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ABSTRACT Nonlinear dynamic of a flexible slender truss-structure mounted manipulator for on-orbit
assembly, which can be simplified as a beam–rotating link interaction system, is theoretically investigated.
The governing partial differential equations (PDEs) of beam with time-varying coefficients is established
by using the D’Alembert principle incorporated with the moment balance method where the beam is of a
Euler–Bernoulli type and the influence of slope is considered. Such system is a typical parametrically excited
system. The multiple scales method is used to determine the approximate solution and the conditions of the
primary resonance (ω1 ≈ ωref ) and sub-harmonic resonance (ω1 ≈ 2ωref , ω1 ≈ 3ωref and ω1 ≈ 4ωref )
are obtained. In addition, the nonlinear response, stability and bifurcations for primary and sub-harmonic
resonance conditions have also been investigated by varying system parameters. Moreover, the results of
some specific conditions by the perturbation analysis are compared with the numerical solution and are found
to be in good agreement. This work has certain guiding significance for autonomous on-orbit assembly task
and the method can be extended to the more general three-dimensional case.

INDEX TERMS On-orbit assembly, flexible slender truss-structure mounted manipulator, parametric
excitation, method of multiple scales, primary resonance, sub-harmonic resonance.

I. INTRODUCTION
Future space exploration puts forward some new require-
ments of space structure, such as establishment of large space
solar power plants to cope with energy depletion which is
huge volume (from thousands of meters or even dozens of
kilometers). To meet the requirements of such space mis-
sions, the space structures will be constructed too large to
be launched and deployed as a whole [1]–[5]. It is identified
as one of the most appealing solutions in which the manip-
ulator is mounted on the long truss-structures to assemble
or maintain the several adjacent blocks [6]. One problem of
great concern is that of low-frequency structure may be easily
excited by high-frequency robotic and hardly damped out in
space environment due to the low-damping characteristics
of the flexible structures [2], [7]. The vibration may cause
inaccuracy of manipulator positioning, and more seriously,
the premature fatigue failure of flexible structure [8] and
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it could be reduced by improving the dynamic model of
the system. Therefore, it is significant to conduct studies to
apprehend dynamic characteristics of such system and find
some structural parameter design criterion to minimize the
vibration amplitude.

In this paper, a typical flexible slender truss-structure
mounted manipulator (FSTMM) for on-orbit assembly,
as shown in Fig.1(a), is studied. During the robot is assem-
bling the truss structure, the robot is mounted on the long
truss to assemble the next module of the truss. To focus on
the fundamental issues of the dynamic problem, the long
truss structure can be simplified as a flexible beam [3], [9]
and only the first link of manipulator is considered. Such
system is a typical beam–rotating link interaction system.
A very limited work of such system has been reported. For
example, the speed exclusion zone of a wind turbine, which
was regarded as a typical cantilever beam structure attached
with a rotating unbalanced mass, was investigated to prevent
tower resonance [10]. The nonlinear dynamic behavior of
a non-ideal unbalanced motor in a simple cantilever beam
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FIGURE 1. (a) Concept picture for FSTMM for on-orbit assembly;
(b) Schematic of the first link of manipulator mounted on a flexible beam
at an arbitrary position.

system was investigated and the results indicate there appears
the jump phenomenon, namely the Sommerfeld effect [11],
[12]. A model using RLC circuits with variable capacitance
based on the saturation phenomenon is used to control the
vibration of a hinged-hinged beam supporting unbalanced
machine [13]. A nonlinear dynamicalmodel of a robotmanip-
ulator consisting of a flexible cantilever beam and rigid
second link is derived using a Lagrange equation and a
Lyapunov-based feedback control law is then introduced to
suppressing bending vibrations in the flexible link [14].

The above-mentioned studies on beam–rotating link inter-
action systemwere contrived based on neglecting the effect of
slope of beam, in which the terms with respect to rotating link
in PDEs of beam is only appear as external excitation. In other
words, the excitations due to rotating link only appear as an
inhomogeneous term in governing differential equations of
beam. Such system is an external excitation system. In this
approach, the external resonance, i.e., primary resonance,
may just happen. However, such mathematical model is not
found apt to explore nonlinear dynamic behaviors of on-
orbit assembly system in which space robotic can operate
with a high-frequency on a low-frequency structure. Based
on above analyses, by involving the slope effect of beam
into the problem, a more precise and rigorous formulation
will be established, where time-dependent coefficients due
to rigid link emerge in PDEs of beam and the concept of
parametrically excited systems are exposed to discussion.

The problem of parametric resonance arises in many
branches of physics and engineering. For example, pendulum
with a moving support system [15], [16], two-link flexible
manipulator [17], [18], flexible structures such as beams and
plates under periodic motion or loads [19]–[22], etc. In con-
trast to the external excitations in which a small excitation

FIGURE 2. A typical primary resonance for beam (ω1 ≈ 1).

produces a large response only if the frequency of the exci-
tation is close to a linear natural frequency, however, a small
parametric excitation may produce a large response when the
frequency of the excitation is away from the linear natural
frequencies of the system [23]. Considerable attention has
been dedicated to parametrically excited systems, and there
exists a unique type of resonance named principal parametric
resonances. In such situation, some undesired phenomena
may be occurred such as amplitude sharp increases or jumps
when the parameters (e.g., the rotational speed of manipula-
tor in robotic operations) approach one of several different
critical values. So, the nature of parametric excitation can be
risky to structures.

In this paper, the nonlinear dynamic of a FSTMM, which
can be simplified as beam–rotating link interaction system,
is theoretically studied, as shown in Fig.1. An appropri-
ate nonlinear PDEs with time-varying coefficients is estab-
lished by using D’Alembert’s principle incorporated with
the moment balance method [21], [24]–[27]. The approxi-
mate solution is then obtained by using a single-mode dis-
cretization via the Galerkin’s method with those obtained by
directly applying the method of multiple scales. Finally, the
nonlinear response, stability and bifurcations for primary and
sub-harmonic resonance conditions have been investigated
by varying system parameters. The time response for some
specific conditions is obtained by numerical solution which
is used to verify the correctness of the perturbation method.
Among them, the main contributions of this paper as follows:

1. A more precise and rigorous PDEs with time-varying
coefficients of a beam–rotating link interaction system is
established in which the slope of the beam is considered. Such
a system is a typical parametrically excited system.

2. The frequency response conditions of the primary res-
onance (ω1 ≈ 1) and sub-harmonic resonance (ω1 ≈ 2,
ω1 ≈ 3 and ω1 ≈ 4) are obtained by the first-order multiple
scales method.

3. The nonlinear response, stability and bifurcations for
primary and sub-harmonic resonance conditions have been
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investigated by varying system parameters, namely the mass
of link, the mounting position of the rigid link on the beam
and damping of the beam, which may provide some design
principles for avoiding large-value vibration of the flexible
truss.

The rest of this paper is organized as follows. In Section II,
the mathematical model of a beam–rotating link interaction
system is derived. In Section III, the multiple scales method
is employed to calculate the nonlinear solution and analyze
its stability. In Section IV, the numerical simulation and
discussion are carried out to show the nonlinear dynamic
behavior of the system. Finally, some conclusions are drawn
in Section V.

II. EQUATIONS OF DYNAMICS
The schematic diagram of a typical on-orbit assembly of truss
structure installation by manipulator is presented in Fig.1(a).
As shown in Fig.1(a), the manipulator is mounted on a highly
flexible truss to install another short truss and after comple-
tion, the manipulator will be moved forward and repeat this
process. In addition, to focus on the fundamental issues of
the parametric resonance problem introduced by assembly
manipulator, the effect of attitude motion and the complex
space environments such as sunlight pressure and thermal
shock are neglected. In order to simplify the modeling, only
the first link of the manipulator is considered and the flexible
truss is simplified as a slender cantilever beam in this paper,
as shown in Fig. 1(b).

As for the slender beams or low-order modes of beams,
the rotational inertia and shear deformation can be neglected,
in other word, the theory of Euler-Bernoulli is adopted in
subsequent derivation. In addition, the attention of the paper
is limited to planar motions and the approach can be extended
to the more general three-dimensional case. The influence of
gravity is ignored. For convenience, the nomenclatures used
in the subsequent derivation are shown in TABLE 1.

Here, D’Alembert’s principle is used to derivate the
dynamic equation of motion. According to the Euler-
Bernoulli theory, the bending moment at any cross-section s
from point O can be expressed as [25], [28]

M (s, t) = EIk (s, t) = EIv′′
(
1+

1
2
v′2
)

(1)

where the prime denotes differentiation with respect to s and
the curvature of the beam k (s, t) can be expressed as

k (s, t) =
∂φ (s, t)
∂s

= φ′ (s, t) (2)

Here, the slope of beam, φ (s, t), can be written in terms of
beam elastic displacements as [25]

sinφ = v′ or cosφ = 1− 1
2v
′2 (3)

In light of D’Alembert’s principle, the following moment
equilibrium relation exists in the beam micro-segment:

M ′′ −M ′′ζu −M
′′
ζv = 0 (4)

TABLE 1. Nomenclatures.

whereMζu andMζv are the moment in the x and y directions
respectively, which can be expressed as:

Mζu =

L∫
s

{−[ρA+ (mb + ml)δ(ζ − sb)]ü

+mlp[(θ̈ + φ̈) sin(θ + φ)

−(θ̇ + φ̇)2 cos(θ + φ)]δ(ζ − sb)}

ζ∫
s

sinφdηdζ (5)

Mζv =

L∫
s

{−[ρA+ (mb + ml)δ(ζ − sb)]v̈− cv̇

+mlp[(θ̈ + φ̈) cos(θ + φ)

+(θ̇ + φ̇)2 sin(θ + φ)]δ(ζ − sb)}

ζ∫
s

cosφdηdζ (6)

where a dot is used over a symbol to represent the time
derivative and δ is the Delta function, here, it can be noted that
the moment Mζu and Mζv takes into account both the slope
of the beam φ and the rotation angle θ of the manipulator
which introduce the couple terms into PDEs. In addition, the
simplified viscous damping of beam c is only considered and
more accurate damping model such as the material damping
due to internal features of the beam material can be obtained
from References [29], [30].

Since θ is determined by the operation tasks and are time-
varying, it is difficult to give an analytical solution of system
about arbitrary operation tasks. Thus, in order to compute the
steady-state response of the flexible structure, we assumed
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FIGURE 3. Time responses, phase portraits and Poincare’s map corresponding to points Q, M and N as shown in Fig.2
with different initial conditions.

that the manipulator rotates with a constant angular velocity
in this paper, i.e., θ̈ = 0.

On the other hand, the inextensibility condition of a can-
tilever beam can be denoted as [25]

v′2 +
(
1+ u′

)2
= 1 (7)

or, more conveniently, the displacement u in the longitudinal
direction can be described in terms of displacement v as

u (s, t) = s−

s∫
0

cosφ (ξ, t)dξ (8)

By substituting Eq. (1), (5)∼(7) into Eq. (4) and differenti-
ating the resulting equation twice with respect to s and apply-
ing Leibnitz’s rules, one may obtain the following governing
differential equation of motion:

EI (v′′
′′

+
1
2
v′2v′′

′′

+ v′′3 + v′v′′v′′′)

+ (1−
1
2
v′2){[ρA+ (mb + ml)δ(ζ − sb)]v̈+ cv̇

−mlp[(θ̈ + φ̈) cos(θ + φ)+ (θ̇ + φ̇)2 sin(θ + φ)]δ(s− sb)}

+v′v′′
L∫
s

{[ρA+ (mb + ml)δ(ζ − sb)] v̈+ c1v̇

−mlp[(θ̈+φ̈) cos(θ+ φ)+(θ̇+φ̇)2 sin(θ + φ)]δ(ζ− sb)}dζ

+v′{[ρA+ (mb + ml)δ(ζ − sb)]

s∫
0

(v̇′2 + v′v̈′)dξ

−mlp[(θ̈ + φ̈) sin(θ + φ)− (θ̇ + φ̇)2 cos(θ + φ)]δ(s− sb)}

+v′′
L∫
s

{−[ρA+ (mb + ml)δ(ζ − sb)]

s∫
0

(v̇′2 + v′v̈′)dξ

+mlp[(θ̈ + φ̈) sin(θ + φ)− (θ̇ + φ̇)2 cos(θ + φ)]

× δ(ζ − sb)}dζ = 0 (9)

It can be noted that this equation can be reduced to that
of [19] by substituting ml equal to zero in Eq.(9). One can
observe that the PDE of motion of this system including the
inertial term and the elastic part. Based on the Galerkin’s
method, the transverse deformation of the beam can be writ-
ten as

v (s, t) = rϕ (s) q (t) (10)

where r is the scaling factor; q(t) is the time modulation, and
ϕ(s) assumed as a linear combination of classical cantilever
mode function which can been given by [12], [29]

ϕn (s) = sinβns− sinhβns

+
sinβnL + sinhβnL
cosβnL − coshβnL

(cosβns− coshβns) ,

cosβn + coshβn + 1 = 0 (11)

here, in order to simplify the computational complexity, only
first-order modes are included.

Using the dimensionless variables and parameters defined
by

m̄b =
mb
ρAL

, m̄l =
ml
ρAL

, p̄ =
p
L
,
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FIGURE 4. Basins of attraction for ω1 = 1 and ω1 = 1.2 key as in Fig.2.

ξ̄ =
ξ

L
, ζ̄ =

ζ

L
, s̄b =

sb
L
, t̄ = ωref t (12)

By substituting Eq. (3), (10) and (12) into the Eq. (9),
one may obtain the nondimensional second-order ODEs of
motion, which can be expressed as

q̈+ 2εµq̇+ q+ ε(H3q3 + h1q+ h2q2 + h3q3 + α1q̇+ α2q̈

+α3q̇2 + α4qq̈+ α5qq̇2 + α6q2q̇+ α7q2q̈+ f ) = 0 (13)

The expression for ωref in Eq. (12) and the coefficients
(i.e., µ, H3, h1, h2, h3, α1, . . . , α7, f ) in Eq. (13) are given
in the APPENDIX A.

Here, a small book keeping parameter ε is used to make
the order of all the coefficients (i.e., µ, H3, h1, h2, h3, α1,
. . . , α7, f ) less than one. The coefficients of non-dimensional
temporal equation of Eq. (13) can be classified as: (1) con-
stant coefficient terms: cubic geometric nonlinear stiffness
term (H3q3) and linear damping term (2εµq̇); (2) nonlinear
parametric excitation terms with time-varying coefficient: the
linear stiffness term (h1q), nonlinear stiffness term (h2q2 +
h3q3), nonlinear damping term (α1q̇ + α5qq̇2)α2, nonlinear
inertial terms (α2q̈+ α3q̇2 + α4qq̈+ α5qq̇2 + α7q2q̈) and (3)
nonlinear forced term f . One can observe that nonlinear
forced term f appears as an external excitation in equation

FIGURE 5. Frequency response of beam for primary resonance case with
different c .

FIGURE 6. Frequency response of beam for primary resonance case with
different m̄l .

FIGURE 7. Frequency response of beam for primary resonance case with
different s̄b.

governing the motion of the system in which a small excita-
tion produces a large response, i. e., primary resonance, only
if the frequency of the excitation is close to a linear natural
frequency. However, except primary resonance, time-varying
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coefficient terms appear as parametric excitation which can
produce a large response when the frequency of the excitation
is away from the linear natural frequencies of the system, i.
e., principal parametric resonances. So, the nonlinear system
expressed in Eq. (13) is a combination of nonlinear forced and
parametrically excited systems.Moreover, it can be noted that
the Eq. (13) is the set of multiple complex nonlinear terms,
and it is difficult to find a closed form solution. Therefore,
the approximate solution can be obtained by the perturbation
method in Section III.

III. SOLUTION PROCEDURE
An approximate solution of the Eq. (13) can be obtained by a
number of perturbation techniques. Here we use the method
of multiple scales [23].

We express the solution in terms of different time scales as

q (τ, ε) = q0 (T0,T1)+ εq1 (T0,T1)+ · · · (14)

where T0 = τ , T1 = ετ and using chain rule, time derivatives
in terms of T0, T1 become

d
dτ
= D0 + εD1 + ε

2D2 + · · ·

d2

dτ 2
= D2

0 + 2D0D1ε + D1 +

(
D2
1 + 2D0D2

)
ε2 + · · ·

(15)

here, D0 =
∂
∂T0

, D1 =
∂
∂T1

.
Substituting (14), (15) into (13) and equating the coeffi-

cients of ε0 and ε1 on the both sides, we obtain

ε0 : D2
0q0 + q0

= 0 (16)

ε1 : D2
0q1 + q1

= −2D0D1q0 − 2µD0q0 − H3q30 − }1ω2
1 cosω1tq0

− }2ω2
1 sinω1τq20 − }3ω2

1 cosω1τq30
− a1ω1 sinω1τD0q0 − a2 cosω1τD2

0q0
− a3 sinω1τ (D0q0)2 − (a41 + a42 sinω1τ) q0D2

0q0
− (a51 + a52 cosω1τ) q0 (D0q0)2

− (a61 + a62ω1 sinω1τ) q20D0q0
− (a71 + a72 cosω1τ) q20D

2
0q0 − f ω

2
1 sinω1τ (17)

here, ω1 = θ̇/ωref which can be called the frequency of
excitation caused by the rotation of the manipulator.

The solution to Eq. (16) takes the form

q0 = A (T1) eiT0 + Ā (T1) e−iT0 (18)

where i is the imaginary unit, A is the complex amplitude, and
Ā is its complex conjugate.
Substituting Eq. (18) into (17) and using Euler’s formula

and grouping the exponential terms, we obtain

D2
0q1+q1=ST1e

iT0+ST2eiω1T0+ST3ei(1−ω1)T0

+ ST4ei(2−ω1)T0+ST5ei(3−ω1)T0 + NST + cc (19)

where ST1, ST2, . . . , ST5 and NST represents the secular
and non-secular generating terms of first-order, respectively,
which can be obtained by

ST1 = −2iD1A− 2µiA− 3H3A2Ā

−a51A2Ā− ia61A2Ā+ 3a71A2Ā (20)

ST2 = ih2ω2
1AĀ+ a3iAĀ− a42iAĀ+

1
2
f ω2

1i (21)

ST3 =
1
2
(−h1ω2

1Ā− 3h3ω2
1AĀ

2
+ a1ω1Ā+ a2Ā

− a52AĀ2 + a62ω1AĀ2 + 3a72AĀ2) (22)

ST4 =
1
2
i
(
−h2ω2

1 + a3 + a42
)
A2 (23)

ST5 =
1
2

(
−h3ω2

1 + a52 + a62ω1 + a72
)
A3 (24)

NST = a41AĀ+ a41A2e2iT0 + (−H3A3 + a51A3

− a61iA3 + a71A3)e3iT0
1
2
(−h1ω2

1A− 3h3ω2
1A

2Ā

−a1ω1A+ a2A− a62ω1A2Ā+ a72A2Ā)ei(1+ω1)T0

+
1
2
i(h2ω2

1 − a4 −
1
2
a5,2)A2ei(2+ω1)T0

+
1
2
(−h3ω2

1 + a52 − a62ω1 + a72)A3ei(3+ω1)T0 (25)

One may observe that any solution of Eq. (19) will contain
secular or small divisor terms when ω1 ≈ 1, ω1 ≈ 2, ω1 ≈

3 and ω1 ≈ 4. From Eq. (19), when the frequency of excita-
tion ω1 is near equal to the linear natural frequency of system
ωref , the nonlinear forced and parametrically excitation terms
will lead to the primary resonance. In addition, when the
frequency of excitation ω1 is near equal to 2, 3 or 4 times of
the linear natural frequency of the system ωref , i. e., ω1 ≈ 2,
ω1 ≈ 3 and ω1 ≈ 4, the nonlinear parametrically excitation
terms will lead to the sub-harmonic resonances. These two
cases will be investigated in Section 3.1 and 3.2, respectively.

A. PRIMARY RESONANCE
In this part, the case when the frequency of excitation ω1 near
equal to the linear natural frequency of systemωref , i. e.,ω1 ≈

1, is considered to be the primary resonance.
A detuning parameter σ is introduced which quantitatively

describes the nearness of ω1 to 1 and can be expressed as

ω1 = 1+ εσ, σ = O(1) (26)

Substituting Eq. (26) into (19) and one can obtained a
secular terms as

−2iD1A− 2µiA− 3H3A2Ā− a51A2Ā− ia61A2Ā

+3a71A2Ā+ i
(
h2ω2

1AĀ+ a3AĀ− a42AĀ+
1
2
f ω2

1

)
eiσT1

+
1
2
i
(
−h2ω2

1 + a3 + a42
)
A2e−iσT1 = 0 (27)

The secular term must be eliminated since it results in an
unbounded growth of the response of the model, which is
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inconsistent with the physical system. The complex ampli-
tude A can be assumed as:

A =
1
2
a (T1) eiβ(T1) (28)

in which a and β are the steady state amplitude and phases of
the motion. Also, a and β are the real functions of T1.

Considering ϑ = σT1 − β and separating the real and
imaginary parts of Eq. (27) would give:

a′ = −µa−
1
8
a61a3 +

1
8

(
h2ω2

1a
2
+ 3a3a2+4f ω2

1

)
cosϑ

(29)

aϑ ′ = aσ +
1
8
(3a71 − 3H3 − a51)a3

−
1
8
(3h2ω2

1a
2
+ a3a2 + 4f ω2

1) sinϑ (30)

where the prime denotes differentiation with respect to T1.
One may observe that the Eq. (29) (30) only have nontrivial
solutions. The steady state response (a0, ϑ0) can be obtained
by making a′ = γ ′ = 0. The amplitude-frequency relation-
ship can be solved by the algebraic equation which obtained
by eliminating the γ from Eq. (29) (30).
In addition, the stability of the steady state response can be

determined by investigating the eigenvalues of the Jacobian
matrix obtained by perturbing (29) and (30), then the Jacobian
matrix J1 can be written as follow:

J1 =
[
J1,11 J1,12
J1,21 J1,22

]
J1,11 = −µ−

3
8
a61a20 +

1
4

(
h2ω2

1 + 3a3
)
a0 cosϑ0

J1,12 = −
1
8

(
h2ω2

1a
2
+ 3a3a2 + 4f ω2

1

)
sinϑ0

J1,21 = σ −
3
8
(3a71 − 3H3 − a51) a20

−
1
4

(
3h2ω2

1 + a3
)
a0 sinϑ0

J1,22 = −
1
8

(
3h2ω2

1a
2
+ a3a2 + 4f ω2

1

)
cosϑ0 (31)

The stability of the steady state solutions of the system
are now decided by the nature of eigenvalues of matrixes
of Eq. (31). If all the eigenvalues have negative or zero real
parts, the steady state solutions are stable. Finally, the first
approximation solution in steady state can be expressed as

q = a cos (τ + εστ − ϑ)+ O (ε) (32)

B. SUB-HARMONIC RESONANCES
To be economically feasible, the rotational speed of the
manipulator has to be reasonably fast. On the other hand, the
linear natural frequency ωref of highly flexible truss founda-
tion may be very low. In such a case, the coupling behavior
between the low-frequency structures and high-frequency
robot may be excited high order resonance conditions. In this
part, the sub-harmonic resonance is investigated when the
excitation frequency caused by the uniform rotation of the
manipulator nearly equal to 2, 3 and 4 times of the system.

To analysis the first condition of super-harmonic reso-
nances, one could introduce the detuning parameter to be:

ω1 = 2+ εσ, σ = O(1) (33)

Substituting Eq. (33) into Eq. (19) and the secular term is
obtained as

−2iD1A− 2µiA− 3H3A2Ā− ia61A2Ā+ 3a71A2Ā

+
1
2
(−h1ω2

1Ā− 3}3ω2
1AĀ

2
+ a1ω1Ā+ a2Ā

−a52AĀ2 + a62ω1AĀ2 + 3a72AĀ2)eiσT1

+
1
2
(−h3ω2

1 + a52 + a62ω1 + a72)A3e−iσT1 = 0 (34)

We assumed ϑ = σT1 − 2β and separate the real and
imaginary parts of Eq. (34) as

a′ = −µa−
1
8
a61a3 +

1
8
(2(−h1ω2

1 + a1ω1 + a2)a

+ (−h3ω2
1 − a52 + a72)a

3) sinϑ (35)

aϑ ′ = aσ +
3
8
(3a71 − 3H3 − a51)a3

+
1
4
(2(−h1ω2

1 + a1ω1 + a2)a

+(−2h3ω2
1 + a62ω1 + 2a72)a3) cosϑ (36)

Unlikely with primary resonance which only have trivial
solution in Eq. (29) and (30), it is worth noting that the Eq.
(35), (36) have both trivial and nontrivial responses. The a′,
γ ′ are assumed to be zeros to find the steady-state solution
of the system. Similar to the primary resonance, the Jacobian
matrix can be used to determine its stability and can bewritten
as

J2 =
[
J2,11 J2,12
J2,21 J2,22

]
J2,11 = −µ−

3
8
a61a20 +

1
8
(−2h1ω2

1 + 2a1ω1

+2a2 + 3(−h3ω2
1 − a52 + a72)a

2
0) sinϑ0

J2,12 =
1
8
(2(−h1ω2

1 + a1ω1 + a2)a0

+(−h3ω2
1 − a52 + a72)a

3
0) cosϑ0

J2,21 = σ +
9
8
(3a71 − 3H3 − a51)a20 +

1
4
(−2h1ω2

1 + 2a1ω1

+2a2 + 3(−2h3ω2
1 + a62ω1 + 2a72)a20) cosϑ0

J2,22 =
1
8
(2(−h1ω2

1 + a1ω1 + a2)a0

+(−h3ω2
1 − a52 + a72)a

3
0) sinϑ0 (37)

Then, the first approximation solution of super-harmonic
resonances of the system can be expressed as

q0 = a cos
(
1
2
(ω1τ − ϑ)

)
+ O (ε) (38)

The second super-harmonic resonance is then captured
when ω1 ≈ 3. For this case, the detuning parameter and the
corresponding secular term are derived as

ω1 = 3+ εσ1, σ1 = O(1) (39)
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FIGURE 8. Frequency response of beam for super-harmonic case (ω1 ≈ 2) with different m̄l and s̄b; c = 0.15.

−2iD1A− 2µiA− 3H3A2Ā− ia61A2Ā+ 3a71A2Ā

+
1
2
i
(
−h2ω2

1 + a3 + a42
)
Ā2eiσT1 = 0 (40)

Substituting A = 1
2a (T1) e

iβ(T1) into Eq. (40) and separat-
ing the real and imaginary parts, one obtains

a′ = −µa−
1
8
a61a3 +

1
8

(
−h2ω2

1 + a3 + a42
)
a2 cosϑ

(41)

aϑ̇ = aσ +
3
8
(3a71 − 3H3 − a51) a3

−
3
8

(
−h2ω2

1 + a3 + a42
)
a2 sinϑ (42)

here, ϑ = σ1T1−3β and one can observe that the solution for
the second super-harmonic resonance have both trivial and
nontrivial solutions. Similarly, Jacobian matrix and the first
approximation solution of second super-harmonic resonances
can be expressed as

J3 =
[
J3,11 J3,12
J3,21 J3,22

]
J3,11 = −µ−

3
8
a61a20 +

1
4

(
−h2ω2

1 + a3 + a42
)
a0 cosϑ0

J3,12 = −
1
8

(
−h2ω2

1 + a3 + a42
)
a20 sinϑ0 (43)

J3,21 = σ +
9
8
(3a71 − 3H3 − a51) a20

−
6
8

(
−h2ω2

1 + a3 + a42
)
a0 sinϑ0

J3,22 = −
3
8

(
−h2ω2

1 + a3 + a42
)
a20 cosϑ0

q0 = a cos
(
1
3
(ω1τ − ϑ)

)
+ O (ε) (44)

In similar approach, the corresponding results could
be obtained for the third super-harmonic resonance when
ω1 ≈ 4

ω1 = 4+ εσ1, σ1 = O(1) (45)

−2iD1A− 2µiA− 3H3A2Ā− ia61A2Ā+ 3a71A2Ā

+
1
2

(
−h3ω2

1 + a52 + a62ω1 + a72
)
A3eiσ1T1=0 (46)

Separating the real and imaginary parts and considering
ϑ = σ1T1 − 4β, one can obtain

ȧ = −µa−
1
8
a61a3

+
1
16

(
−h3ω2

1 + a52 + a62ω1 + a72
)
a3 sinϑ (47)

aϑ̇ = aσ −
1
2
(3H3 + a51 − 3a71) a3

+
1
4

(
−h3ω2

1 + a52 + a62ω1 + a72
)
a3 cosϑ (48)

Similar to the previous case, here for both trivial and
nontrivial responses, the system will be stable if the real part
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FIGURE 9. Frequency response of beam for super-harmonic case (ω1 ≈ 2)
with different c; m̄l= 0.4 and s̄b= 0.5.

of all the eigenvalues of the Jacobian matrix is negative. The
Jacobian matrix is given by

J4 =
[
J4,11 J4,12
J4,21 J4,22

]
J4,11 = −µ−

3
8
a61a20

+
3
16

(
−h3ω2

1 + a52 + a62ω1 + a72
)
a20 sinϑ0

J4,12 =
1
16

(
−h3ω2

1 + a52 + a62ω1 + a72
)
a30 cosϑ0

J4,12 = σ −
3
2
(3H3 + a51 − 3a71) a20

−
3
4

(
−h3ω2

1 + a52 + a62ω1 + a72
)
a20 cosϑ0

J4,12 = −
1
4

(
−h3ω2

1 + a52 + a62ω1 + a72
)
a30 sinϑ0 (49)

Then, the first-order approximation solution of third super-
harmonic resonances can be obtained

q0 = a cos
(
1
4
(ω1τ − ϑ)

)
+ O (ε) (50)

IV. NUMERICAL RESULTS AND DISCUSSIONS
In present work, a metal beam with length L = 10 m,
width b = 0.5 m, depth h = 0.04 m, the Elastic mod-
ulus E = 1.62 × 1011 N/m2 and mass density ρ =

7830 kg/m3 is considered to simulate highly flexible slender
truss-structure. The scaling factor r is assumed to be 0.1.
The non-linear response, stability and bifurcations for pri-
mary and sub-harmonic resonance conditions with varying
system parameters, namely the mass of link m̄l , the mounting
position of the rigid link on the beam s̄b and damping of beam
c (here, we assumed m̄b = 0.5m̄l and p̄ = 0.5 for convenient
calculation), are investigated. Although low-damping char-
acteristics exists in the space environment, the damping of
flexible base can be achieved by installing damping structure
on trusses. In the following subsection, the simple resonance

condition is discussed in Section 4.1. Sub-harmonic reso-
nance condition is studied in Section 4.2. In all frequency
response curves, the real line contains a stable solution, and
the imaginary line represents an unstable solution.

A. PRIMARY RESONANCE
This section presents the simple resonance when the fre-
quency of excitation ω1 is near equal to the linear natural
frequency of the system ωref , i. e. ω1 ≈ 1, has to be
investigated.

Fig.2 shows the dynamic response of flexible beam with
rigid manipulator when s̄b = 0.5, m̄l = 0.2 and c = 0.15N /s.
Comparingwith amplitude-frequency response curvewithout
considering the effect of slope [12], the curve obtained by
presented method exhibits spring softening behavior of the
steady-state response. One can observe that the manipulator
will eventually oscillate with a steady-state response corre-
sponding to the excitation frequency (ω1) since there is no
trivial solution. In addition, the steady-state amplitude of
the system will vary as: A → B → C as the frequency
increasing. Meanwhile, it is experienced a jump down phe-
nomenon at point B which may lead to system failure. If the
system does not fail at point B, the vibration amplitude will
suddenly change to point C and then with further increase
of frequency, the amplitude will decrease. Conversely, if the
frequency decreases, the steady-state amplitude of the system
will experience from the point C → D → E → A. A jump
up phenomena of saddle-node (SN) bifurcation point D may
occur when ω1 = 1.078.

In order to evaluate the accuracy of the perturbation results,
the response curve obtained by the method of multiple scales
can be compared with the time response obtained by numer-
ically solving the Eq. (29) and (30). Fig.3 shows the time
responses, phase portraits and Poincare’ map corresponding
to points Q, M and N marked in Fig.2. It can be observed
that the steady-state response obtained by the fourth-order
Runge-Kutta method is in good agreement with the results
determined by the multiple scales method.

In addition, the bistable region exists after the S-N bifurca-
tion point D, which means a single frequency value has two
stable response amplitudes as shown in Fig.2. In this area,
the final steady state response of the system is determined by
the initial condition and a slight change of initial conditions
may cause a significant change in the response amplitude of
the structure [19]. Therefore, it is necessary to investigate the
relationship between the steady state amplitude of the system
and different initial conditions. The basins of attraction with
ω1 = 1 and ω1 = 1.2 are shown in Fig.4 (i) and (ii),
respectively. One can be observed that there has only one
steady state responses when ω1 = 1, however, a bistable
region exists(i.e., two stable response amplitudes) whenω1 =

1.2 which can be obtained by solving Eq. (29) (30) using
numerically solving methods and such phenomenon also
can be confirmed by the time response of points Q, M , N
in Fig.3.
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FIGURE 10. Time responses, phase portraits and Poincare’s map for the point A, M, H and U marked in Fig.8(ii).

FIGURE 11. Frequency response of beam for super-harmonic case (ω1 ≈ 3) with different, m̄l s̄b and c .

The parameter sensitivity analysis of the primary reso-
nance is carried out and the influence of different parameters
on the steady-state responses are studied in Figs.5, 6 and 7.

Fig.5 shows the frequency response curve for three different
values of viscous damping of the beam with mass of rigid
manipulator ratio m̄l and installation position of manipulator
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FIGURE 12. Time response, phase portraits and Poincare’s map corresponding to point A, B, C and D key as in
Fig.11(iv).

ratio s̄b equal to 0.4 and 0.5, respectively. Increasing the level
of damping will reduce the vibration amplitude of the beam.
Similarly, Fig.6, 7 represent the frequency response of beam
for primary resonance case with different m̄l and s̄b, respec-
tively. One can observe that increasing viscous damping of
the beam, decreasing the mass of the manipulator and making
the distance of installation position of manipulator close to
fixed end tend to alleviate the nonlinear effect of system.

B. SUB-HARMONIC RESONANCE
In this case, the sub-harmonic resonance is investigated when
the excitation frequency caused by the uniform rotation of the
manipulator nearly equal to 2, 3 and 4 times of the system.

Fig.8 and Fig.9 show variations in the frequency response
of curves depicted in series for super-harmonic case (ω1 ≈ 2)
with different manipulator mass ratio m̄l , installation position
of manipulator ratio s̄b and damping coefficient of beam c.
Unlike primary resonance, the system here has both trivial
and nontrivial responses. In addition, two subcritical pitch-
fork bifurcations are existed at points SP1 and SP2. As shown
in Fig.8 (ii), the system response of this kind can be classi-
fied into three different regions: (a) the system consistently

exhibits a stable equilibrium region (trivial response) when
ω1 < ωSP1 (zone I), (b) stationary oscillation region for
ωSP1 < ω1 < ωSP2 (zone II) and (c) bistable regions for
ω1 > ωSP2 (zone III), where ωSP1 and ωSP2 are the excitation
frequency value at points SP1 and SP2, respectively.
In the stable equilibrium region, i. e., zone I, the system

will calm down to zero solution stability regardless of the
initial value. As the ω1 increases, trivial solution loses its
stability and enters a branch of stable nontrivial solution
through subcritical pitchfork bifurcation point SP1. In the
stationary oscillation region, there exist an unstable trivial
solution and a stable non-trivial solution, which makes the
system oscillate regardless of the initial state (or any sudden
disturbance). After this short transition, conditionally static
equilibrium state or stationary periodic oscillation will occur
according to the initial state. Therefore, only under the sudden
disturbance of ω1 > ωSP1, the system will have steady state
oscillation.

Like in the previous case, the time responses, phase
portraits and Poincare’ map under different excitation fre-
quencies and initial conditions are obtained by numerically
solving the Eq. (35) and (36). Fig.10 shows the time response,
phase portraits and Poincare’map for the pointA,M ,H andU
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FIGURE 13. Frequency response of beam for super-harmonic case (ω1 ≈ 4) with different, m̄l s̄b and c .

marked in Fig.8(ii) with m̄l = 0.8 and s̄b = 0.5 for different
initial conditions. One can be observed that point A in region
I eventually tends to zero solution stability. The point M
in region II exhibits supercritical pitchfork bifurcation and
eventually oscillate with a steady-state vibration amplitude at
point N . The system response is going to a static equilibrium
state (zero solution) when the initial conditions at point U
(initial displacement and initial velocity, etc.) are small and
the system response jumps to the limit of non-trivial branch
vibration curve when the initial conditions (point H ) are
large which suggests that the completely different steady-
state responses may be obtained when some initial conditions
have slight deviations in zone III.

The parameter sensitivity study is also carried out for the
sub-harmonic resonance (ω1 ≈ 2) and the effects of different
parameters on the steady-state responses are investigated.
From Fig.8, one can also observe that increasing the mass
level of rigid manipulator, as well as increasing the dis-
tance between the installation position and the fixed end will
increase the zone II which may lead to catastrophic failure of
the system. However, Fig.9 shows that the frequency response
of the beam is weakly affected by damping.

Fig.11 shows variations in the frequency response of
curves depicted in series for super-harmonic case (ω1 ≈

3) with different manipulator mass ratio m̄l and installation
position of manipulator ratio s̄b for c = 0.15 N/m and p̄=0.5.
As shown in Fig.11(i), there exist both trivial and nontrivial
solutions and the trivial solutions is always stable. The system
response of this kind can be classified into two different

regions by the saddle node bifurcation point (SN): (a) uncon-
ditionally static equilibrium state (only trivial solution) when
ω1 < ωSN in zone I and (b) conditionally static equilibrium
state or stationary periodic oscillation (bistable regions both
have trivial and nontrivial solution) depending on the initial
state when ω1 > ωSN in zone II. From Fig.11, the jump
down phenomenon can be observed at point SN with such
a frequency response topology. Obviously, the steady-state
oscillation of the system is transmitted only in region II, i.e.,
ω1 > ωSN where ωSN is the excitation frequency value at
points SN.

From Fig.11, one may observe that with decreasing m̄l
and s̄b, as well as increasing c, the frequency value saddle
of node bifurcation point is shifted away from 3, which
means small mass can achieve larger unconditionally static
equilibrium region, i.e., zone I. However, it may be noted
that the distance of trivial and non-trivial curves increases
in which the system may easier to fail due to sudden jump
at points SN from non-trivial branch to static equilibrium
state when decrease of velocity of rigid link. Although a
high level of damping is helpful for structural vibration
attenuation.

From Fig.12, the vibration behavior of typical working
conditions for super-harmonic case (ω1 ≈ 3) can be observed
by the time response, phase portraits and Poincare’s map
marked at points A, B, C and D in Fig.11(iv) with different
initial conditions by solving the Eq. (41) and (42). It is
observed that for the point A (ω1 = 2.9), the trajectories in
the phase plane goes toward the trivial fixed point with time
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tends to infinity which also verify that vibration will decay to
static equilibrium regardless of initial conditions in the zone
I. For critical point B, the transient response of the system
with initial condition (a(0) = 0.4177, ϑ(0) = 3) gives a
beating type phenomenon in the early stage and after a long
period of time eventually reached stable periodic oscillations.
One can also find that the transition process for system, from
initial conditions to the stationary periodic oscillation near
the critical point, is more complex than that far away from
the critical point. Similar to super-harmonic case (ω1 ≈

2), the trajectories of the point C and D at ω1 ≈ 3.2(in
bistable regions) with different initial conditions go toward
the static equilibrium state and stationary periodic oscillation,
respectively.

The frequency response curves of super-harmonic case
(ω1 ≈ 4) with different manipulator ratio m̄l and installation
position of manipulator ratio s̄b are also depicted in Fig.13.
One can observe that the shape of super-harmonic (ω1 ≈ 4)
frequency response curves is similar to the ω1 ≈ 3. The
response of system can also be divided into two different
regions according to saddle node bifurcation point (SN):
(a) unconditionally static equilibrium state and (b) condition-
ally static equilibrium state or stationary periodic oscillation,
depending on the initial state. In addition, decreasing the level
of m̄l and s̄b decreases, as well as, increasing c, the saddle
node bifurcation point is located not only at larger amplitude,
but also at higher frequency. As a consequence, the possible
jump down phenomenon of the stable non-trivial response
may occur at a higher frequency and have a larger jump down
height for small mass manipulator or the installation position
closing to the fixed end at a large damping case or with a high
damping.

V. CONCLUSION
Nonlinear dynamic of a flexible slender truss-structure
mounted manipulator for on-orbit assembly, which can be
simplified as a beam–rotating link interaction system, is the-
oretically investigated for primary and sub-harmonic res-
onance. The PDEs of system is established by using the
D’Alembert principle incorporated with the moment balance
method in which the slope of beam is considered. Such sys-
tem is a typical parametrically excited system. The multiple
scales method is used to solve the second-order ODEs which
is reduced by the Galerkin’s method with a single mode
approach from obtained PDEs. Then, the non-linear response,
stability and bifurcations for primary and all sub-harmonic
resonance conditions have been investigated by varying sys-
tem parameters. By inspecting the results of this analysis, the
following conclusions could be made:

1). When the excitation frequency of manipulator ω1
near equal to the linear natural frequency of flexible truss-
structure ωref , there will exist simple resonance condition
and only have nontrivial steady state solution. The system
resonance could be classified into monostable and bistable
region by saddle-node (SN) bifurcation point. The steady
state responses of the system in bistable region are determined

by the initial condition and a slight change of initial con-
ditions may cause a significant change. On the other hand,
increasing the level of damping, as well as decreasing the
mass of rigid manipulator and installation position of manip-
ulator close to fixed end will reduce steady state responses of
beam.

2). Due to low-frequency flexible truss-structures and high-
frequencymanipulator, parametric excitations of manipulator
may excite high order resonance conditions of flexible truss-
structures. For the first sub-harmonic resonance case (ω1 ≈

2), the response has both trivial and non-trivial solution.
In addition, the system response at steady-state could be
classified into three different regions though two subcriti-
cal pitchfork bifurcation points: unconditionally stable equi-
librium region (zone I), unconditionally stationary periodic
oscillation (zone II) and conditionally static equilibrium state
or stationary periodic oscillation (zone III). Moreover, one
can observe that increasing the ml and sb will increase the
zone II which may lead to catastrophic failure of the system.
The frequency response of the beam is weakly affected by
damping.

3). For the second and third sub-harmonic resonance case
(ω1 ≈ 3 andω1 ≈ 4), trivial response existed along with non-
trivial response. The trivial solution is always stable and the
steady-state response of system could be classified into two
regions by the saddle node bifurcation point (SN): (a) uncon-
ditionally static equilibrium state and (b) conditionally static
equilibrium state or stationary periodic oscillation (bistable
region). In addition, decreasing the level of m̄l and s̄b, as well
as, increasing c, the saddle node bifurcation point is located
not only at larger amplitude, but also at higher frequency. As a
consequence, the possible jump down phenomenon of the sta-
ble non-trivial response can occur at a higher frequency and
have a larger jump down height for small mass manipulator
or the installation position is close to the fixed end. Although
a high level of damping is helpful for structural vibration
attenuation.
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APPENDIX A

µ =
1
2ε
µ1,H3 =

1
ε
(H31 + H32 + H33) ,

h1 =
1
ε
h11 cos θ θ̇2,

h2 =
1
ε
h21 sin θ θ̇2, h3 =

1
ε
h31 cos θ θ̇2, a1 =

1
ε
a11 sin θ θ̇2,

α2 =
1
ε
α21 sin θ θ̇ , α3 =

1
ε
α31 cos θ, α4 =

1
ε
α41 sin θ,

α5 =
1
ε
(α51 + α52 sin θ) , α6 =

1
ε

(
α61 + α62 sin θ θ̇

)
,

α7 =
1
ε
(α71 + α72 cos θ) , f =

1
ε
f1 sin θ θ̇2,
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m̄bl = m̄b + m̄l

ωref =

√(
EI
ρAL4

)
H1

H21 + m̄blH22

H21 =

1∫
0

(ϕ (s̄))2ds̄,H22 =

1∫
0

(ϕ (s̄))2 δ
(
ζ̄ − s̄b

)
ds̄

µ1 =

(
1

H21 + m̄blH22

)(
c

ρAωref

) 1∫
0

(ϕ (s̄))2ds̄

H31 =
1
2

EI

ρAω2
ref L

4

( r
L

)2 1∫
0

d4ϕ (s̄)
ds̄4

(
dϕ (s̄)
ds̄

)2

ϕ (s̄)ds̄,

H32 =
EI

ρAω2
ref L

4

( r
L

)2 1∫
0

(
d2ϕ (s̄)
ds̄2

)3

ϕ (s̄) ds̄q3,

H33 =
3EI

ρAω2
ref L

4

( r
L

)2 1∫
0

d3ϕ (s̄)
ds̄3

d2ϕ (s̄)
ds̄2

dϕ (s̄)
ds̄

ϕ (s̄) ds̄

h11 = −
m̄l p̄

H21 + m̄blH21
[

1∫
0

(
∂ϕ (s̄)
∂ s̄

ϕ (s̄) δ (s̄− s̄b)
)
ds̄

+

1∫
0

(
d2ϕ (s̄)
ds̄2

)
ϕ (s̄)

1∫
s̄

δ
(
ζ̄ − s̄b

)
d ζ̄ds̄]

h21 =
( r
L

)( m̄l p̄
H21 + m̄blH21

)− 1∫
0

d2ϕ (s̄)
ds̄2

dϕ (s̄)
ds̄

ϕ (s̄)

×

1∫
s̄

δ
(
ζ̄ − s̄b

)
d ζ̄ds̄

+

1∫
0

(
d2ϕ (s̄)
ds̄2

)
ϕ (s̄)

1∫
s̄

dϕ
(
ζ̄
)

ds̄
δ
(
ζ̄ − s̄b

)
d ζ̄ds̄


h31 =

( r
L

)2 ( m̄l p̄
H21 + m̄blH21

)

×

− 1∫
0

d2ϕ (s̄)
ds̄2

dϕ (s̄)
ds̄

ϕ (s̄)

1∫
s̄

dϕ
(
ζ̄
)

d ζ̄
δ
(
ζ̄ − s̄b

)

× d ζ̄ds̄+
1
2

1∫
0

(
d2ϕ (s̄)
ds̄2

)
ϕ (s̄)

1∫
s̄

(
dϕ
(
ζ̄
)

d ζ̄

)2

× δ
(
ζ̄ − s̄b

)
d ζ̄ds̄

]
α11 = −

(
2m̄l p̄

H21 + m̄blH21

) 1∫
0

(
∂ϕ (s̄)
∂ s̄

ϕ (s̄) δ (s̄− s̄b)
)
ds̄

α21 = −

(
m̄l p̄

H21 + m̄blH21

) 1∫
0

(
∂ϕ (s̄)
∂ s̄

ϕ (s̄) δ (s̄− s̄b)
)
ds̄

α31 = −
( r
L

)( m̄l p̄
H21 + m̄blH21

) 1∫
0

((
∂ϕ (s̄)
∂ s̄

)2

ϕ (s̄) δ (s̄− s̄b)) ds̄

α41 =
( r
L

)2 ( 1
H21 + m̄blH21

) 1∫
0

dϕ (s̄)
ds̄

ϕ (s̄)

× [1+ (m̄b + m̄l) δ (s̄− s̄b)]

s̄∫
0

d2ϕ
(
ξ̄
)

d ξ̄2
d ξ̄ds̄

α42 =
( r
L

)( m̄l p̄
H21 + m̄blH21

) 1∫
0

d2ϕ (s̄)
ds̄2

×ϕ (s̄)

1∫
s̄

dϕ
(
ζ̄
)

ds̄
δ
(
ζ̄ − s̄b

)
d ζ̄ds̄

α51 =
( r
L

)2 ( 1
H21 + m̄blH21

) 1∫
0

dϕ (s̄)
ds̄

ϕ (s̄)

× [1+ (m̄b + m̄l) δ (s̄− s̄b)]

s̄∫
0

d2ϕ
(
ξ̄
)

d ξ̄2
d ξ̄ds̄

−

1∫
0

d2ϕ (s̄)
ds̄2

ϕ (s̄)

1∫
s̄

[
1+ (m̄b + m̄l) δ

(
ζ̄ − s̄b

)]

×

ζ̄∫
0

(
dϕ
(
ξ̄
)

d ξ̄

)2

d ξ̄d ζ̄ds̄

α52 = −
( r
L

)2 ( m̄l p̄
H21 + m̄blH21

)

×

 1∫
0

(
d2ϕ (s̄)
ds̄2

)
ϕ (s̄)

1∫
s̄

(
dϕ
(
ζ̄
)

d ζ̄

)2

× δ
(
ζ̄ − s̄b

)
d ζ̄ds̄+

1∫
0

((
∂ϕ (s̄)
∂ s̄

)3

×ϕ (s̄) δ (s̄− s̄b)) ds̄]

α61 =
( r
L

)2 ( 1
H21 + m̄blH21

)(
c

ρAωref

)

×

 1∫
0

d2ϕ (s̄)
ds̄2

dϕ (s̄)
ds̄

ϕ (s̄)

1∫
s̄

ϕ
(
ζ̄
)
d ζ̄ds̄

−
1
2

1∫
0

((
∂ϕ (s̄)
∂ s̄

)2

ϕ2 (s̄) δ (s̄− s̄b)

)
ds̄


α62 =

( r
L

)2 ( m̄l p̄
H21 + m̄blH21

)
×

2 1∫
0

(
d2ϕ (s̄)
ds̄2

)

VOLUME 10, 2022 55921



X. Tang et al.: Nonlinear Dynamics Analysis of Large Flexible Slender Truss-Structure Carrying Manipulator

×ϕ (s̄)

1∫
s̄

(
dϕ (s̄)
ds̄

)2

δ
(
ζ̄ − s̄b

)
d ζ̄ds̄

−

1∫
0

((
∂ϕ (s̄)
∂ s̄

)3

ϕ (s̄) δ (s̄− s̄b)

)
ds̄

− 2

1∫
0

d2ϕ (s̄)
ds̄2

dϕ (s̄)
ds̄

ϕ (s̄)

1∫
s̄

dϕ
(
ζ̄
)

d ζ̄
δ
(
ζ̄ − s̄b

)
d ζ̄


α71 =

( r
L

)2 ( 1
H21 + m̄blH21

) 1∫
0

d2ϕ (s̄)
ds̄2

dϕ (s̄)
ds̄

ϕ (s̄)

×

1∫
s̄

(
1+ m̄blδ

(
ζ̄ − s̄b

))
ϕ
(
ζ̄
)
d ζ̄ds̄

−
1
2

1∫
0

((1+ m̄bl × δ
(
ζ̄ − s̄b

)) (∂ϕ (s̄)
∂ s̄

)2

ϕ2 (s̄)

)

× ds̄−

1∫
0

(
d2ϕ (s̄)
ds̄2

)
× ϕ (s̄)

1∫
s̄

(
1+ m̄blδ

(
ζ̄ − s̄b

))

×

ζ̄∫
0

(
dϕ
(
ξ̄
)

d ξ̄

)2

d ξ̄d ζ̄ds̄


α72 =

( r
L

)2 ( m̄l p̄
H21 + m̄blH21

)
−1

2

1∫
0

((
∂ϕ (s̄)
∂ s̄

)3

ϕ (s̄) δ (s̄− s̄b)

)
ds̄

−

1∫
0

d2ϕ (s̄)
ds̄2

dϕ (s̄)
ds̄

ϕ (s̄)

1∫
s̄

dϕ (s̄)
ds̄

δ
(
ζ̄ − s̄b

)
d ζ̄ds̄

+

1∫
0

(
d2ϕ (s̄)
ds̄2

)
ϕ (s̄)

1∫
s̄

(
dϕ
(
ζ̄
)

d ζ̄

)2

δ
(
ζ̄ − s̄b

)
d ζ̄ds̄


f1 = −

(
L
r

)(
m̄l p̄

H21 + (m̄b + m̄l)H21

) 1∫
0

ϕ (s̄) δ (s̄− s̄b)ds̄
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