
Applied Soft Computing 123 (2022) 108975

a

b

R
R
A
A

M
O
B
T

p
s
i
m
F
i
p
i
P
u
i
t
a
i

m
A
s

(
(

h
1

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

A three-waymulti-attribute decisionmakingmethod based on regret
theory and its application tomedical data in fuzzy environments
Jinxing Zhu a, Xueling Ma a,∗, Jianming Zhan a, Yiyu Yao b

School of Mathematics and Statistics, Hubei Minzu University, Enshi, Hubei, 445000, China
Department of Computer Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada

a r t i c l e i n f o

Article history:
eceived 5 July 2021
eceived in revised form 24 April 2022
ccepted 28 April 2022
vailable online 11 May 2022

Keywords:
Regret theory
ulti-attribute decision making
utranking relation
ehavior psychology
hree-way decision

a b s t r a c t

Cardiovascular disease is a global leading cause of death, and timely monitoring can determine its
extent. Clinicians use these diagnostic indicators to make scientific and reasonable decisions. However,
when decision-makers (DMs) encounter risks in complex environments, their limited rationality may
affect decision behaviors. Therefore, the paper explores a new three-way multi-attribute decision
making method based on regret theory (3W-MADM-R), which uses heart disease data to make
decisions in fuzzy environments. There are three main steps in developing 3W-MADM-R, i.e., (i) we
propose the notion of relative outcome functions and corresponding aggregated regret-based utility
functions of each object; (ii) we estimate the conditional probability via an outranked set defined by an
outranking relation based on the Preference Ranking Organization Method for Enrichment Evaluation
(PROMETHEE II); (iii) we construct three-way decision rules to solve the problems of clustering and
ranking of objects in data analysis. In order to demonstrate the usefulness of 3W-MADM-R, we apply
it to analyze heart disease data. By comparing with results of other methods, we show the feasibility,
stability and superiority of the presented 3W-MADM-R method.

© 2022 Elsevier B.V. All rights reserved.
t
H
v
d
(
d
y
p
a
e
a
i
d
t
b
f
a
v
d
t
w
t
w
d

1. Introduction

Multi-attribute decision making (MADM) refers to a decision
roblem in which the importance of different attributes is con-
idered and the decision scheme is ranked or the optimal one
s selected. There are many applications of MADM methods in
anagement, engineering design, economics and other fields.
or instance, Churchman et al. [1] first used a simple weight-
ng method to solve the problem of ‘‘choosing the investment
olicy of enterprises’’. At present, the classic MADM methods,
ncluding the TOPSIS method [2], the ELECTRE method [3], the
ROMETHEE-II method [4] and others. Meanwhile, many types of
ncertainties have been considered in MADM methods, includ-
ng randomness [5], fuzziness [6] and roughness [7]. According
o the behavior characteristics of a DM, stochastic, fuzzy-set,
nd rough-set-based MADM models have been proposed and
nvestigated [8–12].

With the rise of MADM techniques, their applications in the
edical field [13] have become more and more widespread.
case in point is that the MADM method can be applied to

olve cardiovascular and cerebrovascular diseases that seriously
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hreaten human health. According to a report released by World
ealth Organization (WHO), 18 million people die from cardio-
ascular diseases each year, and 85% of which are due to heart
isease and stroke. Data from the National Bureau of Statistics
https://data.stats.gov.cn/) show that the proportion of deaths
ue to heart disease in the total number of deaths is increasing
ear by year and has reached 23.65% in 2019. Therefore, the
revention and control of heart disease need joint efforts of
ll individuals. Early monitoring, diagnosis and treatment can
ffectively reduce the morbidity and mortality of heart disease
nd improve the life quality of patients. One of the key problems
n the field of life sciences is how to quickly and effectively
iagnose heart disease. At present, routine detection items for
his disease mainly include blood pressure, electrocardiogram,
lood routine, blood lipids, blood glucose, hemorheology, and so
orth. These tests will help clinicians to determine the location
nd extent of cardiovascular diseases. However, in complex en-
ironments, facing with limited rationality owned by DMs and
ifferent forms of biomedical data, there are two issues that need
o be addressed. One is how to effectively and reasonably deal
ith ambiguities in psychological and medical data along with
he bounded rationality of DMs, and the other one is how DMs
ith limited rationality apply these data to diagnose a variety of
iseases. In real world, clinical decision making and other aspects
emain to be explored.

https://doi.org/10.1016/j.asoc.2022.108975
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2022.108975&domain=pdf
mailto:venus0530@163.com
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https://data.stats.gov.cn/
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J.X. Zhu, X.L. Ma, J.M. Zhan et al. Applied Soft Computing 123 (2022) 108975

M
d
M
m
d
d
c
o
d
u
n
c
n
t
I
O
m
a

p
a
c
i
n
r
a
T
t
a
p
r
c
‘
c
i
a
t
o
p
l

r
u
l
g
p
s
T
B
b
3
o
p

Fig. 1. The main components of the 3W-MADM-R method.
As an important method in the field of decision analysis,
ADM analysis plays a unique role in the treatment of medical
ecision making problems. However, some existing traditional
ADM methods have some shortcomings. For instance, these
ethods can either only rank medical plans and cannot make
irect qualitative medical decisions for patients [14], or make
ecisions that are too subjective. That is to say, these methods
an only address part of decision making problems [15]. In light
f the above shortcomings, for improving the overall healthcare
elivery and introducing the attitude of DMs towards risks in
ncertain decision making environments, we aim to explore a
ew data-driven knowledge discovery and analysis method in
linical decision making via data related to heart disease diag-
osis, the basic ideas of three-way decisions (3WD) and regret
heory (RT). That is, the 3W-MADM-R method can be constructed.
n this paper, we explore two recent trends in MADM problems.
ne trend is the combination of the theories of 3WD with MADM
ethods to classify and rank alternatives. The other trend is
pplications of prospect theory (PT) and RT in MADM problems.
The 3WD theory, proposed by Yao [16–18], concerns thinking,

roblem-solving, and information-processing in threes. There are
narrow sense and a wide sense of 3WD. The narrow sense

oncerns a semantic interpretation of three types of rules derived
n probabilistic rough sets [16,19]. With respect to the positive,
egative and boundary regions, we can construct three types of
ules: positive rules for acceptance, negative rules for rejection,
nd non-commitment rules for neither acceptance nor rejection.
he wide sense focuses on a general use of triads, i.e., a set of
hree items, a group of three things, a triple of three elements
nd others in scientific theories, methodology, and day-to-day
ractice. The principles and ideas of 3WD lie in dividing and
epresenting a whole into three parts, understanding and pro-
essing by three parts, which conform to the thinking process of
‘divide and conquer‘‘ and ‘‘complexity simplification’’ in human
ognition. 3WD has been explored in relation to granular comput-
ng [20], fuzzy sets [21], rough sets [22], statistical inferences [8],
nd many other contexts. Meanwhile, 3WD has attracted ex-
ensive attention from researchers worldwide in a broad range
f different disciplines. Besides, 3WD has been successfully ap-
lied in many fields such as particle computing [23,24], machine
earning [22], data mining [25], and so forth.

Many existing MADM studies assume that a DM is perfectly
ational and cognitively clear. In reality, when a DM is faced with
ncertainties in a decision making process, he/she often shows a
imited rationality, with a behavior of risk aversion under certain
ain or risk-seeking under certain loss. There exist two main
sychological behavior theories: The first one is to make deci-
ions based on PT proposed by Kahneman [26] and Tversky [27].
he second one is to make decisions based on RT proposed by
ell [28] and Loomes and Sugden [29]. Both PT and RT have
een widely used for many aspects in realistic problems [30–
2]. Tan et al. [33] proposed a decision making method based
n the prospect random dominance degree for stochastic MADM
roblems where the attributes have expectation levels. Peng and
2

Yang [34] proposed a method to consider both subjective and
objective information in relation to the regret psychology of a DM.
Several recent studies attempted to combine 3WD, PT, with RT
for MADM. Wang et al. [35,36] combined 3WD with cumulative
prospect theory (CPT), and calculated the prospect value to divide
and rank alternatives. Liang et al. [37] applied RT to 3WD with
project resource allocation in the context of interval numbers.
Wang et al. [15] constructed a 3WD model based on RT under
the interval type-2 fuzzy environment. In addition, a wide sense
of 3WD emerges as a theory of thinking, problem-solving, and
information-processing in threes, i.e., a triad consisting of three
things.

Based on research results from these three theories, the main
objective of this paper is to propose a new 3W-MADM-R method.
The main components of 3W-MADM-R method are given in
Fig. 1, which integrate ideas with results from the theories of
3WD, MADM and RT. We summarize the motivations of the
3W-MADM-R method as follows:

(1) Some existing 3WD approaches to MADM idealize the
decision making process and ignore the fact that behaviors of a
DM may have an impact on the results of alternative ranking and
clustering [38].

(2) Some researchers have combined RT with 3WD. There are
possibilities for improving their studies. For instance, an outcome
matrix used by Wang et al. [15] may be too subjective, which does
not reflect the original attribute evaluation table. Liang et al. [37]
considered only a single attribute and used a subjective loss
function. These subjective factors in these methods are not easy
to implement in realistic problems.

(3) A key issue in 3WD is the determination of the conditional
probability used for making decisions. Most of the existing studies
assume that the conditional probability is subjectively given [39]
or do not provide a semantic interpretation [40].

Therefore, the 3W-MADM-R method is developed to address
these improvable issues. Compared with other decision making
methods, our proposed method has several innovations:

(1) The 3W-MADM-R method complements behavioral psy-
chology and provides a more realistic decision making model,
rather than a purely rational MADM [8,39]. In order to avoid
the influence of artificially selected reference points in PT [35],
we consider the attitudinal preferences of a DM by introduc-
ing RT into 3WD, which addresses the impact of risks on the
psychological behavior of a DM.

(2) 3W-MADM-R uses the original information table to con-
struct the result function of each object under each attribute
in a fuzzy environment, and combines RT with 3WD in a more
objective way. This differs from Wang et al. [15] who overall
assigned all objects an identical outcome matrix, and from Liang
et al. [37] who constructed interval loss functions for objects.

(3) 3W-MADM-R defines a new outranking relation to esti-
mate the conditional probability based on the ideas of a net-flow
of the PROMETHEE-II method.

(4) Unlike the researches in [15,39], which use small-scale data
to test the superiority of the method, the 3W-MADM-R method
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Table 1
The loss functions.

S(P) ¬S(N)

acP πPP πPN
acB πBP πBN
acN πNP πNN

can solve practical problems. Three realistic medical data sets are
taken as examples to illustrate the feasibility of the presented
method.

The rest of the paper is organized as follows. In Section 2, we
review pertinent concepts from 3WD, the PROMETHEE-II method
and RT. In Section 3, we combine 3WD with RT to propose a
new 3W-MADM-R method. In Section 4, we apply the proposed
3W-MADM-R method to a data set ‘‘Statlog(Heart)’’ to confirm
its effectiveness and operability. In addition, after exploring the
optimal parameters of different algorithms, we compare the 3W-
MADM-R method with three other types of decision making
methods. In Section 5, we discuss the differences between the
proposed method and other decision making methods and il-
lustrate its advantages from two perspectives. In Section 6, the
influence of parameter variations on the proposed method is in-
vestigated. The supplementary data set experiments in Section 7
illustrate the feasibility of the presented method. In Section 8,
we summarize main results and comment on possible future
research topics.

2. An overview of 3WD, the ROMETHEE-II method and RT

In this section, we recall basic concepts and notions of 3WD,
the PROMETHEE-II method and RT.

2.1. 3WD

A narrow sense of 3WD was first introduced by Yao [16,19]
within a decision-theoretic rough set model (i.e., a probabilistic
rough set model based on the Bayesian decision process). It is
assumed that U is a non-empty finite alternative set, ς = {S, ¬S}
is a state set and D = {acP , acB, acN} is an action set, where
S means that an element x is in a decision class S and ¬S
eans that the element x is not in the class S, and acP , acB, and
cN represent the action of acceptance, non-commitment, and
ejection in a state. For instance, under the state S, by taking an
ction, an object x is put into one of the three regions, namely,
∈ Pos(S), x ∈ Bnd(S), or x ∈ Neg(S). Here, the universe of

discourse U is divided into three disjoint regions: positive region
(Pos(S)), negative region (Neg(S)) and boundary region (Bnd(S)),
where U = Pos(S)

⋃
Neg(S)

⋃
Bnd(S) and Pos(S)

⋂
Neg(S) =

, Pos(S)
⋂

Bnd(S) = ∅, Bnd(S)
⋂

Neg(S) = ∅. Taking different
actions under the two states induces different risks, then the loss
functions of actions are listed as follows (see Table 1):

Here, πPP , πBP , and πNP denote the risk for taking the actions
acP , acB, and acN when the object x ∈ S. Similarly, πPN , πBN , and
πNN represent the risk for taking the actions acP , acB, and acN
when the object x ∈ ¬S. Based on an intuitive understanding
of the severity of the risks of the three actions, we assume that
πPP ≤ πBP < πNP and πNN ≤ πBN < πPN .

Let Pr(S|x) denote the conditional probability of an object
x belonging to S. From the loss function and the conditional
probability, the expected loss ER(aci|x) (i = P, B,N) of the three
actions taken for each object x can be calculated by:

ER(acP |x) = πPPPr(S|x) + πPNPr(¬S|x),
ER(acB|x) = πBPPr(S|x) + πBNPr(¬S|x), (1)

ER(acN |x) = πNPPr(S|x) + πNNPr(¬S|x).

3

Table 2
The relative loss functions.

S(P) ¬S(N)

acP 0 π̃PN
acB π̃BP π̃BN
acN π̃NP 0

Based on the Bayesian theory, the minimum loss means the
best decision, hence decision rules can be expressed as:

(P0) If ER(acP |x) ≤ ER(acB|x) and ER(acP |x) ≤ ER(acN |x),
decide that x ∈ Pos(S);

(B0) If ER(acB|x) ≤ ER(acP |x) and ER(acB|x) ≤ ER(acN |x),
decide that x ∈ Bnd(S);

N0) If ER(acN |x) ≤ ER(acP |x) and ER(acN |x) ≤ ER(acB|x),
decide that x ∈ Neg(S).

(2)

Since Pr(S|x)+Pr(¬S|x) = 1, the decision rules (P0)-(N0) can
e re-written as:

(P′) If Pr(S|x) ≥ α and Pr(S|x) ≥ γ , then decide x ∈ Pos(S),
(B′) If Pr(S|x) ≤ α and Pr(S|x) ≥ β, then decide x ∈ Bnd(S),
N′) If Pr(S|x) ≤ β and Pr(S|x) ≤ γ , then decide x ∈ Neg(S),

(3)

here

α =
(πPN − πBN )

(πPN − πBN ) + (πBP − πPP )
,

β =
(πBN − πNN )

(πBN − πNN ) + (πNP − πBP )
,

γ =
(πPN − πNN )

(πPN − πNN ) + (πNP − πPP )
. (4)

That is, the required parameters can be computed based on
the loss function.

It can be observed that the three thresholds are only related
to the relative differences of the loss function instead of actual
values of the loss function. Based on this notion of ‘‘relative costs’’,
Jia and Liu [39] introduced the concept of relative loss functions
(see Table 2):

Here, π̃BP = πBP − πPP , π̃NP = πNP − πPP , π̃PN = πPN − πNN
and π̃BN = πBN − πNN . The values of α, β , and γ can be similarly
expressed in terms of a relative loss function.

In the past decade, 3WD has achieved fruitful research results
in theory, methods, algorithms and applications. There have been
many major theoretic results, algorithmic developments, and ap-
plications of 3WD. Hu [41] unified several kinds of representative
3WD models into the mathematical theoretical framework to
study the spatial problems of 3WD models. Yao [17] provided
a research framework for the 3WD and cognitive computing.
Ciucci and Dubois [42] discussed the three-valued logics, which
is related to 3WD. Liang et al. [43,44] considered 3WD in group
decision making in a multi-expert decision making environment.
Zhang et al. [45] proposed a 3WD model based on the utility
theory for considering new loss functions. Three-way attribute
reductions have also received plenty of attention [21,46]. Chen
et al. [47] used three monotone measures of the conditional
entropy combined with heuristic algorithm to explore the region
preservation reduction method of the 3WD neighborhood system.
Ma et al. [48] studied different kinds of attribute reduction meth-
ods when the decision region remained unchanged. Li et al. [20]
successfully applied the sequential three-way decision strategy
in the field of cost-sensitive portrait recognition. Zhou et al. [49]
applied 3WD to email spam filtering. Yao and Azam [50] used
3WD to analyze uncertainties in medical decisions.
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.2. The PROMETHEE-II method

Compared with the differences in attribute values of various
chemes, Brans [4] proposed the PROMETHEE method to con-
ider the advantages of different schemes in case of differences
n attribute values of different schemes. The main idea of this
ethod is to define a preference function 𭟋 for each attribute

o describe the relationship between the attribute value and
he degree of target achievement, then define the priority index
etween the scheme pairs according to the attribute weight and
he preference function, and finally calculate the outgoing flow
nd incoming flow of each scheme. Moreover, the PROMETHEE-II
ethod defines a net-flow on this basis, which is sorted according

o the value of the net flow of each scheme from the largest to
he smallest.

Suppose that a finite alternative set is T = {t1, . . . , ti, . . . , tm},
is the total number of alternatives. An attribute set is C =

c1, . . . , cj, . . . , cn}, and n is the total number of attributes, the
ttribute weights of each scheme are ωj, j = 1, 2, . . . , n and
n
j=1 ωj = 1, the original decision matrix is L = {lij}. In this paper,

n order to prevent the influence of a DM’s subjective preferences
n attributes, we use the deviation maximization method [51] to
alculate the weight, and the calculation is as follows:

j =

∑m
i=1

∑m
k=1 |aij − akj|∑n

q=1
∑m

i=1
∑m

k=1 |aiq − akq|
, j = 1, 2, . . . , n, (5)

here aij represents the element in the normalized matrix A =

aij}. The standard 0–1 transformation method is used to normal-
ze the decision matrix [51]:

ij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

lij−lmin
j

lmax
j −lmin

j
if j is a benefit attribute,

lmax
j −lij

lmax
j −lmin

j
if j is a cost attribute,

(6)

where lmin
j is the minimum evaluation value in the original de-

cision matrix under the attribute cj; lmax
j is the maximum eval-

uation value in the original decision matrix under the attribute
cj. Without loss of generality, it is assumed that the attributes
are of benefit type, the difference between the scheme ti and the
cheme tk on the attribute j is denoted as d = aij − akj. Then the
preference function κ is expressed as:

κ(ti, tk) =

{
0 aij ≤ akj,
𭟋(d) aij > akj.

(7)

There are six typical evaluation criteria commonly used in the
PROMETHEE-II method, and the criterion with linear preference
and indifference area is adopted in this part:

𭟋(d) =

⎧⎨⎩
0 d ≤ q,
(d − q)/(p − q) q < d ≤ p,
1 d > p,

(8)

where the function has two parameters q, p, which can be deter-
mined according to the specific data. For the schemes ti, tk ∈ T ,
the priority index Π is defined as:

Π (ti, tk) =

∑n
j=1 ωjκj(ti, tk)∑n

j=1 ωj
. (9)

The outgoing flow φ+ and the incoming flow φ− of the alter-
ative ti are:
+(ti) =

∑
Π(ti, tk), (10)
tk∈T

4

φ−(ti) =

∑
tk∈T

Π(tk, ti). (11)

The PROMETHEE-II method defines a net-flow φ:

φ(ti) = φ+(ti) − φ−(ti), (12)

which is given by the difference of the outgoing and incoming
flows.

2.3. RT

In a risk-taking environment, individuals often make irrational
decisions. A DM not only cares about the outcomes of his/her
choice of alternatives, but also compares the outcomes of choos-
ing one option with the outcomes of choosing another one. If
the expectation is met, a DM will be happy with the decision;
otherwise, he/she will experience regret. Therefore, Bell [28] put
forward RT from the perspective of psychology, and according to
the expected utility theory [52], the perceived utility of a DM will
change according to different options. The decision making pro-
cess in RT includes two kinds of psychological perception: regret
and euphoria. In other words, a DM may feel regret or rejoice at
the outcomes of the choices he/she makes in the decision making
process, and tries to avoid the choices that he/she regrets.

For two alternatives t1 and t2, let O1 and O2 represent the re-
sults brought by the choice of these two alternatives respectively,
then a DM’s perceived utility V for the choice of the alternative
t1 is defined as follows:

V (O1) = U (O1) + R(U (O1) − U (O2)), (13)

where U (O1) denotes the direct utility function when adopting
the alternative t1 and R(U (O1) − U (O2)) denotes the regret-
ejoice function to measure the difference in utility between
hoosing the alternative t1 and the alternative t2. Here △ U =

(O1) − U (O2). In [53], the direct utility function U (Oi) and the
egret-rejoice function R(△ U ) is shown as:

(Oi) =
1 − e−θOi

θ
, (14)

(△ U ) = 1 − e−δ△U , (15)

here θ ∈ (0, 1) indicates the risk aversion parameter and δ ∈

[0, +∞) is the regret aversion parameter. Based on Eqs. (14), (15),
Fig. 2 illustrates the influence of θ on the direct utility function
U (Oi) and the influence of δ on the regret-rejoice function R(△
U ).

According to Fig. 2, we can find that when the risk aversion
parameter θ is constant, the direct utility function U (O) mono-
tonically increases with the increase of the variable O, and the
larger the value of the parameter θ is, the more sensitive a DM is
to the risk utility, which is consistent with the psychology of the
increased risk aversion. Similarly, we can see that when the value
of the regret aversion parameter δ is constant, the regret-rejoice
function R(△ U ) monotonically increases with the increase of the
variable △ U .

Through RT, R(△ U ) > 0 indicates that a DM is rejoiced with
the benefits when he/she chooses the option t1 over the option
t2. On the contrary, R(△ U ) < 0 implies a DM regrets the loss
caused by choosing the alternative t1 over the alternative t2.

Realistic decision making problems often contain multiple
choices. For this reason, Quiggin [54] extended the application
scope of RT to multiple action sets, selected an alternative that
maximizes the goal and proposed a more general formula. Let
O1,O2, . . . ,Om be the outcomes of choosing options t1, t2, . . . , tm,
respectively. Consequently, a DM’s perceived utility for the
scheme Oi is defined as:

V (Oi) = U (Oi) + R(U (Oi) − U (O∗)), (16)

where O∗
= max{Oi|i = 1, 2, . . . ,m}. R(U (Oi) − U (O∗)) denotes

the regret value, which is always non-positive.
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Table 3
The outcome function.

S(P) ¬S(N)

acP OPP OPN
acB OBP OBN
acN ONP ONN

3. 3WD with RT

In this section, we will analyze the relationship between the
utcome function obtained when selecting an object and the
ttribute evaluation value, and construct the relative outcome
unction based on the idea of the relative loss function [39].
oreover, the perceived utility function is calculated based on
T. However, our method does not mention how to obtain the
onditional probability before proposing clustering rules. In the
nd of this section, a new method to calculate the conditional
robability is proposed, that is, to construct a fuzzy set mem-
ership function for calculating the conditional probability via an
utranking relation.

.1. The relative outcome function

Similar to the loss function in Section 2.1, the 3W-MADM-R
ethod considers two states ς = {S, ¬S}. The three actions of

the acceptance, deferment and rejection decisions all correspond
to the result of this choice and constitute the outcome function,
as shown in Table 3. It is not difficult to understand that they
satisfy the conditions OPP ≥ OBP > ONP and ONN ≥ OBN > OPN ,
hat is to say, when the object t is in the state S, the outcome of
he acceptance decision is greater than or equal to the outcome
f the deferment decision, and both of these outcomes are strictly
reater than the result of the rejection decision. The reverse order
f outcomes is used for the object t which is in the state ¬S.
Inspired by the relativity of the loss function, the 3W-MADM-
method is only connected with the difference rather than the
xact values of O. Given the above, we propose a special trans-
ormation rule for the outcome function that O⋄P (⋄ = P, B,N)
minus ONP simultaneously and O⋄N (⋄ = P, B,N) minus OPN
simultaneously. By this transformation, the outcome function has
been converted to the form in Table 4.

Here, ÕPP = OPP − ONP , ÕBP = OBP − ONP , ÕBN = OBN − OPN
and ÕNN = ONN −OPN . Table 4 can be explained as follows: when
an object x belongs to S, taking the outcome of the action acN
as the benchmark, the outcomes for adopting the actions acP , acB

˜ ˜
and acN to the action acN are OPP , OBP and 0, respectively. When O

5

Table 4
A transformed outcome function.

S(P) ¬S(N)

acP ÕPP 0
acB ÕBP ÕBN

acN 0 ÕNN

Table 5
An example of an outcome function.

S(P) ¬S(N)

acP 5 2
acB 2 4
acN 1 7

Table 6
An example of a relative outcome function.

S(P) ¬S(N)

acP 4 0
acB 1 2
acN 0 5

an object t belongs to ¬S, taking the outcome of action acP as the
enchmark, the outcomes of adopting the actions acP , acB and acN
o the action acN are ÕPN , ÕBN and 0, respectively. As a result, we
ame the transformed outcome function shown in Table 4 as the
elative outcome function.

xample 3.1. Assume that there is an outcome function of 3WD
s shown in Table 5, then we transform them into the relative
utcome function based on Table 4, and the results are displayed
n Table 6.

.2. The relative outcome functions derived from fuzzy numbers
evaluation values of attributes)

In existing researches on the combination of RT with 3WD,
he outcome function is fixed [15]. That is to say, for different
lternatives, when they are in the same set of states (S or ¬S),
he outcome function of taking the same action (acP , acB or acN )
s the same. For instance, in the selection of investment projects,
he classes S and ¬S can be regarded as the profit and non-profit,
espectively. Assume that the projects t1 and t2 belong to ¬S,
s the result of the immobility of the outcome function, when
hoosing to invest in these projects, we can get the same outcome

. However, when it comes to solving realistic problems, this
PN
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Table 7
The relative outcome function derived from aij .

Sj ¬Sj

acP aij − ajmin 0
acB ζ · (aij − ajmin) ζ · (ajmax − aij)
acN 0 ajmax − aij

approach is unreasonable. In the process of an MADM, the out-
comes of different objects for taking the same action in the same
state should be different, which cannot be simply summarized
by a single value. As the example just mentioned, the experts
evaluate the profit value of two projects t1 and t2 as 1 and 3, 10
being the highest standard. Obviously, these two projects are not
worth investing in when considering profitability, which means
that t1 and t2 fall into ¬S. Therefore, the projects t1 and t2 have
the same outcome in the fixed outcome function. Yet, considering
an MADM, the project t2 is slightly better than the project t1 in
terms of the profit value. For this reason, the outcome of choosing
the investment project t2 should be slightly greater than that of
choosing the investment project t1.

In order to eliminate the contradiction between attribute eval-
uation values and outcome functions and to compare the rela-
tionship between attribute evaluation values and loss functions
explored by [39] on fuzzy numbers, we explore the relationship
between attribute evaluation values and outcome functions in
this section and eliminate the contradiction between them.

Assume that the attribute evaluation value of the alternative
ti under the attribute cj is aij(i = 1, 2, . . . ,m; j = 1, 2, . . . , n),
and the state set ς = {Sj, ¬Sj} denotes two states, where ti ∈

Sj represents that the alternative ti has the attribute cj. On the
contrary, ti ∈ ¬Sj indicates that ti has not the attribute cj. The
three actions acP , acB and acN denote the acceptance, deferment
and rejection decision, respectively. Consequently, with respect
to the attribute cj, the 3WD model based on the idea of [39]
can be constructed and we take aij ∈ [ajmin, a

j
max]. Here, ajmin

nd ajmax denote the minimum value and maximum value of
the attribute cj, respectively. Table 7 shows the relative outcome
function derived from the attribute evaluation value aij.

From the proposed outcome function, we can see that the
erroneous action for allocating objects in the correct domain
produces the smallest outcome value. As the minimum fuzzy
number is 0, ONP = 0 and OPN = 0. Secondly, given that ti ∈ Sj, the
outcome value for which the alternative ti makes the acceptance
decision is expressed as aij, and the outcome for accepting ti is
represented as aij−ajmin, which implies that the outcome of a DM’s
accepting action for the alternative ti is aij − ajmin as compared to
the outcome for the rejecting action; in the condition of ti ∈ ¬Sj,
he outcome for rejecting ti is the complement of ti, which implies
that the outcome of a DM’s rejecting action for the alternative ti
is ajmax − aij as compared to the outcome for the rejecting action.
Finally, the outcome of the deferred acceptance is between the
acceptance domain and the rejection domain. To this end, we
need to reference the idea of parameters proposed by Li and
Zhou [40] to calculate the outcome in the boundary domain. In
the same mode, we introduce a parameter ζ ∈ [0, 1] called the
utility pursuit coefficient to represent the outcome of an object
for making a deferred acceptance decision. It follows that OBP =

ζ · (aij − ajmin) and OBN = ζ · (ajmax − aij).

Example 3.2. A DM evaluates two investment projects t1 and
t2 in the context of fuzzy numbers based on the attribute cj,
which means that the project evaluation value aij ∈ [0, 1] (i =

1, 2). Assume that the attribute evaluation values of the two

alternatives are respectively a1j = 0.8, a2j = 0.1 and ζ = 0.3.

6

Table 8
The relative outcome function of t1 .
t1 Sj ¬Sj
acP 0.8 0
acB 0.24 0.06
acN 0 0.2

Table 9
The relative outcome function of t2 .
t2 Sj ¬Sj
acP 0.1 0
acB 0.03 0.27
acN 0 0.9

Table 10
The inverse outcome function.

S̃j ¬S̃j

bcP bij − bjmin 0
bcB ζ · (bij − bjmin) ζ · (bjmax − bij)
bcN 0 bjmax − bij

Then the relative outcome functions of t1 and t2 for the attribute
j can be calculated separately in Tables 8 and 9.

By comparing Tables 8 and 9, it can be found that even if
1 and t2 belong to the class Sj (or ¬Sj) at the same time, the
utcome of the two alternatives for choosing the same action are
lso different, which is reasonable in practical problems. Further,
s the evaluation values satisfy the following inequality: a1j > a2j

(0.8 > 0.1), which indicates that if t1, t2 ∈ Sj, investing alternative
t1 achieves better outcome than t2 in terms of the attribute cj,
hus taking the action of the acceptance or the delayed deter-
ination for t1 has a greater outcome than t2. Similarly, the

nequality for 0.2 < 0.9 shows that if t1, t2 ∈ ¬Sj, rejecting the
lternative t2 achieves a better outcome than t1 in terms of the
ttribute cj. In summary, the condition for a1j > a2j can explain
he conclusion that accepting t1 has a greater outcome than t2.

In order to enhance the comprehension of the relative out-
ome function, especially the understanding of the outcome when
i ∈ ¬Sj, we introduce a new concept of an inverse outcome
unction in light of the inverse loss function. Suppose that c̃j
enotes the opposite side of cj and bij = ajmax+ajmin−aij represents
he attribute evaluation values of ti aiming at c̃j when attribute
valuation values of ti aiming at cj is aij, where ajmax and ajmin
epresent the maximum and minimum values of the attribute cj
n the fuzzy environment, respectively. In other words, ajmax = 1
nd ajmin = 0. For instance, if cj denotes ‘‘energy protection‘‘ in
he investment project problem, c̃j expresses ‘‘energy waste’’. If
the attribute evaluation value of ti aiming at cj is denoted as a
uzzy number 0.8, the value of ti on cj is calculated as 0.2. That
is to say, a DM’ recognition of the t ′i s performance in ‘‘energy
rotection’’ is 0.8, and the recognition of the t ′i s performance in
‘energy waste’’ is 0.2. Therefore, aij = 0.8 and bij = 0.8 have
quivalent connotations.
Considering the relationship between relative outcome func-

ions and inverse selection outcome functions, the relative out-
ome function shown in Table 7 for ti can be rewritten into the
nverse relative outcome function shown in Table 10.
here the three actions bcP , bcB and bcN indicate the clustering
f ti into Pos(S̃j), Bnd(S̃j) and Neg(S̃j), respectively. In view of the
eason that S̃j = ¬Sj, which represents a state of the attribute c̃j,
e know that bcP , bcB and bcN correspond to acP , acB and acN ,
espectively. Thus we obtain the following properties Pos(S̃j) =

eg(S ), Bnd(S̃ ) = Bnd(S ) and Neg(S̃ ) = Pos(S ). Meanwhile,
j j j j j
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Table 11
The transformed inverse outcome function.

Sj ¬Sj

acP ajmax − aij 0
acB ζ (ajmax − aij) ζ (aij − ajmin)
acN 0 aij − ajmin

bij = ajmax + ajmin − aij, b
j
max = ajmax, b

j
min = ajmin, hence we can

acquire the following:

bjmax − bij = a j
max − (ajmax + a j

min − aij) = aij − a j
max,

bij − b j
min = (a j

max + ajmin − aij) − a j
min = a j

max − aij.

Therefore, the inverse outcome function can be converted as
Table 11, which corresponds to the original outcome function in
Table 7.

In terms of the inverse outcome function shown in Tables 10
and 11, we can draw the following conclusions: when ti ∈ S̃j,
he outcomes for putting ti into the positive region bcP , boundary
egion bcB and negative region bcN are ajmax − aij, ζ (ajmax − aij)
and 0, respectively, which are one-to-one corresponding to the
results obtained when ti ∈ ¬Sj is placed in the positive, boundary
and negative regions; when ti ∈ ¬S̃j, the outcomes of putting
ti into the positive region bcP , boundary region bcB and negative
region bcN are 0, ζ (aij−ajmin) and aij−ajmin, respectively, which are
one-to-one corresponding to the results obtained when ti ∈ Sj is
placed in the positive, boundary and negative regions. According
to the above special properties, the inverse outcome function can
be utilized for dealing with the conversion problem between cost
attributes and benefit attributes.

3.3. 3WD based on RT

The 3WD rules based on RT also contain two states ς =

{S, ¬S} and three actions D = {acP , acB, acN}. Through the rel-
ative outcome function discussed in Section 3.2, we can give the
outcome function Oij

⋄⋆(⋄ = P, B,N; ⋆ = P,N) of each object under
each attribute, where Oij

PP , Oij
BP and Oij

NP respectively represent
the relative outcome function when the actions acP , acB and acN
are taken when ti belongs to Sj; Oij

PN , O
ij
BN and Oij

NN respectively
represent the relative outcome function when the actions acP , acB
and acN are taken when ti belongs to ¬Sj. In order to specifically
describe the relative outcome function in the MADM problems,
we express its expression form as shown in Table 12.

Similar to Table 12, we define the direct utility function of
each alternative under each attribute in the MADM that does not
consider the regret values by Eq. (17), and its detailed expression
form is also a 3i × 2j matrix:

U ij
⋄⋆ =

1 − e−θOij
⋄⋆

θ
. (17)

In terms of RT, a DM will compare the results of the chosen
ption with those of other alternatives. Because they all contain
wo states and three actions, we establish a new model on the
ulti-action set based on RT. The utility function for each at-

ribute considering the regret value is defined as the regret-based
erceived utility function for each attribute, as shown in Table 13.
On the basis of Eq. (16), in order to compute the regret-based

erceived utility function for each attribute, we need to select
he decision alternative with the maximum outcome to calculate
he regret values. Due to the monotony of direct utility function
nd regret-based perceived utility function for each attribute,
hen the object ti ∈ Sj or ti ∈ ¬Sj, the maximum value of
he six outcome functions corresponding to each attribute under
7

Table 12
Summarized relative outcome functions of MADM.

c1 c2 · · · cj
S1 ¬S1 S2 ¬S2 · · · Sj ¬Sj

acP O11
PP O11

PN O12
PP O12

PN · · · O1j
PP O1j

PN

t1 acB O11
BP O11

BN O12
BP O12

BN · · · O1j
BP O1j

BN

acN O11
NP O11

NN O12
NP O12

NN · · · O1j
NP O1j

NN

acP O21
PP O21

PN O22
PP O22

PN · · · O2j
PP O2j

PN

t2 acB O21
BP O21

BN O22
BP O22

BN · · · O2j
BP O2j

BN

acN O21
NP O21

NN O22
NP O22

NN · · · O2j
NP O2j

NN

.

.

.

acP Oi1
PP Oi1

PN Oi2
PP Oi2

PN · · · Oij
PP Oij

PN

ti acB Oi1
BP Oi1

BN Oi2
BP Oi2

BN · · · Oij
BP Oij

BN

acN Oi1
NP Oi1

NN Oi2
NP Oi2

NN · · · Oij
NP Oij

NN

the option is selected as the outcome value of the ideal scheme,
which is denoted in Eq. (18):

O∗(ti) = max{Oij
⋄⋆}. (18)

At the moment, the regret-based perceived utility function for
each attribute V

ij
⋄⋆ is computed as Eq. (19) based on Eq. (16):

V ij
⋄⋆ = U ij

⋄⋆ + R(U ij
⋄⋆ − U (O∗(ti))). (19)

By virtue of Eq. (19), we can get the regret-based perceived
utility functions after aggregation of all attributes via the follow-
ing Eq. (20).

V⋄⋆(ti) =

n∑
j=1

ωjV
ij

⋄⋆. (20)

Example 3.3. In the background of fuzzy numbers, we through
the rand function in R2018b-MATLAB to generate uniformly dis-
tributed random numbers to form a 6 × 4 matrix as an evaluation
information matrix of 6 objects with 4 attributes (all of which
are assumed to be benefit attributes). The attribute weights are
calculated by Eq. (5). All information is shown in Table 14.

On the basis of the original attribute information table pre-
sented in Table 14 and making ζ = 0.7, θ = 0.3, δ = 0.3, through
Table 7, we can convert the attribute evaluation value aij into a
relative outcome functions Oij

⋄⋆ in Table 15.
Calculate the direct utility functions U

ij
⋄⋆ by Eq. (17), which is

presented in Table 16.
Through the above analysis, we can get the maximum out-

come value of each option from Table 16, which can be used as a
reference point to calculate the regret values, i.e.,

U (O∗(t1)) = 0.8481, U (O∗(t2)) = 0.8403, U (O∗(t3)) = 0.8268,
U (O∗(t4)) = 0.8383, U (O∗(t5)) = 0.7909, U (O∗(t6)) = 0.7338.

Then, based on Eqs. (15), (19), the calculation results of regret-
based perceived utility functions V

ij
⋄⋆ for each alternative under

each attribute are shown in Table 17.
The values of aggregated regret-based perceived utility func-

tion obtained from Eq. (20) are shown in Table 18:

With the regret-based perceived utility function and the con-
ditional probability of each object in different states, a DM can
calculate the expected utility under the three actions D =

{acP , acB, acN} and express it in the following form:

EU(acP |t) = VPPPr(S|t) + VPNPr(¬S|t),
EU(acB|t) = VBPPr(S|t) + VBNPr(¬S|t), (21)

EU(acN |t) = VNPPr(S|t) + VNNPr(¬S|t).
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Table 13
The regret-based perceived utility functions for each attribute of MADM.

c1 c2 · · · cj
S1 ¬S1 S2 ¬S2 · · · Sj ¬Sj

acP V 11
PP V 11

PN V 12
PP V 12

PN · · · V
1j
PP V

1j
PN

t1 acB V 11
BP V 11

BN V 12
BP V 12

BN · · · V
1j
BP V

1j
BN

acN V 11
NP V 11

NN V 12
NP V 12

NN · · · V
1j
NP V

1j
NN

acP V 21
PP V 21

PN V 22
PP V 22

PN · · · V
2j
PP V

2j
PN

t2 acB V 21
BP V 21

BN V 22
BP V 22

BN · · · V
2j
BP V

2j
BN

acN V 21
NP V 21

NN V 22
NP V 22

NN · · · V
2j
NP V

2j
NN

.

.

.

acP V i1
PP V i1

PN V i2
PP V i2

PN · · · V
ij
PP V

ij
PN

ti acB V i1
BP V i1

BN V i2
BP V i2

BN · · · V
ij
BP V

ij
BN

acN V i1
NP V i1

NN V i2
NP V i2

NN · · · V
ij
NP V

ij
NN
(
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Table 14
Attribute evaluation information table under the MADM.

c1 c2 c3 c4
t1 0.9787 0.7060 0.6948 0.7655
t2 0.7577 0.0318 0.3171 0.7952
t3 0.7431 0.2769 0.9502 0.1869
t4 0.3922 0.0462 0.0344 0.4898
t5 0.6555 0.0971 0.4387 0.4456
t6 0.1712 0.8235 0.3816 0.6463
w 0.2366 0.2828 0.2305 0.2501

RT makes a DM to choose the decision that has the maximum
tility. Therefore, the 3W-MADM-R method advises to use the
ollowing optimization problem for finding the optimum action:
rgmaxac⋄∈DV (acP |t).
Thus, the decision process suggests that in the 3W-MADM-R

ethod, the decision rules of maximum-utility are shown as:

(P1) If EU(acP |t) ≥ EU(acB|t) and EU(acP |t) ≥ EU(acN |t),
decide that t ∈ Pos(S);

(B1) If EU(acB|t) ≥ EU(acP |t) and EU(acB|t) ≥ EU(acN |t),
decide that t ∈ Bnd(S);

(N1) If EU(acN |t) ≥ EU(acP |t) and EU(acN |t) ≥ EU(acB|t),
decide that t ∈ Neg(S).

In the three decision making processes, it is vital to simplify
the decision rules according to the probability Pr(S|t) and thresh-
olds. In our proposed model, the condition that the thresholds
satisfy α∗ > β∗ can be computed. That is, when α∗ > β∗, there is
(VPP − VBP )(VNN − VPN ) < (VBP − VNP )(VBN − VPN ). Meanwhile, on
account of Pr(S|t)+Pr(¬S|t) = 1. The decision rules (P1)− (N1)
can be simplified as follows:

(P2) If Pr(S|t) ≥ α∗, decide that t ∈ Pos(S);
(B2) If β∗ < Pr(S|t) < α∗, decide that t ∈ Bnd(S);
(N2) If Pr(S|t) ≤ β∗, decide that t ∈ Neg(S),

where,

α∗
=

1

1 +
VPP−VBP
VBN−VPN

,

∗
=

1

1 +
VBP−VNP
VNN−VBN

,

γ ∗
=

1
VPP−VNP

.

(22)
1 + VNN−VPN
Φ

8

Otherwise, decision rules (P1) − (N1) can be simplified as
follows:

(P3) If Pr(S|t) ≥ γ ∗, decide that t ∈ Pos(S);
N3) If Pr(S|t) < γ ∗, decide that t ∈ Neg(S).

.4. The conditional probability based on an outranking relation

The problem of how to get the conditional probability of an
bject in 3WD is a crucial one. In most of the previous 3WD
odels, either the conditional probability is given objectively by a
M, which is not appropriate if there are too many objects in a re-
listic problem, or the conditional probability calculation method
roposed in the model has no reasonable semantic interpretation.
nspired by [55], we utilize the net-flow of the PROMETHEE-II
ethod to construct an outranking relation and figure out the
onditional probability in the fuzzy information system.
Through the introduction in Section 2.2, we can first con-

truct the preference function between scheme pairs in the fuzzy
nvironment in accordance with the attribute evaluation of the
bject combined with the linear preference and the indifference
rea criterion. Then, the priority index can be calculated after
he attribute weight is obtained by the deviation maximization
ethod. Finally, the outgoing flow, incoming flow and net-flow
f the alternative are calculated. As described above, we define a
ew outranking relation.

efinition 3.1 ([56]). The fuzzy set χ represents a concept of
‘good state’’, which is denoted as χ =

χ (t1)
t1

+
χ (t2)
t2

+ · · · +
χ (tm)
tm

,
hereinto the membership function χ about ti can be calculated
from the following formula: χ (ti) =

∑n
j=1 ωj · aij.

Remark 3.1. Another ‘‘fuzzy concept’’ can be defined as ¬χ =
¬χ (t1)

t1
+

¬χ (t2)
t2

+ · · · +
¬χ (tm)

tm
, here ¬χ (ti) = 1 − χ (ti).

The conditional probability consists of a state set and a binary
relation. In subsequent studies, the state set consists of a fuzzy set
χ and the complement of the fuzzy set χ , where the fuzzy set χ
represents a ‘‘good state’’ and the complement of the fuzzy set
χ represents a ‘‘bad state’’. In order to calculate the conditional
probability of each alternative in different states more reasonably,
Definition 3.2 gives an outranking relation based on net-flow of
each alternative.

Definition 3.2. Assume that for all c ∈ C , ti, tk ∈ T , if the net-
low of the alternative ti is not less than that of tk, we believe that
i is superior to tk. Thus a new outranking relation Φ⪰ is defined
s tiΦ⪰tk. i.e.,

= {(t , t ) ∈ T × T | φ(t ) ≥ φ(t )}. (23)
⪰ i k i k
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Table 15
The relative outcome functions Oij

⋄⋆ of each alternative.
c1 c2 c3 c4
S1 ¬S1 S2 ¬S2 S3 ¬S3 S4 ¬S4

acP 0.9787 0 0.7060 0 0.6948 0 0.7655 0
t1 acB 0.6851 0.0149 0.4942 0.2058 0.4864 0.2136 0.5358 0.1642

acN 0 0.0213 0 0.2940 0 0.3052 0 0.2345

acP 0.7577 0 0.0318 0 0.3171 0 0.7952 0
t2 acB 0.5304 0.1696 0.0223 0.6777 0.2220 0.4780 0.5566 0.1434

acN 0 0.2423 0 0.9682 0 0.6829 0 0.2048

acP 0.7431 0 0.2769 0 0.9502 0 0.1869 0
t3 acB 0.5202 0.1798 0.1938 0.5062 0.6651 0.0349 0.1308 0.5692

acN 0 0.2569 0 0.7231 0 0.0498 0 0.8131

acP 0.3922 0 0.0462 0 0.0344 0 0.4898 0
t4 acB 0.2745 0.4255 0.0323 0.6677 0.0241 0.6759 0.3429 0.3571

acN 0 0.6078 0 0.9538 0 0.9565 0 0.5102

acP 0.6555 0 0.0971 0 0.4387 0 0.4456 0
t5 acB 0.4588 0.2412 0.0680 0.6320 0.3071 0.3929 0.3119 0.3881

acN 0 0.3445 0 0.9029 0 0.5613 0 0.5544

acP 0.1712 0 0.8235 0 0.3816 0 0.6463 0
t6 acB 0.1198 0.5802 0.5765 0.1235 0.2671 0.4329 0.4524 0.2476

acN 0 0.8288 0 0.1765 0 0.6184 0 0.3537
Table 16
The direct utility functions U

ij
⋄⋆ of each alternative.

c1 c2 c3 c4
S1 ¬S1 S2 ¬S2 S3 ¬S3 S4 ¬S4

acP 0.8481 0 0.6362 0 0.6272 0 0.6840 0
t1 acB 0.6193 0.0149 0.4593 0.1996 0.4525 0.2069 0.4950 0.1602

acN 0 0.0212 0 0.2814 0 0.2916 0 0.2264

acP 0.6778 0 0.0316 0 0.3025 0 0.7075 0
t2 acB 0.4903 0.1654 0.0222 0.6133 0.2147 0.4453 0.5126 0.1403

acN 0 0.2337 0 0.8403 0 0.6175 0 0.1986

acP 0.6661 0 0.2657 0 0.8268 0 0.1818 0
t3 acB 0.4816 0.1751 0.1883 0.4696 0.6030 0.0347 0.1283 0.5232

acN 0 0.2472 0 0.6500 0 0.0494 0 0.7215

acP 0.3700 0 0.0459 0 0.0342 0 0.4555 0
t4 acB 0.2635 0.3994 0.0322 0.6050 0.0240 0.6118 0.3258 0.3387

acN 0 0.5556 0 0.8295 0 0.8383 0 0.4731

acP 0.5951 0 0.0957 0 0.4111 0 0.4171 0
t5 acB 0.4287 0.2326 0.0673 0.5757 0.2934 0.3706 0.2978 0.3663

acN 0 0.3273 0 0.7909 0 0.5166 0 0.5107

acP 0.1669 0 0.7297 0 0.3606 0 0.5875 0
t6 acB 0.1177 0.5325 0.5294 0.1213 0.2567 0.4060 0.4231 0.2386

acN 0 0.7338 0 0.1719 0 0.5644 0 0.3356
Definition 3.3. By means of the outranking relation Φ⪰ based
n the net-flow definition in the PROMETHEE-II method, an out-
anked set of any alternative ti ∈ T is defined as follows:

ti]Φ⪰
= {tk | tiΦ⪰tk ∧ tk ∈ T }. (24)

For instance, if tk ∈ [ti]Φ⪰
, we have tiΦ⪰tk. In other words, the

lternative ti is superior to tk.

Example 3.4 (Continued from Example 3.3). Referring to the
PROMETHEE-II method [4], we take the parameter q = 0.1 and

= 0.9 in the fuzzy environment. The priority index Π among
he six alternatives and outgoing flow φ+, incoming flow φ− are
epresented in Table 19.

Though φ(ti) = φ+(ti) − φ−(ti), the net-flows of the six
lternatives are:

(t1) = 1.7683, φ(t2) = −0.1823, φ(t3) = 0.1737,
(t4) = −1.4695, φ(t5) = −0.5325, φ(t6) = 0.2423.
9

In light of Definitions 3.2 and 3.3, we have an outranked set for
six objects:

[t1]Φ⪰
= {t1, t2, t3, t4, t5, t6},

[t2]Φ⪰
= {t2, t4, t5},

[t3]Φ⪰
= {t2, t3, t4, t5},

[t4]Φ⪰
= {t4},

[t5]Φ⪰
= {t4, t5},

[t6]Φ⪰
= {t2, t3, t4, t5, t6}.

Proposition 3.1. In an MADM matrix, suppose that [ti]Φ⪰
is an

outranked set of ti ∈ T . The following properties hold:
(1) For any ti ∈ T , there is ti ∈ [ti]Φ⪰

, namely, [ti]Φ⪰
satisfies the

reflexivity;
(2) For any ti, tk, tr ∈ T , if tk ∈ [ti]Φ⪰

and tr ∈ [tk]Φ⪰
, then we

have tr ∈ [ti]Φ⪰
.

Proof. (1) Obviously, we can directly verify this property by
Definitions 3.2 and 3.3.
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Table 17
The regret-based perceived utility functions V

ij
⋄⋆ of each alternative.

c1 c2 c3 c4
S1 ¬S1 S2 ¬S2 S3 ¬S3 S4 ¬S4

acP 0.8481 −0.2897 0.5706 −0.2897 0.5586 −0.2897 0.6335 −0.2897
t1 acB 0.5482 −0.2691 0.3356 −0.0152 0.3265 −0.0052 0.3832 −0.0690

acN −0.2897 −0.2603 −0.2897 0.0961 −0.2897 0.1100 −0.2897 0.0214

acP 0.6278 −0.2867 −0.2429 −0.2867 0.1274 −0.2867 0.6668 −0.2867
t2 acB 0.3797 −0.0591 −0.2560 0.5428 0.0083 0.3195 0.4094 −0.0933

acN −0.2867 0.0341 −0.2867 0.8403 −0.2867 0.5484 −0.2867 −0.0136

acP 0.6167 −0.2815 0.0824 −0.2815 0.8268 −0.2815 −0.0317 −0.2815
t3 acB 0.3725 −0.0409 −0.0228 0.3565 0.5335 −0.2336 −0.1048 0.4279

acN −0.2815 0.0574 −0.2815 0.5956 −0.2815 −0.2132 −0.2815 0.6894

acP 0.2192 −0.2859 −0.2225 −0.2859 −0.2386 −0.2859 0.3338 −0.2859
t4 acB 0.0753 0.2587 −0.2414 0.5326 −0.2527 0.5415 0.1596 0.1770

acN −0.2859 0.4671 −0.2859 0.8268 −0.2859 0.8383 −0.2859 0.3573

acP 0.5345 −0.2678 −0.1362 −0.2678 0.2903 −0.2678 0.2984 −0.2678
t5 acB 0.3139 0.0503 −0.1752 0.5090 0.1324 0.2362 0.1383 0.2305

acN −0.2678 0.1781 −0.2678 0.7909 −0.2678 0.4308 −0.2678 0.4231

acP −0.0185 −0.2463 0.7284 −0.2463 0.2421 −0.2463 0.5426 −0.2463
t6 acB −0.0853 0.4702 0.4661 −0.0804 0.1028 0.3026 0.3253 0.0785

acN −0.2463 0.7338 −0.2463 −0.0117 −0.2463 0.5123 −0.2463 0.2087
c
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Table 18
The aggregated regret-based perceived utility functions V⋄⋆(ti) of each
lternative.

VPP VPN VBP VBN VNP VNN

t1 0.6492 −0.2897 0.3957 −0.0864 −0.2897 −0.0037
t2 0.2760 −0.2867 0.1217 0.1898 −0.2867 0.3687
t3 0.3518 −0.2815 0.1785 0.1443 −0.2815 0.3053
t4 0.0174 −0.2859 −0.0688 0.3809 −0.2859 0.6269
t5 0.2295 −0.2678 0.0898 0.2680 −0.2678 0.4709
t6 0.3931 −0.2463 0.2167 0.1779 −0.2463 0.3406

Table 19
The priority index among the six alternatives.
Π t1 t2 t3 t4 t5 t6 φ+(t)

t1 0 0.3188 0.3061 0.5582 0.3596 0.2767 1.8193
t2 0 0 0.1589 0.1954 0.0787 0.1592 0.5921
t3 0.0448 0.2049 0 0.3509 0.1468 0.2746 1.0219
t4 0 0 0.0634 0 0 0.0358 0.0992
t5 0 0.0062 0.0496 0.1360 0 0.1137 0.3055
t6 0.0062 0.2445 0.2702 0.3283 0.2529 0 1.1022
φ−(t) 0.0510 0.7744 0.8482 1.5687 0.8380 0.8599 –

(2) For any ti, tk, tr ∈ T , we have

k ∈ [ti]Φ⪰
⇔ tiΦ⪰tk ⇔ φ(ti) ≥ φ(tk),

r ∈ [tk]Φ⪰
⇔ tkΦ⪰tr ⇔ φ(tk) ≥ φ(tr ).

hen, φ(ti) ≥ φ(tr ) ⇔ tiΦ⪰tr ⇔ tr ∈ [ti]Φ⪰

As described previous, [ti]Φ⪰
satisfies the transitivity. □

Through the above definitions, we give the calculation method
f the conditional probability of each alternative.

efinition 3.4. For any alternative ti in [ti]Φ⪰
belonging to the

tate χ , based on the defined outranking relation, the conditional
robability calculation for each alternative ti is derived as follows:

r(χ |[ti]Φ⪰
) =

∑
v∈[ti]Φ⪰

χ (v)

|[ti]Φ⪰
|

, (25)

here |✠| represents the cardinality of the set ✠.
10
Remark 3.2. Similarly, Pr(¬χ |[ti]Φ⪰
) =

∑
v∈[ti]Φ⪰

¬χ (v)

|[ti]Φ⪰
|

. Ac-

ording to Remark 3.1, we have Pr(χ |[ti]Φ⪰
) + Pr(¬χ |[ti]Φ⪰

) =

.

Therefore, for each object ti ∈ T , we can use Pr(χ |[ti]Φ⪰
) to

ndicate the conditional probability of the object ti belonging to
he state S, which means Pr(χ |[ti]Φ⪰

) = Pr(S|t).

xample 3.5 (Continued with Example 3.4). Based on Example 3.4,
he outranked sets corresponding to the six objects and raw
ttribute evaluation Table 12 are obtained. The membership func-
ion of the fuzzy set is calculated by Definition 3.1:

=
0.7828

t1
+

0.4602
t2

+
0.5199

t3
+

0.2363
t4

+
0.3951

t5
+

0.5230
t6

.

According to Eq. (25), we have:

r(χ |[t1]Φ⪰
) = 0.7828,Pr(χ |[t2]Φ⪰

) = 0.5715,
Pr(χ |[t3]Φ⪰

) = 0.6086,
Pr(χ |[t4]Φ⪰

) = 0.4868,Pr(χ |[t5]Φ⪰
) = 0.5362,

Pr(χ |[t6]Φ⪰
) = 0.6529.

In addition, based on the final results V⋄⋆(ti) of Example 3.3
and Eq. (22), we calculate the three thresholds α∗, β∗ and γ ∗ in
he 3W-MADM-R method below.

α∗(t1) = 0.4451; α∗(t2) = 0.7555; α∗(t3) = 0.7106;
α∗(t4) = 0.8855; α∗(t5) = 0.7932; α∗(t6) = 0.7062.
β∗(t1) = 0.1077; β∗(t2) = 0.3045; β∗(t3) = 0.2592;
β∗(t4) = 0.5312; β∗(t5) = 0.3621; β∗(t6) = 0.2601.
γ ∗(t1) = 0.2335; γ ∗(t2) = 0.5381; γ ∗(t3) = 0.4809;
γ ∗(t4) = 0.7506; γ ∗(t5) = 0.5977; γ ∗(t6) = 0.4786.

Then, the conditional probability Pr(χ |[ti]Φ⪰
) is compared

with the values of α∗(ti) and β∗(ti), six objects can be divided
into the following three domains based on the simplified decision
rules (P2)-(N2) of maximum-utility built from 3W-MADM-R:

Pos(χ ) = {t1}, Bnd(χ ) = {t2, t3, t5, t6},Neg(χ ) = {t4}.

Meanwhile, Eq. (21) is used to calculate the expected utility of
each object under three actions D = {acP , acB, acN} in Table 20.

Finally, based on the ranking rules in the 3WD [56], the higher
the expected utility value in the same domain is, the better the
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Table 20
The expected utility of each object.

t1 t2 t3 t4 t5 t6
EU(acP |t) 0.4453 0.0349 0.1039 −0.1384 −0.0011 0.1712
EU(acB|t) 0.2910 0.1509 0.1651 0.1622 0.1724 0.2032
EU(acN |t) −0.2276 −0.0059 −0.0518 0.1831 0.0748 −0.0426

object is on the premise that Pos(χ ) ≻ Bnd(χ ) ≻ Neg(χ ).
According to Table 20, the sorting result of the six objects is
t1 ≻ t6 ≻ t5 ≻ t3 ≻ t2 ≻ t4.

3.5. The core steps of the 3W-MADM-R algorithm

Algorithm 1 displays the detailed process of our proposed
3W-MADM-R method, let m denote the number of all objects
and n denote the number of all attributes. Then we analyze the
time complexity of the algorithm. It is worth noting that the
complexity of Algorithm 1 is determined by the highest power
of the polynomial.

Remark 3.3. The time complexity of Step 1 (Lines 1–8 in 1) is
O(m2n). The time complexity of Step 2 (Lines 9–14 in Algorithm 1)
is O(mn). The time complexity of Step 3 (Lines 15–17 in Algorithm
1) is O(m). The time complexity of Step 4 (Lines 18–20 in Algo-
rithm 1) is O(mn). The time complexity of Step 5 (Lines 21–23 in
Algorithm 1) is O(nm3

+3m2
+2m). The time complexity of Step 6

(Lines 24–26 in Algorithm 1) is O(1). The time complexity of Step
7 (Lines 27–32 in Algorithm 1) is O(m). The time complexity of
Step 8 (Lines 33–35 in Algorithm 1)is O(1). The time complexity
of Step 9 (Lines 36–41 in Algorithm 1) is O(m). Hence, the overall
time complexity of Algorithm 1 is O(nm3).

4. An illustrative example

In the current section, our proposed 3W-MADM-R method
addresses the problem of heart disease in a fuzzy environment,
and the effectiveness of the method is verified by comparing with
other counterparts.

4.1. Problem descriptions based on 3W-MADM-R

Heart disease is the top killer of human health. According to
WHO, nearly 17 million people die of cardiovascular disease each
year. Thus how to quickly and effectively diagnose heart disease
has always been one of the key issues in the field of life sciences.
As the world enters the era of precision medicine, the diagnosis
and prevention of heart disease have also entered a new stage
of immunotherapy. At present, it will play a crucial role in pre-
venting heart disease by extracting relevant body measurement
indicators and analyzing the influence of different characteristics
on heart disease via data mining.

We choose an example of a data set ‘‘Statlog (Heart)’’ from the
University of California at Irvine (UCI) database (https://archive.
ics.uci.edu/ml/datasets/Statlog+%28Heart%29/20220423.html),
consisting of 270 objects and 13 attributes. In specific, 270 pa-
tients with cardiac examination are represented as T = {t1, t2,
. . . , t270}. In terms of 13 attributes, class attributes and bipolar
attributes are removed. Finally, we select 7 attributes, which are
expressed as ages (c1), rest blood pressure(c2), serum cholesterol
(c3), max heart rate (c4), old peak (c5), slope (c6) and thal (c7). By
using the deviation maximization weight method mentioned in
Section 2.2, we obtain the attribute weight of the example in the
lymphogram domain as w = {0.1266, 0.1086, 0.0742, 0.1163,
0.1055, 0.1829, 0.2859}.
11
In this paper, we use the proposed 3W-MADM-R method to
infer the presence of heart disease from physical examination
data collected from cardiac data sets. At the medical level, the
Statlog (Heart) database gives the physical characteristics of 270
subjects, but it is up to the clinician to make the final decision
on whether the objects have the disease and determine the next
treatment plan. For each patient, there are two states χ, ¬χ that
the presence of heart disease and the absence of heart disease,
respectively. At the same time, there are three actions D =

{acP , acB, acN}, which correspond to the treatment, the delayed
treatment and no treatment. In the PROMETHEE-II method, the
values of the parameters q and p are 0.1 and 0.9, respectively.

4.2. Optimal selection of parameters in 3W-MADM-R method

In MADM problems, the choice of parameters endows DMs
with certain initiative. However, different parameters get differ-
ent decision making results, and there may be a phenomenon that
the results are not comparable under the worst conditions. Based
on this, in order to make it more convenient for a DM to make
a choice and select the appropriate parameters, this section will
explore how to select the outcome utility coefficient ζ , the risk
aversion parameter θ and the regret aversion parameter δ in the
data set ‘‘Statlog(Heart)’’ that have a key influence on the results
of 3W-MADM-R method.

3WD pays attention to both sorting and classification. There-
fore, the principle of optimal parameter selection is based on the
existing TOPSIS method [12]) without parameters. On the premise
of maintaining a high Spearman rank correlation coefficient [57]
(SRCC) between the sorting results of 3W-MADM-R method and
that of the TOPSIS method, several common clustering indexes
are better. In fact, in the data set ‘‘Statlog(Heart)’’ the ranking re-
sults obtained from Algorithm 1 show that when the parameters
ζ , θ and δ increase, the SRCCs decrease gradually to some extent,
but the minimum is 97.98%, which is highly correlated with the
ranking results of the TOPSIS method. In light of this, we select
the optimal parameters according to the principle that the lower
the error rate [15] is, the better the Rand index (RI) and F1 [15,58]
are.

In particular, we find that the error rate equation in [15]
ignores the fact that different decision making methods will
produce different object numbers in the boundary domain, which
cannot reflect the validity of the boundary and reasonably com-
pare the error rates in different decision making methods. There-
fore, we have corrected the original error rate equation. The
corrected error rate (CE) equation and equations RI, F1 are shown
as follows.

CE =
nχ→Neg(χ ) + n¬χ→Pos(χ )

|U | − nBnd(χ )
× 100%, (26)

I =
nχ→Pos(χ ) + n¬χ→Neg(χ )

nχ→Pos(χ ) + nχ→Neg(χ ) + n¬χ→Pos(χ ) + n¬χ→Neg(χ )
× 100%,

(27)

1 =
2 × Precision × Recall
Precision + Recall

, (28)

where |U | represents the number of all objects, meanwhile
nχ→Neg(χ ) and n¬χ→Pos(χ ) denote the number of objects belonging
to χ and ¬χ that are divided into the negative and positive
domains, respectively. nχ→Pos(χ ) and n¬χ→Neg(χ ) denote the num-
ber of objects belonging to χ and ¬χ that are divided into the
positive and negative domains, respectively.

Remark 4.1. The smaller the corrected error rate, the stronger
the validity of the boundary. This is due to the fact that the

https://archive.ics.uci.edu/ml/datasets/Statlog+%28Heart%29/20220423.html
https://archive.ics.uci.edu/ml/datasets/Statlog+%28Heart%29/20220423.html
https://archive.ics.uci.edu/ml/datasets/Statlog+%28Heart%29/20220423.html
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Algorithm 1: The algorithm of 3W-MADM-R.
Input: An information system (T , C), and the values of the parameters q, p, ζ , θ and δ.
Output: The clustering and ranking results of all objects.

1 begin
2 for j = 1 to n do

3 Normalize: if cj is a benefit attribute, aij =
lij−lmin

j

lmax
j −lmin

j
,

4 if cj is a cost attribute, aij =
lmax
j −lij

lmax
j −lmin

j
. Here lij is the attribute evaluation value in the original decision matrix.

5 end
6 for j = 1 to n do
7 compute: calculate attribute weights ωj according to Eq. (5).
8 end
9 for i = 1 to m, j = 1 to n do

10 compute: Based on the standardized attribute evaluation value construct the relative outcome functions Oij
PP , O

ij
BP ,O

ij
NP , O

ij
PN , O

ij
BN ,O

ij
NN

11 end
12 for i = 1 to m, j = 1 to n do
13 compute: calculate the direct utility function U⋄⋆ for each object under each attribute via Eq. (17) .
14 end
15 for i = 1 to m, j = 1 to n do
16 compute: select the maximum outcome value corresponding to each alternative and calculate its direct utility functions:

U (O∗(ti)) =
1−e−θO∗ (ti )

θ
, where θ ∈ (0, 1).

17 end
18 for i = 1 to m, j = 1 to n do
19 compute: calculate the regret-based perceived utility function V

ij
⋄⋆ by the light of Eq. (15), then get the aggregated regret-based

perceived utility function: V⋄⋆(ti) =

n∑
j=1

ωjV
ij
⋄⋆.

20 end
21 for i = 1 to m,j = 1 to n do

22 compute: calculate the outranked sets [ti]Φ⪰
and fuzzy membership function χ =

n∑
j=1

ωj ·aij

ti
.

23 end
24 for i = 1 to m do

25 compute: compute the condition probability Pr(χ |[ti]Φ⪰
) =

∑
v∈[ti]Φ⪰

χ (v)

|[ti]Φ⪰
|

and Pr(¬χ |[ti]Φ⪰
) =

∑
v∈[ti]Φ⪰

¬χ (v)

|[ti]Φ⪰
|

.

26 end
27 for i = 1 to m do
28 compute: calculate the thresholds α∗, β∗, γ ∗ via Eq. (22):
29 end
30 for i = 1 to m do
31 decision: Obtain a 3WD model decision clustering rules based on RT with (P2)-(N2).
32 end
33 for i = 1 to m do
34 compute: calculate the expected utility EU(ac⋄|ti) with respect to three actions D = {acP , acB, acN } by Eq. (21):
35 end
36 for i = 1 to m, k = 1 to m and i ̸= k do
37 determine: rank all objects by following these rules:
38 (1) if two objects ti, tk in the same region and EU(ti) > EU(tk), then ti ≻ tk.
39 (2) according to the rules of Pos(χ ) ≻ Bnd(χ ) ≻ Neg(χ ).
40 end
41 end
positive and negative domains are the two sets of objects divided
into two groups after removing objects in the boundary domain.
The smaller the numerator of Eq. (26) means that the proportion
of objects misclassified after removing the boundary domain is
smaller; the larger denominator means that fewer objects need
further diagnosis and fewer resources are wasted. In summary,
when both are satisfied, a smaller corrected error rate reflects a
stronger effective selection of boundary domains.

Based on the above analysis on optimal parameter selection,
the parameters ζ , θ and δ are changed simultaneously in the data
set ‘‘Statlog(Heart)’’, and corresponding changes of the cluster
index CE, RI and F1 values are shown in Figs. 3–5.

Remark 4.2. Figs. 3–5 shows how different indicators change
with three parameters at the same time. The 4D map and several
12
2D contour maps can be clearly observed when ζ = 0.9, θ = 0.5
and δ = 0.9, error rate = 0%, RI = 100%, F1 = 100%. Through
the above analysis, ζ = 0.9, θ = 0.5 and δ = 0.9 are the optimal
parameters of the data set ‘‘Statlog(Heart)’’.

4.3. Case results under 3W-MADM-R method

The values of key parameters involved in 3W-MADM-R
method have been discussed in detail in Section 4.2. According
to the detailed process presented in Algorithm 1, the parameters
ζ = 0.9, θ = 0.5 and δ = 0.9 and the collected heart-related data
are selected, the ranking results of 270 objects are shown in Fig. 6:

Remark 4.3. As shown in Fig. 6, when we consider the seven
attributes mentioned above, the optimal object for this database



J.X. Zhu, X.L. Ma, J.M. Zhan et al. Applied Soft Computing 123 (2022) 108975

i
(
t
o
p
w
r
d

Fig. 3. CE index under three parameter changes.
Fig. 4. RI index under three parameters change.
Fig. 5. F1 index under three parameters change.
s the object 48. In other words, the 48th patient in the Statlog
Heart) data set has the highest expected utility and the best
reatment efficacy. The other objects are treated in an ascending
rder with diminishing effects. At the bottom of the list is the
atient 130, who has the lowest expected utility of the treatment,
hich is not ideal. Meanwhile, Table 21 displays the clustering
esults that based on the three thresholds and the (P2) − (N2)
ecision rules of the presented 3W-MADM-R method.
13
Remark 4.4. It can be seen from Table 21 that the 270 objects are
divided into three domains, among which 7 objects are divided
into the positive domains, 257 objects into the boundary domains
and 6 objects into the negative domains. We explain the division
of the three domains in a practical context, that is, by looking
at the results of the 7 attributes of the heart test, the physician
can conclude that there are 7 patients have been diagnosed with
heart disease and needed treatment; 257 patients require further
testing to be conclusive; 6 patients are normal and had no disease.
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Fig. 6. The ranking results of all objects.
Table 21
The clustering results of all objects.
Domain Objects Numbers

Pos(χ ) t40, t48, t63, t78, t117, t134, t222 7

t1, t2, t3, t4, t5, t6, t7, t9, t8, t10, t11, t12, t13, t14, t15, t16, t17, t18, t19, t20, t21, t22, t23, t24, t25, t26, t27, t28, t29, t30, t31,
t32, t33, t34, t35, t36, t37, t38, t39, , t41, t42, t43, t45, t46, t47, t49, t50, t51, t52, t53, t54, t55, t56, t57, t58, t59, t60, t61, t62,
t64, t65, t66, t67, t68, t69, t70, t71, t72, t73, t74, t75, t76, t77, t79, t80, t81, t82, t84, t85, t86, t87, t88, t89, t90, t91, t92, t93,
t94, t95, t96, t97, t98, t99, t100, t101, t102, t103, t104, t105, t106, t107, t108, t109, t110, t111, t112, t113, t114, t115, t116, t118,

Bnd(χ ) t119, t120, t121, t122, t123, t124, t125, t126, t127, t128, t129, , t131, t132, t133, t135, t136, t137, t138, t139, t140, t141, t142, t143, 257
t144, t145, t146, t147, t148, t149, t150, , t151, t152, t153, t154, t155, t156, t157, t158, t159, t160, t161, t162, t163, t164, t165, t166,
t167, t168, t169, t170, t171, t172, t173, t174, t176, t177, t178, t179, t180, t181, t182, t183, t184, t185, t186, t187, t188, t189, t191,
t192, t193, t194, t195, t196, t197, t198, t199, t200, t201, t202, t203, t204, t205, t206, t207, t208, t209, t210, t211, t212, t213, t214,
t215, t216, t217, t218, t219, t220, t221, t223, t224, t225, t226, t227, t228, t230, t231, t232, t233, t234, t235, t236, t237, t238, t239,
t240, t241, t242, t243, t244, t245, t246, , t247, t248, t249, t250, t251, t252, t253, t254, t255, t256, t257, t258, t259, t260, t261, t262,
t263, t264, t265, t266, t267, t268, t269, t270

Neg(χ ) t44, t83, t130, t175, t190, t229 6
u
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4.4. Comparative analysis

In order to verify the effectiveness and rationality of the above
educed method, this section compares six methods with the
W-MADM-R method in sorting or clustering from three aspects:
he general RT method, the classic 3WD (C3WD) methods and the
egret behavior. In addition, ranking decision has no an objective
‘ground truth’’. Therefore, in order to give a ‘‘ground truth’’, we
se the ranking results obtained by the existing methods (such
s the classic TOPSIS method [12]) as the ‘‘ground truth’’ for
he comparison of sorting decisions in this article, as shown in
ig. 7, Meanwhile, we know that the 3WD clustering method is
clustering method in unsupervised learning. Therefore, there

hould be no ‘‘ground truth’’ about clustering decision making.
n order to give an objective ‘‘ground truth’’, this article uses the
lustering results of all objects under the decision attributes of
he data set as the ‘‘ground truth’’ of the clustering decision in
his paper.

emark 4.5. In comparative analysis, it should be noted that in
rder to avoid the deviation of different comparison methods, it is
etter to select all the optimal parameters to obtain the decision
esults. In practice, however, some of the comparison methods
ay already give fixed parameter values based on existing ex-
erience, or may focus on the DM’s preference in MADM, where
he DM gives the parameters. For the latter, this paper uses the
ethod of selecting optimal parameters in Section 4.2 to keep the
onsistency of parameters to a certain extent.

.4.1. Comparative analysis with the general RT
Bell [28] first proposed RT and gave the calculation method.

ater, with the continuous development of RT, they began to build
egret models under different environments by combining with
14
various backgrounds. This section will compare with Bell’s classic
regret method [28]1 and the model constructed by Liu et al. [14]2
nder the hesitant fuzzy environment.

emark 4.6. Based on Bell’s theory of regret [28], Tversky
t al. [27] specified the utility function as U (O) = Oρ , and the
arameter ρ = 0.88. Meanwhile, Peng et al. [53] determined δ in
he regret-rejoice function to be 0.3. In Liu et al.’s method [14],
roup satisfaction is used to replace the utility value under the
ackground of hesitant fuzzy information. Due to the application
ackground, hesitation number could not be used in this paper,
o the utility function proposed by Tversky et al. [27] is adopted,
ith the parameter ρ = 0.88.

Since the two models mentioned above can only be ranked,
he results of comparing the ranking of the proposed method with
he general RT method. When parameters are known, the ranking
esults are shown in Fig. 8.

As can be seen from the ranking results in Fig. 8, our designed
ethod has a high degree of similarity with the two ones of
eneral RT, SRCCs are 0.7991 and 0.7990, respectively. Mean-
hile, our method and Bell’s method have the same optimal
bject at the 48th position, and the TOPSIS method, as the ranking
enchmark, also has the same optimal object, our method has
he same optimal object as Bell’s method in the 48th place, and
he TOPSIS method has the same optimal object as the ranking
enchmark, indicating that our method conforms to the basic
rinciple of MADM problems. However, the optimal object of
iu et al.’s method is the 63rd position and the 48th position,
hich has some deviation compared with the TOPSIS method.

1 ρ = 0.88, δ = 0.3.
2 ρ = 0.88, δ = 0.3, the probability of the two states is P = (1, 0)T .
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Fig. 7. The ranking result under the TOPSIS method.
Fig. 8. Comparison of the ranking results obtained with the general RT method.
ore importantly, our method can not only rank objects but also
ategorize them, which is not possible with the general RT.

.4.2. Comparative analysis with the C3WD
Ever since the introduction of 3WD, it has been developed

apidly and many effective models can be used to solve the clus-
ering problems. In order to better explain the effectiveness and
ationality of the constructed method, three new 3WD-MADM
odels are selected in this section. Jia and Liu’s method [39],3
han et al.’s method [55]4 and Wang et al.’s method [59]5 are
ompared with our method.

emark 4.7. According to the method of selecting optimal
arameters in the data set ‘‘Statlog(Heart)’’ mentioned in Sec-
ion 4.2, when the risk avoidance coefficient σ = 0.2 and the
onditional probability Pr(χ |[ti]Φ⪰

) = 0.6 in Jia and Liu’s method
[39], the lowest CE = 8.33%, the highest RI = 91.67% and F1 =

0.91% can be obtained simultaneously. When the concordance
evel δ = 0.9 and the veto threshold p = 0.1, the lowest CE
41.96%, the highest RI = 58.04% and F1 = 73.45% is achieved

simultaneously in the method of Zhan et al. [55]. When the
confidence interval σ = 0.5 in Wang et al.’s method [59], the
lowest CE = 20.15%, the highest RI = 97.70% and F1 = 73.59%
can be obtained simultaneously.

After the optimal parameter is determined, the ranking and
clustering results of 3W-MADM-R method and C3WD method are
shown in Figs. 9 and 10, respectively.

3 σ = 0.2, Pr(χ |[ti]Φ⪰
) = 0.6.

4 The parameters in ELECTRE-I method δ = 0.9 and p = 0.1. Choose a
pessimistic strategy.
5 Confidence level σ = 0.5.
15
It can be seen from Fig. 9 that the proposed method can
not only sort objects, but also classify them. From the overall
ranking results, the SRCCs between us and these three methods
are 0.9995, 0.3214 and 0.8176. The optimal target of our pro-
posed method is the same as the optimal object calculated by
Jia and Liu’s method and Zhan et al.’s method in C3WD, which
proves that the 3W-MADM-R method can withstand the classic
test. Wang et al.’s method ranks the 48th patient at 16, which
is different from the results of the TOPSIS and other ranking
methods.

Fig. 10 shows the reader that using the 3W-MADM-R method,
7 objects would be diagnosed as healthy, 6 as having heart
disease and 257 as needing further diagnosis. Using Jia and Liu’s
method [39], 6 objects would have been diagnosed as healthy,
6 would have had heart disease and 258 would have required
further diagnosis by a doctor. Using Zhan et al.’s method [55], 143
test objects would have been diagnosed as healthy and 127 would
have required further diagnosis by doctors. Using Wang et al.’s
method [59], 171 objects would have been diagnosed as healthy,
11 would have had heart disease and 88 would have required
further diagnosis by a doctor.

4.4.3. Comparative analysis with the regret behavior psychology
based on 3WD

In the past two years, 3WD based on behavioral psychology
have been gradually developed. In order to better explain the ef-
fectiveness and rationality of our constructed method, we should
not only compare it with the general RT and the C3WD, more
important is to compare with the method with both RT and
3WD. Therefore, we compare the proposed method with that of
Wang et al. [15].6 After determining the optimal parameters, the

6 θ = 0.15, δ = 0.1.
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Table 22
Comparison of different methods.
Different methods Risk attitude Conditional probability Outcome or loss functions Parameter number Ranking Classification

Our method � Objective Objective 3 � �
Bell’s method [28] × × × 2 � ×

Liu et al.’s method [14] × × × 2 � ×

Jia et al.’s method [39] × Subjective Objective 1 � �
Zhan et al.’s method [55] × Objective Subjective 2 � �
Wang et al.’s method [59] × Objective Subjective 1 � �
Wang et al.’s method [15] � Objective Subjective 2 � �
Fig. 9. Comparison of the ranking results obtained with the C3WD method.
Fig. 10. Comparison of the clustering results obtained with the C3WD method.

omparison results of ranking and clustering are shown in Figs. 11
nd 12, respectively.

emark 4.8. According to the method of selecting optimal
arameters in the data set ‘‘Statlog(Heart)’’ mentioned in Sec-
ion 4.2, when the risk aversion coefficient θ = 0.15 and the
egret aversion coefficient δ = 0.1 in Wang et al.’s method [15],
the lowest CE = 16.00%, the highest RI = 84.00% and F1 = 91.30%
can be obtained simultaneously.

Fig. 11 exhibits the SRCC between our method and Wang
et al.’s one is 0.9935 and the optimal object is consistent, both
of them take regret psychology into account to classify and rank
objects. The clustering results in Fig. 12 show that under Wang
et al.’s method, 25 objects are healthy and 245 objects require
further diagnosis and treatment.

Remark 4.9. Figs. 8, 9 and 11 show the comparison of ranking
results between the 3W-MADM-R method and other decision
making methods, which can only reflect the principle of MADM
problems, that is, the results of the proposed method are close
to the verified method and the optimal object is consistent. The
16
advantages of the proposed method such as better stability and
better clustering effect can be detailed in Sections 5.2 and 5.3.

5. Discussion

In the previous section, we have demonstrated the ranking
or clustering results of the designed method and other methods.
Meanwhile, we show that our method satisfies the principle of
MADM methods, that is, the ranking results are close to those
of the tested method under the premise of keeping the optimal
object consistent. In what follows, we will exhibit the similarities
and differences between the proposed approach and the classic
methods and sum up the advantages of our method.

5.1. The similarities and differences between the proposed method
and other MADM ones

It can be clearly seen from Table 22:
• The similarities and differences between our method and the

general RT methods
(1) Our method, Bell’s method [28] and Liu et al.’s method [14]

add RT to decision making problems to compensate for the ‘‘lim-
ited rationality’’ of DMs. In particular, in the field of medical
decision making, due to the complexity of the human body, the
practical nature of medicine and the individual nature of diseases,
the ability of clinicians is limited in some cases and subjective
judgments can be misdiagnosed. Therefore, it is necessary to
apply the behavioral psychology of regret to medical decision
making.

(2) The difference is that we apply the 3WD method to triple-
classify the objects based on the ranking, which can improve the
efficiency of diagnosis.

• The similarities and differences between our method and the
C3WD method

(1) The calculation of conditional probabilities is objectively
obtained by defining new superorder classes or dominance
classes, just as Zhan et al.’s idea [55] and Wang et al.’s idea [59].
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Fig. 11. Comparison of the ranking results obtained with the regret behavior psychology based on 3WD.
Fig. 12. Comparison of the clustering results obtained with the regret behavior
psychology based on 3WD.

Outcome functions are consistent with Jia and Liu’s idea [39],
which is objectively constructed by using ‘‘relative’’ idea.

(2) Compared with C3WD methods, we use the 3WD method
s a tool to make up the deficiency of sorting only in MADM
roblems. The difference is that our method adds RT to reflect
he irrational psychology of people in complex circumstances.
eanwhile, Jia and Liu [39] subjectively gave the conditional
robability to the object, whereas we define a new objective
elation. The methods proposed in [55,59] subjectively designed
he loss functions. This paper constructs the relative outcome
unctions of different objects under different attributes based on
he attribute evaluation value of the object itself.

• The similarities and differences between our method and the
regret behavior psychology based on 3WD methods

(1) The method designed in this paper is consistent with the
WDmethod and RT adopted by [15], and both of us use objective
ethods to calculate the conditional probability.
(2) The difference lies in the different application background

roposed firstly. We apply in fuzzy environments, whereas Wang
t al. applied in interval type-2 fuzzy environments. Secondly, the
W-MADM-R method constructs the outcome functions for each
bject in two states, the method in [15] is to construct the interval
ype-2 fuzzy outcome matrix according to the two states.

.2. The advantages of our method on ranking

Section 5.1 discusses the similarities and differences between
ur method and other existing methods in various aspects. The
W-MADM-R method integrates the highlights of the above
ethods, thus this section will analyze the advantages of our
roposed method from both qualitative and quantitative perspec-
ives, and summarize as follows.

.2.1. Qualitative analysis
(1) In reality, individuals often make irrational decisions. How-

ver, the C3WD method does not consider a DM’s risk preference
ttitude, and only constructs an intellectualized model that uses
oss functions for domain segmentation and sorting. Our method
onsiders a DM’s psychological behavior under the uncertain
nvironment, and describes the risk attitude from both the point
f view of acquisition and loss. Based on this, our method has
ore advantages in application when solving practical problems.

ig. 13 shows the effect of RT on 3WD.

17
We randomly generate attribute evaluation values for 100
objects and 500 objects. Set ζ = 0.7, θ = 0.3, δ increases in the
range from 0.1 to 0.9 with a step size of 0.1, and the conditional
probability of each object is assumed to be 0.5. It can be seen
that the positive and negative domains gradually become smaller
with the value of the parameter δ, whereas the boundary domain
gradually becomes larger. This suggests that regret aversion in-
creases and a DM needs to gather more information to make a
decision. Nevertheless, the 3WDmethod without RT has the same
number of objects in the three domains, which cannot reflect the
psychological changes of a DM.

(2) Compared with the defects of the method proposed by
Bell [28] and Liu et al. [14], which can only do ranking, our
method can not only select the optimal object, but also divide
all objects into three domains to speed up the decision making
process and reduce the waste of resources. If a DM is looking
for an exact solution, he/she should directly look for it from the
positive domain Pos(χ ) and the negative domain Neg(χ ); if a
DM wants to make a further judgment on the indecisive ob-
jects, he/she should focus on the objects in the boundary domain
Bnd(χ ). Consequently, compared to the above two methods, our
method has stronger superiority and practicability.

(3) In addition, there is no effective calculation method and
reasonable semantic interpretation of the conditional probability
in the existing 3WD works. In Jia and Liu’s method [39], the
conditional probabilities are subjectively assigned and the con-
ditional probabilities of each object in the same state are equal,
which can cause significant errors in the decision making process.
Our method is objective and reasonable in terms of constructing
outranking relation to calculate conditional probabilities. From
this point of view, our method is superior to the one [39].

(4) In Zhan et al.’s method [55] and Wang et al.’s method [59],
the loss functions are both too subjective given by DMs. Fur-
thermore, the amount of data processed by their methods is too
small to explain the effectiveness of the method. Wang et al.’s
method [15] uses the outcome matrix, but it is also subjectively
assigned and does not have the original information table to
explain. Wang et al.’s method [15] directly gives the final 3 × 2
outcome matrix, which is not conducive to a DM’s implementa-
tion. However, our method starts from the attribute values of the
original information table, and each object constructs an objective
relative outcome function. From this perspective, our approach is
more realistic.

5.2.2. Quantitative analysis
In this section, we will use different methods to quantitatively

evaluate the ranking results and clustering performance of the
proposed method.

5.2.2.1. SRCC. SRCC is used to examine the degree of direct cor-
relation between two variables, with a value between −1 and +1.
The larger the absolute value of the correlation coefficient is, the
stronger the correlation is.

In general, the correlation coefficient is between 0.8–1.0, in-
dicating that the variables are extremely strongly correlated. The
correlation coefficient is between 0.6–0.8, indicating strong cor-
relation between variables. The correlation coefficient is between
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Fig. 13. Comparison results of two objects groups between 3W-MADM-R and C3WD.
Table 23
The SRCCs between different methods.

Our method TOPSIS Bell Liu et al. Jia and Liu Zhan et al. Wang et al. [59] Wang et al. [15]

Our method 1.0000 0.9883 0.7991 0.7990 0.9995 0.3214 0.8176 0.9935
TOPSIS [12] 1.0000 0.7133 0.7129 0.9912 0.2897 0.7853 0.9927
Bell [28] 1.0000 0.9997 0.7521 0.2935 0.8172 0.8041
Liu et al. [14] 1.0000 0.7520 0.3001 0.8170 0.8041
Jia and Liu [39] 1.0000 0.3306 0.8117 0.9954
Zhan et al. [55] 1.0000 0.3854 0.3047
Wang et al. [59] 1.0000 0.8143
Wang et al. [15] 1.0000
G

0.4–0.6, indicating that the variables are moderately correlated.
The correlation coefficient is between 0.2 and 0.4, indicating that
the variables are weakly correlated. The correlation coefficient
is between 0.0–0.2, indicating a very weak correlation between
variables. SRCC is used to test the correlation between different
ranking methods, which has been verified in [55,59].

Figs. 7, 8, 9 and 11 all only superficially observe the similar-
ity of sorting results between the proposed method and other
methods. Table 23 uses the SRCCs between our method and the
ranking results of other decision making methods in the paper to
quantify the similarity.

Remark 5.1. Table 23 indicates that our method is extremely
strongly correlated with the TOPSIS method, which acts as a
ranking benchmark, and also with the methods of Jia and Liu [39],
Wang et al. [59] andWang et al. [15]; it is strongly correlated with
the methods of Bell [28] and Liu et al. [14]; it is weakly correlated
with the methods of Zhan et al. [55]. This implies that the 3W-
MADM-R method is consistent with the basic principles of MADM
problems.

5.2.2.2. Ordered similarity degree.

Definition 5.1 ([60]). Assume that Q = l1, l2, . . . , lm is an object
set, an optimal ranking alternative M : li1 ≻ · · · ≻ lig ≻ · · · ≻

lif ≻ · · · ≻ lim is obtained by a ranking decision making method,
where li1, . . . , lig , . . . , lif , . . . , lim is an m-level permutation. For
any two objects lig and lif , the relation lig ≻ lif is called an
ordered relation. Therefore, the number of ordered relations of
M is (m − 1) + (m − 2) + · · · + 2 + 1 =

m(m−1)
2 .

A family of objects A = Q1,Q2, . . . ,Qk, where Q1 ⊆ Q2 ⊆

· · ⊆ Qk. Suppose that the number of ordered relations of Qt (t =

, 2, . . . , k) is c . If there are b (b ≤ c) same ordered relations of
t and Qh (h ≤ t and h = 1, 2, . . . , k), then the ranking similarity

between Qt and Qh is b
c (see Table 24).
18
Remark 5.2. According to Definition 5.1, we divide the data set
‘‘Statlog (Heart)’’ into ten groups Q1,Q2, . . . ,Q10. From Table 21,
the ordered similarity degrees of Q1 and Q2, Q1 and Q3, Q1 and Q4,
Q1 and Q5, Q1 and Q6, Q1 and Q7, Q1 and Q8, Q1 and Q9, Q1 and
Q10 can be calculated as 98.77%, 98.46%, 98.77%, 98.77%, 98.77%,
98.46%, 98.46%, 98.46%, 98.46%, respectively. When the number
of objects increases gradually, the number of order pairs with
the same dominance relationship among the ranking methods
proposed by us does not decrease significantly. In this way, it
reflects the stability of the 3W-MADM-R method in evaluating
the rankings.

Inspired by Zhang et al. [60], we define the ordered similarity
degree of objects under different methods.

Definition 5.2. Assume that Q = l1, l2, . . . , lm is an object set,
an optimal ranking alternative M : li1 ≻ · · · ≻ lig ≻ · · · ≻

lif ≻ · · · ≻ lim is obtained by a ranking decision making method,
where li1, . . . , lig , . . . , lif , . . . , lim is an m-level permutation. For
any two objects lig and lif , the relation lig ≻ lif is called an
ordered relation. Therefore, the number of ordered relations of
M is (m − 1) + (m − 2) + · · · + 2 + 1 =

m(m−1)
2 .

The ranking result sets of all objects under different methods
are G1, G2, · · · , Gk. Suppose that the number of ordered relations
of Gt (t = 1, 2, . . . , k) is f . If there are e (e ≤ f ) same ordered
relations of Gt and Gh (h ≤ t and h = 1, 2, . . . , k), then the
ordered similarity degree between Gt and Gh is e

f .

Remark 5.3. The ranking result set obtained by our proposed
method is denoted as G1, the methods [12,14,28,39,55,59], and
in [15] are denoted as G2, . . . ,G8, respectively. According to Def-
inition 5.2, the ordered similarity degrees of G1 and G2, G1 and G3,
1 and G4, G1 and G5, G1 and G6, G1 and G7, G1 and G8 can be cal-

culated as 95.30%, 84.15%, 84.08%, 98.53%, 54.87%, 82.34%, 96.67%
respectively. On the whole, our method has a great ordered
similarity degree with most decision making methods.



J.X. Zhu, X.L. Ma, J.M. Zhan et al. Applied Soft Computing 123 (2022) 108975

t

Table 24
The ranking results of objects in Q1 on different object sets.
Different object sets Ranking of objects in Q1

Q1 = {t1, t2, . . . , t27} t12 ≻ t2 ≻ t23 ≻ t14 ≻ t6 ≻ t20 ≻ t7 ≻ t27 ≻ t8 ≻ t21 ≻ t10 ≻ t1 ≻ t3 ≻ t26 ≻

t15 ≻ t25 ≻ t24 ≻ t4 ≻ t16 ≻ t13 ≻ t19 ≻ t22 ≻ t17 ≻ t11 ≻ t18 ≻ t9 ≻ t5

Q2 = {t1, t2, . . . , t54} t12 ≻ t2 ≻ t23 ≻ t14 ≻ t6 ≻ t20 ≻ t7 ≻ t27 ≻ t8 ≻ t21 ≻ t10 ≻ t1 ≻ t3 ≻ t26 ≻

t15 ≻ t25 ≻ t4 ≻ t24 ≻ t16 ≻ t13 ≻ t18 ≻ t19 ≻ t22 ≻ t17 ≻ t11 ≻ t9 ≻ t5

Q3 = {t1, t2, . . . , t81} t12 ≻ t2 ≻ t23 ≻ t14 ≻ t6 ≻ t20 ≻ t7 ≻ t27 ≻ t8 ≻ t21 ≻ t10 ≻ t1 ≻ t3 ≻ t26 ≻

t25 ≻ t15 ≻ t4 ≻ t24 ≻ t16 ≻ t13 ≻ t18 ≻ t19 ≻ t22 ≻ t17 ≻ t11 ≻ t9 ≻ t5

Q4 = {t1, t2, . . . , t108} t12 ≻ t2 ≻ t23 ≻ t14 ≻ t6 ≻ t20 ≻ t7 ≻ t27 ≻ t8 ≻ t21 ≻ t10 ≻ t1 ≻ t3 ≻ t26 ≻

t25 ≻ t15 ≻ t4 ≻ t24 ≻ t16 ≻ t13 ≻ t18 ≻ t19 ≻ t22 ≻ t17 ≻ t11 ≻ t9 ≻ t5

Q5 = {t1, t2, . . . , t135} t12 ≻ t2 ≻ t23 ≻ t14 ≻ t6 ≻ t20 ≻ t7 ≻ t27 ≻ t8 ≻ t21 ≻ t10 ≻ t1 ≻ t3 ≻ t26 ≻

t25 ≻ t15 ≻ t4 ≻ t24 ≻ t16 ≻ t13 ≻ t18 ≻ t19 ≻ t22 ≻ t17 ≻ t11 ≻ t9 ≻ t5

Q6 = {t1, t2, . . . , t162} t12 ≻ t2 ≻ t23 ≻ t14 ≻ t6 ≻ t20 ≻ t7 ≻ t27 ≻ t8 ≻ t21 ≻ t10 ≻ t1 ≻ t3 ≻ t26 ≻

t25 ≻ t15 ≻ t4 ≻ t24 ≻ t16 ≻ t13 ≻ t18 ≻ t19 ≻ t22 ≻ t17 ≻ t11 ≻ t9 ≻ t5

Q7 = {t1, t2, . . . , t189} t12 ≻ t23 ≻ t2 ≻ t14 ≻ t6 ≻ t20 ≻ t7 ≻ t27 ≻ t8 ≻ t21 ≻ t10 ≻ t1 ≻ t3 ≻ t26 ≻

t25 ≻ t15 ≻ t4 ≻ t24 ≻ t16 ≻ t13 ≻ t18 ≻ t19 ≻ t22 ≻ t17 ≻ t11 ≻ t9 ≻ t5

Q8 = {t1, t2, . . . , t216} t12 ≻ t23 ≻ t2 ≻ t14 ≻ t6 ≻ t20 ≻ t7 ≻ t27 ≻ t8 ≻ t21 ≻ t10 ≻ t1 ≻ t3 ≻ t26 ≻

t25 ≻ t15 ≻ t4 ≻ t24 ≻ t16 ≻ t13 ≻ t18 ≻ t19 ≻ t22 ≻ t17 ≻ t11 ≻ t9 ≻ t5

Q9 = {t1, t2, . . . , t243} t12 ≻ t23 ≻ t2 ≻ t14 ≻ t6 ≻ t20 ≻ t7 ≻ t27 ≻ t8 ≻ t21 ≻ t10 ≻ t1 ≻ t3 ≻ t26 ≻

t25 ≻ t15 ≻ t4 ≻ t24 ≻ t16 ≻ t13 ≻ t18 ≻ t19 ≻ t22 ≻ t17 ≻ t11 ≻ t9 ≻ t5

Q10 = {t1, t2, . . . , t270} t12 ≻ t23 ≻ t2 ≻ t14 ≻ t6 ≻ t20 ≻ t7 ≻ t27 ≻ t8 ≻ t21 ≻ t10 ≻ t1 ≻ t3 ≻ t26 ≻

t25 ≻ t15 ≻ t4 ≻ t24 ≻ t16 ≻ t13 ≻ t18 ≻ t19 ≻ t22 ≻ t17 ≻ t11 ≻ t9 ≻ t5
Fig. 14. The number of difference between the same position and the maximum position under different methods.
5.2.2.3. Position difference analysis. As shown in Fig. 12, in order
to identify the differences between difficult objects in the data
set in a more detailed way, by using the TOPSIS method as the
ranking benchmark, we calculate the number of the objects with
the same position for each method and the TOPSIS method, and
exactly analyze which objects’ positions are the same for the pro-
posed method and the TOPSIS method in Remark 5.4. In addition,
we calculate the objects with the largest differences between the
sorting results of each method and the TOPSIS method and the
number of differences, explaining them in detail in Remark 5.5.
The comparison results of the data set ‘‘Statlog (Heart)’’ are shown
in Fig. 14:

Remark 5.4. Our proposed method has a higher number of
identical positions compared to other methods. In the data set
‘‘Statlog (Heart)’’, there are 35 objects with exactly the same
ranking position as the TOPSIS method, namely, t2, t8, t14, t22, t30,
33, t48, t58, t63, t70, t79, t80, t92, t106, t107, t117, t128, t134, t135, t147,
t176, t177, t181, t183, t187, t189, t190, t196, t208, t210, t211, t222, t224, t247,
t .
262

19
Remark 5.5. From Fig. 14, compared with the ranking results
of the TOPSIS method, t44 has the maximum position differ-
ence calculated by our method, and the difference number is 54.
Meanwhile, the objects with the largest position difference of the
methods of [14,28,39,55,59], and [15] are t86, t86, t44, t146, t44, t121,
the maximum position difference of the methods are 164, 164, 56,
248, 58 and 61, indicating that our method owns less variation
in ranking floating. Our method has the same maximum position
difference with other decision making methods under the same
object, which shows that our method is still persuasive in finding
objects with the greatest location differences.

5.3. The advantages of our method on clustering

While achieving better results in ranking, the clustering results
of the proposed method are compared with the ‘‘ground truth’’
(i.e., the clustering results obtain by decision attributes). We take
five metrics to verify the clustering effectiveness of the other
3WD methods.

These five indicators include CE,RI, and F1 as expressed in
Eqs. (26)–(28) mentioned in Section 4.2. At the same time, the
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Fig. 15. Indicators under different methods.
Table 25
The SRCCs between ranking results when values of ζ change.
θ = 0.5, δ = 0.9 ζ = 0.1 ζ = 0.2 ζ = 0.3 ζ = 0.4 ζ = 0.5 ζ = 0.6 ζ = 0.7 ζ = 0.8 ζ = 0.9

ζ = 0.1 1.0000 1.0000 1.0000 0.9999 0.9999 0.9998 0.9998 0.9997 0.9997
ζ = 0.2 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999 0.9998 0.9998
ζ = 0.3 1.0000 1.0000 1.0000 0.9999 0.9999 0.9998 0.9998
ζ = 0.4 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999
ζ = 0.5 1.0000 1.0000 1.0000 0.9999 0.9999
ζ = 0.6 1.0000 1.0000 1.0000 0.9999
ζ = 0.7 1.0000 1.0000 1.0000
ζ = 0.8 1.0000 1.0000
ζ = 0.9 1.0000
clustering index Precision and Recall [15,58] are also added and
the expressions are as follows:

Precision =
nχ→Pos(χ )

nχ→Pos(χ ) + n¬χ→Pos(χ )
× 100%, (29)

ecall =
nχ→Pos(χ )

nχ→Pos(χ ) + nχ→Neg(χ )
× 100%, (30)

emark 5.6. In all comparison methods, the optimal parameters
re selected according to the lowest CE value, the highest RI
nd F1 values, and then performed calculations to obtain the
lustering results. It can be seen from Fig. 15 that the 5 indexes
of 3W-MADM-R method are 0%, 100%,100%, 100% and 100% re-
spectively after clustering according to the same standard, which
is the best clustering effect among the methods involved.

6. Experimental evaluations

In this section, we conduct some experiments based on the
instance in Section 4 to evaluate the performance capability of
our proposed method. Based on the above discussions, it turns out
that the utility pursuit coefficient ζ , the risk aversion coefficient
θ and the regret aversion coefficient δ play a crucial role in
the 3W-MADM-R method. Among them, ζ exists in the relative
outcome functions of the 3WD model and controls whether the
final clustering is 2WD or 3WD; the coefficients θ and δ exist in
T and reflect the mental attitude of DMs when making decisions.
herefore, the parameter ζ is separately considered, θ and δ are
omprehensively taken into account, and are divided into two
roups for sensitivity analysis. Then, we observe the changes of
he ranking result and clustering by using the method of the
ontrolled variables.

.1. Sensitivity analysis of the parameter ζ

Section 6.1 discusses the influence of the change of the pa-
ameter ζ involved in this paper on the results of object ranking
nd clustering. For 270 patients, we have experimented with 9
20
different values of ζ from 0.1 to 0.9 in steps of 0.1 with the
parameters in RT set to the optimal parameters of 0.5 and 0.9
explored in Remark 4.2.

6.1.1. Sensitivity analysis of the parameter ζ on ranking
As can be seen in Fig. 16, the value of the parameter ζ is

changing, and the 48th position of the optimal target remains un-
changed, indicating that the 3W-MADM-R method is consistent
with the principles of the MADM problem and is not affected by
the parameters, and the ranking results are almost the same for
the 9 subplots as a whole without any change.

Remark 6.1. Table 25 shows SRCCs between different ranking
results when the parameters θ and δ remain constant and the
parameter ζ increases gradually. The data in the table more
clearly reflect the stability of sorted objects when the parameters
change.

Remark 6.2. Even so, we explore the subtle ranking changes of
the objects in Fig. 17. By using the TOPSIS method as the reference
standard for ranking, the change of the parameter ζ has a slight
effect on the number of identical positions and the maximum
position difference, meanwhile the object with the maximum
number of position differences is still 44th. Combined with Fig. 16
and Table 25, it can be seen that the proposed method has good
stability, that is, parameter changes hardly change the optimal
object and the overall ranking result.

6.1.2. Sensitivity analysis of the parameter ζ on clustering
This section analyzes the influence of the parameter ζ -value

changes on the clustering results of the proposed method. The
clustering results and 5 cluster evaluation indicators when the
parameter ζ changes are shown in Fig. 18.

Remark 6.3. According to the first subgraph of Fig. 18, we can
find that with the value of ζ increases, the Pos(χ ) and Neg(χ )
get smaller, and the Bnd(χ ) gets larger. When the utility pur-
suit coefficient is less than 0.5, a DM makes a deterministic
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Fig. 16. The ranking results of different values of ζ .
Fig. 17. The number of same position and maximum position under different values of ζ .
Fig. 18. Classification results and indexes under different values of ζ .
decision; when pursuing utility, a DM makes more and more
uncertain decisions and his/her hesitant psychology gradually
emerges. Meanwhile, with the change of the ζ value, the CE
gradually decreases from 24.81% to 0.00%. Precision gradually
increases from 76.32% to 100%. Recall, RI and F1 remain stable
at 68.50%–100%, 72.20%–100% and 72.73%–100%, respectively.

The change of parameters representing the preference of a
DM will affect the final clustering result, but the clustering index
21
always floats within a reasonable range, which also reflects the
subjectivity of the DM in MADM.

6.2. Sensitivity analysis of the parameters θ and δ

Section 6.2 discusses the influence of the change of the pa-
rameters θ and δ involved in this paper on the results of object
ranking and clustering. Our experiment takes the optimal utility
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Table 26
The SRCCs between ranking results when values of θ and δ change.
ζ = 0.9 θ = 0.1 θ = 0.1 θ = 0.1 θ = 0.5 θ = 0.5 θ = 0.5 θ = 0.9 θ = 0.9 θ = 0.9

δ = 0.1 δ = 0.5 δ = 0.9 δ = 0.1 δ = 0.5 δ = 0.9 δ = 0.1 δ = 0.5 δ = 0.9

θ = 0.1, δ = 0.1 1.0000 0.9999 0.9993 0.9994 0.9992 0.9984 0.9982 0.9976 0.9966
θ = 0.1, δ = 0.5 1.0000 0.9997 0.9998 0.9996 0.9990 0.9988 0.9983 0.9974
θ = 0.1, δ = 0.9 1.0000 1.0000 1.0000 0.9997 0.9996 0.9993 0.9987
θ = 0.5, δ = 0.1 1.0000 0.9999 0.9996 0.9995 0.9991 0.9985
θ = 0.5, δ = 0.5 1.0000 0.9998 0.9997 0.9994 0.9988
θ = 0.5, δ = 0.9 1.0000 1.0000 0.9999 0.9995
θ = 0.9, δ = 0.1 1.0000 0.9999 0.9996
θ = 0.9, δ = 0.5 1.0000 0.9998
θ = 0.9, δ = 0.9 1.0000
Fig. 19. The number of same position and maximum position under different values of θ and δ.
ursuit coefficient ζ = 0.9 unchanged, and the values of the
parameters θ and δ change from 0.1 to 0.9 with a step size of
0.1, respectively.

6.2.1. Sensitivity analysis of the parameters θ and δ on ranking
For a fixed parameter ζ , the parameters θ and δ change si-

ultaneously, SRCCs between partial ranking results is shown in
able 26.

emark 6.4. It can be observed from the values in Table 26 that
he ranking results under different parameters have extremely
trong correlation, that is to say, the change of the parameters
and δ values will not have a great impact on the overall

anking results. At the same time, the ranking results obtained
y each set of different parameters show that the optimal object
n the data set ‘‘Statlog (Heart)’’ is still t48, which indicates that
ur proposed method adheres to the optimal consistency of the
ADM problem.

When the parameters θ and δ values change, the same number
of positions and the maximum number of position differences
obtained by the 3W-MADM-R method compared with the TOPSIS
method are shown in Fig. 19.

Remark 6.5. Fig. 19 explores the effect of changes in parameter
values on individuals. It can be seen that the number of objects
with the same number of positions fluctuates between 29 and 46;
the maximum position difference in ranking fluctuates between
44 and 56. It is normal and reasonable for parameters change to
cause the position of an individual object to vary within a certain
range.

6.2.2. Sensitivity analysis of the parameters θ and δ on clustering
This section analyzes the influence of the parameters θ and δ

alue change on the clustering results of the proposed method.
22
When the parameters θ and δ change, the clustering results are
shown in Fig. 20. In addition, the evaluation index of cluster-
ing performance when the parameters change is described in
Remark 6.7.

Remark 6.6. According to Fig. 20, the increments of θ and δ
will decrease the number of objects in the positive and negative
domains, while the number of objects in the boundary domain
will increase. It also implies that the values of the parameters
θ and δ need to be reduced if a DM wants more deterministic
decisions.

Remark 6.7. Meanwhile, the five indexes mentioned above have
little change. Among them, the CE decreases with the increase
of the values of the parameters θ and δ, Precision varies from
66.67%–100%, Recall remains at 100%, RI varies from 85.71%–
100%, and F1 varies from 80%–100%. In conjunction with Fig. 19,
when analyzing the test subjects one by one, different parameters
do result in a slightly different order of position of individuals
and changes in clustering results and clustering performance.
Therefore, it is essential to select the optimal parameters and
carry out a comparative analysis.

7. Data set experiments

In this part, we will conduct two experiments to evaluate
the performance of our proposed method. The data sets of our
experiments are downloaded from the machine learning data
repository, UCI (http://archive.ics.uci.edu/). The detailed descrip-
tion of the experimental data sets is shown in Table 27 and
Remark 7.1. The parameters are the same as those in the case.
All attributes in the two data sets are reserved and all are ben-
eficial attributes. Meanwhile, our experiences are achieved by
using MATLAB R2018b on a personal computer with Microsoft
Windows 10, Intel (R) Core (TM) i5-9400U CPU @ 2.90 GHz and
8.00 GB memory.

http://archive.ics.uci.edu/
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Fig. 20. The clustering results of different values of θ and δ.
Fig. 21. CE index under three parameters change in the data set ‘‘Mammographic Mass’’.
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Table 27
The description of the data sets.
Data sets Alternatives Attributes χ : ¬χ

Mammographic Mass 961 5 + 1 403 : 427
Cervical Cancer Behavior Risk 72 19 + 1 51 : 21

Remark 7.1. The 5 attributes in the data set ‘‘Mammographic
ass’’ are BI-RAD assessment, age, shape, margin and density,

espectively, and all of them are benefit attributes. In addition,
his data set contains missing values, but our method cannot
eal with missing values. Therefore, the number of subjects ac-
ually participating in the experiment is 830. The 19 benefit
ttributes in the data set ‘‘Cervical Cancer Behavior Risk’’ are be-
avior sexual risk, behavior eating, behavior personal Hygiene in-
ention aggregation, intention commitment, attitude consistency,
ttitude spontaneity, norm fulfillment, perception vulnerability,
erception severity, motivation strength, motivation willingness,
orm significant person, social support emotionality, social sup-
ort, appreciation, social support instrumental, empowerment
nowledge, empowerment abilities and empowerment desires.

.1. The optimal parameter selection of data set experiments

In the experiment of supplementary data set, the method of
electing optimal parameters in Section 4.2 is also utilized. The
xperiment finds that when the parameters ζ , θ and δ all change,

SRCCs of our method on the two data sets and the ranking results
of the TOPSIS method always remain above 99.5%. Therefore, the
optimal parameters are also studied according to the principle
that the lower the CE is, the better the RI and F1 are. The results
are shown in Figs. 21–26.
23
Remark 7.2. From Figs. 21–23, in the data set ‘‘Mammographic
ass’’, when ζ = 0.9, θ = 0.7 and δ = 0.9, the lowest error rate

s 2.17%, the highest RI is 91.95%, and the highest F1 is 81.19%. At
his point, ζ = 0.9, θ = 0.7 and δ = 0.9 are the optimal parameters
f the data set. From Figs. 24–26, in the data set ‘‘Cervical Cancer
ehavior Risk’’, when ζ ∈ (0.7, 0.9), θ ∈ (0.3, 0.9) and δ ∈

(0.5, 0.9), the error rate = 0%, RI = 100%, F1 = 100%. At this point,
ζ ∈ (0.7, 0.9), θ ∈ (0.3, 0.9) and δ ∈ (0.5, 0.9) are the optimal
arameters of the data set.

emark 7.3. Through the exploration in Sections 4.2 and 7.1, it
an be found that in MADM problems, the optimal parameters of
ifferent data sets are not consistent or the optimal parameters of
he same data set cannot be uniquely determined. This is reason-
ble and normal. As long as the optimal object is consistent, the
arameter selection is subjective, which is convenient for DMs to
egulate their risk attitudes.

.2. Data set experiments on ranking

From the analysis in Section 4.2 and Algorithm 1, in the data
et ‘‘Mammographic Mass’’, we select the parameters ζ = 0.9, θ
0.7 and δ = 0.9. In the data set ‘‘Cervical Cancer Behavior Risk’’,

iven that the optimal parameter is a range of values, we select
he average value instead of the deterministic value. That is, ζ =

.8, θ = 0.6 and δ = 0.7.
Due to the large amount of data in data set ‘‘Mammographic

ass’’, its results are poorly presented. Therefore, taking data set
‘Cervical Cancer Behavior Risk’’ as an example, the ranking and
omparison results of different methods are shown in Fig. 27,
hich shows that the ranking of objects in the supplementary
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Fig. 22. RI index under three parameter changes in the data set ‘‘Mammographic Mass’’.
Fig. 23. F1 index under three parameters change in the data set ‘‘Mammographic Mass’’.
Fig. 24. CE index under three parameters change in the data set ‘‘Cervical Cancer Behavior Risk’’.
ataset roughly matches under different decision methods, and
he optimal objects remain largely consistent. This suggests that
ur method is equally applicable to other datasets.

emark 7.4. For other decision-making methods, the same
method is adopted to select the optimal parameters. In data set
‘‘Mammographic Mass’’, the optimal parameters of Jia and Liu’s
method [39] are σ = 0.2, Pr(χ |[ti]Φ⪰

) = 0.6, the optimal
parameters of Zhan et al.’s method [55] are δ = 0.7 and p =

.3, the optimal parameter of Wang et al.’s method [59] is σ =
24
0.6, the optimal parameters of Wang et al.’s method [15] are θ
= 0.1, δ = 0.2. In data set ‘‘Cervical Cancer Behavior Risk’’, the
optimal parameters of Jia and Liu’s method [39] are σ ∈ (0.2, 0.4),
Pr(χ |[ti]Φ⪰

) ∈ (0.3, 0.5), the optimal parameters of Zhan et al.’s
method [55] are δ = 0.6 and p = 0.25, the optimal parameter of
Wang et al.’s method [59] is σ = 0.6, the optimal parameters of
Wang et al.’s method [15] are θ = 0.25, δ = 0.3.

In order to test the indistinguishability of intermediate objects
in the ranking results of supplementary data sets and verify
the ranking performance of this method, SRCCs are added to
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Fig. 25. RI index under three parameters change in the data set ‘‘Cervical Cancer Behavior Risk’’.
Fig. 26. F1 index under three parameters change in the data set ‘‘Cervical Cancer Behavior Risk’’.
Fig. 27. Comparison of ranking results between different methods and our method in the data set ‘‘Cervical Cancer Behavior Risk’’.
measure the correlation between the ranking results and other
decision making methods. This coefficient can reflect the overall
comparison between the sorting of objects and the ground truth
value, and the specific results are shown in Tables 28 and 29.

Remark 7.5. According to previous studies, when the SRCC
between the two decision making methods is greater than 0.8,
25
it indicates that the two methods have strong similarities in
ranking performance. Based on the results of SRCCs obtained
from the three data sets, the 3W-MADM-R method has a strong
similarity with most existing decision making methods, which
shows the effectiveness and rationality of the method proposed
in this paper.
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Table 28
The SRCCs comparison of different methods in the data set ‘‘Mammographic Mass".

Our method TOPSIS Bell Liu et al. Jia and Liu Zhan et al. Wang et al. [59] Wang et al. [15]

Our method 1.0000 0.9969 0.9998 0.9996 0.9978 0.1874 0.7818 0.9965
TOPSIS [12] 1.0000 0.9976 0.9977 0.9994 0.1854 0.7753 0.9933
Bell [28] 1.0000 0.9999 0.9993 0.1875 0.7764 0.9948
Liu et al. [14] 1.0000 0.9992 0.1867 0.7763 0.9954
Jia and Liu [39] 1.0000 0.1865 0.7751 0.9939
Zhan et al. [55] 1.0000 0.0867 0.1886
Wang et al. [59] 1.0000 0.7822
Wang et al. [15] 1.0000
Table 29
The SRCCs comparison of different methods in the data set ‘‘Cervical Cancer Behavior Risk’’.

Our method TOPSIS Bell Liu et al. Jia and Liu Zhan et al. Wang et al. [59] Wang et al. [15]

Our method 1.0000 0.9936 0.9987 0.9969 0.9985 0.3782 0.8937 0.9412
TOPSIS [12] 1.0000 0.9912 0.9886 0.9938 0.3573 0.7823 0.9368
Bell [28] 1.0000 0.9986 0.9978 0.3662 0.8957 0.9514
Liu et al. [14] 1.0000 0.9954 0.3658 0.8958 0.9521
Jia and Liu [39] 1.0000 0.3794 0.8821 0.6032
Zhan et al. [55] 1.0000 0.3672 0.9487
Wang et al. [59] 1.0000 0.3383
Wang et al. [15] 1.0000
Fig. 28. Comparison of indexes between different methods and our method under two supplementary data sets.
7.3. Data set experiments on clustering

On this basis, the clustering results of the proposed method
are compared with the ‘‘ground truth’’ (i.e., the clustering results
obtain by decision attributes). We use the following categorical
indicators: CE, Precision, Recall, RI, F1, as shown in Fig. 28. Fig. 28
represents the clustering performance evaluation of the two sets
of data when all decision-making methods select the optimal
parameter.

Remark 7.6. With the data set ‘‘Mammographic Mass’’, although
a few methods have slightly better partial indices than those with
3W-MADM-R, the proposed method performs better overall at
five cluster indices. Similarly, in the data set ‘‘Cervical Cancer
Behavior Risk’’, the indicators under our method are in the best
state.

8. Conclusions

In recent years, the researches on MADM problems and 3WD
models have become the mainstream. On this basis, we have
combined RT with the traditional PROMETHEE-II method to con-
struct a new 3W-MADM-R method to solve the decision making
problems with behavioral psychology in real life. The effective-

ness and superiority of our proposed method have been verified

26
by an illustrative example and comparative analysis of other
methods. In addition, in order to demonstrate the stability and
feasibility of the 3W-MADM-R method, parameter analysis has
been carried out and another three data sets have been added
for further verification. The main contributions of this paper are
summarized as follows:

(1) Based on the net-flow of the traditional PROMETHEE-II
method, we have constructed a new outranking relation and
objectively given the membership degree of the membership
function to calculate the conditional probability, which solves the
deficiency of the existing methods [38,39].

(2) Considering the uncertainty of the environment, we have
used the combination of regret psychology to describe the risk
attitude and preference of DMs. Meanwhile, utility pursuit coef-
ficients, risk aversion and regret aversion coefficients give DMs
great maneuverability.

(3) The 3WD model combined with RT [15] under existing
MADM problems is the last outcome matrix given subjectively,
without intermediate process. However, we have used the at-
tribute evaluation value of the original information table to ob-
jectively calculate the relative outcome function of each scheme,
which is more objective and reasonable.

(4) Analytic expressions of three thresholds have been calcu-
lated to simplify the decision rules.

(5) The proposed new 3W-MADM-R method can solve some

practical problems, and is no longer confined to the construction
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f small data cases [40,61]. Meanwhile, the theories of 3WD
ethod and MADM problems have been further enriched.
Considering the complexity and diversity of representations of

ig data in practical problems, the following aspects are worth
xploring in the future: (1) The proposed 3W-MADM-R method
ill be extended to different information environments, such
s the applications of intuitionistic fuzzy numbers [62], hesitant
uzzy numbers [58] and incomplete environments [63]. (2) The
nalytical formula with the parameter ζ in the threshold can be

solved and the sufficient and necessary conditions that satisfy
the 3WD model can be studied. (3) We will combine the pro-
posed method with the fields of dynamic 3WD [61], machine
learning [22], and so forth.

CRediT authorship contribution statement

Jinxing Zhu: Conceptualization, Methodology, Investigation,
Writing – original draft. Xueling Ma: Methodology, Writing –
original draft. Jianming Zhan: Writing – review & editing. Yiyu
Yao: Model construction, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The authors are very thankful to editors and three referees
for their suggestive reports and valuable comments which are
conducive to enhancing the presentation of the paper.

The work was partially supported by grants from the
NNSFC (61866011; 12161036) and a Discovery Grant from NSERC,
Canada.

References

[1] C.W. Churchman, A.H. Schainblatt, The researcher and the manager: A
dialectic of implementation, Manage. Sci. 11 (4) (1965) B69–B87.

[2] D.C. Liang, Z.S. Xu, D. Liu, Y. Wu, Method for 3WDs using ideal TOP-
SIS solutions at pythagorean fuzzy information, Inform. Sci. 435 (2018)
282–295.

[3] B. Roy, Classement et choix en presence de points de vue multiples (la
methode ELECTRE), RIRO 8 (1968) 57–75.

[4] J.P. Brans, P. Vincke, B. Mareschal, How to select and how to rank projects:
the PROMETHEE method, European J. Oper. Res. 24 (2) (1986) 228–238.

[5] N. Maciej, INSDECM-an interactive procedure for stochastic multicriteria
decision problems, European J. Oper. Res. 175 (3) (2006) 1413–1430.

[6] L.A. Zadeh, Fuzzy sets, Inf. Control 8 (3) (1965) 338–353.
[7] Z. Pawlak, Rough sets, Int. J. Comput. Int. Sci. 11 (5) (1982) 341–356.
[8] Z.P. Fan, X. Zhang, Y. Liu, Y. Zhang, A method for stochastic multiple

attribute decision making based on concepts of ideal and anti-ideal points,
Appl. Math. Comput. 219 (24) (2013) 11438–11450.

[9] G.T. Jiang, Z.P. Fan, Y. Liu, Stochastic multiple-attribute decision making
method based on stochastic dominance and almost stochastic dominance
rules with an application to online purchase decisions, Cogn. Comput. 11
(2019) 87–100.

[10] G.W. Wei, GRA method for multiple attribute decision making with
incomplete weight information in intuitionistic fuzzy setting, Knowl.-Based
Syst. 23 (3) (2010) 243–247.

[11] Z.S. Xu, R.R. Yager, Dynamic intuitionistic fuzzy multi-attribute decision
making, Internat. J. Approx. Reason. 48 (1) (2008) 246–262.

[12] I. Chamodrakas, I. Leftheriotis, D. Martakos, In-depth analysis and simu-
lation study of an innovative fuzzy approach for ranking alternatives in
multiple attribute decision making problems based on TOPSIS, Appl. Soft
Comput. 11 (1) (2011) 900–907.

[13] J. Chen, S. Cheng, M. Xu, H.B. Shi, Visual multiple attribute decision-making
method for medical assistant diagnosis, Comput. Eng. Appl. 56 (08) (2020)

249–255, (in Chinese).

27
[14] X.D. Liu, J.J. Zhu, S.T. Zhang, S.F. Liu, Hesitant fuzzy stochastic multiple
attribute decision making method based on regret theory and group
satisfaction degree, Chin. J. Manage. Sci. 25 (10) (2017) 171–178, (in
Chinese).

[15] T.X. Wang, H.X. Li, Y.H. Qian, B. Huang, X.Z. Zhou, A regret-based three-way
decision model under interval type-2 fuzzy environment, IEEE Trans. Fuzzy
Syst. 22 (2022) 175–189.

[16] Y.Y. Yao, Three-way decisions with probabilistic rough sets, Inform. Sci.
180 (3) (2010) 341–353.

[17] Y.Y. Yao, Three-way decisions and cognitive computing, Cogn. Comput. 8
(2016) 543–554.

[18] Y.Y. Yao, The geometry of three-way decision, Appl. Intell. (2021)
6298–6325.

[19] Y.Y. Yao, Three-way decisions: an interpretation of rules in rough set
theory, Rough Sets Knowl. Technol. 5558 (3) (2009) 642–649.

[20] H.X. Li, L.B. Zhang, B. Hang, X.Z. Zhou, Sequential three-way decision
and granulation for cost-sensitive face recognition, Knowl. Based Syst. 91
(2016) 241–251.

[21] J.H. Dai, H. Hu, W.Z. Wu, Y.H. Qian, D.B. Huang, Maximal discernibility
pair based approach to attribute reduction in fuzzy rough sets, IEEE Trans.
Fuzzy Syst. 26 (4) (2018) 2174–2187.

[22] R. Jensen, A. Tuson, S. Qian, Finding rough and fuzzy-rough set reducts
with SAT, Inform. Sci. 255 (2014) 100–120.

[23] W. Pedrycz, From numeric to granular description and interpretation of
information granules, Fund. Inform. 127 (1) (2013) 399–412.

[24] W. Pedrycz, Allocation of information granularity in optimization and
decision-making models: towards building the foundations of granular
computing, European J. Oper. Res. 232 (1) (2014) 137–145.

[25] J.B. Zhang, T.R. Li, H.M. Chen, Composite rough sets for dynamic data
mining, Inform. Sci. 257 (2014) 81–100.

[26] D. Kahneman, A. Tversky, Prospect theory: an analysis of decision under
risk, Econometrica 47 (1979) 263–291.

[27] A. Tversky, D. Kahneman, Advances in prospect theory: Cumulative
representation of uncertainty, J. Risk Uncertain. 5 (4) (1992) 297–323.

[28] D.E. Bell, Regret in decision making under uncertainty, Oper. Res. 30 (5)
(1982) 961–981.

[29] G. Loomes, R. Sugden, Regret theory: an alternative theory of rational
choice under uncertainty, Econ. J. 92 (368) (1982) 805–824.

[30] C.G. Chorus, Regret theory-based route choices and traffic equilibria,
Transportmetrica 8 (4) (2012) 291–305.

[31] S.T. Zhang, J.J. Zhu, X.D. Liu, Y. Chen, Regret theory-based group
decision-making with multidimensional preference and incomplete weight
information, Inf. Fusion 31 (2016) 1–13.

[32] H. Zhou, J.Q. Wang, H.Y. Zhang, Grey stochastic multi-criteria decision-
making based on regret theory and TOPSIS, Int. J. Mach. Learn. Cyber. 8
(2017) 651–664.

[33] C.Q. Tan, W.H. Ip, X.H. Chen, Stochastic multiple criteria decision
making with aspiration level based on prospect stochastic dominance,
Knowl.-Based Syst. 70 (2014) 231–241.

[34] X.D. Peng, Y. Yang, Algorithms for interval-valued fuzzy soft sets in
stochastic multi-criteria decision making based on regret theory and
prospect theory with combined weight, Appl. Soft Comput. 54 (2017)
45–430.

[35] T.X. Wang, H.X. Li, X.Z. Zhou, B. Huang, H.B. Zhu, A prospect theory
three-way decision model, Knowl.-Based Syst. 203 (2020) 106–129.

[36] T.X. Wang, H.X. Li, L.B. Zhang, X.Z. Zhou, B. Huang, A three-way decision
model based on cumulative prospect theory, Inform. Sci. 519 (2020) 74–92.

[37] D.C. Liang, M.W. Wang, Z.S. Xu, X. Chen, Risk interval-valued three-way
decisions model with regret theory and its application to project resource
allocation, J. Oper. Res. Soc. 72 (1) (2021) 180–199.

[38] P.D. Liu, Y.M. Wang, F. Jia, H. Fujita, A multiple attribute decision making
three-way model for intuitionistic fuzzy numbers, Internat. J. Approx.
Reason. 119 (2020) 177–203.

[39] F. Jia, P.D. Liu, A novel three-way decision model under multiple-criteria
environment, Inform. Sci. 471 (2019) 29–51.

[40] H.X. Li, X.Z. Zhou, Risk decision making based on decision-theoretic rough
set: A three-way view decision model, Int. J. Comput. Int. Syst. 4 (1) (2011)
1–11.

[41] B.Q. Hu, Three-way decisions space and three-way decisions, Inform. Sci.
281 (2014) 21–52.

[42] D. Ciucci, D. Dubois, A map of dependencies among three-valued logics,
Inform. Sci. 250 (2013) 162–177.

[43] D.C. Liang, D. Liu, A. Kobina, Three-way group decisions with
decision-theoretic rough sets, Inform. Sci. 345 (2016) 46–64.

[44] D.C. Liang, W. Pedrycz, D. Liu, P. Hu, Three-way decisions based on
decision-theoretic rough sets under linguistic assessment with the aid of

group decision making, Appl. Soft Comput. 29 (2015) 256–269.

http://refhub.elsevier.com/S1568-4946(22)00311-8/sb1
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb1
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb1
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb2
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb2
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb2
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb2
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb2
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb3
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb3
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb3
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb4
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb4
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb4
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb5
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb5
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb5
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb6
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb7
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb8
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb8
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb8
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb8
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb8
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb9
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb9
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb9
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb9
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb9
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb9
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb9
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb10
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb10
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb10
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb10
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb10
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb11
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb11
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb11
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb12
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb12
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb12
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb12
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb12
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb12
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb12
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb13
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb13
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb13
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb13
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb13
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb14
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb14
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb14
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb14
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb14
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb14
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb14
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb15
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb15
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb15
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb15
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb15
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb16
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb16
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb16
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb17
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb17
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb17
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb18
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb18
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb18
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb19
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb19
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb19
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb20
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb20
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb20
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb20
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb20
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb21
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb21
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb21
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb21
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb21
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb22
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb22
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb22
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb23
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb23
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb23
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb24
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb24
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb24
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb24
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb24
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb25
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb25
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb25
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb26
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb26
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb26
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb27
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb27
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb27
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb28
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb28
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb28
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb29
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb29
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb29
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb30
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb30
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb30
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb31
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb31
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb31
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb31
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb31
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb32
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb32
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb32
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb32
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb32
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb33
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb33
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb33
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb33
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb33
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb34
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb34
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb34
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb34
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb34
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb34
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb34
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb35
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb35
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb35
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb36
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb36
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb36
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb37
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb37
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb37
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb37
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb37
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb38
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb38
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb38
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb38
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb38
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb39
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb39
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb39
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb40
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb40
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb40
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb40
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb40
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb41
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb41
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb41
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb42
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb42
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb42
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb43
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb43
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb43
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb44
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb44
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb44
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb44
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb44


J.X. Zhu, X.L. Ma, J.M. Zhan et al. Applied Soft Computing 123 (2022) 108975
[45] Q.H. Zhang, Q. Xie, G.Y. Wang, A novel three-way decision model with
decision-theoretic rough sets using utility theory, Knowl.-Based Syst. 159
(2018) 321–335.

[46] X.B. Yang, Y.Y. Yao, Ensemble selector for attribute reduction, Appl. Soft
Comput. 70 (2018) 1–11.

[47] Y.M. Chen, Z.Q. Zeng, Q.X. Zhu, C.H. Tang, Three-way decision reduction in
neighborhood systems, Appl. Soft Comput. 38 (2016) 942–954.

[48] X.O. Ma, G.Y. Wang, H. Yu, T.R. Li, Decision region distribution preservation
reduction in decision-theoretic rough set model, Inform. Sci. 248 (2014)
614–640.

[49] B. Zhou, Y.Y. Yao, G.G. Luo, Cost-sensitive three-way email spam filtering,
Exp. Syst. Appl. 42 (1) (2014) 19–45.

[50] J. Yao, N. Azam, Web-based medical decision support systems for three-
way medical decision making with game-theoretic rough sets, IEEE Trans.
Fuzzy Syst. 23 (1) (2015) 3–15.

[51] Y.M. Wang, Using the method of maximizing deviations to make decision
for multiindicies, J. Syst. Eng. Electron. 7 (1998) 24–26, (in Chinese).

[52] J. Von Neumann, O. Morgenstern, A. Rubinstein, Theory of Games and
Economic Behavior, Sixtieth Anniversary Commemorative ed., Princeton
University Press, 1944.

[53] H.G. Peng, K.W. Shen, S.S. He, H.Y. Zhang, J.Q. Wang, Investment risk
evaluation for new energy resources: An integrated decision support model
based on regret theory and ELECTRE III, Energ. Convers. Manage. 183
(2019) 332–348.

[54] J. Quiggin, Regret theory with general choice sets, J. Risk Uncertain. 8
(1994) 153–165.
28
[55] J.M. Zhan, H.B. Jiang, Y.Y. Yao, Three-way multi-attribute decision-making
based on outranking relations, IEEE Trans. Fuzzy Syst. 29 (10) (2021)
2844–2858.

[56] J. Ye, J.M. Zhan, Z.S. Xu, A novel decision-making approach based on
three-way decisions in fuzzy information systems, Inform. Sci. 541 (2020)
362–390.

[57] C. Croux, C. Dehon, Influence functions of the Spearman and Kendall
correlation measures, Statist. Methods Appl. 1 (19) (2010) 497–515.

[58] D.C. Liang, D. Liu, A novel risk decision making based on decision-theoretic
rough sets under hesitant fuzzy information, IEEE Trans. Fuzzy Syst. 23
(2015) 237–247.

[59] W.J. Wang, J.M. Zhan, C. Zhang, Three-way decisions based multiple-
attribute decision making with probabilistic dominance relations, Inform.
Sci. 559 (2021) 75–96.

[60] K. Zhang, J.M. Zhan, Y.Y. Yao, TOPSIS method based on a fuzzy covering
approximation space: An application to biological nano-materials selection,
Inform. Sci. 502 (2019) 297–329.

[61] L. Wang, M. Li, J. Ye, X. Yu, Z.Q. Wang, S.B. Deng, Dynamic knowledge
update using three-way decisions in dominance-based rough sets approach
while the object set varies, Int. J. Comput. Int. Syst. 12 (2) (2019)
914–928.

[62] Z. Xing, W. Xing, H. Liu, A euclidean approach for ranking intuitionistic
fuzzy values, IEEE Trans. Fuzzy Syst. 26 (1) (2008) 353–365.

[63] D. Liu, D.C. Liang, C.C. Wang, A novel three-way decision model based on
incomplete information system, Knowl.-Based Syst. 91 (2016) 32–45.

http://refhub.elsevier.com/S1568-4946(22)00311-8/sb45
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb45
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb45
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb45
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb45
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb46
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb46
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb46
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb47
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb47
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb47
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb48
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb48
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb48
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb48
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb48
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb49
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb49
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb49
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb50
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb50
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb50
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb50
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb50
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb51
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb51
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb51
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb52
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb52
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb52
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb52
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb52
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb53
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb53
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb53
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb53
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb53
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb53
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb53
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb54
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb54
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb54
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb55
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb55
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb55
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb55
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb55
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb56
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb56
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb56
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb56
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb56
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb57
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb57
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb57
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb58
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb58
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb58
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb58
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb58
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb59
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb59
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb59
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb59
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb59
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb60
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb60
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb60
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb60
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb60
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb61
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb61
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb61
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb61
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb61
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb61
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb61
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb62
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb62
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb62
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb63
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb63
http://refhub.elsevier.com/S1568-4946(22)00311-8/sb63

	A three-way multi-attribute decision making method based on regret theory and its application to medical data in fuzzy environments
	Introduction
	An overview of 3WD, the ROMETHEE-II method and RT
	3WD
	The PROMETHEE-II method
	RT

	3WD with RT
	The relative outcome function
	The relative outcome functions derived from fuzzy numbers (evaluation values of attributes)
	3WD based on RT
	The conditional probability based on an outranking relation
	The core steps of the 3W-MADM-R algorithm

	An illustrative example
	Problem descriptions based on 3W-MADM-R
	Optimal selection of parameters in 3W-MADM-R method
	Case results under 3W-MADM-R method
	Comparative analysis
	Comparative analysis with the general RT
	Comparative analysis with the C3WD
	Comparative analysis with the regret behavior psychology based on 3WD


	Discussion
	The similarities and differences between the proposed method and other MADM ones
	The advantages of our method on ranking
	Qualitative analysis
	Quantitative analysis

	The advantages of our method on clustering

	Experimental evaluations
	Sensitivity analysis of the parameter 
	Sensitivity analysis of the parameter  on ranking
	Sensitivity analysis of the parameter  on clustering

	Sensitivity analysis of the parameters  and 
	Sensitivity analysis of the parameters  and  on ranking
	Sensitivity analysis of the parameters  and  on clustering


	Data set experiments
	The optimal parameter selection of data set experiments
	Data set experiments on ranking
	Data set experiments on clustering

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


