
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ncse20

Computer Science Education

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ncse20

Experiential serious-game design for development
of knowledge of object-oriented programming and
computational thinking skills

Ali Akkaya & Yavuz Akpinar

To cite this article: Ali Akkaya & Yavuz Akpinar (2022): Experiential serious-game design for
development of knowledge of object-oriented programming and computational thinking skills,
Computer Science Education, DOI: 10.1080/08993408.2022.2044673

To link to this article: https://doi.org/10.1080/08993408.2022.2044673

Published online: 01 Mar 2022.

Submit your article to this journal

Article views: 249

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ncse20
https://www.tandfonline.com/loi/ncse20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08993408.2022.2044673
https://doi.org/10.1080/08993408.2022.2044673
https://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08993408.2022.2044673
https://www.tandfonline.com/doi/mlt/10.1080/08993408.2022.2044673
http://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2022.2044673&domain=pdf&date_stamp=2022-03-01
http://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2022.2044673&domain=pdf&date_stamp=2022-03-01

Experiential serious-game design for development of
knowledge of object-oriented programming and
computational thinking skills
Ali Akkaya and Yavuz Akpinar

Computer Education & Educational Technology Department, Boğaziçi University, Etiler, Istanbul, Turkey

ABSTRACT
Background and Context: Though still a nascent area of research,
serious games have been presented as means of engaging students
in computer programming and computational thinking due to their
immersive and interactive nature. Existing research is limited in its
ability to provide systems based on sound instructional design
models, and only a few studies validate their design with statistical
support.
Objective: This study investigated the effects of a game which is
based on experiential learning theory under framework of the four-
component instructional design model on undergraduate students’
learning performance in conceptual knowledge of object-oriented
programming and computational thinking skills.
Method: A pre-test and post-test quasi-experimental design was
used to study the effects of the experiential serious games on
conceptual knowledge of OOP and CT skills of 61 non-
engineering students with and without prior programming
knowledge.
Findings: The statistical analyses reveal that students with and
without programming experience significantly improved their
understanding of fundamental concepts of OOP. There were only
weak correlations among students’ creative problem solving, atti
tudes towards digital game-based learning of programming, and
learning.
Implications: We provide several recommendations for researchers
and practitioners for designing and developing an effective serious
game to teach novice programmers computer programming.

ARTICLE HISTORY
Received 24 August 2021
Accepted 17 February 2022

KEYWORDS
Serious game; computational
thinking; object-oriented
programming; instructional
design

Introduction

Computer programming is one of most important skills of today’s world because modern
societies rely on computer systems to drive industry, trade and nearly every aspect of
human life. Additionally, computational thinking (CT) skills are the fundamental skills that
lie at the bottom of computer programming. CT is a problem-solving approach in which

CONTACT Yavuz Akpinar akpinar@boun.edu.tr Computer Education & Educational Technology Department,
Boğaziçi University, Kuzey Kampüs, ETA-B Blok, Oda:508, Etiler, Istanbul, Turkey
Please note that ethical committee approval of the research reported in this manuscript, participants’ consent informa
tion and research data are available athttps://drive.google.com/drive/folders/1JR1mtlfgIwmjRb-XnJLrNHb-0iJtv2Dr?usp=
sharing

COMPUTER SCIENCE EDUCATION
https://doi.org/10.1080/08993408.2022.2044673

© 2022 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/0000-0001-7955-7407
http://orcid.org/0000-0002-9406-3795
https://drive.google.com/drive/folders/1JR1mtlfgIwmjRb-XnJLrNHb-0iJtv2Dr?usp=sharing
https://drive.google.com/drive/folders/1JR1mtlfgIwmjRb-XnJLrNHb-0iJtv2Dr?usp=sharing
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2022.2044673&domain=pdf&date_stamp=2022-03-01

solutions to problems are generated in a way that computers are able to perform (Wing,
2006). However, students have problems in understanding and analyzing a problem,
building step-by-step algorithmic solution designs for problems (Guenaga et al., 2021;
Xinogalos, 2016) and visualizing the programming concepts from a problem situation (Al-
Sakkaf et al., 2019; Mladenovic et al., 2021) which result in demotivation. Hence, research
ers adopted a digital game-based learning approach to help novice programmers over
come their learning problems and improve their performance on computer
programming.

Programming for K-12 can be traced back to 1960s when Logo programming was first
introduced to develop powerful intellectual thinking skills; though studies of teaching
programming at early ages were not high in number, in the recent years, renewed interest
in introducing programming to K-12 students, and students of non-computer science
programs in universities is observed. This is encouraged with the availability of relatively
easy-to-use visual programming languages. Visual programming environments such as
Scratch (Resnick et al., 2009), Alice (Cooper et al., 2000), and Greenfoot (Kölling, 2010)
were used by researchers to teach the basics of object-oriented programming (OOP) and
CT, and the findings of the research on these programming environments were promis
ing. Even though the visual programming environments had positive effects on students’
learning performance, they still need to be used with well-designed teaching methods
and learning materials (Chen et al., 2019; Meerbaum-Salant et al., 2013; Mladenovic et al.,
2021). Moreover, these programming environments do not have a proper feedback
mechanism to help novice programmers understand the errors in their algorithms
(Meerbaum-Salant et al., 2011). Similarly, Weintrop and Wilensky (2016) asserted that,
with the integration of coding activities into game-play, students would become more
familiar with fundamentals of programming. Consequently, the effects of serious games
on learning computer programming attracted researchers in recent years; the majority of
the findings agree on the positive effects of serious games on novice programmers’
motivation (Barnes, Richter et al., 2007; Liu et al., 2011; Mathrani et al., 2016; Paiva et al.,
2020; Ramírez-Rosales et al., 2016; Wong et al., 2016). Much of the research up to now has
studied the effects of serious games on novice programmers’ learning performance and
motivation. However, only a few studies provide a well-conceived design and demon
strate inferential statistical analysis (Livovsky & Poruban, 2014; Mathrani et al., 2016;
Miljanovic & Bradbury, 2017). Hence, the main purpose of this study is to examine the
effects of the use of a serious game on undergraduate students’ learning performance on
conceptual knowledge of OOP, and CT skills.

Literature review

Problems of teaching and learning programming

Simula, developed in early 1960s, was the first OOP; however, teaching OOP become an
essential part in computer science education a couple of decades ago (Kölling, 1999a).
Commonly an easy programming language was used to introduce computer program
ming to students at schools and universities, and then move to a more difficult program
ming language. Therefore, procedural programming concepts and methods which are
easier than OOP are used to be taught first, and later OOP are introduced to students.

2 A. AKKAYA AND Y. AKPINAR

However, OOP have benefits of software reuse, modularization, programming in teams
and maintenance of large systems. Many researchers and teachers (for details, see, Kölling,
1999a, 1999b; Pitsatorn, 2003;) suggest to first teach OOP if the aim is to teach them OOP.
Because shifting from procedural programming to OOP takes long time (Kölling, 1999a;
Livovsky & Poruban, 2014; Xinogalos, 2016) many schools and universities are introducing
computer programming by using OOP. The abstract nature of OOP itself causes problems
for novice programmers (Abbasi et al., 2021; Kölling, 1999a; Weintrop & Wilensky, 2019).
For example, students have difficulties in understanding the nature and necessity of
abstract concepts of OOP such as inheritance, polymorphism, overriding, abstract classes,
and interfaces; hence, they cannot make use of these concepts properly (Xinogalos, 2016).
Hadjerrouit (1999) emphasized the role of OOP concepts in understanding and analyzing
problems, generating solutions to problems, and in the implementation of the designed
solutions of problems. Therefore, students’ difficulties in understanding the fundamental
concepts of OOP could give rise to much bigger problems.

The transition from procedural programming to OOP also causes problems for novice
programmers in understanding OOP (Hadjerrouit, 1999). Students have difficulties in
changing their mindset from defining special functions as a main way of forming
a solution to a problem to form a solution to a problem by creating functions that utilize
classes and objects (Xinogalos, 2016). Starting to learn OOP with a real programming
language like C# or Java makes it difficult for students to learn OOP (Guzdial, 2008). It is
believed that using pseudo languages in teaching OOP helps students to focus on
important aspects of OOP such as the algorithmic design of the solution, OOP concepts
and constructs instead of worrying about the syntax of a specific programming language
(Xinogalos, 2016). In addition, novice programmers have difficulties figuring out what
constructs to use and where to use them in their algorithms while they are programming
(Guenaga et al., 2021; Kazimoglu et al., 2012). Moreover, Watson et al. (2011) state that
unspecific compiler messages cause difficulties for novice programmers because they
need proper feedback from the compiler that guides them. Further, many students have
problems even in visualizing the execution of their programs (Cooper et al., 2000; Grover
& Basu, 2017). To overcome this, providing visual representation of classes and objects to
think about problems in object-oriented terms is suggested (Kölling, 1999b; Toth &
Lovaszova, 2021).

Computational thinking and object-oriented programming

Students’ problem solving methods and skills in computer programming are identified as
CT in the current literature (Aho, 2012; Lu & Fletcher, 2009; Wing, 2006). Hence, research
ers put an emphasis on the early introduction and development of CT skills before
students start to learn computer programming (Liu et al., 2011; Weintrop & Wilensky,
2019). The idea of CT being a problem-solving approach is commonly held, but CT is not
limited to only a problem-solving method (Selby & Woollard, 2013). CT also involves skills
such as abstraction, decomposition, algorithm building, evaluating, and debugging.

Researchers point out that CT and computer programming are not the same (Lu &
Fletcher, 2009; Voogt et al., 2015), nonetheless computer programming and CT are
intertwined concepts (Kazimoglu, 2013). According to Hadjerrouit (1999), OOP concepts
play an important role in understanding the problems, designing solutions to these

COMPUTER SCIENCE EDUCATION 3

problems and in the implementation of the proposed solutions. With CT skills and
knowledge of OOP concepts, novice programmers would be able to build object
oriented schemata and generic solutions to problems in the computer science (CS)
domain.

Visual programming environments to teach programming

Studies focused on developing different kinds of programming environments for teach
ing OOP (Carlisle, 2009; Cooper, et al., 2000; Kölling, 2010; Kölling et al., 2003). For
example, The BlueJ programming environment allows students to have dynamic inter
actions with classes to test them (Kölling et al., 2003). As a result of a survey, Van Haaster
and Hagan (2004) reported positive effect of the BlueJ environment on novice pro
grammers. An improved version of the BlueJ programming environment, Greenfoot
(Kölling, 2010), provide instant visualization of the current behavior and the state of the
objects. Begosso et al. (2012) investigated Greenfoot programming environment on
students’ conceptual knowledge of OOP showed that students had an achievement rate
of more than 60%, and that students were motivated while they were learning OOP
with Greenfoot.

Furthermore, to overcome problems in learning OOP, Cooper et al. (2000) designed
a 3-D interactive programming environment with drag-and-drop code blocks, Alice. Wang
et al. (2009) showed that students who were taught programming with Alice performed
significantly superior to the students in control group. Another experiment (Florea et al.,
2016) used Alice as both a game and a game development tool for students in learning
programming. The study showed that students had a positive perception of learning by
playing and developing games.

The researchers integrated visual programming environments into CS education to
help novice programmers overcome their learning difficulties. For example, a study
(Meerbaum-Salant et al., 2013) with Scratch showed that students’ learning of CS con
cepts was improved. Yet the students still had difficulty in understanding concepts such
as variables, concurrency and repeated executions: Although Scratch has some positive
effects on the learning of CS concepts, it does not properly support OOP.

Current research reveals that visual programming environments need to be used with
a well-designed teaching methods, and learning materials should be provided to support
their use (Meerbaum-Salant et al., 2013; Repenning et al., 2010; Weintrop & Wilensky,
2019) even though they have positive effects on teaching programming. Otherwise, these
programming environments will only bring a short burst of enthusiasm for novice
programmers (Repenning et al., 2010). Furthermore, these programming environments
lack the mechanism that provides feedback to students about their errors or the appro
priate use of programming blocks (Meerbaum-Salant et al., 2011). Another concern is that,
though these programming environments remove the extraneous cognitive load of
syntax during programming process, there is still a need to write algorithms, which
increases intrinsic cognitive load (Lister, 2011). Overall, developing programming envir
onments is not the sole solution to the problems in teaching OOP. Teaching methods and
the context such as games are also considered to be effective tools to teach
programming.

4 A. AKKAYA AND Y. AKPINAR

Serious games for learning programming

Serious games are computer games with educational goals, and provide intriguing
contexts with interactive, engaging and immersive activities (Gunter et al., 2008).
Expectations from serious games encouraged to initiate large scale projects; For example,
The European Network of Excellence for Game-based Learning (GaLA – Game and
Learning Alliance; see http://www.galanoe.eu) project aimed to stimulate the effective
use of games in education and training. The subjects at which serious games developed in
the GaLA projects include supply chain management, cultural heritage, healthcare, ethics,
probability, CT, communication and co-operation in complex distributed production
systems. Project reports suggested linking learning and game mechanics (Arnab et al.,
2015), providing an unplugged and plugged activities (Tsarava et al., 2019), providing
immediate feedback (Marfisi-Schottman et al., 2019), using metaphors (Eleftheriadis &
Xinogalos, 2020). Pilot evaluations of the settings in these studies have provided promis
ing results.

Another large scale endeavor to pinpoint the most pioneering solutions that use
gamification for the development and certification of certain 21st century skills including
CT was recently launched by the Inter-American Development Bank (IADB, 2020); Results
of the project is not unveiled yet. Further, many researchers used games as learning
environments for teaching programming to novice learners (e.g. Abbasi et al., 2021;
Barnes, Chaffin et al., 2007; Barnes, Richter et al., 2007; Kazimoglu et al., 2012; Mathrani
et al., 2016; Muratet et al., 2011; O’Kelly & Gibson, 2006; Paiva et al., 2020). For example,
Phelps et al. (2005) used a web-based 3D collaborative virtual environment, MUPPETS, to
teach fundamental concepts of OOP using the Java programming language. Another
game development environment, RoboCode, aims to teach the basic concepts of struc
tured programming and the fundamental concepts of OOP in which students create
robots by writing programs in Java, and players’ robots fight each other in a small
rectangular online environment. It enables a player to see instantly how the robots are
affected by the player’s codes. Based on the anecdotal data (Phelps et al., 2005) and
observations in students’ first year of programming in RoboCode (O’Kelly & Gibson, 2006)
the findings without empirical data seem promising. Though RoboCode gathers up
different aspects such as fun, programming, games, artificial intelligence and competition,
it does not free students from worrying about problems with syntax of a programming
language, Java.

Moreover, Barnes et al. (2007) conducted a study with a 2D role playing game, Saving
Princess Sera, to teach variable declaration along with the simple usage of conditions,
structures, and loops. The study showed that students liked the idea of games being used
as a reinforcement tool for a programming class, but no achievement increase was
reported. ZTECH (Wong et al., 2016) is another role-playing game for teaching basic
OOP concepts. Sixty freshman students evaluated the game, two-third of the students
found ZTECH an effective tool to teach object-oriented paradigms. Researchers claimed
that pseudo codes should be used in introductory programming courses to overcome
difficulties that are caused by the syntax of a real programming language.

In a similar vein, Livovsky and Poruban (2014) developed the 2D Alien Breed game to
teach the basic concepts of OOP to novice programmers without making students write
programs in a real OOP language. The game focused on several concepts of OOP, namely,

COMPUTER SCIENCE EDUCATION 5

http://www.galanoe.eu

object, class, attribute, operation, encapsulation, and inheritance. The researchers stated
that students were reluctant to read help texts, instructions for tasks, and to learn content.
They recommend replacing these text tutorials with animations or video tutorials because
they believe that the length of those texts was the reason.

A 3D virtual world, the Second Life, which enables students to program the behavior of
objects by writing basic script codes, was investigated by Esteves et al. (2011). The study
pointed to three important issues, first, students had difficulty following the conversations
and instructions of the settings. Second, although students were grateful for the oppor
tunity to talk with instructors, it was hard for the instructors to provide immediate
feedback. Third, they had problems creating the right algorithm and finding the execution
errors in their programs. Another study with a 3D simulation game, TrainB&P (Liu et al.,
2011), suggested that students are more likely to be in a flow state when they practice
computational problem-solving skills in a game rather than in traditional lectures.
Similarly, a multiplayer real-time strategy game, Prog&Play, (Muratet et al., 2011) to
teach programming, was found motivating by the students and teachers.

Kazimoglu et al. (2012) studied the effects of a serious game, Program Your Robot, on
students’ CT skills. The game focused on abstract and conceptual knowledge of pro
gramming rather than on the functions of developing CT skills. The results revealed that
the majority of students thought game was helpful in improving their problem-solving
skills and understanding basic programming constructs. In a similar study, Mathrani
et al. (2016) used the LightBot, a fictional story in which players program a robot to light
all blue tiles in a specific path by using prefabricated commands that represent funda
mental programming concepts like functions, conditional flows, recursion. The study
indicated that students loved the game, and the researchers found it useful in learning
basic programming, but suggested more complicated game for advanced
programming.

Ramírez-Rosales et al. (2016) developed a serious game, Software KIDS, to teach
fundamentals concepts of OOP and the basic concepts of software engineering, such as
algorithms, conditional and iterative structures, and arrangements. Although the children
enjoyed the game, they needed the assistance of a mentor to solve problems they
encountered in the gameplay. Another serious game, RoboBUG, (Miljanovic & Bradbury,
2017) was designed for computer science students who are learning C++. The standard
puzzle-type version of the game implements debugging in C++, but it also allows
instructors to create new levels with different programming languages. However, no
significant effects were observed, and the researchers argued that the game should
include a hint system to relieve the frustration of players.

Recently, Abbasi et al. (2021) conducted an experimental study with a serious game to
teach OOP concepts to students in computer science programs. The game incorporated
three different stories as playing scenarios, which include management systems of
a hospital and a library, and an online-shopping system. The game with various levels
focused on concepts of object, methods, attributes, class, and relationship between the
classes; the game story required the player to identify the correct candidates for the class
in a given domain. The main finding was that the control group who studied the same
content in a traditional manner performed worse than the experimental group’s perfor
mance at the posttest. The study also reported that the game motivated students to
learn OOP.

6 A. AKKAYA AND Y. AKPINAR

The improvement of students’ CT skills, engagement and affected outcomes through
educational games have been reported in many recent studies (see a recent meta-analysis
conducted by Sun, Guo & Hu, 2021), however the evidence for accomplishment in this
area is not yet convincing.

Statement of the problem

The current literature points out that visual programming environments will only
bring a short burst of enthusiasm unless they are used with interactive teaching
methods and learning materials (Repenning et al., 2010; Sun et al., 2021). These
environments lack the mechanism to provide feedback to students about their error
or about the appropriate use of programming blocks (Abbasi et al., 2021). Moreover,
there is still a need to write algorithms for solutions to problems, which increases the
intrinsic cognitive load (Lister, 2011). Many researchers, on the other hand, investi
gated the effects of games on developing CS skills and learning computer program
ming. Few studies provided a well-prepared experimental design and demonstrated
statistical findings, and few followed a sound gaming approach and 4C instructional
design (Abbasi et al., 2021; Livovsky & Poruban, 2014; Mathrani et al., 2016;
Miljanovic & Bradbury, 2017). Also, research in computer programming education
has stressed that many novice students lack problem solving skills, one of the
prerequisites of computing (Veerasamy et al., 2019), and fail in formulating
a problem and communicating its solution in code, and unable to utilize key con
cepts, such as loops and conditionals in programming (Koulouri et al., 2014). In turn,
in programming processes, knowing programming codes is not sufficient while
solving the problems; Having creative problem solving skills (CPSS) is needed (Akar
& Altun, 2017). CPSS is a way of solving problems when usual way of thinking fails, it
encourages students to bring new perspectives and find new solutions. Hence, it is
also important to examine the relationship between students’ CPSS and their per
formance in OOP.

This study aimed to examine the effects of a serious game (Curious Robots: Operation
Asgard), based upon Kiili (2005)’s Experiential Gaming Model and 4C instructional design
model (Van Merriënboer et al., 2002), with experiential gaming features on students’
conceptual knowledge of OOP and CT skills. The study particularly answered the following
questions:

(1) Is there any significant effect of the game on the development of conceptual
knowledge of OOP and CT skills of students without programming experience,
and of students with procedural programming experience?

(2) Is there any significant effect of the game on the difference between the achieve
ment scores on the conceptual knowledge of OOP and CT skills of students without
programming experience and of students with procedural programming
experience?

(3) To what extent do students’ CPSS and attitudes towards digital game-based
learning of programming influence their achievement score on the conceptual
knowledge of OOP and CT skills?

COMPUTER SCIENCE EDUCATION 7

Methodology

Research design and sampling

A pre–test and post-test quasi-experimental design is used to study the effects of serious
games on undergraduate students’ conceptual knowledge of OOP and CT skills. The
target population of the study was undergraduate students studying computer program
ming in non-engineering disciplines. A sample of undergraduate students were selected
from the Computer Education and Educational Technology Department in a Turkish state
university where the medium of instruction is English, permitted to collect data.
Convenience sampling in this quasi-experimental design (Creswell, 2011) was followed
as the sampling method because there was no chance to access participants randomly.
The first group of the sample consisted of 30 freshman students without prior experience
in programming, while the second group included 31 sophomores with experience in
procedural programming but not in OOP. A pre-test on the basic conceptual knowledge
of OOP and CT skills is given to the students, and according to the results of this test,
a student with higher level of conceptual knowledge on OOP and CT skills is excluded
from the study.

Treatments

In this study, a 2D science-fiction themed hybrid (puzzle-solving and simulation) serious
game, Curious Robots: Operation Asgard, was developed by the researchers with Unity 3D
game engine using C# programming language (Akkaya, 2019). The game was specifically
designed to be a simulation game because it allows players to explore a virtual game
world and interact with the other game objects to test their hypotheses (Kiili, 2005). The
objective of the developed game was in two-folds; one is to introduce fundamental
concepts of OOP namely class, object, attribute, data, method, inheritance, polymorphism
and encapsulation to students in a meaningful and fun environment, and the second is to
enable students to practice CT skills: conditional logic, algorithm building, simulation and
debugging.

Following the development of the first version of the game, the researchers asked the
opinion of three educational technology specialists and four software engineers in terms
of usability, instructional design and the integration of programming concepts and
procedures into gameplay. Additionally, a pilot study with 5 students with experience
in OOP was also conducted to assess the usability of the game. In the light of the feedback
from these initial evaluations, the gameplay, the screen and the message design of the
game were revised.

Serious game design model

Using a game design model that successfully integrates game characteristics and educa
tional theory is important in the development of a serious game. In order to ensure that
students would accomplish the objectives of the learning unit in the game, the concep
tual design framework of the game developed included the following features:

high level of interactivity to motivate learners,

8 A. AKKAYA AND Y. AKPINAR

providing problems in an authentic context,
chance of analyzing a problem situation,
actively testing generated solutions and discover,
chance of observing the outcomes of solutions through feedback, and improve them.
Even though there are many serious game development frameworks in the current

literature (see, Krath et al., 2021), Kiili (2005)’s Experiential Gaming Model was selected as
the conceptual design framework because it was the one that most closely met criteria of
interactive learning environments. This model aims to create a link between gameplay
mechanics and experiential learning theory to enhance players’ flow experience.
Experiential learning theory stresses the importance of direct experience and reflective
thinking in learning (Kolb, 1984). Flow, on the other hand, is the state of having optimal
experience from an activity by being completely engaged (Csikszentmihalyi, 2014). By
grounding the design of the game to the experiential gaming model, we also aimed to
increase the motivation of novice programmers because they often have low motivation
to learn OOP (Kong & Wang, 2019; Prensky, 2003)

The experiential gaming model consists of three main cycles, namely preinvative
idea generation, idea generation and the active experimentation cycle consisting of
reflective observation and schemata construction (see, Figure 1). At the center of
these cycles there are challenges which play a crucial role in keeping players in
a state of flow. The level of the challenges in game activities is important in the
design of instructional games because easy challenges may bore players, while hard
ones may cause players to be anxious. Therefore, it is important to provide learners

Figure 1. Experiential gaming model (Kiili, 2005).

COMPUTER SCIENCE EDUCATION 9

with challenges that will match their skill and knowledge level. Furthermore, chal
lenges should be designed in a way that the difficulty of the tasks will increase when
players make progress in the game.

The preinvative idea generation loop has a disorganized structure which can usually be
seen in the way children play. In the idea generation loop, players analyze the problems
and generate their solutions according to the rules and constraints of the game world. In
the experimentation stage, players implement their solutions and observe their effects on
the problem situation. In the reflective observation phase of the experimentation cycle,
clear feedback plays a crucial role. With the help of feedback from the game world,
learners may understand the deficiencies in their solutions and thereby improve them.
This experimentation and observation process of solutions would help students to con
struct new knowledge schemata, consequently resulting in learning. Kiili (2005) empha
sized that it is important for learners to test different solutions to a problem to improve
their creative problem-solving skills (CPSS) and current knowledge on the topic. Although
this model provides guidance and information about the fundamentals of designing
serious games, it does not necessarily refer to the instructional design of the activities
in a game. Therefore, along with a conceptual design framework of serious games, the
four-component instructional design model (4C/ID model; Van Merriënboer et al., 2002)
was used in the design and the development of the activities of the game.

Instructional design model

The 4C/ID model consists of four major components: (1) learning tasks, (2) supportive
information, (3) procedural information and (4) part-task practice. Learning tasks are
authentic whole-task problems which are based on real-life situations. By working on
learning tasks, learners build knowledge schemata and integrate their current knowledge,
skills and attitudes. Learning tasks are divided into task classes according to their level of
difficulty, starting from easy tasks and finish with the difficult ones. According to this
model, supportive and procedural information should be presented to students over the
course of their learning experience. Supportive information is provided to help learners to
perform nonroutine, complex and problem-solving parts of the learning tasks. Procedural
information, indicates a step-by-step instruction about a routine task in learning process.
While learning tasks in this model refers to whole-task activities, the part-task practice
refers to the practice of automated constituent skills. When a high level of automaticity is
required to perform a task, the learning tasks may not be sufficient. In such circumstances,
additional part-task practice should be provided for learners.

Overall, both models encourage the use of ill-structured problems in a learning
environment to support exploratory learning. For example, students are asked to
program their robot to collect objects from the surface of the Asgard without hitting
the obstacles on its way. The fundamental concepts of OOP and CT skills were
integrated into the story of the game, and the level of difficulty of tasks in the
game increased gradually. Furthermore, fantasy elements such as metaphorical
machines (Eleftheriadis & Xinogalos, 2020) were used to integrate OOP concepts
into the story of the game, and to provide visual representations of abstract con
cepts of OOP. The metaphorical machines in the game play crucial role in the
concretization of abstract concepts of OOP by enabling novice programmers to not

10 A. AKKAYA AND Y. AKPINAR

to worry about the syntax of a real programming language. For example, in the
developed game students create their robots in a class definer machine, and pro
gram its behaviors in a method definer machine via dragging-and-dropping code
blocks. The class definer machine is used to concretize the class concept as
a programmable chip, and the object concept as a robot by visually representing
the processes of defining a class and object instantiation in the panel of the machine
(see, Figure 2). The method definer machine, on the other hand, visualized the
execution of code blocks on students’ robots to enable students to test codes and
observe its results. Hence, a constructivist learning approach was followed in the
developed game to help students understand the necessity and possible usages of
such concepts and CT skills.

The game developed in this study differs from others in two folds: One is that it teaches
fundamental concepts of OOP along with enabling students to improve their CT skills by
providing authentic problem situations. Second is the design of interactive tools of the
game. Context of learning environment provided screen operators (ie., metaphorical
machines) and tasks: Both of which together supported particularization of meanings of
OOP and CT concepts and brought coherence with the whole. Activities on operators
supported understanding how all the pieces of an entire concept fit together. In addition
to providing meaning to the abstract concepts, and to proceduralization of them, the
used context also showed the relevance of the concepts. To make it more appealing and
more relevant to computation and automation, the metaphorical machines are used. In
the game, once students specify the features of their robots, they start to program its
behaviors in a method definer machine via dragging-and-dropping code blocks. Unlike
the other games, the method definer machine, along with other machines, enables
students to build their own code blocks according to the needs of their missions as
a game play experience. Method creation activities in this machine are designed to help
novice programmers think their daily motions critically and divide basic motions such as

Figure 2. Object instantiation (interface is translated into English).

COMPUTER SCIENCE EDUCATION 11

walking or picking up an object into small steps. The main purpose of these activities is to
give the novice programmers a smooth introduction to algorithmic thinking by making
them analyze their daily movements step-by-step. By enabling students to develop
methods of the robot it is also aimed to help them design a solution which won’t be
specific to a single situation but will be used in the solution of different problems as the
nature of OOP requires.

An animated pedagogical agent (APA) presents instructions of each mission, sup
portive information and guidance prior to each new task. It is also responsible for
giving feedback and contextualized information about an activity in the learning unit.
The APA with its additional help section assists integration of OOP concepts into the
story of the game by telling the story and providing information about the learning
activities. It delivers hints and examples for each mission in the game in order to supply
complementary scaffolds in novice programmers’ learning experience. In the help
menu there are two main topics to guide students in their journey, one to provide
procedural information on using the elements in the game environment, and the other
to highlight the important points and provide examples specific to the given program
ming tasks. The instructions and the information in help menu designed in a way to
reduce learners’ cognitive load. For instance, some key points and concepts of OOP
were highlighted in the instructions prior to a task in order to lower learners’ cognitive
load.

The lack of proper feedback mechanisms in visual programming environments causes
problems for novice programmers (Marfisi-Schottman et al., 2019; Meerbaum-Salant et al.,
2011). Therefore, a visual and textual feedback mechanism is specifically designed to help
novice programmers to understand the execution of their program and debug their
codes. For example, if a code block runs properly, the block will turn green, or if there is
an error with the code block, it will be red, and if an input is missing in any of the code

Figure 3. Feedback mechanism.

12 A. AKKAYA AND Y. AKPINAR

blocks, the code blocks will be yellow. Along with the visual feedback for code blocks,
a pop-up feedback message providing information about the error will also appear (see,
Figure 3).

Data collection instruments

The study used four sets of data collection instruments: (1) a Creative Problem-Solving
Test (Özkök, 2005) to measure students’ CPSS which consists of 30 multiple-choice
questions with single response, each with 5 options. For each question the correct
answer was assigned 1 point while each wrong answer received 0 points (alpha = 0.94);
Ten of the questions in the test cover the identification of a problem, twelve involve the
decomposition of a problem, and the remaining eight questions are about interpreta
tion and making judgment skills. (2) an Attitude Scale for Serious Game Assisted
Programming Learning (Keçeci et al., 2016) is a 5-point Likert scale with 22 positive
and six negative statements (alpha = 0.83). Students were divided into two groups
based on their attitude, either positive or with negative. (3) a pre-test to measure
students’ existing conceptual knowledge of OOP and CT skills, and (4) a post-test to
measure students’ conceptual knowledge of OOP and CT skills after playing the game.
There was no single test that evaluated both the conceptual knowledge of OOP and CT
skills at the same time therefore we prepared a test by adapting items from three
different tests to measure students’ conceptual knowledge of OOP and CT skills. Sixteen
questions of the test were adapted from two tests (Gerola, 1997; Pitsatorn, 2003) for
measuring object-oriented computer programming semantic knowledge. The last three
questions measuring CT skills were adapted from another instrument (Basu, 2016). After
adapting all these items into one instrument, an instructor and two researchers re-
matched learning objectives with measurement items. Additionally, the Cronbach-alpha
coefficient of the instrument for the pre-test was 0.83 based on the answers of partici
pants of the study. Seventeen of the questions were multiple-choice, each with four
options. The last two questions of the test were open-ended questions which asks
students to provide a solution to the given problems by building a solution algorithm
and writing a simple program with pseudo codes. Each correct answer was graded out
of 5 points; each wrong answer received 0 points. The order of the questions and
options were changed in the post-test.

Data collection procedures

The study was conducted in three sessions – pre-test, treatment and post-test – that
took place on two different days over a period of 2 weeks. Data collection and the
experiment took place in the computer laboratories of the university where the stu
dents study.

In two groups, freshman and sophomore students, all participants were given 50 min
utes to answer Creative Problem-Solving Test and the pre-test. A week after the pre-test
phase, the second and third sessions of the study were performed consecutively. In
the second part of the study, both groups played the game developed, under the super
vision of the researcher and the instructor of the course for about two lesson period
(90 minutes). Students played the game individually, they didn’t interact or cooperate

COMPUTER SCIENCE EDUCATION 13

with other students online or offline during the study. After introducing the game, the
teacher did not communicate any content with the students. After a 15-minute break, the
researcher administered an attitude scale for serious game-assisted programming learn
ing and the post-test which took 40 minutes.

Data analysis

In order to answer the research questions, a series of different statistical tests were
conducted. Data sets of the students’ scores of pre-test, post-test, creative problem-
solving test and the attitude scale were examined before conducting hypothesis
testing through either parametric or nonparametric methods. The post-test scores
were normally distributed, but the pre-test scores were not distributed normally.
Therefore, a nonparametric, Wilcoxon signed-rank test was conducted to analyze the
difference between the post-test and pre-test scores on conceptual knowledge of
OOP and CT skills. Further, to test whether the level of CPSS and attitudes towards
digital game-based learning of programming together or pairwise influence the
students’ achievement scores, a general linear model 2 × 2 ANOVA test was
conducted.

Results

Learning gain of students without programming experience

A Wilcoxon signed-rank test (z = −4.797, p < 0.001) revealed that there was a statistically
significant increase from the pre to the post-test scores of students after playing the
developed game with a large (r = .87) effect size. The median score on conceptual
knowledge of OOP and CT skills test increased from pre-test (Md = 5.00, SD = 12.229) to
post-test (Md = 40.00; SD = 16.713).

Learning gain on conceptual knowledge of OOP of students without programming
experience

A Wilcoxon signed-rank test (z = −4.793; p < 0.001) showed that there was a statis
tically significant increase in the post-test scores on conceptual knowledge of OOP of
students after playing the developed game with a large effect size (r = .87). The
median score on conceptual knowledge of OOP test increased from 0.00 (SD = 9.589)
to 35.00 (SD = 14.090). Overall, there was an increase in the number of correct
answers to all of the questions for the instructional objectives after playing the
developed game (see, Table 1, Table 2).

Learning gain on CT skills of students without programming experience

A Wilcoxon signed-rank test (z = −2.500; p = 0.012) revealed that there was a statistically
significant increase in the CT skills post-test scores of students after playing the developed
game with a medium (r = .45) effect size. Their median CT skills score increased from pre-

14 A. AKKAYA AND Y. AKPINAR

test (Md = 5.00 SD = 3.806) to the post-test (Md = 7.50 SD = 5.438). Overall there was an
increase in the number of correct answers to all three questions for the instructional
objectives after playing the developed game (Table 2).

Learning gain of students with procedural programming experience

A paired-samples t-test (t(30) = 4.558, p < 0.001) showed a significant difference
between the post-test (M = 53.48 SD = 13.721) and pre-test (M = 40.32
SD = 14.772) scores on conceptual knowledge of OOP and CT skills, with a large
effect size (Cohen’s d = .92). The developed game elicited a statistically significant
increase in scores of the students who even attended a semester long program
ming course.

Table 1. Frequency distribution of participants’ number of correct answers for OOP concepts.
Freshman
Students

Sophomore
Students

Instructional Objective

Correct
Answers

Correct
Answers

Pre-
test

Post-
test

Pre-
test

Post-
test

Explain class concept 1 13 12 21
Identify object concept 4 12 17 19
Distinguish a class from an object 9 18 22 28
Distinguish object instantiation from class declaration process 1 15 8 21
Give an example of a class and instance from the class 1 6 13 17
State the roles of class attributes 1 16 6 9
Explain object instantiation process 2 11 9 15
State the difference between attributes of a class and attributes of an object 4 18 8 23
Define method concept 2 8 9 13
Explain how classes communicate with each other (calling the members of one class

from another class by creating an object)
4 18 14 16

Explain encapsulation concept 2 13 14 14
Explain the role of encapsulation in object-oriented programming 6 18 15 16
Explain polymorphism concept 0 4 15 10
Explain method overriding process 2 10 10 20
Differentiate a base (derived) class from a sub-class in an inheritance relationship 0 6 16 12
List characteristics of object-oriented programming 1 15 12 10

Table 2. Frequency distribution of participants’ number of correct answers for CT skills.

Instructional Objective

Freshman Students Sophomore Students

Correct Answers Correct Answers

Pre-test Post-test Pre-test Post-test

Understand conditional statements 18 20 26 27

Write a conditional statement 6 14 16 20

Design a step-by-step solution to a problem 0 5 8 21

COMPUTER SCIENCE EDUCATION 15

Learning gain on conceptual knowledge of OOP of students with procedural
programming experience

A paired-samples t-test (t (30) = 3.359, p = 0.002) showed a significant difference between
the post-test (M = 42.58 SD = 11.963) and pre-test (M = 32.26 SD = 12.964) scores on
conceptual knowledge of OOP of students with procedural programming experience,
with a large (d = .83) effect size. Overall, there was an increase in the number of correct
answers to questions for the instructional objectives after playing the developed game
(see, Table 1).

Learning gain on CT skills of students with procedural programming experience

A Wilcoxon signed-rank test (z = −2.849; p = 0.004) revealed that there is a significant
difference between the post-test (Md = 13.00; SD = 3.801) and pre-test (Md = 10.00;
SD = 4.11) scores on CT skills of students with procedural programming experience, with
a large effect size (r = .53). There was an increase in the number of correct answers to all
three CT questions for the instructional objectives after playing the developed game
(Table 2).

Comparison of the achievement scores students with and without programming
experience

An independent-samples t-test (t (59) = 4.115, p < .001) revealed that there was a sig
nificant difference between the achievement scores of the freshman students without
programming experience (M = 29.33, SD = 14.55) and of the sophomore students with
procedural programming experience (M = 13.16, SD = 16.08).

Covariate effects on the achievement scores

A general linear model 2 × 2 ANOVA test investigated whether CPSS and the attitudes
towards digital game-based learning of programming together or pairwise influence the
students’ achievement scores. The following statistical outcomes were found: (i) There
was no statistically significant two-way interaction between the students’ level of CPSS
and attitudes towards digital game-based learning of programming on achievement
scores, F(1, 55) = .229, p = .634, between the students’ level of CPSS and achievement
scores, F(1, 55) = .299, p = .586, and between the students’ attitudes towards digital game-
based learning of programming and achievement scores, F(1, 55) = 1.124, p = .294. (ii)
There was a strong positive, statistically significant, correlation (Pearson r (59) = .96,
p < .001) between the students’ overall achievement scores and achievement scores in
OOP concepts. (iii) There was a moderate positive, statistically significant, correlation
between (Spearman’s rho rs (56) = .338, p < .05) the students’ overall achievement scores
and achievement scores in CT skills.

16 A. AKKAYA AND Y. AKPINAR

Discussion and conclusion

Effects of a serious game on students’ conceptual knowledge of OOP and CT skills

Conceptual knowledge of OOP and CT skills play an important role in understanding
problems, designing and implementing solutions to problems in CS (Laakso et al., 2021;
Liu et al., 2011; Wing, 2008). Therefore, the first two questions of the study focused on the
effects of playing the developed game on students’ learning of conceptual knowledge of
OOP and CT skills. The analyses of both groups’ data showed that both freshman and
sophomore students significantly improved their conceptual knowledge of OOP and CT
skills after playing the developed game. This result is consistent with the idea that serious
games can be effective in fostering novice programmers’ programming knowledge
(Abbasi et al., 2021; Guenaga et al., 2021; Livovsky & Poruban, 2014; Mathrani et al.,
2016; Miljanovic & Bradbury, 2017; Muratet et al., 2011; O’Kelly & Gibson, 2006; Phelps
et al., 2005; Sun et al., 2021).

A more detailed analysis of the pre-test and post-test scores on conceptual knowledge
of OOP was also conducted for both groups. The results reveal that both freshman and
sophomore students significantly improved their understanding of fundamental concepts
of OOP such as class, object, method, encapsulation, inheritance and polymorphism. Such
findings corroborate the findings of other studies in the current literature (Abbasi et al.,
2021; Livovsky & Poruban, 2014; Mladenovic et al., 2021; O’Kelly & Gibson, 2006; Phelps
et al., 2005; Wong et al., 2016) by demonstrating inferential statistical analyses. Similarly,
the analysis of students’ scores on CT skills revealed that the mean post-test scores of both
groups were significantly higher than their mean pre-test scores on CT skills. The sopho
more students had completed a semester-long course on procedural programming
before the experiment, so it was assumed that there would be no significant difference
in the achievement scores of sophomore students on CT skills. Yet the significant increase
in sophomore students’ mean CT skills scores was a delightful surprise.

Additionally, a detailed analysis of the number of correct answers of freshman
students for pre-test and post-test showed that there was an increase in the number
of correct answers for all of the questions after playing the game. Freshman students
had significant improvement in learning objectives such as stating the roles of class
attributes, distinguishing object instantiation from class declaration process, stating the
difference between attributes of a class and attributes of an object, explaining how
classes communicate with each other, listing the characteristics of OOP and writing
a conditional statement. On the other hand, a detailed analysis of the sophomore
students’ number of correct answers to pre-test and post-test questions showed that
there was an increase in the number of correct answers to questions for 15 of the
instructional objectives after playing the game. Sophomore students had significant
improvement in learning objectives such as stating the difference between attributes
of a class and attributes of an object, distinguishing object instantiation from class
declaration process, explaining method overriding process and class concept. However,
there was not an increase or a decrease in one of the instructional objectives which is
explaining encapsulation concept. In addition, there was decrease in three of the
instructional objectives in the sophomore students’ number of correct answers to pre-
test and post-test questions. These four learning objectives were explaining

COMPUTER SCIENCE EDUCATION 17

polymorphism concept, differentiating a base class from a sub-class and listing char
acteristics of OOP. A possible reason of this result is the complexity of the activities
involving these learning objectives. For example, there were seven different methods in
one of the game activities that introduced the polymorphism concept, and this may
have been overwhelming for the novice programmers. Therefore, it can be said that the
game activities involving these learning objectives were not effective for students who
started computer programming with procedural programming and shifted to OOP, and
need to be revised. This result appears to support the idea that the transition from
procedural programming to OOP may cause problems for novice programmers
(Hadjerrouit, 1999; Toth & Lovaszova, 2021; Weintrop & Wilensky, 2019; Xinogalos,
2016) because freshman students who have no prior programming experience had
improvement in each of these learning objectives. However, it seems that more and
varied activities along with/without teacher and peers’ scaffolds may be needed to
compare and contrast information, and to analyze code sets in their parts or kinds, in
order to develop sufficient mindful abstraction in contents (i.e. explaining polymorph
ism concept, differentiating a base class from a sub-class) at which novice students’
progress was poor.

The serious games that were developed in the current literature focused on the
goals of teaching conceptual knowledge of OOP and developing CT skills separately.
The game developed in this study, on the other hand, aimed to teach fundamental
concepts of OOP along with enabling students to improve their CT skills by providing
authentic problem situations. In order to provide a constructivist learning experience
for novice programmers the game is developed based on the Experiential Gaming
Model (Kiili, 2005) and the 4C/ID model (Van Merriënboer et al., 2002) which encourage
the use of ill-structured problems in a learning environment to support discovery
learning.

Livovsky and Poruban (2014) claimed that long texts in instructions affected students’
learning negatively. Similarly, Sweller et al. (1998) argued that human beings have
a limited capacity for working memory, so instructional materials should be designed
by considering the learners’ cognitive load. Therefore, in the current study some key
points and concepts of OOP were highlighted in the instructions to lower the students’
cognitive load. For example, critical points in each activity were highlighted in the
instruction text to help novice programmers understand and analyze a problem before
finding a solution to it. Thus, though the length of the instruction texts were long, it did
not affect students’ learning performance adversely.

This study, by providing empirical data, showed that teaching fundamental concepts
of OOP and CT skills through a game play experience can foster novice programmers’
learning performance and help them overcome their learning difficulties. The integration
of fundamental concepts of OOP and CT skills into the story of the game can be an
effective way to teach programming with serious games. Additionally, it is important that
a serious game should offer students an opportunity to implement their solutions to the
given problems, observe and reflect the results on a problem situation, and make
necessary changes in their solutions. In this reflective observation phase of the learning
experience, clear feedback plays a crucial role. Therefore, an immediate, visual and textual
feedback mechanism should be provided in games to inform and guide students about
their missions and mistakes.

18 A. AKKAYA AND Y. AKPINAR

Comparison of achievement scores of students with and without procedural
programming experience

Novice programmers are likely to have problems when they are first introduced to
procedural programming and then move to OOP (Hadjerrouit, 1999; Xinogalos, 2016).
To provide a fresh insight into the current problem, this study compared the mean
achievement scores of freshman students without programming experience and sopho
more students with procedural programming experience. The findings showed that
serious games can foster novice programmers’ OOP knowledge and CT skills, and help
them to overcome the problems derive from the transition from procedural programming
to OOP. Moreover, the results reveal that freshman students (M = 29.33, SD = 14.55) made
more progress than the sophomore students (M = 13.16, SD = 16.08). One of the possible
reasons of this result is that freshman students’ lack of prior knowledge on programming
compared to sophomore students.

Interaction among CPSS, attitudes towards digital game-based learning of
programming and learning

In the current literature, researchers have stated that the knowledge of fundamental
concepts of OOP and CT skills play important role in understanding and solving problems
in computer programming (Abbasi et al., 2021; Aho, 2012; Barr & Stephenson, 2011; Wing,
2006). Additionally, researchers have advised that CT should be introduced to students as
early as possible (Chen et al., 2019; Liu et al., 2011; Lu & Fletcher, 2009; Qualls & Sherrel,
2010). However, in this study, a general linear model 2 × 2 ANOVA test revealed that there
were no significant two-way or one-way interactions among the level of CPSS and
attitudes towards digital game-based learning of programming on students’ achievement
scores. Additionally, a series of Pearson’s r and Spearman’s rho tests revealed that there
were only weak correlations among students’ CPSS, attitudes towards digital game-based
learning of programming and learning. Although the current literature indicates that CT
and fundamental concepts of OOP are closely related to students’ programming perfor
mance, the findings of the present study did not reveal a significant relationship between
students’ CPSS and achievement scores. One possible explanation of this result is that the
items in the CPSS test mostly covers symmetry algebra. Therefore, in order to have
a better understanding of the nature of the relationship between students’ CPSS and
programming performance, a follow-up study could be conducted with another instru
ment measuring CPSS with a wide range of items, and with a more heterogeneous group
of students (because the student sample of this study was drawn from a single
department)

Furthermore, many researchers have studied students’ attitudes towards the digital
game-based learning of programming and have agreed on the positive effects of games
on novice programmers’ motivation (Barnes, Richter et al., 2007; Liu et al., 2011; Mathrani
et al., 2016; Muratet et al., 2011; Paiva et al., 2020; Ramírez-Rosales et al., 2016; Wong et al.,
2016). Some of the studies (Phelps et al., 2005; Wong et al., 2016) claim that serious games
could be effective in fostering novice programmers’ learning of programming based on the
data of students’ perceptions. The findings of the current study contradict such claims by
showing that there was not a significant interaction between students’ attitudes towards

COMPUTER SCIENCE EDUCATION 19

digital game-based learning of programming and their achievement scores. This study
makes a significant contribution to the literature by demonstrating that fun and engaging
aspects of serious games might be motivating, but it does not necessarily improve novice
programmers’ learning performance. Therefore, more attention should be paid to the
instructional design of activities in a serious game more than the motivational aspects.

Implication for practice and recommendations for further research

The findings of the study, which show serious games can be effective in fostering novice
programmers’ programming knowledge and CT skills, are consistent with the current
literature (Livovsky & Poruban, 2014; Mathrani et al., 2016; Miljanovic & Bradbury, 2017;
Sun et al., 2021). Additionally, by providing empirical data on the current issue, this study
has validated the instructional design model which is a synthesis of experiential gaming
framework and 4C/ID model: This study has beneficial theoretical and practical implica
tions for digital game-based learning of programming, and may provide valuable infor
mation and guidance for researchers and practitioners.

This study differs from other studies in terms of the conceptual design of the game. The
majority of the studies in the literature focus on the learning objectives of the developed
serious games, but few provide information about the instructional design of the activities
(Laporte & Zaman, 2018). With this in mind, the learning activities of the developed game
were established based on Kiili’s (2005) experiential gaming model and 4C/ID model (Van
Merriënboer et al., 2002) to encourage exploratory learning. Kiili (2005) advised that
serious games should enable students to test different solutions in an authentic problem
situation to improve students’ problem-solving skills and current knowledge on the topic.
Therefore, to encourage discovery learning, the developed game adopted a problem-
based learning approach by introducing fundamental concepts of OOP in authentic
problem situations. In addition, the difficulty of the tasks in the game increase gradually
as students make progress in the game, as indicated by both models. The findings of the
current study reveal that novice programmers’ understanding of fundamental OOP con
cepts and CT skills improved after playing the developed game. Therefore, from a practical
point of view, serious game designers should consider providing a learning environment
with authentic problems to support discovery learning.

In the developed game, supportive and procedural information was provided to
students via a mission information panel, an instruction panel and a help menu.
Additionally, abstract concepts of OOP were represented as concrete objects in the
game like representing an abstract concept, class, as a programmable chip/processor
which contains the specifications of a robot. Moreover, CT skills were practiced in
a simulation environment to help students understand the necessity and the forms of
utilization of such concepts and skills. The findings of this study support the idea that
serious games for programming should have a feedback mechanism to help students
understand the deficiencies in their solutions, improve these solutions, and thus over
come their learning difficulties (Barnes, Chaffin et al., 2007; Esteves et al., 2011; Kiili, 2005).

In order to provide guidelines that are more specific for serious game development,
further research with a number different versions of the current game could be conducted
to deeply analyze the effects of different components of serious games on novice
programmers’ learning performance. Additionally, more research could be conducted

20 A. AKKAYA AND Y. AKPINAR

with different student groups to find out whether or not the effects of the developed
game can be generalized to a greater population with different properties such as
experience in CT or studying the game with different task regimes.

Further research should also consider observing student performance and progress in
the game-based assessment in a stealth assessment format: The game may have an
integrated logging system that records every interaction of participants with the platform,
user’s performance and progress through the tasks can be measured with the data
collected automatically from the logging system. Such data may show fine-grained
edits made by students, amount of students’ work and its typology, the order of dragging
a given code, the number of times a student clicks “run” or the use of those metaphorical
machines for each task, and referring to supportive information in each task. Having
students’ path towards a task solution helps to reveal the students’ misconceptions.
Moreover, with large data sets of logging systems, learning analytics techniques may be
used to identify learning behavior patterns in these environments.

This study is aware that learning from games often needs complementary teaching
and scaffolds. For instance, to meet each student’s needs, a teacher’s and peers’
support, social scaffolds, play a crucial role in complementing and prolonging the
support provided by the APA and other tools of the game. Effective implementation
and orchestration of distributed scaffolding by relevant game components, teachers
and peers may be the subject of new studies. Also, as the game scaffolds fade-off, when
students are required to transfer OOP knowledge acquired in the game environment to
code outside the game, students’ understanding and readiness for that fading should
be monitored, and complementary support needed should be provided by a teacher.
Conditions of a teacher’s scaffold, e.g. additional elaborative activities, as an extension
to and as a complement the support already built into the game environment rather
than just replicating existing support should not be overlooked and warrants further
investigation.

Limitations of the study

The first limitation of the study is about the generalizability of the findings because of the
convenient sampling procedures that were used, and because of absence of a control
group. In order to generalize the findings of the study to a larger population of novice
programmers, a replication of the study with true experimental design with control
groups should be conducted: This would also increase internal validity of the studies.
Secondly, using an immediate post-testing phase in the study may be considered as
another limitation. A delayed post-test for measuring the students’ conceptual knowl
edge of OOP and CT skills could be conducted. Nonetheless, this did not seem applicable
in the present study due to practical constraints, particularly the lack of access to the
students’ class time. Third, using the same instrument as a pre-test and a post-test is
another limitation. A follow up study could be conducted with two different instruments
measuring the same learning objectives.

Finally, depth, nature (selection, integration, organization) and timing (before, during
and after the game activities) of supportive information along with curricular task regimes
are crucial in exploratory learning setting. As a critical limitation, this study investigated
merely one type of supportive information in helping selection of relevant information.

COMPUTER SCIENCE EDUCATION 21

Our further work will focus upon influence of different type of supportive information
considering depth, nature and timing, on different types of learning outcome such as
production of code in and outside of the game environment, incorporation of OOP
knowledge and CT skills, and in-game performance. Further investigations should
broaden understanding of the interactions between the varieties of scaffolds provided
by the teacher and/or the game not only in increasing students’ cognitive engagement in
selection but also in organization and integration of new programming knowledge. In
a similar vein, additional work should identify which scaffold characteristics effectively
promote learning of OOP procedures tailored in classroom curriculum whilst maintaining
flow and enjoyment in the game.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Ali Akkaya http://orcid.org/0000-0001-7955-7407
Yavuz Akpinar http://orcid.org/0000-0002-9406-3795

References

Abbasi, S., Kazi, H., Kazi, A. W., Khowaja, K., & Baloch, A. (2021). Gauge OOP in student’s learning
performance, normalized learning gains and perceived motivation with serious games.
Information, 12(3), 101. https://doi.org/10.3390/info12030101

Aho, A. V. (2012). Computation and computational thinking. The Computer Journal, 55(7), 832–835.
https://doi.org/10.1093/comjnl/bxs074

Akar, S. G., & Altun, A. (2017). Individual differences in learning computer programming.
Contemporary Educational Technology, 8(3), 195–213.

Akkaya, A. (2019). Eğitsel oyunların öğrencilerin nesne tabanlı programlamanın temel kavramsal
bilgisi ve bilgi işlemsel düşünme becerilerine etkisi. Unpublished master thesis. Bogazici University.
Turkey.

Al-Sakkaf, A., Omar, M., & Ahmad, M. (2019). A systematic literature review of student engagement in
software visualization. Computer Science Education, 29(2–3), 283–309. https://doi.org/10.1080/
08993408.2018.1564611

Arnab, S., Lim, T., Carvalho, M. B., Bellotti, F., De Freitas, S., Louchart, S., Suttie, N., Berta, R., & De
Gloria, A. (2015). Mapping learning and game mechanics for serious games analysis. British
Journal of Educational Technology, 46(2), 391–411. https://doi.org/10.1111/bjet.12113

Barnes, T., Chaffin, A., Godwin, A., Powell, E., & Richter, H. (2007). The role of feedback in
Game2Learn. In M. B. Rosson & D. Gilmore (Eds.), Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (pp. 1–5). NY: ACM.

Barnes, T., Richter, H., Chaffin, A., Godwin, A., Powell, E., Ralph, T., . . . Jordan, H. (2007). Game2Learn:
A study of games as tools for learning introductory programming concepts. In I. Russel, S. Haller,
J. D. Dougherty, & S. Rodger (Eds.), The 38th ACM Technical Symposium on Computer Science
Education (pp. 7–9). ACM.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12. ACM Inroads, 2(1), 48–54.
https://doi.org/10.1145/1929887.1929905

Basu, S. (2016). Fostering synergistic learning of computational thinking and middle school science in
computer-based intelligent learning environments [Unpublished PhD thesis]. Vanderbilt University.

22 A. AKKAYA AND Y. AKPINAR

https://doi.org/10.3390/info12030101
https://doi.org/10.1093/comjnl/bxs074
https://doi.org/10.1080/08993408.2018.1564611
https://doi.org/10.1080/08993408.2018.1564611
https://doi.org/10.1111/bjet.12113
https://doi.org/10.1145/1929887.1929905

Begosso, L. C., Begosso, L. R., Gonçalves, E. M., & Gonçalves, J. R. (2012). An approach for teaching
algorithms and computer programming using Greenfoot and Python. In R. Leblanc & A. Sobel
(Eds.), Proceedings of the 2012 IEEE Frontiers in Education Conference (pp. 1–6). Seattle: IEEE.

Carlisle, M. C. (2009). RAPTOR: A visual programming environment for teaching object-oriented
programming. Journal of Computing Sciences in Colleges, 24(4), 275–281. https://dl.acm.org/doi/
abs/10.5555/1516546.1516591

Chen, C., Haduong, P., Brennan, K., Sonnert, G., & Sadler, P. (2019). The effects of first programming
language on college students’ computing attitude and achievement: A comparison of graphical
and textual languages. Computer Science Education, 29(1), 23–48. https://doi.org/10.1080/
08993408.2018.1547564

Cooper, S., Dann, W., & Pausch, R. (2000). Alice: A 3-D tool for introductory programming concepts.
Journal of Computing Sciences in Colleges, 15(5), 107–116. https://dl.acm.org/doi/10.5555/364133.
364161

Creswell, J. W. (2011). Educational research: Planning, conducting, and evaluating quantitative and
qualitative research (4th ed.). Pearson.

Csikszentmihalyi, M. (2014). Toward a psychology of optimal experience. In M. Csikszentmihalyi
(Ed.), Flow and the foundations of positive psychology: The collected works of Mihaly
Csikszentmihalyi (pp. 209–226). Springer.

Eleftheriadis, S., & Xinogalos, S. (2020). Office madness: Design and pilot evaluation of a serious
game for learning the C++ programming language. In I. Marfisi-Schottman, F. Bellotti, L. Hamon,
and R. Klemke (Eds.), Games and learning alliance. GALA 2020. Lecture notes in computer science
(Vol. 12517, pp. 389–394). Springer.

Esteves, M., Fonseca, B., Morgado, L., & Martins, P. (2011). Improving teaching and learning of
computer programming through the use of the second life virtual world. British Journal of
Educational Technology, 42(4), 624–637. https://doi.org/10.1111/j.1467-8535.2010.01056.x

Florea, A., Gellert, A., Florea, D., & Florea, A.-C. (2016). Teaching programming by developing
games in Alice. In I. Roceanu, D. Dubois, D. Beligan, F. Moldoveanu, M. I. Dascalu, I. Stanescu, &
D. Barbieru (Eds.), The Proceedings of International Scientific Conference eLearning and Software
for Education. 1 (pp. 503–510). Bucharest: “Carol I” National Defence University Publishing
House.

Gerola, R. J. (1997). Identification of object-oriented computer programmer mastery status through
evaluation of object-oriented programming semantic knowledge [Unpublished PhD thesis].
University of Southern California.

Grover, S., & Basu, S. (2017). Measuring student learning in introductory block-based programming.
In Proceedings of the ACM SIGCSE Technical Symposium on Computer Science Education. (pp.
267–272). NY: ACM.

Guenaga, M., Eguíluz, A., Garaizar, P., & Gibaja, J. (2021). How do students develop computational
thinking? Computer Science Education, 31(2), 259–289. https://doi.org/10.1080/08993408.2021.
1903248

Gunter, G. A., Kenny, R. F., & Vick, E. H. (2008). Taking educational games seriously: Using the RETAIN
model to design endogenous fantasy into standalone educational games. Educational
Technology Research and Development, 56(5–6), 511–537. https://doi.org/10.1007/s11423-007-
9073-2

Guzdial, M. (2008). Paving the way for computational thinking. Communications of the ACM, 51(8),
25–27. https://doi.org/10.1145/1378704.1378713

Hadjerrouit, S. (1999). A constructivist approach to object-oriented design and programming. ACM
SIGCSE Bulletin, 31(3), 171–174. https://doi.org/10.1145/384267.305910

IADB. (2020). Play Challenge. from https://comunidad.socialab.com//challenges/PLAY
Kazimoglu, C. (2013). Empirical evidence that proves aserious game is an educationally effective tool for

learning computer programming constructs at the computational thinking level [Unpublished PhD
thesis]. University of Greenwich.

Kazimoglu, C., Kiernan, M., Bacon, L., & Mackinnon, L. (2012). A serious game for developing
computational thinking and learning introductory computer programming. Procedia-Social and
Behavioral Sciences, 47, 1991–1999. https://doi.org/10.1016/j.sbspro.2012.06.938

COMPUTER SCIENCE EDUCATION 23

https://dl.acm.org/doi/abs/10.5555/1516546.1516591
https://dl.acm.org/doi/abs/10.5555/1516546.1516591
https://doi.org/10.1080/08993408.2018.1547564
https://doi.org/10.1080/08993408.2018.1547564
https://dl.acm.org/doi/10.5555/364133.364161
https://dl.acm.org/doi/10.5555/364133.364161
https://doi.org/10.1111/j.1467-8535.2010.01056.x
https://doi.org/10.1080/08993408.2021.1903248
https://doi.org/10.1080/08993408.2021.1903248
https://doi.org/10.1007/s11423-007-9073-2
https://doi.org/10.1007/s11423-007-9073-2
https://doi.org/10.1145/1378704.1378713
https://doi.org/10.1145/384267.305910
https://comunidad.socialab.com//challenges/PLAY
https://doi.org/10.1016/j.sbspro.2012.06.938

Keçeci, G., Alan, B., & Zengin, F. K. (2016). Eğitsel bilgisayar oyunları destekli kodlama öğrenimine
yönelik tutum ölçeği: Geçerlilik ve güvenilirlik çalışması. Education & Science, 11(4), 184–194.

Kiili, K. (2005). Digital game-based learning: Towards an experiential gaming model. The Internet and
Higher Education, 8(1), 13–24. https://doi.org/10.1016/j.iheduc.2004.12.001

Kolb, D. (1984). Experiential learning: Experience as the source of learning and development. Prentice Hall.
Kölling, M. (1999a). The problem of teaching object-oriented programming. Journal of Object-

Oriented Programming, 11(8), 8–15.
Kölling, M. (1999b). The problem of teaching object-oriented programming, Part II: Environments.

Journal of Object-Oriented Programming, 11(9), 6–12.
Kölling, M. (2010). The Greenfoot programming environment. ACM Transactions on Computing

Education, 10(4), 1–21. https://doi.org/10.1145/1868358.1868361
Kölling, M., Quig, B., Patterson, A., & Rosenberg, J. (2003). The BlueJ system and its pedagogy. Journal

of Computer Science Education, Special Issue on Learning and Teaching Object Technology, 13(4),
249–268. https://doi.org/10.1076/csed.13.4.249.17496

Kong, S. C., & Wang, Y. Q. (2019). Positive youth development from a “3Cs” programming perspective.
Computer Science Education, 29(4), 335–356. https://doi.org/10.1080/08993408.2019.1599646

Koulouri, T., Lauria, S., & Macredie, R. D. (2014). Teaching introductory programming: A quantitative
evaluation of different approaches. ACM Transactions on Computing Education, 14(4), 1–28.
https://doi.org/10.1145/2662412

Krath, J., Schürmann, L., & von Korflesch, H. F. (2021). Revealing the theoretical basis of gamifica
tion: A systematic review. Computers in Human Behavior, 125. https://doi.org/10.1016/j.chb.
2021.106963

Laakso, N. L., Korhonen, T. S., & Hakkarainen, K. P. J. (2021). Developing students’ digital compe
tences through collaborative game design. Computers & Education, 174. https://doi.org/10.1016/j.
compedu.2021.104308

Laporte, L., & Zaman, B. (2018). A comparative analysis of programming games, looking through the
lens of an instructional design model and a game attributes taxonomy. Entertainment Computing,
25, 48–61. https://doi.org/10.1016/j.entcom.2017.12.005

Lister, R. (2011). Programming, syntax and cognitive load (part 2). ACM Inroads, 2(2), 21–22. https://
doi.org/10.1145/1963533.1963539

Liu, -C.-C., Cheng, Y.-B., & Huang, C.-W. (2011). The effect of simulation games on the learning of
computational problem solving. Computers & Education, 57(3), 1907–1918. https://doi.org/10.
1016/j.compedu.2011.04.002

Livovsky, J., & Poruban, J. (2014). Learning object-oriented paradigm by playing computer games:
Concepts first approach. Central European Journal of Computer Science, 4(3), 171–182. https://doi.
org/10.2478/s13537-014-0209-2

Lu, J. J., & Fletcher, G. H. (2009). Thinking about computational thinking. ACM SIGCSE Bulletin, 41(1),
260–264. https://doi.org/10.1145/1539024.1508959

Marfisi-Schottman, I., George, S., & Leconte, M. (2019). TurtleTable: Learn the basics of computer
algorithms with tangible interactions. In M. Gentile, M. Allegra, and H. Söbke (Eds.), Games and
learning alliance. GALA 2018. Lecture notes in computer science (Vol. 11385, pp. 291–300). Springer.

Mathrani, A., Christian, S., & Ponder-Sutton, A. (2016). Playt: Game based learning approach for
teaching programming concepts. Educational Technology and Society, 19(2), 5–17.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2011). Habits of programming in Scratch. In
G. Rößling, T. Naps, & C. Spannagel (Eds.), Proceedings of the 16th annual Joint Conference on
Innovation and Technology in Computer Science Education (pp. 168–172). NY: ACM.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013). Learning computer science concepts with
scratch. Computer Science Education, 23(3), 239–264. https://doi.org/10.1080/08993408.2013.832022

Miljanovic, M. A., & Bradbury, J. S. (2017). RoboBUG: A serious game for learning debugging
techniques. In J. Tenenberg, D. Chinn, J. Sheard, & L. Malmi (Eds.), Proceeding of the 2017 ACM
Conference on International Computing Education Research (pp. 93–100). NY: ACM.

Mladenovic, M., Zanko, Z., & Aglic, M. (2021). The impact of using program visualization techniques
on learning basic programming concepts. Computer Applications in Engineering Education, 29(1),
145–159. https://doi.org/10.1002/cae.22315

24 A. AKKAYA AND Y. AKPINAR

https://doi.org/10.1016/j.iheduc.2004.12.001
https://doi.org/10.1145/1868358.1868361
https://doi.org/10.1076/csed.13.4.249.17496
https://doi.org/10.1080/08993408.2019.1599646
https://doi.org/10.1145/2662412
https://doi.org/10.1016/j.chb.2021.106963
https://doi.org/10.1016/j.chb.2021.106963
https://doi.org/10.1016/j.compedu.2021.104308
https://doi.org/10.1016/j.compedu.2021.104308
https://doi.org/10.1016/j.entcom.2017.12.005
https://doi.org/10.1145/1963533.1963539
https://doi.org/10.1145/1963533.1963539
https://doi.org/10.1016/j.compedu.2011.04.002
https://doi.org/10.1016/j.compedu.2011.04.002
https://doi.org/10.2478/s13537-014-0209-2
https://doi.org/10.2478/s13537-014-0209-2
https://doi.org/10.1145/1539024.1508959
https://doi.org/10.1080/08993408.2013.832022
https://doi.org/10.1002/cae.22315

Muratet, M., Torguet, P., Viallet, F., & Jessel, J. P. (2011). Experimental feedback on Prog&Play:
A serious game for programming practice. In E. Gröller & H. Rushmeier (Eds.), Computer graphics
forum (Vol. 30, pp. 61–73). Blackwell Publishing Ltd.

O’Kelly, J., & Gibson, J. P. (2006). RoboCode & problem-based learning. ACM SIGCSE Bulletin, 38(3),
217–221. https://doi.org/10.1145/1140123.1140182

Özkök, A. (2005). Disiplinlerarası yaklaşıma dayalı yaratıcı problem çözme öğretim programının yaratıcı
problem çözme becerisine etkisi. Hacettepe Üniversitesi Egitim Fakültesi Dergisi, 28, 159–167.

Paiva, J. C., Leal, J. P., & Queirós, R. (2020). Fostering programming practice through games.
Information, 11(11), 498–517. https://doi.org/10.3390/info11110498

Phelps, A. M., Egert, C. A., & Bierre, K. J. (2005). MUPPETS: Multi-user programming pedagogy for
enhancing traditional study. Proceedings of the 4th Conference on Information Technology
Curriculum (pp. 100–105). NY: ACM.

Pitsatorn, P. P. (2003). Object-oriented programming training: Bottom-up versus top-down approach
[Unpublished PhD thesis]. Claremont Graduate University.

Prensky, M. (2003). Digital game-based learning. ACM Computers in Entertainment, 1(1), 1–4. https://
doi.org/10.1145/950566.950596

Qualls, J. A., & Sherrel, L. B. (2010). Why computational thinking should be integrated into the curriculum.
Computing Sciences in Colleges, 25(5), 66–71. https://dl.acm.org/doi/10.5555/1747137.1747148

Ramírez-Rosales, S., Vázquez-Reyes, S., Villa-Cisneros, J. L., & De León-Sigg, M. (2016). A serious game
to promote object oriented programming and software engineering basic concepts learning. In
R. Juárez-Ramírez, S. J. Calleros, H. J. Oktaba, C. F. Fernández, R. A. Vera, G. L. Sandoval, &
J. A. Cisneros (Eds.), 4th International Conference in Software Engineering Research and
Innovation (pp. 97–103). Los Alamitos: IEEE.

Repenning, A., Webb, D., & Ioannidou, A. (2010). Scalable game design and the development of
a checklist for getting computational thinking into public schools. In G. Lewandowski,
S. Wolfman, T. J. Cortina, & E. L. Walker (Eds.), Proceedings of the 41st ACM Technical Symposium
on Computer Science Education (pp. 265–269). NY: ACM.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A.,
Rosenbaum, E., Silver, J., Silverman, B., & Kafai, Y. (2009). Scratch: Programming for all.
Communications of the ACM, 52(11), 60–67. https://doi.org/10.1145/1592761.1592779

Selby, C. C., & Woollard, J. (2013). Computational thinking: The developing definition. In J. Carter,
I. Utting, & A. Clear (Eds.), Proceedings of the 18th ACM Conference on Innovation and Technology in
Computer Science Education (p. 6). Canterbury: ACM.

Sun, L., Guo, Z., & Hu, L. (2021). Educational games promote the development of students’
computational thinking. Interactive Learning Environments, 1–15. https://doi.org/10.1080/
10494820.2021.1931891

Sweller, J., van Merriënboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design.
Educational Psychology Review, 10(3), 251–296. https://doi.org/10.1023/A:1022193728205

Toth, T., & Lovaszova, G. (2021). Mediation of knowledge transfer in the transition from visual to textual
programming. Informatics in Education, 20(3), 489–511. https://doi.org/10.15388/infedu.2021.20

Tsarava, K., Moeller, K., & Ninaus, M. (2019). Board games for training computational thinking. In
M. Gentile, M., , Allegra, and H. Söbke (Eds.), Games and learning alliance. GALA 2018. Lecture notes
in computer science (Vol. 11385, pp. 90–99). Springer.

Van Haaster, K., & Hagan, D. (2004). Teaching and learning with BlueJ. Issues in Informing Science &
Information Technology, 1, 455–470. https://doi.org/10.28945/752

Van Merriënboer, J. J., Clark, R. E., & de Croock, M. B. (2002). Blueprints for complex learning: The 4C/
ID-model. Educational Technology Research and Development, 50(2), 39–61. https://doi.org/10.1007/
BF02504993

Veerasamy, A. K., D’Souza, D., Lindén, R., & Laakso, M. J. (2019). Relationship between perceived
problem-solving skills and academic performance of novice learners in introductory programming
courses. Journal of Computer Assisted Learning, 35(2), 246–255. https://doi.org/10.1111/jcal.12326

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking in compulsory
education. Education and Information Technologies, 20(4), 715–728. https://doi.org/10.1007/s10639-
015-9412-6

COMPUTER SCIENCE EDUCATION 25

https://doi.org/10.1145/1140123.1140182
https://doi.org/10.3390/info11110498
https://doi.org/10.1145/950566.950596
https://doi.org/10.1145/950566.950596
https://dl.acm.org/doi/10.5555/1747137.1747148
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1080/10494820.2021.1931891
https://doi.org/10.1080/10494820.2021.1931891
https://doi.org/10.1023/A:1022193728205
https://doi.org/10.15388/infedu.2021.20
https://doi.org/10.28945/752
https://doi.org/10.1007/BF02504993
https://doi.org/10.1007/BF02504993
https://doi.org/10.1111/jcal.12326
https://doi.org/10.1007/s10639-015-9412-6
https://doi.org/10.1007/s10639-015-9412-6

Wang, T. C., Mei, W. H., Lin, S. L., Chiu, S. K., & Lin, J. M. C. (2009). Teaching programming concepts to
high school students with Alice. In J. Froyd (Ed.), Proceedings of the 39th IEEE International
Conference on Frontiers in Education (pp. 955–960). Piscataway, NJ: IEEE.

Watson, C., Li, F. W., & Lau, R. W. (2011). Learning programming languages through corrective
feedback and concept visualisation. In H. Leung, E. Popescu, Y. Cao, R. W. Lau, & W. Nejdl (Eds.),
Proceedings of the 10th International Conference on Web-Based Learning (pp. 11–20). Heidelberg:
Springer.

Weintrop, D., & Wilensky, U. (2016). Playing by programming: Making gameplay a programming
activity. Educational Technology, 56(3), 36–41. https://www.jstor.org/stable/44430491

Weintrop, D., & Wilensky, U. (2019). Transitioning from introductory block-based and text-based
environments to professional programming languages in high school computer science
classrooms. Computers & Education, 142, 1036–1046. https://doi.org/10.1016/j.compedu.2019.
103646

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.
org/10.1145/1118178.1118215

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
366(1881), 3717–3725. https://doi.org/10.1098/rsta.2008.0118

Wong, Y. S., Hayati, M. Y., & Tan, W. H. (2016). A propriety game-based learning game as learning tool
to learn object-oriented programming paradigm. Joint International Conference on Serious Games
(pp. 42–54). Brisbane: Springer.

Xinogalos, S. (2016). Designing and deploying programming courses. Education and Information
Technologies, 21(3), 559–588. https://doi.org/10.1007/s10639-014-9341-9

26 A. AKKAYA AND Y. AKPINAR

https://www.jstor.org/stable/44430491
https://doi.org/10.1016/j.compedu.2019.103646
https://doi.org/10.1016/j.compedu.2019.103646
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1098/rsta.2008.0118
https://doi.org/10.1007/s10639-014-9341-9

	Abstract
	Introduction
	Literature review
	Problems of teaching and learning programming
	Computational thinking and object-oriented programming
	Visual programming environments to teach programming
	Serious games for learning programming
	Statement of the problem

	Methodology
	Research design and sampling
	Treatments
	Serious game design model

	Instructional design model
	Data collection instruments
	Data collection procedures
	Data analysis

	Results
	Learning gain of students without programming experience
	Learning gain on conceptual knowledge of OOP of students without programming experience
	Learning gain on CT skills of students without programming experience
	Learning gain of students with procedural programming experience
	Learning gain on conceptual knowledge of OOP of students with procedural programming experience
	Learning gain on CT skills of students with procedural programming experience
	Comparison of the achievement scores students with and without programming experience
	Covariate effects on the achievement scores

	Discussion and conclusion
	Effects of a serious game on students’ conceptual knowledge of OOP and CT skills
	Comparison of achievement scores of students with and without procedural programming experience
	Interaction among CPSS, attitudes towards digital game-based learning of programming and learning

	Implication for practice and recommendations for further research
	Limitations of the study
	Disclosure statement
	ORCID
	References

