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Abstract
Considering environmental factors such as temperature in structural health monitoring progress has been a consensus. How-
ever, the uncertainty of monitoring data usually makes it difficult. In this paper, the uncertainty factor has been introduced 
into the anomaly diagnosis process, a Markov chain-Monta Carlo (MCMC) anomaly diagnosis method based on temperature-
induced response has been proposed. First, a novel diagnosis index has been developed based on the temperature data and 
static strain response data collected by the SHM system, the MCMC process is used to analyze the diagnosis index, and the 
posterior frequency distribution histogram of the actual diagnosis index is obtained. Finally, by analyzing the histogram of 
an unknown state and the initial state (baseline state) of the structure, the anomaly probability of the unknown condition is 
obtained, which can be used for anomaly probability diagnosis of components. The availability of the method is evaluated 
by a laboratory truss structure test under a series of working conditions and is verified by field monitoring data of a hanger 
roof structure. The results show that the method can make better use of the temperature effect of the structure for anomaly 
diagnosis, and the uncertainty is well considered.

Keywords  Structural health monitoring · Anomaly diagnosis · Temperature-induced response · MCMC

1  Introduction

Large building structures, including truss structures, are 
often used in airports, stations, factories, stadiums, and 
other important civil infrastructures [1], such structures 
often encounter sudden load changes (snow loads, high wind 
loads), changes in restraint conditions, member damage due 

to material degradation, and other structural anomalies dur-
ing construction or service. Monitoring and diagnosing these 
structural anomalies using sensors placed on the surface of 
the structure is an effective means to ensure the safety of 
the structure throughout its life, and in recent years, with 
the development of sensor technology and intelligent algo-
rithms, structural anomaly diagnosis (SAD) technique is 
becoming an increasingly important area.

The vibration-based method is one of the most widely 
used SAD methods, which reflects the abnormal state of 
the structure by monitoring the changes of vibration fea-
tures [2–4]. However, the structural vibration features (e.g., 
natural frequencies) are not only related to the state of the 
structure itself, but also to environmental factors such as 
temperature, which will have an impact on the accuracy of 
SAD [5–7]. Although different solutions have been proposed 
for vibration-based SAD under environmental changes, 
these methods are still greatly limited by other defects in 
long-term practical monitoring, such as low sensitivity of 
vibration features to small local damage of the structure, the 
complicated method of sensor arrangement, and the large 
data transmission and storage caused by the high sampling 
frequency of the monitoring process, etc. [8].
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Compared to vibration monitoring data, the static 
responses of vital components of structures such as ele-
ment stress (strain) and support displacement are sensitive 
to changes in the local stiffness or abnormal loads of the 
structure, and the utilization of these responses for SAD has 
received increasing attention in recent years [9, 10]. El-Sisi 
et al. [11] conducted static field tests of a bridge using trucks 
to evaluate actual strain measurements at different locations, 
which were used to validate the finite element model. Cock-
ing et al. [12] arranged a health monitoring system consist-
ing of a series of fiber optic sensors (FOS) on an inclined 
masonry arch railroad bridge, whose response was sensitive 
to passenger load, train speed, etc. Sun et al. [13] used dis-
tributed FOS to monitor the lateral buckling of rails under 
axial loads with different boundary conditions.

A large number of studies have shown that the static 
response of structures is more susceptible to environmen-
tal factors in long-term monitoring than vibration features 
due to the significant correlation with temperature [14]. 
For example, it has been found that the static strain [15], 
dynamic strain [16] and displacement [17] of a structure are 
significantly correlated with temperature. Therefore, with 
the periodic change of temperature, the static response also 
shows a periodic change [18]. Further, thermal analysis and 
temperature-induced stress calculation methods have been 
proposed [19, 20].

In recent years, there has been growing interest in SAD 
methods based on temperature-induced static responses 
(TISR), whose basic idea is that the changes in TISR in ele-
ment stress or support displacement are directly related to 
structural stiffness or structural abnormal loads, etc. Com-
pared with the SAD methods based on vibration or based 
on static response under loading, these methods directly use 
the TISR under ambient temperature change without addi-
tional load tests (dynamic load, static load). The benefits of 
these methods are their convenient sensor arrangement and 
low data storage, which provide a new idea for realizing 
long-term real-time monitoring and anomaly diagnosis of 
structures. Some scholars have also used some methods and 
techniques in TISR-based SAD, such as temperature-based 
structure identification [21–26], temperature-based measure-
ment interpretation framework [27–30], ensemble empiri-
cal mode decomposition technology [31], singular spectrum 
analysis and the statistical control chart [32], and guided-
wave based method [33]. But, most of the previous studies 
based on TISR have focused on bridge structures. Similar 
to bridge structures, there is also a significant temperature 
effect on the roof structures of large public buildings (e.g., 
planar trusses, space grid structures). Xu and Chen et al. [34, 
35] conducted thirty days of monitoring during the construc-
tion of a steel roof, which found the temperature field of the 
structure under strong solar radiation was significant. Fan 
and Zhou et al. [36, 37] conducted finite element simulations 

and field measurements to verify the steel roof of the Beijing 
Daxing International Airport terminal building. The results 
show that the cumulative temperature effect generated dur-
ing the construction process is significant.

Therefore, the aim of the research in this paper is to pro-
pose a SAD method based on TISR applicable to truss struc-
tures. Compared with bridge structures, there are usually 
more members in the truss structure systems, the distribution 
of temperature field is complex and has a certain uncertainty 
[38], in addition, the noise in the SHM system will increase 
this uncertainty, which will have a greater impact on the 
SAD progress. The diagnosis indexes in most of the current 
SAD methods are deterministic indexes, which cannot be 
reasonably used to consider the uncertainty of diagnostic 
results caused by factors such as non-uniform temperature 
fields and noise. The use of uncertain diagnosis indexes 
based on probabilistic statistical analysis methods can be a 
good solution to this problem. The traditional probabilistic 
statistical method is based on the sample information of the 
structural TISR data for SAD, and the uncertainty in the 
sample information will have a large impact on the anomaly 
diagnosis [17, 39, 40].

The Bayesian method can be used to infer the posteriori 
information of the TISR data anomaly based on the priori 
and sample information. The reasons that lead to the change 
of the a posteriori information are mainly changes of the 
structure itself, which is less related to uncertainty and sig-
nificantly reduces the influence of uncertainty on the SAD. 
However, the Bayesian method used in the current research 
has various problems, such as, the need for external incen-
tives when measuring index [41]; the amount of calculation 
when updating parameters is large [42]; there are too many 
parameters that need to be estimated in the regression model 
[43]; the posterior distribution function of index is compli-
cated [44, 45]; false alarms will occur when the number of 
index measurements is small [46–49]; the diagnosis effect 
is not good when the noise is high [50]; the time domain 
signal data volume is large that resulting in a large amount 
of calculation for the algorithm [51]. All the above will 
cause a large amount of calculation, and the timeliness of 
early warning for structural anomalies is a certain problem. 
Therefore, this paper proposes a fast SAD method, which 
can provide early and timely warning of possible anomalies 
in structural members. It also can be combined with other 
methods for accurate analysis and localization of structural 
anomalies.

In this paper, the Markov chain-Monta Carlo (MCMC) 
method is used in SAD based on the TISR which contains 
structural damage diagnosis and state change diagnosis. 
First, a diagnosis index that related to the physical param-
eters of the structure is established, which is conveniently 
collected from the SHM system and contains the uncertainty. 
Then, Considering the system uncertainty and accidental 
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uncertainty of the SHM system, the MCMC method is 
introduced to analyze the diagnosis index, and the poste-
rior distribution is obtained. Next, an artificially determined 
baseline is defined, which can be considered as the state of 
the structure when it was just completed. Finally, Analyze 
the difference between the baseline state and the unknown 
working state, and the quantified anomaly probability of the 
structure is finally obtained.

2 � Concept and approach

As mentioned before, the uncertainty method based on TISR 
is adopted to overcome the influence of uncertainty on SAD 
caused by temperature effects, etc. For the temperature-
based anomaly diagnosis of truss structure system using the 
Markov chain-Monta Carlo Method proposed in this paper, 
the main monitoring object is the truss structure of a large 
public building. In this method, only the temperature and 
stress-induced strain are required to obtain, no additional 
loading or finite element model updates are required, and 
it is a data-driven approach to achieve SAD. The method is 
divided into three main phases: (1) Diagnosis index calcula-
tion; (2) Posterior distribution calculation; (3) Probabilistic 
anomaly diagnosis.

As shown in Fig. 1, the temperature data set and the 
stress-induced strain data set within a certain time series are 
obtained from the temperature and strain sensors arranged 
on the structural members, and the diagnosis index data set 
can be further obtained. Then, the MCMC method is used 
to analyze the uncertainty of the diagnosis index datasets of 
the structural baseline state and an unknown state, and their 
posterior relative frequency distributions can be obtained 
respectively. In the former distribution, a one-sided upper (or 
lower) confidence limit with a 95% guarantee is determined, 
and in the latter distribution, the anomaly probability of the 
unknown state of the structure can be determined based on 
the upper (or lower) confidence limit.

2.1 � Diagnosis index based on T‑stress‑induced 
strain monitoring

In the SAD method of this paper, sensors need to be arranged 
on structural members to acquire temperature and stress-
induced strain synchronously, to establish a diagnosis index 
based on T-stress-induced strain, which needs to directly 
reflect changes in the properties of structural members them-
selves, and thus monitor them for SAD.

Take a simply supported beam to illustrate the concept of 
T-stress-induced strain, which is partially constrained by a 
spring on the right end (length L, material thermal expansion 
coefficient α, elastic modulus E, spring stiffness k), as shown 
in Fig. 2 [14], when the temperature rises T uniformly, the 

right side’s actual displacement ( �a ) can be expressed as the 
sum of the temperature-induced displacement ( �t ) and the 
stress-induced displacement ( �s ) caused by spring stress ( �):

The corresponding strain is

�s and T  are stress-induced strain and temperature。
For large public building truss structures, the temperature 

effect is complex, there are generally different temperatures 
for different members, but considering that the members are 
generally made of metal with large thermal conductivity, 
and the length of the member is also small compared to 
the overall structure, it is considered that the temperature of 
each member does not change along the axial direction of 
the member. If it is considered that the temperature along 
the axis of the member changes, but in theory the member 
is also composed of different micro-elements in series. It is 
always possible to find micro-element members with uni-
form temperature. Therefore, the following two simplified 

(1)�a = �t + �s = � ⋅ T ⋅ L +
�

E
⋅ L.

(2)�a = �t + �s = � ⋅ T +
�

E
,

Fig. 1   The flow chart of anomaly diagnosis method
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cases were selected for the derivation of the stress-induced 
strain [52].

(1)	 Case 1: different temperature for each member

As in Fig. 3, the temperature of each member is differ-
ent because of sunlight, the cross-sectional area of member 
1 is A1, the length is L, and the temperature is uniformly 
increased by T. The cross-sectional area of member 2 is A2, 
the length is L, and the temperature is uniformly increased 
by γT (0 < γ < 1). In addition, the angle between the member 
and the horizontal direction is θ, and the spring stiffness is 
k1. The stress-induced strain of member 1 can be found by 
the structural mechanics method as follows:

where E is the modulus of elasticity of the member material, 
α is the coefficient of thermal expansion of the material.

(2)	 Case 2: Different temperatures with gradients for each 
member

Due to the form of the members (hollow members) or 
the existence of temperature differences inside and outside 
the structure, there will be a temperature gradient along 

(3)�s = −
�(1 + �)

EA1

(
1

EA1

+
1

EA2

+
4 sin

2 �

k1L

)T ,

the cross-sectional direction of the member. As in Fig. 4, 
in order to consider the temperature gradient, a rotation 
spring (stiffness k2) is added to simulate the nodal rota-
tion stiffness, and the lower surface temperature of the 
two members is β times the upper surface temperature 
(0 < β < 1), the section height of both members is h. Under 
the assumption that the axial deformation is much larger 
than the bending deformation, the stress-induced strain of 
member 1 can be approximated as follows:

where E is the modulus of elasticity of the rod material, α is 
the coefficient of thermal expansion of the material, �1, �2 is 
the bending deformation of the member 1 and 2.

f (�, L, �, h) is a function related to the temperature gradient 
distribution of the members, while in practice the real tem-
perature gradient distribution is difficult to be measured by 
sensors, β is constantly changing and contains uncertainty 
so, f (�, L, �, h) can be considered as an uncertainty. One 
of the novelties of this paper is the consideration of this 

(4)�s = −

�(1 + �)
(

1+�

2
−

(1−�)L tan �

2h

)

EA1

(
1

EA1

+
1

EA2

+
L tan2 �

k2
+ �1 + �2

)T ,

(5)f (�, L, �, h) =
1 + �

2
−

(1 − �)L tan �

2h
,

Fig. 2   Schematic diagram of 
the actual displacement and 
stress-induced displacement of a 
partially restrained beam model 
subject to uniform temperature 
change

T γT

θ

k1

1 2

Fig. 3   The computational model of case 1 model

T γT

θ

k2

βT βγT1 2

Fig. 4   The computational model of case 1
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uncertainty. If the temperature gradient is not considered, 
Eq. (5) will degenerate to 1.

Most of these structures are designed according to the 
spatial rod system model, so it is assumed that the bending 
deformation of the members is much smaller than the axial 
deformation, and the strain considered is also the axial 
strain. Therefore, the main consideration is the axial defor-
mation 1

EA1

+
1

EA2

 , while the bending deformation �1 + �2 
can be ignored. However, it is possible that due to the 
existence of temperature gradient, there will be some 
bending deformation that cannot be accurately measured, 
which will cause �c to change as shown in Fig. 5. The 
consequence is to make �c uncertainty, which can also be 
considered using the method of this paper.

After the above assumptions and simplifications, and 
unifying the form of case 1 and case 2, the diagnosis index 
can be selected as Eq. (7), which is only related to the 
nature of the member itself and uncertainty.

where g(L, �) is a function related to the direction and length 
of the member, ki is a parameter related to the boundary 
conditions.

The 3D function diagram of �c for different 
ki (ki1 > ki2 > ki3) values is shown in Fig. 6.

According to Fig. 6 and the above analysis, the follow-
ing conclusions can be obtained:

(6)�c = EA1

(
1

EA1

+
1

EA2

+
L tan2 �

k2
+ �1 + �2

)
.

(7)IT =
�s
T

= −
�(1 + �)f (�, L, �, h)

�c

,

(8)�c = EA1

(
1

EA1

+
1

EA2

+
g(L, �)

ki

)
,

There is uncertainty in the diagnosis index due to tem-
perature gradients. The diagnosis index of the monitored 
member can be used to monitor not only its own anomaly but 
also those of its neighboring members, and is more sensitive 
to its own anomaly compared to its neighboring members, 
and its own anomaly will increase the diagnosis index, but 
the anomaly of its neighboring members will decrease the 
diagnosis index, and the index will tend to 0 as the degree 
of anomaly of neighboring members deepens. In addition, 
changes in boundary conditions can lead to changes in the 
diagnosis index. In fact, if the anomaly is simulated by cut-
ting off the member in the experiment, each member can 
also be seen as a series connection of multiple members, and 
what is measured is the neighboring member of the anomaly 
member, which means that it will be the diagnosis index 
tends to 0. This is also consistent with the result that the 
stress-induced strain is 0 due to the free expansion of the 
member after cutting off. The diagnosis index can be used 
to effectively monitor the anomaly condition of the member 
where the sensor is arranged and its neighboring members.

2.2 � Posterior distribution calculation based 
on Markov chain‑Monte Carlo

In Sect. 2.1, the temperature effect of the structure is dis-
cussed to some extent, however, the real temperature field 
and temperature effect will be more complicated, in addi-
tion to f (�, L, �, h) , there is a large amount of uncertainty 
(e.g., noise, etc.) in the diagnosis index data set ĨT = �̃s∕T̃  
obtained from the field actual measurement, and the general 
probabilistic statistical analysis method cannot be used to 
consider this kind of uncertainty well because it is based on 
a sample information for anomaly diagnosis. The Bayesian 
method is a classical method to reasonably consider such 
uncertainty, and the MCMC method is one of the most wide-
spread and stable algorithms in the Bayesian method. This 
method of SAD using statistical probability analysis is called 
the uncertainty method.Fig. 5   Uncertainty of �c due to bending deformation

Fig. 6   3D function diagram of �c
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The most basic principle of the Markov chain-Monte 
Carlo method (MCMC) comes from the Bayesian formula 
proposed by the British mathematician Thomas Bayes 
[53]. It has gradually become widely used after continu-
ous improvement by many researchers. However, the pos-
terior joint probability distributions of structural physical 
parameters are generally complex, high-dimensional, and 
non-standard distributions when the Bayesian formula is 
used in engineering practice to calculate structural physical 
parameters. Scholars usually use MCMC for approximation 
calculations, and the most widely used MCMC method is the 
Metropolis–Hastings (MH) algorithm [54], which is formed 
by the improvement and extension of the Metropolis algo-
rithm [55].

For a certain working state M, IT is the true value of the 
diagnosis index to be identified, and ĨT is the actual measure-
ment data set of the structural diagnosis index. Then, under 
the condition of known ĨT , the posterior joint probability 
distribution of IT can be obtained by the Bayesian formula:

where p
(
ĨT |IT ,M

)
 is the probability distribution of the diag-

nosis index measurement data set ĨT measured by the sensor 
under a certain working state M, which is a function of IT
and usually called the likelihood function of IT ; p

(
IT |M

)
 is

the priori probability distribution of the parameter vector IT , 
which is generally based on engineering experience and 
obtained from historical data; p

(
ĨT |M

)
 has no relation with 

IT , which is a standardized constant making the integral 
value of p

(
ĨT |IT ,M

)
 equal to 1.

In this paper, the MH algorithm is used to calculate the 
above posterior distribution, a sample from the dataset ĨT 
of diagnosis index measurements measured by the sensors, 
starting from the initial value and generating an irreducible 
non-periodic Markov chain according to the proposed dis-
tribution. The probability density function (PDF) curve of 
this Markov chain is the posterior probability distribution of 
the diagnosis index considering the uncertainty (as shown 
in Fig. 7). The process is shown in Fig. 8, and the steps are 
as follows.

(1) Given the initial value ĨT
(
xt
)
 of the parameter ĨT , the 

total sampling times N and set t = 0;
(2) Generate a candidate value ĨT

(
x′
)
 from the proposed 

distribution g
(
⋅ | IT

(
xt
))

;
(3) Calculate acceptance probability

(9)p
(
IT |ĨT ,M

)
=

p
(
ĨT |IT ,M

)
p
(
IT |M

)

p
(
ĨT |M

) ,

(4) Generate a random number u from the uniform distri-
bution U(0, 1) , if u < 𝛼

(
IT
(
xt
)
, IT

(
x′
))

 , accept IT
(
x′
)
 , let

IT
(
xt+1

)
 = IT

(
x′
)
 , otherwise let IT

(
x′
)
 = IT

(
xt
)
;

(5) Let t = t + 1 , repeat step (2) ~ (5), until the sampling 
times are reached.

2.3 � Anomaly diagnosis based on relative frequency 
distribution histogram

For the posterior distribution of the baseline state, the 95% 
guaranteed upper (or lower) confidence limit is chosen 
because 95% confidence interval is the commonly used 
damage threshold interval [56, 57], as shown in Fig. 9. For 
the unknown states, the sum of relative frequencies greater 
than the upper (or less than the lower) confidence limit is 
determined as anomaly probability.

Further, to simplify the algorithm, the relative frequency 
distribution histogram is used instead of the probability den-
sity curve to calculate the anomaly probability. Next, a data 
set (data volume = 200) that conforms to the standard Gauss-
ian distribution is illustrated, and the relative frequency dis-
tribution histogram of the Markov chain is shown in Fig. 10 
by choosing different sampling times N for the data set by 
the MH algorithm. The envelope of the relative frequency 
distribution histogram is closer to the probability density 
curve of the normal distribution as the number of samples 
increases. According to the meaning of probability density 
curve and relative frequency distribution histogram, it is 
obvious that the relative frequency distribution histogram 
can be used for probability calculation instead of probability 
density curve.

(10)

�
(
IT
(
xt
)
, IT

(
x�
) )

= min

{
1 ,

IT
(
x�
)
g
(
IT
(
xt
)
| IT

(
x�
))

IT
(
xt
)
g
(
IT (x

�) | IT
(
xt
))

}
.

Fig. 7   Probability density function (PDF) curve of Markov chain
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3 � Damage diagnosis test

3.1 � Test overview

Damage is a type of structural anomaly, and this section 
seeks to validate the diagnosis method through a truss 
test. Therefore, in this section, the diagnosis index and the 
anomaly probability are referred to as the damage index 
and the damage probability. The planar truss shown in 
Fig. 11 is continuously monitored. It consists of two parts: 

(1) the upper chord and web member of steel bars; (2) the 
lower chord of angle steel. The end of each lower chord 
is bolted to the steel column, the steel pile shoe is fixed 
in the poured concrete with four threaded rods, a certain 
number of weights are placed on the foot of the column 
to enhance the stiffness of the support and the structural 
integrity, and the steel bars are connected by welding, and 
all the members and node forms can be regarded as the 
types as described in Sect. 2.1

Three groups of fiber Bragg grating sensors (FBG) with 
temperature compensation are used to monitor the response 

Fig. 8   The flow chart of 
Metropolis–Hastings (MH) 
algorithm

Fig. 9   Schematic diagram of anomaly probability calculation
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of the truss. The main dimensions, geometry and sensors 
(S-1, S-2, S-3) arrangement of the truss are shown in Fig. 12, 
which also shows the members (D-1, D-2, D-3) that were 
damaged in order to simulate anomalies. The length of the 
web, diagonal and chord member are 300 mm, 335 mm and 
1500 mm, respectively. Among them, the main purpose of 
D-1 is to study the damage of the members with sensors, and 
the main purpose of D-2 and D-3 is to study the damage of 
the neighboring members of monitored member, Damage as 
a cut in the member, depending on the ratio of the area of the 
cut section to the total section area, the degree of damage is 

defined as 50% and 100%, except for baseline conditions (H, 
the initial non-damaged state), each damage condition (D-1, 
D-2, D-3) is divided into two degrees of moderate damage 
(50%) and complete damage (100%) (as shown in Table 1).

For FBG sensors, the principle of stress-induced strain 
measurement is given by Eq. (11)

where �s is the strain caused by other stresses of the struc-
ture, Δ�,Δ�� is the change in optical fiber wavelength (Strain 
FBG and Temperature FBG), �, �′ is the reference wave-
length of the optical fiber (Strain FBG and Temperature 
FBG), C1, C2 are constants, �st is the linear expansion coef-
ficient of the structure.

3.2 � Simulation process

Accelerated temperature cycles are simulated by adjusting 
the heater on and off to heat or cool the structure respec-
tively. The purpose is to simulate the temperature cycle 
of the structure in the actual environment as realistically 
as possible in a very short time, using the heater to simu-
late the diurnal cycle and the natural variation of the room 
temperature to simulate the seasonal temperature change. 
A simulated diurnal cycle lasts 30 min, and five cycles 
are done for each working condition. Anomaly diagnosis 

(11)�s =
1

C2

Δ�

�
−

(
C1

C2

+ �st

)
Δ��

C1�
�
,

Fig. 10   Frequency distribution histogram of different sampling times

Fig. 11   A photograph of the truss test layout
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using TISR over a smaller period is intended to be extended 
to the application scenario of real-time warning. In addi-
tion, in the actual detection, if TISR over a longer period 
is used, the data may be disturbed by many uncertainties 
such as seasonal trend changes, sudden temperature drops 
caused by rainfall, etc., resulting in uncontrollable diagnos-
tic results. And simultaneous acquisition of �̃s and T̃  with a 
sampling frequency of 1 Hz. The order of damage is D-1, 
D-2, D-3. This is because the damaged welded truss is not 
easily restored. The purpose of D-1's test is relatively simple 
(diagnose self-damage), and it is farther away from S-2, S-3, 
furthermore, because strain is a quantity describing local 
characteristics, it can minimize the influence of D-1 on the 
data of sensor S-2 and S-3 after the complete damage of D-1. 
In addition, damage D-1 (100%) and D-2 (100%) can also be 
used as a new baseline health condition. The temperature, 
strain time history curve and the strain-temperature scat-
ter plot of the sensor S-1 in the working condition H are 
shown in Fig. 13. The smaller the temperature variation, 
the more uncertainty will be included in the strain moni-
toring data. Therefore, in the experimental design of this 
paper, the temperature is controlled in a small range (the 
most unfavorable temperature condition) to verify whether 
the method of this paper can consider this uncertainty well. 
The temperature and strain have a significant correlation, as 
shown in Fig. 13a. In addition, the measured strain data will 
have a high degree of uncertainty. From Fig. 13b, the strain-
temperature scatter points are not on the same straight line, 
but present a band-like distribution, indicating that the dam-
age index measurement data set ĨT has a certain accidental 
uncertainty. And under working condition D-1 (50%), sensor 
S-1 has many data points in the 95% confidence interval 

of H-S-1, which means that the deterministic method can-
not diagnose damage well. In contrast, for Fig. 13c and d, 
the temperature does not show a linear correlation with the 
strain due to the uncertainty.

3.3 � Damage diagnosis process

For different working conditions, (shown in Fig. 14), differ-
ent temperature and strain data were collected, and damage 
index measurement sets were established.

3.3.1 � Analysis of the mean value of Markov chain

The Markov chain’s mean values of different working condi-
tions and sensors obtained by MCMC sampling are shown 
in Table 2.

(1)	 Working condition D-1

There is a significant change in the data for sensor S-1. 
The mean value changes from -3.69 under working condition 
H to − 2.68 under working condition D-1 (50%) and then to 
0.14 under working condition D-1 (100%), while the effect 
on sensors S-2 and S-3 is less because the main test purpose 
of the damage, D-2 and D-3, is not related to sensor S-1. The 
mean value of sensor S-1 data becomes around 0 after this 
condition, so no further monitoring is performed. Although 
the S-3 member is a neighboring member of D-1, it is too 
far from the damage, so there is a large change only under 
the working conditions of D-1 (100%).

Fig. 12   A sketch of the truss 
showing its principal dimen-
sions, locations of bolt, sensors 
(S-i, where i = 1, 2, 3), and the 
damage (D-i, where i = 1, 2, 3)

Table 1   Test conditions and 
sensors

Working condition H D-1 D-2 D-3

Extent of damage 0% 50% 100% 50% 100% 50% 100%

Monitoring sensor S-1, S-2, S-3 S-1, S-2, S-3 S-2, S-3 S-2, S-3
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(2)	 Working condition D-2

It can be seen that the mean value of S-2 changed from 
− 1.78 under working condition D-1 (100%) to 3.68 under 
working condition D-2 (50%) to − 2.91 under working 
condition D-2 (100%), with a large variation and even 
a positive and negative change in sign, a possible situ-
ation due to the residual stress and deformation of the 
welded truss, when a moderate degree of cutting damage, 
the stress redistributed, causing changes in the tensile and 
compressive properties of the damaged member, which 
in turn affected the S-2 data index of the sensor. After 
complete cut-off, it becomes a zero-force member and the 
sensor S-2 data returns to the compressive state. In this 
working state, the sensor S-3 data still has a small change.

(3)	 Working condition D-3

The mean value of sensor S-2 data changes to some 
extent from − 2.91 under working condition D-2 (100%) 
to − 2.56 under working condition D-3 (50%) to − 2.09 
under working condition D-3 (100%), while from working 
condition D-2 (100%) to working condition D-3 (50%), 
the mean value of sensor S-3 data becomes approximately 
0, further to working condition D-3 (100%), the mean 
value is still 0. This indicates that the member S-3 is very 

sensitive to damage, which may be due to the member S-3 
is connected to the support.

3.3.2 � Analysis of damage probability

The Markov chain relative frequency distribution histograms 
of the damage index obtained for each sensor under differ-
ent working conditions are presented in Figs. 15,16,17,18. 
Tables 3, 4, 5, 6 show the upper confidence limits and dam-
age probabilities calculated from the histograms. It can be 
seen that the histograms are characterized by a clear normal 
distribution.

(1)	 Working condition H

This working condition is used as the baseline for the 
entire damage diagnosis method. In this test, it is considered 
that the members must be completely damaged. Therefore, 
it is only used as the diagnosis baseline for working condi-
tion D-1.

(2)	 Working condition D-1

Under this working condition, working condition H is 
used as the baseline for calculating the damage probability. It 

Fig. 13   Temperature and strain time history curve and strain-temperature scatter plot of sensor S-1&S-2
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can be seen that sensor S-1 can accurately diagnose the dam-
age D-1 with a damage probability of 100.0%. Although the 
member S-2 is not connected to the member D-1, the index 
also responds to some extent. The member S-3 is connected 
with the member D-1, so it also has a better diagnosis effect. 
And working conditions with greater damage tend to have 
higher damage probability.

(3)	 Working condition D-2

Under this working condition, working condition 
D-1(100%) is used as the baseline for calculating the dam-
age probability. It can be seen that sensor S-2 can accurately 
diagnose the damage of the member D-2, which has a com-
mon node with the member S-2, and the damage probability 
reaches 100.0%. As sensor S-3, although the member S-3 
is connected to the member D-2, the index is not sensitive 
under working condition D-2(50%), but has a better diagno-
sis effect under more serious damage condition D-2(100%), 

Fig. 14   Damage and sensor 
details under damage condition 
(D-1, D-2, D-3)
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which may be due to the fact that member S-3 has the largest 
length, cross-sectional area, and is connected to the support.

(4)	 Working condition D-3

Under this working condition, working condition 
D-2(100%) is used as the baseline for calculating the dam-
age probability. It can be seen that sensor S-2 and S-3 can 
accurately diagnose the damage of member D-3, which has 
a common node with member S-2 and S-3. This is due to the 
aforementioned geometric and positional particularities of 
member S-3, which means that its own damage has a greater 
impact on the whole structure.

In summary, the method has a good diagnosis effect 
of member damage (the monitored member itself and 

neighboring members), and can reflect the extent of dam-
age to a certain extent.

3.3.3 � Contrast with general statistical method

The main purpose of this section is to explore the effective-
ness of general statistical method in this experiment.

Taking D-1(50%)-S-1 and the corresponding healthy 
working condition as an example, a normal distribution was 
fitted directly to the collected damage index data set to cal-
culate the probability of damage. The normal distribution 
feature is not particularly obvious (shown in Fig. 19), and 
the damage probability calculated by this method is only 
5.8%. In contrast, the probability of damage calculated by 
the MCMC method is 100%. This is because the statistical 
analysis based on sample information leads to inaccurate 
mean values of diagnosis index.

Furthermore, the sample means of the damage index 
measurement data sets ĨT for different working conditions 
are calculated to analyze the above problem, as shown in 
Table 7. The mean relative deviation of the damage index 
dataset for the three sensors under working condition H is 
calculated as the theoretical value of the relative deviation. 
For the other working conditions, the deviation values of 
the mean damage index relative to working condition H 
were calculated separately as the actual values of relative 
deviations, as shown in Table 8. The trend of index and 
relative deviation for each sensor is shown in Fig. 20. If the 
actual value is less than the theoretical value, the damage 

Table 2   Mean value of damage index Markov chain obtained by dif-
ferent sensors under different working conditions

Working condition and 
sensors

Sensors

S-1 S-2 S-3

H − 3.69 − 1.81 − 3.46
D-1(50%) − 2.68 − 1.79 − 3.36
D-1(100%) 0.14 − 1.78 − 2.98
D-2(50%) – 3.68 − 2.83
D-2(100%) – − 2.91 − 2.66
D-3(50%) – − 2.56 0.44
D-3(100%) – − 2.09 0.84

Fig. 15   Histogram of Markov chain relative frequency distribution of damage index obtained by each sensor under working condition H
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is considered undiagnosed and submerged in uncertainty. 
The mean value of sensor S-1 fluctuates around 0 in the 
later period after the working state D-1 (100%). The sen-
sor S-3 has a similar change after working condition D-3 
(50%). As can be seen, sensor S-1 did not diagnose damage 
D-1 (50%), sensor S-2 did not diagnose damage D-1 (50%) 
and D-3 (50%), sensor S-2 did not diagnose damage D-1 
(50%) and D-3 (50%), sensor S-3 did not diagnose damage 
D-2 (50%) and D-2 (100%). But the uncertainty methods 
all give a certain level of damage probability. Among them, 
D-1(50%)-S-1, D-3(50%)-S-3 and D-2(100%)-S-3 even 
reached 100.0%, D-1(50%)-S-3 also reached 82.4%.

3.3.4 � Comparison with Gaussian mixture model (GMM) 
clustering method

However, in the actual engineering situation, it is impos-
sible to know exactly when the structure is anomalous, 
which means that the collected structural response data of 

an unknown state may contain data of both healthy work-
ing conditions and potential anomaly working conditions, 
for such scenarios, the GMM clustering method based on 
the Bayesian decision theory can also be used for analysis 
[58], in this section we mix the data of working condition 
H-S-1 and working condition D-1 (50%)-S-1, and GMM 
clustering method is performed on the above data set, and 
the results are shown in Fig. 21a. The clustering results are 
different from the real classification of the data (as shown 
in Fig. 21b) and cannot effectively distinguish between 
healthy and anomaly working conditions. Theoretically, as 
anomalies occur, the strain response of the same member 
at the same temperature will change, so the data points for 
different working conditions should be classified mainly 
according to the top and bottom, which can also be seen 
to be true according to the fitting curve, while the GMM 
clustering method obtains a left and right classification, 
which is mainly based on the temperature of the member, 
which shows that it is difficult to diagnose anomalies by 

Fig. 16   Histogram of Markov chain relative frequency distribution of damage index obtained by each sensor under working condition D-1
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machine learning methods without the intervention of a 
priori theoretical knowledge. But if the method proposed 
in this paper is used to diagnose anomaly in this data set, 
as shown in Fig. 21c, a higher anomaly probability of 
74.4% can be obtained.

4 � Structural state change diagnosis in site 
construction process

This section will attempt to investigate structural state 

Fig. 17   Histogram of Markov chain relative frequency distribution of damage index obtained by each sensor under working condition D-2

Fig. 18   Histogram of Markov chain relative frequency distribution of damage index obtained by each sensor under working condition D-3
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change, another case of structural anomaly. Field monitor-
ing data is obtained from a hangar roof structure at Beijing 
Daxing International Airport (BDIA). During the hangar 
roof structure lifting process, it may cause the boundary 
conditions of the structure to change, which may result in 
a change in the state of the structure.

4.1 � Hangar roof structure at Beijing Daxing 
International Airport

The roof of the hangar hall is composed of a plane truss 
system and single-layer diagonal square pyramid grids, all of 
which are spherical tube structures, and the joints are welded 
spherical joints (shown in Fig. 22a). Figure 22b shows the 
truss system consists of four 45-degree diagonal trusses, gate 
trusses, and longitudinal trusses. The vibrating wire strain 
sensors with temperature compensation are arranged on the 
important members to ensure its safety during construction 
and operation (shown in Fig. 22c, d). A sensor is arranged on 
the upper and lower surface of the lower chord of DT1 ~ DT4 
respectively, total 8 sensors.

During the construction process, the roof was lifted in 
two overall steps. The first lift of the entire grid was from 
August 18 to August 20, 2018. After the first lift was com-
pleted, the second lift grid was assembled and combined 
with the first lift grid, the second lift was completed from 
August 31 to September 2.

4.2 � Baseline state selection

During the construction and service process of the structure, 
the state is constantly changing, so it is necessary to select 
the baseline state reasonably. The data time series of the 

Table 3   Mean value of damage index Markov chain and damage 
probability obtained by different sensors under working condition H

Working condition and Sen-
sors

Upper confidence limit Damage 
probabil-
ity

H-S-1 − 3.56 –
H-S-2 − 1.75 –
H-S-3 − 3.43 –

Table 4   Mean value of damage index Markov chain and damage 
probability obtained by different sensors under working condition D-1

Working condition and 
sensors

Upper confidence limit Damage 
probability 
(%)

D-1(50%)-S-1 – 100.0
D-1(100%)-S-1 – 100.0
D-1(50%)-S-2 – 7.6
D-1(100%)-S-2 − 1.65 40.1
D-1(50%)-S-3 – 82.4
D-1(100%)-S-3 − 2.77 100.0

Table 5   Mean value of damage index Markov chain and damage 
probability obtained by different sensors under working condition D-2

Working condition and 
sensors

Upper confidence limit Damage 
probability 
(%)

D-2(50%)-S-2 – 100.0
D-2(100%)-S-2 − 2.85 100.0
D-2(50%)-S-3 – 12.3
D-2(100%)-S-3 − 2.64 100.0

Table 6   Mean value of damage index Markov chain and damage 
probability obtained by different sensors under working condition D-3

Working condition and 
sensors

Upper confidence limit Damage 
probability 
(%)

D-3(50%)-S-2 – 100.0
D-3(100%)-S-2 – 100.0
D-3(50%)-S-3 – 100.0
D-3(100%)-S-3 – 100.0

Fig. 19   Histogram of relative frequency distribution for general sta-
tistical method

Table 7   Mean value of damage index obtained by different sensors 
under different working conditions

Working condition and 
sensors

Sensors

S-1 S-2 S-3

H − 3.55 − 2.13 − 3.04
D-1(50%) − 3.34 − 2.33 − 4.72
D-1(100%) 0.03 − 0.59 − 1.95
D-2(50%) 0.14 6.01 − 3.62
D-2(100%) − 0.20 − 0.39 − 2.73
D-3(50%) − 0.23 − 2.38 0.96
D-3(100%) − 0.05 − 1.63 1.09
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baseline state should be stationary. In this section, the Aug-
mented Dickey-Fuller test (ADF) is used to ensure that the 
selected state is stationary [59]. ADF is a type of unit root 
test called statistical test, which is used to check stationarity.

The null hypothesis, alternative hypothesis of the cor-
responding unit root test and test statistics τ are:

where �̂  , s
(
�̂
)
 is the least squares estimate of the Autore-

gressive model parameters and the standard deviation of the 
corresponding estimate. If the test statistic is less than the 
critical value, we can reject the null hypothesis and say that 
the series is stationary.

Take member DT4-upper as an example. ADF test was 
performed on the diagnosis index data after the first lift and 
before the second lift to check the stationarity. The relevant 
parameters are shown in Table 9. The test statistic is less 
than the critical value, so the series can be considered sta-
tionary and can be selected as the baseline state.

(12)
H0 ∶ 𝜌 = 1 , H1 ∶ 𝜌 < 1

𝜏 = �𝜌
(
s
(
�𝜌
))−1

,

4.3 � State change diagnosis

After August 20, when the first lift ends, and before the 
second lift starts on August 31, a new baseline state should 
be selected to monitor the second lift. During this period, 
there are some sensor data changes are more obvious, using 
a simple method that is possible to make a judgment on its 
state, cannot highlight the superiority of the method in this 
paper, so this paper selects DT4-upper (The least significant 
change in data) as the object of analysis. The time history 
curves of strain and temperature are shown in Fig. 23, noted 
that the strain data therein were normalized relative to 8/27 
for a clearer representation. For member DT4-upper, the 
time history curve does not change significantly and needs 
further analysis. The diagnosis index data from August 20 
to August 31 can satisfy the ADF test, and it is selected as 
the baseline state for the unknown state data from August 
31 to September 3. The histogram of the posterior relative 
frequency distribution is shown in Fig. 24, and the mean 
value of the Markov chain in the baseline state is − 8.25, and 
the mean value of the Markov chain in the unknown state is 
− 8.69. Because − 8.25 is greater than − 8.69, the lower con-
fidence limit should be selected as − 8.64, and the anomaly 
probability is 42.0%. The state change of the structure is 
effectively diagnosed. 

5 � Summary and conclusions

In this paper, a temperature-based anomaly diagnosis of 
truss structure system using Markov chain-Monte Carlo 
method is proposed, which not only introduces the uncer-
tainty method into a SAD method based on static response 
monitoring, but also actively uses the temperature effect of 
the structure for SAD. In this method, a novel diagnosis 
index based on T-stress-induced strain that takes uncertain-
ties into account is proposed, which is obtained from the 
stress-induced strain and temperature measured by sensors 

Table 8   Actual and theoretical relative deviation of damage index obtained by different sensors under different working conditions

Working condi-
tion and sensors

Sensors

S-1 S-2 S-3

Actual value (%) Theoretical value (%) Actual value (%) Theoretical value (%) Actual value (%) Theoretical value (%)

H – 18.5 – 18.8 – 21.1
D-1(50%) 5.92 9.39 55.3
D-1(100%) 100.8 72.3 35.9
D-2(50%) 103.9 382.2 19.1
D-2(100%) 94.4 81.7 10.2
D-3(50%) 93.5 11.7 131.6
D-3(100%) 98.6 23.5 135.9

Fig. 20   Mean value of damage index and relative deviation of differ-
ent sensors under different working conditions
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arranged in the focus area of the structure. Then, the diag-
nosis index measurement data set is processed by MCMC 
to obtain the posterior relative frequency distribution histo-
gram of the actual diagnosis index, and the histogram of the 
baseline state and an unknown state are analyzed to obtain 
the structural anomaly probability of the members under 
this unknown state. As two aspects of anomaly diagnosis, 
the structural damage diagnosis and state change diagnosis 
were verified by a truss test and field monitoring data of the 
BDIA hanger roof structure respectively, and the following 
conclusions were obtained:

(1)	 With certain simplifications and assumptions about 
the real temperature effects and structural forms, the 
derived diagnosis index can well achieve the objectives 
of the SAD method, which can reflect the anomalies 
of the member itself, the neighboring members and 
boundary conditions, also include the uncertainties 
caused by temperature effects to a certain extent.

(2)	 The histogram of the posterior relative frequency dis-
tribution of the damage index under different working 
conditions has obvious normal distribution character-
istics, and the damage of the member itself and the 
neighboring members can be more obviously reflected 

in the change of the mean value of the Markov chain. 
And the mean value of the Markov chain of working 
conditions with a higher degree of damage tends to 
have greater changes, and when the member is com-
pletely cut, its own damage index will be close to 0.

(3)	 The damage of the member itself and the neighboring 
members also have a significant impact on the dam-
age probability, which is reflected in the fact that the 
higher the degree of damage, the higher the probability 
of damage tends to be. However, the diagnosis index is 
more sensitive to the damage of the member itself.

(4)	 Compared with general statistical method and GMM 
clustering method, this method considers the uncer-
tainty and effectively identifies cases that cannot be 
identified in other methods.

(5)	 During the construction of the BDIA hangar roof, the 
structural lifting may cause changes in the boundary 
conditions and consequently in the structural state. 
Based on the field monitoring data of the BDIA hangar 
roof construction, after discussing the method of base-
line state selection, the method proposed in this paper is 
used to effectively diagnose the structural state changes 
that could not be directly observed from the time his-
tory curves of strain and temperature.

(a) GMM clustering method (b) the real classification of the data

(c) MCMC method
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Fig. 21   Comparison of GMM clustering method and MCMC method
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Although the proposed method shows promising results, 
further research on diagnosis methods is needed, which 
will include the combination with other SAD methods as 
well as studying the application of the method to more 
forms of large-span spatial structures. Further work will 
also focus on more precise localization of the anomaly 
members and a more accurate reflection of the degree of 
anomaly.

Fig. 22   The Schematic 
diagrams of the hangar roof 
structure at BDIA and its sensor 
layout

(b) The main stress components of the roof trusses

(c) The temperature & strain sensor position of the diagonal truss (DT1~DT4)

(d) Installation of some sensors
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Table 9   Value of ADF test 
parameters

ADF test parameters Value

Mean value − 1.6391
Standard deviation 0.2732
Test statistic − 5.6062
Critical value − 1.9416

Fig. 23   Temperature and strain time history curves of the hangar roof 
structure (DT4-upper)
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