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A B S T R A C T

In order to obtain stable and realistic truss structures in practical applications, it is essential to include nodal and 
local buckling stability in truss topology optimization. There have been several approaches to address the 
challenges including nodal stability or local buckling stability. However, these approaches often lead to ill- 
conditioned optimization problems, such as convergence problems due to the concavity of the problem or 
high computational costs. In this study, two novel but conceptually simple methodologies, the nominal per
turbing force (NPF) approach, and the allowable stress iteration (ASI) approach, are proposed to address nodal 
instability and local buckling instability problems in truss topology optimization, respectively. Initially, in the 
NPF approach, an infinite number of disturbing forces that a node may suffer are incorporated into the truss 
topology optimization problem in the form of nominal perturbing force conditions, whose magnitude and di
rection are discussed to capture the worst case. In the ASI approach, the allowable stress for each compressive bar 
is redefined in each iteration to ensure that the Euler critical buckling constraint is active. In this way, the 
concave local buckling instability problem is linearized in each iteration and can be solved efficiently by a linear 
programming solver. Finally, based on the finite element limit analysis (FELA) method, a truss topology opti
mization formulation incorporating the NPF and ASI approaches is proposed to solve the nodal stability and local 
buckling stability problems simultaneously. The proposed formulation is demonstrated through several nu
merical examples showing significant effects of including nodal stability and local buckling stability in the 
optimized designs, while at the same time demonstrating the validity and potential of the proposed approaches.   

1. Introduction

The pin-jointed truss topology (or “layout”) optimization problem is
concerned with finding an optimal arrangement of structural bars sub
ject to prescribed constraints. A typical truss topology optimization 
problem might comprise a design domain containing an array of fixed 
nodal points connected by potential members, called the ground struc
ture [4,11,33,37,42]. The optimization objective might typically then be 
to minimize the total volume, mass [21,37], or compliance[28] of 
structure, with constraints ensuring that each node is in static equilib
rium and that bar stresses are within predefined limits [22,47,48]. The 
optimal cross-sectional areas for all the bars in the ground structure are 
then determined as part of the optimization process; typically, many of 
these will be zero, leaving the optimal topology comprising only of bars 
with non-zero cross-sectional areas[20]. 

Mathematically, the ground structure provides a feasible domain for 
the truss structure optimization problem. Typically, the truss topology 

optimization based on the ground structure method is mainly divided 
into four steps [19]. Firstly, as shown in Fig. 1a, the design domain with 
appropriate supports and loads is determined. Secondly, as shown in 
Fig. 1b, the nodes are arranged, usually evenly, to discrete the design 
domain. Thirdly, as shown in Fig. 1c, these nodes are connected with 
potential bars to generate the ground structure. Finally, as shown in 
Fig. 1d, some optimization algorithms are used to remove the redundant 
bars to generate the optimal structure. 

However, the optimized structure obtained by using the ground 
structure method always contains unstable nodes [12,49] within suc
cessive parallel compression bars, such as node N5 in Fig. 1d. When the 
unstable nodes are disturbed by external forces, it may lead to structural 
instability, which is not allowed in the structural design. 

In previous studies, lots of attempts had been made to solve the nodal 
instability problem. As shown in Fig. 2, an intuitive approach is to 
eliminate unstable nodes directly and then merge these consecutive bars 
into a single long bar whose length is equal to the sum of the lengths of 
the merged bars [1]. 
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However, as Rozvany [38] observed, the inclusion of local buckling 
in an optimization formulation means that any method which involves 
this approach is highly unlikely to obtain an optimal design. This is 
because the critical buckling strength of the longer merged bar will 
typically be significantly lower than those of any original parallel 
consecutive compression bars due to the longer length of the bars. As a 
result, the required cross-sectional area of the new generated long bar 
will need to be larger than any of the original bars, as shown in Fig. 2c. 
To avoid bar local buckling, it is usually necessary to increase the cross- 
section of the newly generated long bar, which may result in a less- 
optimized structure. In a similar vein, Smoekh and Kirsch [40] pro
posed an interactive iterative approach, whereby the analysis would 
identify mechanisms and insert additional members to stabilize unstable 
nodes. 

Another approach is to add constraints on the minimum number of 
active bars (two for planar trusses and three for spatial trusses) con
nected to the active nodes in the truss topology optimization problem 

[6,34]. The original intention of this approach is to add enough bracings 
to the unstable nodes to limit the node motion. However, in this 
approach, it may be neither guaranteed that all directions of freedom of 
the nodes are constrained nor that the bracings can provide sufficient 
support forces. 

The inclusion of a global elastic stability criterion [13,24,27] in the 
optimization algorithm can also, to some extent, solve the nodal stability 
problem in truss topology optimization, since the global stability of the 
structure requires nodal stability by default. However, due to the low 
computational efficiency of solving the semidefinite programming, only 
ground structures containing a relatively small number of bars can be 
solved in this way. 

Another approach is to include imperfections in the ground struc
ture, such as nodal displacements or forces generated in the optimiza
tion. The robust optimization method [2,32] is first be proposed to solve 
a problem in which all possible perturbing forces with a small given 
magnitude are applied to any or all nodes in the ground structure. The 

Nomenclature 

Nn Number of nodes 
d Dimension of Euclidean space 
Ns Number of supports 
Ndof Number of degrees of freedom of the nodes 
Nb Number of bars 
a Vector of cross-sectional areas 
l Vector of bar lengths 
B Equilibrium matrix 
qt Matrix of axial force 
ft Matrix of external loads 
fx Vector of nominal perturbing force along x-axis 
fy Vector of nominal perturbing force along y-axis 
dx Vector of bar cosines perpendicular to the x-axis 
dy Vector of bar cosines perpendicular to the y-axis 
fx
j Vector of nominal perturbing force along x-axis at node j 

fy
j Vector of nominal perturbing force along y-axis at node j 

V Volume of structure 
σ+ Limiting tensile yield stresses 
σ− Limiting compressive yield stresses 
r Nominal perturbing force coefficient 
Pcr

i Critical buckling load of the bar i 
I Second moment of inertia of cross sections 
E Young’s modulus of material 
σk

i Stress in the bar i at iteration k 
acr

i Critical buckling area of the bar i 
i truss bar 
t External load cases 
Vk Volume of structure at iteration k 
ε Volume convergence value 
fx Nominal perturbing force along x-axis 
fy Nominal perturbing force along y-axis 
M Number of external load cases  

(a) Design domain (b) Node arrangement

(c) Ground structure (d) Optimal structure
Note: The blue and red lines indicate the compression and tension bars, respectively.

Fig. 1. Optimization of truss structure based on ground structure method. Note: The blue and red lines indicate the compression and tension bars, respectively. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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disadvantage of this approach is that any node to which a perturbing 
force is applied must become part of the final optimized structure since 
the perturbing force must be constrained by bars or supports. However, 
usually, most nodes in the original ground structure will not be included 
in the final optimized structure. Consequently, Ben-Tal and Nemirovski 
[3] have proposed a two-stage approach, finding an optimized but un
stable structure firstly, then applying the perturbation forces to only 
those nodes which are active in this structure. However, whilst the 
method will obtain a properly stabilized solution, by only including the 
nodes identified in the first step, many considerably optimal solutions 
will be missed [41]. 

Another widely used method is the nominal lateral force (NLF) 
method [10,31,41], which is similar to the robust design optimization 
method, except that deterministic loadings are considered instead: the 
method adds to the primary loading cases some small occasional 
perturbation loadings called nominal force cases. The magnitude of 
these perturbation loadings is scaled by the braced compression forces in 
the consecutive compression bars, whose principle can be found in most 
practical design codes [7,18,17]. The NPF approach is first proposed in 
Winter’s method [43] for the design of steel columns and beams. Tyas 
and Gilbert [41] first introduced this method to the field of truss to
pology optimization and presented an optimization model for truss 
structures with constraints on stress and local buckling. To consider 
node displacements, Descamps and Coelho [10] introduced the nominal 
force method to simultaneous geometry and topology optimization and 
proposed an optimization model using mixed-integer programming. 
However, in order to apply nominal forces only at the unstable nodes 
within the compression bars, two variables are required to represent the 
axial force of any bar, which significantly increases the computational 
cost. Therefore, in order to improve the computational efficiency, the 
nominal perturbing force (NPF) method is proposed in this paper. 

The remainder of the paper is ordered as follows. Section 2 begins 
with the basic problem statement by using finite element limit analysis 
(FELA) formulation for truss topology optimization [23]. The NPF 
approach and the ASI method are then derived and adapted for nodal 
stability constraints and local buckling stability constraints, respec
tively, leading to the main contribution of this work: a novel FELA 
formulation for truss topology optimization incorporating stability 
considerations. In section 3, three numerical examples are presented to 
illustrate the applicability of the method. Finally, concluding remarks 
are given in Section 4 along with further prospects to improve the 
method. 

2. Truss topology optimization

For convenience, the structures studied in this section are plane
trusses defined by Nn nodal points and Nb bars. For spatial trusses, there 
is a similar derivation. The number of supports is denoted Ns and the 
number of degrees of freedom of the nodes is Ndof = d× Nn − Ns, where 
d = 2 for plane truss and d = 3 for special truss. The sectional area of the 
bar i is given as ai collected in a ∈ RNb×1. Similarly, the lengths of bars 
are collected in l ∈ RNb×1. Therefore, the volume of total truss is thus 
given by. 

V =
∑Nb

i=1
aili = aT l  

where V is the total volume of the structure, li is the length of the bar i. 

2.1. Finite element limit analysis 

The Finite element limit analysis (FELA) method [9,26,35] is based 
on the finite element method (FEA), as all variables, equations and in
equalities are either node or bar based. The material models in the FEA 
are simplified assuming a rigid behavior prior to plasticity, i.e., a perfect 
plastic material. However, the load-defection path is not determined, as 
no deformations occur before yielding. Moreover, unlimited deforma
tion capacity is assumed, only the collapse model is found, and small 
displacements are assumed. For more introduction to FELA, readers can 
refer to [9,25,35,36]. 

Therefore, based on the FELA method, the plastic formulation 
[14,15,46,45] for the minimized truss volume with nodal equilibrium 
and bar stress constraints subjected to M external load conditions can be 
formulated as. 

s.t.

min
a,q

V = aT l

Bqt = ft

− σ− ai⩽qt
i⩽σ+ai ai⩾0

t = 1, 2, ..., M, i = 1, 2, ..., Nb (1)  

where B ∈ RNdof×Nb is the equilibrium matrix, built from the directional 
cosines of the bars, qt ∈ RNb×M is a matrix containing the axial force for 
all bars under M external load conditions, and ft

∈ RNdof×M is a matrix 
containing the external loads, σ+ > 0 and σ− > 0 are limiting tensile and 
compressive yield stresses respectively, qt

i is the axial force of the bar i 
under loading case f t . 

The optimization variables are the cross-sectional areas in a and the 
internal force in q. It can be observed that the element in matrix B is 
determined by the positions and connectivity of the nodes in the ground 
structure. Therefore, the optimization formulation is a linear program
ming problem, which can be solved very efficiently by a state-of-the-art 
solver. 

2.2. Nominal perturbing force approach 

In order to address the nodal instability problem in the optimized 
structure, the novel NPF approach is proposed in this study. In the NPF 
approach, an infinite number of disturbing forces at nodes in the ground 
structure are incorporated into the truss topology optimization problem 
in the form of nominal perturbing force conditions, whose magnitude 
and direction will be determined in the following section. 

2.2.1. Magnitude of the nominal perturbing force 
A given node in a two-dimensional plane truss has a degree of 

freedom along each of two mutually orthogonal axes (for simplicity 
these will be assumed to be coincident with the usual Cartesian axes). 
Considering a single primary external load case, each of these axes is 
considered in turn with the sum of all the components of axil forces 
pushing onto the node normal to this axis being determined, and a 
nominal force taken as some specified proportion of this sum. 

Using the two-bar structure shown in Fig. 3 as an example, the 
nominal perturbing forces can be calculated from the following 
equation, 

(a) Initial structure (b) Modified structure (c) Final structure

Fig. 2. Remove unstable node method.  
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f +y = f −y =
1
2

r
∑mj

i=1
qidx

i (2) 

where f+y and f −y are two nominal perturbing force conditions at node 
N2 in the same and opposite directions to the y-axis, respectively, mj is 
the number of bars connected to node j, dx

i is the direction cosine of the 
bar i relative to the x-axis, r is the nominal perturbing force coefficient, 
which reflects the ratio of the magnitude of the bracing force to the axial 
force of the braced bars. In this paper, the nominal perturbing force 
calculated by using formula (2) is called calculated nominal force. 

The magnitude of the perturbing force required to stabilize the in
ternal nodes within compressive bars has been studied for half a century. 
In the 1960 s, Winter [43] first determined the influence of the stiffness 
of the bracing on the determination of the bracing forces. However, as 
Yura [44] pointed out, the magnitude of the bracing force in the bracing 
is dominated by the magnitude of the compression force and the degree 
of geometric imperfections of braced bars rather than the stiffness of the 
bracings. This is mainly reflected in the requirements of the practical 
design code that stipulates the strength standards of bracings. For 
example, GB 50017-2017 [7] requires that when the bracing is located 
in the middle of the braced bar, the bracing force should be no less than 
1/60 of the compressive force being resisted. In addition, both BS5950 
[18] and EC3 code [17] require that, in general, the bracing force should 
be not less than 1% of the compression force that is being resisted. It is 
clear that the bracing force should be not less than a small percentage of 
the compression force of the braced bar. Therefore, in this study, the 
magnitude of the nominal perturbing force perpendicular to the braced 
bars is taken as 1% of the magnitude of the compression force of the 
braced bars. 

2.2.2. Direction of the nominal perturbing force 
In practical engineering, the nodes of the trusses may be subjected to 

disturbing forces in any direction. However, it is impossible to set the 
perturbing forces in arbitrary directions in the optimization of truss 
structures. Therefore, to simplify the calculations, the directions of the 
nominal perturbing force conditions are set to coincide with each of the 
Cartesian axis directions separately, as proposed by Tyas et al. [41] in 
the NPF approach. 

However, when the orientation of the bars does not necessarily 
coincide with the Cartesian axis, one of the main concerns is how to 
evaluate the direction and magnitude of the nominal perturbing forces. 
In the following, we discuss this issue using the two-bar structure shown 
in Fig. 4. Four perturbing force conditions are applied to node N2, which 
are load conditions fx and − fx along with the positive and negative 
directions of the x-axis, and fy and − fy along with the positive and 
negative directions of the y-axis, respectively. According to formula (2), 
the perturbing forces can be stated as, 

f x = rPsinα α ∈
[
0,

π
2

]
(3)  

f y = rPcosα α ∈
[
0,

π
2

]
(4)  

where P is the axial force of the compression bar, α is the angle between 
the bar and the x-axis. Then, the maximum component forces of the 
nominal perturbing force perpendicular to the bars L1 and L2 can be 

given as. 

f 1 = f 2 = max{rf xsinα, rf ycosα} α ∈
[
0,

π
2

]
(5) 

Adding Eqs. (3) and (4) to Eq. (5), the nominal perturbing force 
perpendicular to the braced bars can be stated as. 

f 1 = f 2 = max
{

rPsin2α, rPcos2α
}

α ∈
[
0,

π
2

]
(6) 

Therefore, as the angle between the bar and the Cartesian coordinate 
axis varies from 0 to π

2, the perturbing force perpendicular to the braced 
bars can be stated as. 

1
2

rP⩽f 1 = f 2⩽rP (7) 

This shows that when the bar dose not coincide with any Cartesian 
coordinate axis, the effective component of nominal force in the direc
tion perpendicular to the bar axis is 0.5 to 1 times the calculated nominal 
force. According to equation (6), when the angle α is π4, the nominal force 
perpendicular to the direction of the bar obtains the minimum value, 
which is 0.5 times the calculated nominal force. 

In this study, as an approximation, four nominal perturbing forces 
cases projected in either direction to the two Cartesian axes in plane 
truss are adopted. To ensure the axial force that can be provided by the 
bracing is at least 0.01 times the axial force of the braced bar, the 
nominal perturbing force coefficient r is taken as 0.02. 

2.3. Local buckling constraint 

In the design of structures, the local buckling stability is a critical 
issue. Therefore, it is very necessary for this issue to be considered in 
truss topology optimization. By introducing the critical Euler buckling 
load for a simply supported bar, the local buckling constraint for the bar 
i can be given as. 

− qi⩽Pcr
i =

π2EIi

l2
i

(8)  

where Pcr
i and Ii are the critical buckling load and the second moment of 

the sectional area of the bar i, respectively, E is Young’s modulus. For the 
tension bar, formulation (8) is automatically satisfied since the axial 
force qi⩾0. Therefore, inequality (8) is only active for the compression 
bars. For a bar with a solid circular section, the second moment of 
sectional area can be expressed as, 

Ii =
a2

i

4π (9) 

Adding the second moment of sectional area (9) into the local 
buckling constraint, the critical buckling area can be expressed as, 

Fig. 3. Two-bar structure parallel to the coordinate axis.  

Fig. 4. Two-bar structure not parallel to the coordinate axis.  
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acr
i =

̅̅̅̅̅̅̅̅̅̅̅̅

4Pcr
i l2

i

πE

√

(10) 

Obviously, the critical buckling load is a concave function on the 
cross-sectional area, which is difficult to obtain the optimal solution by 
using traditional Linear Programming optimization solver, directly. 
Therefore, in this study, a novel iteration approach is used to make the 
local buckling problem into a linear expression on the cross-sectional 
area, as shown in Fig. 5. 

where |ΔV| is the change in structural volume between four 
consecutive iteration steps, which can be expressed as. 

|ΔV| =
⃒
⃒
(
Vk + Vk− 1) −

(
Vk− 2 + Vk− 3) ⃒⃒ (11)  

where Vk, Vk− 1, Vk− 2, Vk− 3 (k⩾4) are the volume of structure at iteration 
k, k-1, k-2 and k-3, respectively. Compared with the convergence 
approach that only considers the change of structural volume between 
two consecutive iterations, this method takes into account the influence 
of iteration history on the convergence and ensures the stability of the 
convergence [5,16,29,30]. In addition, ε is taken as 0.001 in this study. 

If the convergence criteria are not met, for each bar that is active in 
the solution, the limiting compressive yield stress for the next iteration k 
+ 1 can be obtained by. 

σk+1
i = σk

i
ai

acr
i

(12)  

where σk
i is the compressive stress in the bar i at iteration k, acr

i is the 
critical buckling area of the bar i, which can be stated as. 

acr
i =

̅̅̅̅̅̅̅̅̅̅̅̅̅

4|qk
i |l

2
i

πE

√

(13) 

where qk
i is the axial force of the bar i at iteration k, indicates the 

absolute value. However, direct use of σk+1
i obtained by (12) in the it

erations is likely to cause cycling to occur. Therefore, a relaxation term 
η, the value of which is to be taken within zero to one, is introduced in 
the calculation, then the limiting compressive stress can be expressed as. 

σk+1
i = ησk

i
ai

acr
i
+(1 − η)σk

i (14) 

For bars with other sectional areas, it is sufficient to modify the 
second moment formula (9). 

It should be noted that the cross-sectional area of the bracing is 
generally small, and the minimum cross-sectional area of the bar is 
limited in the structure design according to some codes [8,17]. There
fore, in this study, the local buckling of the bracing bar is not considered. 

2.4. Novel formulation including nodal and bar local buckling stability 
constraints 

As discussed in the previous sections, the topology optimization 
problem with the constraints on local buckling stability and nodal sta
bility can be stated as, 

s.t.

min
a,q

V = aT l

Bqt = ft

BqM+1 = fx

BqM+2 = − fx

BqM+3 = fy

BqM+4 = − fy

fx⩾ −
1
2

rqtdy

fy⩾ −
1
2

rqtdx

fx⩾O

fy⩾O

− σ− ai⩽qt+4
i ⩽σ+ai

ai⩾0

t = 1, ..., M, i = 1, 2, ..., Nb (15)  

where fx =
{

fx
1, fx

2, …, fx
dof

}T
∈ RNdof×1, fy =

{
fy
1, fy

2, …, fy
dof

}T 

∈ RNdof×1, and for a given node j, fx
j =

{
fx
j , 0

}T
∈ Rd×1, fy

j =

{
0, fy

j

}T
∈ Rd×1, where fx

j , fy
j are the magnitudes of the nominal per

turbing forces in the x- and y-directions, respectively. dx ∈ RNb×1 and 
dy ∈ RNb×1 are vectors of bar cosines required to determine the compo
nent of force at each node perpendicular to the x- and y-axis respec
tively. Also, O ∈ RNdof×1 is a vector in which all elements are all zero 
required to make the nodal perturbing force not less than zero in each 
direction at all nodes. 

3. Numerical applications

The presented method for truss topology optimization, including
nodal and local buckling stability, is applied to three different structures. 
Firstly, a simple plane truss structure is studied. The effectiveness of the 
method proposed in this paper in solving the nodal and local buckling 
stability problems is verified by analyzing the axial forces of the opti
mized structural bars. Secondly, a three-dimensional L-shaped structure 
subject to local and nodal stability constraints is investigated, and the 
optimization results are compared with those using the conventional 
NPF approach, showing the superiority of the NPF approach. Finally, in 
order to verify the effectiveness of the method proposed in this paper on 
the actual structural design, a three-dimensional crane structure sub
jected to four vertical loads is optimized and analyzed using the Q355 
steel material, whose yield stress is 355 MPa. 

If nothing else is stated, to simplify, the Young modulus E, limiting 
tensile and compressive yield stresses σ+ and σ - of material, and 
external load P are all taken as unity. In addition, the relaxation term is 
taken as 0.5. In the ground structures, all nodes are connected with 
straight potential bars to their nearest nodes in all directions. In the 
optimized solution, the blue, red, and green lines represent the Fig. 5. Flowchart of ASI method.  
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compressive bar, the tension bar, and the bar subjected to force only 
under the action of the nominal perturbing force conditions (no force 
under the action of the external load condition P), respectively. 

The code is implemented in Matlab R2016b, and the LP solver is 
Mosek version 9.2.47. Mainly results are computed on a desktop with 
AMD Ryzen 7 2700X Eight-Core Processor 3.70 GHz and 32.0 GB of 
RAM. 

3.1. Cantilever beam 

The well-known cantilever beam design domain [5,14,36,45] subject 
to a point force is studied. The design domain is rectangular with a side 
length ratio of 4:1, supported along the left edge and loaded with a 
concentrated load at the lower right corners. The design domain with 
boundary conditions and external force is seen in Fig. 6a, where L is 
taken as unity. In addition, the relaxation term is taken as 1. The ground 
structure with 20 bars and 10 nodes is shown in Fig. 6b. The optimized 
structure is shown in Fig. 6c-f. 

The solution to the optimization problem without nodal or buckling 
stability considerations is shown in Fig. 6c with a volume of 23.999. The 
axial force, cross-sectional area, and critical load of the bar in the 
optimized structure are shown in Table 1. As seen in Fig. 6c, nodes N3 
and N7 within the successive compression bars are unstable due to the 
lack of bracings in the y-axis direction. It should be noted that, although 
node N6 is also not vertically supported, it is not an unstable node 
because it exists between two tensile bars. As can be seen from Table 1, 
in the compression bars, the magnitude of the axial forces of the bars L2, 
L11 and L12 exceed their critical Euler buckling forces and are unstable. 

When only the nodal stability is considered, the optimized structure 
with a volume of V = 24.04 is shown in Fig. 6d. The cross-sectional 
areas, axial forces, and critical buckling stresses of the bars are shown 
in Table 1. As seen in Fig. 6d, node N3 is supported by bars L3 and L7, and 
node N7 is supported by bars L13 and L17, both of which are stable. From 
Table 2, it can be seen that the magnitude of the axial forces of both bars 
L1 and L6 is 3. The cross-sectional areas of bars L3 and L7 are 0.057 and 
0.05, respectively. Therefore, the sum of the vertical bracing forces that 
L3 and L7 can provide for node N3 is F3y = 0.057× sin π

4 + 0.05× sin π
4=

0.076 N > 3× 0.02 = 0.06, which shows that node N3 is stable. 
Similarly, node N7 is also stable. However, it can be seen from Table 1 
that most of the bars are local buckled. 

When nodal stability and local buckling stability are considered 
simultaneously, the optimized structure with a volume of V = 24.949 is 
shown in Fig. 6e, and the cross-sectional areas, axial force, and critical 
buckling force are shown in Table 1. As can be seen in Fig. 6e, all nodes 
are supported in the optimized structure. Whether N3 and N7 below are 
stable is verified in the following. The magnitude of the axial force of 
both bars L1 and L6 are 3, then node N3 requires a bracing force of 0.02 
× 3 = 0.06. The cross-sectional area of L3 is 0.085, which can provide a 
vertical bracing force of 0.06. Therefore, node N3 is stable. Similarly, 
node N7 is also stable. In addition, it can be seen from Table 1 that all the 
compressed bars of the optimized structure meet the local buckling 
constraint. 

The optimization results of this numerical example show that the 
NPF approach and ASI method proposed in this paper can effectively 
solve the nodal stability and local buckling stability problems in truss 
optimization. 

(a) Design domain (b) Ground structure

(c) Optimized structure without stability (d) Optimized structure with nodal stability

(e) Optimized structure with nodal and buckling stability

V = 24.949

Fig. 6. Optimization of cantilever beam.  
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3.2. 3D L-shape structure 

A typical 3D L-shape design domain provides a further indication of 
the range of applicability of the proposed approaches, as shown in 
Fig. 7a, where L is taken as unity (this problem has also been considered 
by Tyas [41] and Kocvara [24]). Pinned supports are present on the top 
face and two unity point loads are applied downwards at the tip of ‘L’. 
Both limiting tensile and compressive stresses are taken as unity. The 
design domain is discretized using 28 neighboring nodes (Fig. 7b) con
nected by 138 potential bars to generate a ground structure (Fig. 7c). 
The optimized structures are shown in Fig. 7 d-h. In Fig. 7, OSW, OSN- 
NPF, OSN-NLF, OSNL-NPF, and OSNL-NLF represent optimized struc
ture without stability, optimized structure with nodal stability using 
NPF approach, optimized structure with nodal stability using NLF 
approach, optimized structure with nodal and local buckling stability 
using NPF approach, optimized structure with nodal and bar local 
buckling stability using NLF approach. The computation times and the 
volumes of the optimized structures using the NPF and NPF approaches 
are shown in Table 2. 

When nodal stability considerations are neglected and a linear pro
gramming solver is employed, the optimized structure is shown in 
Fig. 7d, with a volume of 62 and an optimization time of 2.6 s. When 
only the nodal stability is considered using the NPF approach, the 
optimized structure is shown in Fig. 7e with a volume of 64.277 m3 and 
an optimization time of 2.7 s. When only the nodal stability is considered 
using the NLF approach, the optimized structure is shown in Fig. 7f. As 
can be seen from Fig. 7e and Fig. 7f, both structures do not have nodal 
stability problems. However, the volume of the optimized structure by 
using the NLF approach is 11.111% more than the volume of the opti
mized structure by using the NPF approach. This is mainly because, in 

the NLF method, only compression bars are considered when calculating 
the nominal forces. As a result, the stable nodes may be judged as un
stable nodes thus adding unnecessary bracings. In contrast, in the NPF 
approach, the influence of both the tension bar and the compression bar 
connecting the nodes is considered when calculating the nominal force, 
making the calculation more accurate. When nodal stability and local 
buckling stability of the bar are considered simultaneously, the results of 
optimization using the NLF approach and using the NPF approach are 
shown in Fig. 7f and g, respectively. As shown in Table 2, the compu
tation time using the NLF approach is 77.931% more than the NPF 
approach, which is mainly due to the small number of optimization 
variables in the nominal perturbing force method. It is worth noting that 
in the optimized structures, some unbraced nodes may be contained 
within the consecutive tension bars, which may make the structure 
unstable. However, unlike the unbraced nodes within consecutive 
compression bars, these unbraced nodes can be eliminated directly and 
then merge with consecutive tension bars into a single long bar in the in- 
depth design stage. 

The magnitudes of the axial forces of all the compression bars in the 
optimized structures OSNL-NPF and OSNL-NLF are compared with their 
critical buckling forces, as shown in Fig. 8. In optimized structures, the 
magnitude of the axial force of the compression bar is not greater than its 
critical buckling force, regardless of whether the nominal lateral force 
method or the nominal perturbing force method is used. This shows the 
effectiveness of the method proposed in this paper to address the local 
buckling problem. 

This numerical example shows that the NPF approach proposed in 
this paper has a better optimization effect and higher optimization ef
ficiency compared with the traditional NLF approach. In addition, the 
ASI approach proposed in this paper to address the local buckling 
problem in topology optimization is effective. 

3.3. 3D crane structure 

A 3D crane design domain example is studied in this section, as 
shown in Fig. 9a, where L is 0.2 m (this problem has also been consid
ered by Smith [39] and Zegard [46]). As shown in Fig. 9a, in the design 
domain, pinned supports are present on the bottom face and four-point 
loads P = 20 kN is applied downwards at the tip of the upper beam. 
Limiting tensile and compressive stresses are taken as 355 MPa. The 
design domain is discretized using 38 neighboring nodes (Fig. 9b) con
nected by 173 potential bars to generate an adjacent connectivity 
ground structure (Fig. 9c). 

Table 1 
Optimization results of cantilever beam.    

Without stability With nodal stability With nodal and local buckling stability 

No. l A F Pcr A F Pcr A F Pcr 

L1 1 3 − 3.000  7.069  3.040  − 3.040 7.069 3 − 3 7.069 
L2 1.414 1.414  − 1.414  1.110  1.358  − 1.358 1.110 1.596 − 1.414 1.415 
L3 1.414 —  —  —  0.057  0.057 — 0.085 0 — 
L4 1 4  4.000  —  3.960  3.960 — 4 4 — 
L5 1 —  —  —  —  — — — — — 
L6 1 3 − 3.000  7.069  2.965  − 2.965 7.069 3 − 3 7.069 
L7 1.414 —  —  —  0.050  − 0.050 0.001 — — — 
L8 1.414 1.414  1.414  —  1.364  1.364 — 1.414 1.414 — 
L9 1 2  2.000  —  2.035  2.035 — 2 2 — 
L10 1 —  —  —  —  — — 0.020 0 0 
L11 1 1 − 1.000  0.785  1.030  − 1.030 0.785 1.128 − 1 0.999 
L12 1.414 1.414  − 1.414  1.110  1.372  − 1.372 1.110 1.596 − 1.414 1.415 
L13 1.414 —  —  —  0.042  0.042 — 0.028 0 0 
L14 1 —  —  —  1.970  1.970 — 2 2 — 
L15 1 —  —  —  —  — — — — — 
L16 1 —  —  —  0.977  − 0.977 0.785 1.128 − 1 0.999 
L17 1.414 —  —  —  0.032  − 0.032 0 — — — 
L18 1.414 —  —  —  1.382  1.382 — 1.414 1.414 — 
L19 1 —  —  —  0.023  0.023 — — — — 
L20 1 —  —  —  0.023  0.023 — — — —  

Table 2 
Comparison of NPF and NLF approaches.  

NO. V t /s ξV /% ξt /% 

OSW 62  2.6  —  — 
OSN-NPF 64.277  2.7  —  — 
OSN-NLF 65.571  3.0  2.013  11.111 
OSNL-NPF 68.880  14.5  —  — 
OSNL-NLF 71.252  25.8  3.444  77.931 

Note:ξV =
VNLF − VNNF

VNNF
× 100%; ξt =

tNLF − tNNF

tNNF
× 100%  
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The optimized structure with a volume of VOSW = 2.428 × 106 mm3 is 
shown in Fig. 9d when neither the nodal stability nor local buckling 
stability is considered in the optimization. However, almost all the nodes 
within compressive bars are unstable, which cannot be used in practical 
applications, obviously. As shown in Fig. 9e, when only the nodal local 
buckling stability is considered in the optimization, an optimized 
structure with a volume of VOSN = 2.635 × 106 mm3 is obtained, where 

VOSN − VOSW
VOSW

× 100\% = 8.526\% = 8.526{% more material is used to 
make the nodes stable. As shown in Fig. 9f, an optimized structure 
with volume VOSNL = 5.607 × 106 mm3 is obtained with both nodal 
and local buckling stability, where VOSNB − VOSW

VOSW
× 100\% =

130.931\%=130.931{% more material is used to make the nodes and 
local buckling stable. 

(a) Design domain (b) Mesh grid (c) Ground structure (d) OSW

(e) OSN-NPF (f) OSN-NLF (g) OSNL-NPF (h) OSNL-NLF

Fig. 7. Optimization of L-shaped structure. Note: OSW, OSN-NPF, OSN-NLF, OSNL-NPF, and OSNL-NLF represent optimized structure without stability, optimized 
structure with nodal stability using NPF approach, optimized structure with nodal stability using NLF approach, optimized structure with nodal and local buckling 
stability using NPF approach, optimized structure with nodal and bar local buckling stability using NLF approach. 
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Fig. 8. Comparison of axial force and critical buckling force of L-shaped structure.  
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Fig. 10 shows two comparisons of the axial and critical buckling 
forces of the optimized structures. As shown in Fig. 10a, when local 
buckling stability is not considered, the magnitudes of the axial forces of 
many bars in the optimized structure exceed their critical buckling 
forces. When local buckling is considered in the optimization using the 
ASI method, the axial force and critical local buckling force of all 
compression bars in the optimized structure are shown in Fig. 10 b. It 
can be seen from Fig. 10b that the magnitudes of the axial forces of all 

the compression bars do not exceed their critical buckling forces, which 
demonstrates the effectiveness of the ASI method proposed in this study. 

4. Conclusions

The main contribution of this study is the development of a truss
topology optimization formulation including nodal and local buckling 
stability constraints. A brief review of literature has shown that a 

(a) Design domain (b) Mesh grid (c) Ground structure

V = 2.428 × 106 mm3 V = 2.635 × 106 mm3 V = 5.607 × 106 mm3

(d) OSW (e) OSN (f) OSNL

Fig. 9. Optimization of crane. Note: OSW, OSN, and OSNL represent optimized structure without stability, optimized structure with nodal stability, and optimized 
structure with nodal stability and local buckling stability, respectively. 
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Fig. 10. Comparison of axial force and critical buckling force of the crane.  
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convenient approach to state the basic plastic problem of truss topology 
optimization relies on the FELA method. 

The novel nominal perturbing force (NPF) approach has been pro
posed to address the nodal instability in the truss topology optimization 
problem. In the NPF approach, nominal perturbing forces consistent 
with the directions of the Cartesian axes are used to model the possible 
perturbations of the unstable nodes. Compared with the conventional 
nominal lateral force (NLF) approach, (a) the NPF approach has higher 
computational efficiency because it contains fewer optimization vari
ables; (b) the effect of tension bars connected to the nodes is considered 
in determining the unstable nodes, which can lead to a better optimi
zation result. 

In addition, the novel nominal allowable stress iteration (ASI) 
approach is proposed to address the local buckling instability in the truss 
topology optimization problem. In this way, the concave local buckling 
instability problem is linearized in each iteration and can be solved 
efficiently by a linear programming solver. Numerical examples have 
shown the practical applicability of the proposed method for the pre
liminary design of truss structures. 

The proposed method is readily applicable and allows some exten
sions. Since Euler’s criterion for the local buckling stability over
estimates the critical buckling strength of the bar, other criteria based on 
design codes should be considered for more accuracy. 
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