0.1510). Finally,
it can be concluded that CGO as a well-formulated metaheuristic
algorithm can provide better and competitive results in dealing
with all of the considered design examples. For future challenges
however, the applicability of the CGO algorithm in different engi-
neering fields can be deemed, including the optimum design of
vibration control systems in buildings and other engineering struc-
tures. Furthermore, the standard formulation of the CGO algorithm
can be modified by implementing a plethora of improvement tech-
niques to the main loop of the CGO algorithm, including the differ-
ences between the discrete time concepts and continue time
concepts, that can be exchanged for enhancing the overall behavior
of this algorithm.
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