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Abstract
In order to solve the problem of portfolio optimization, this paper proposes a method that combines multi-objective
optimization and multi-attribute decision-making to solve the dual-objective portfolio optimization model with conditional
value-at-risk (CVaR) measuring risk and including transaction costs. First, in the multi-objective optimization stage, a multi-
population parallel NSGA-II based on sparsity strategy (SMP-NSGA-II) is proposed to obtain multiple Pareto optimal
solutions of the model. Second, in the multi-attribute decision-making stage, in order to reflect different investment
preferences, the Pareto optimal set obtained is clustered through the fuzzy C-means, and then the grey relational projection
method is used to evaluate the solutions belonging to the same cluster to select the optimal compromise solution. Finally,
a case study of 9 semiconductor stocks in China’s Shanghai and Shenzhen stock markets is carried out, and the optimal
compromise portfolio under different investment preferences is given. At the same time, the proposed algorithm is compared
with the other six multi-objective evolutionary algorithms (MOEAs), which verifies that the algorithm in this paper has
certain competitiveness.

Keywords Portfolio optimization · Sparsity strategy · Multi-population parallel NSGA-II · Fuzzy C-means ·
Grey relational projection

1 Introduction

Nowadays, in the field of securities investment, the
indicators used to quantify risk mainly include value-at-
risk (VaR) and conditional value-at-risk (CVaR). Among
them, VaR is represented by nonlinear, non-convex and non-
differentiable function with multiple local optima, making it
difficult to calculate. To solve these problems, Rockafellar
et al. [1] introduced the CVaR, which is a coherent risk
measure that considers risk as the most serious loss in
a given scenario, taking into account a certain degree
of confidence. Since CVaR is a convex function, it can
effectively solve the optimization problem that uses CVaR
as a minimization goal or constraint [2, 3]. At the same time,
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Yu et al. [4] compared five different risk models and verified
through experiments that using CVaR to measure risk is a
good choice.

As the complexity of practical applications continues
to increase, scholars have developed various heuristic
algorithms to solve portfolio optimization problems. The
application of heuristic algorithms in portfolio optimization
problems is divided into two categories. The first category
simplifies portfolio objectives through the setting of weight
coefficients [5–7], and obtains a risk-return curve by
continuously changing the risk avoidance parameters of
representative investors. This method has a certain degree
of subjectivity. The second type uses multi-objective
evolutionary algorithm (MOEA) to directly optimize risks
and benefits simultaneously [8–11], and can obtain a
complete effective frontier in one operation. Obviously,
it is more convenient to use MOEAs to solve portfolio
optimization problems.

It is not easy for the decision maker (DM) to identify
the preferred portfolio by the direct use of MOEA to solve
the problem of portfolio optimization, essentially because
multiple goals are competing with each other (high returns
are accompanied by high risks). In this way, we can only
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get a set of Pareto optimal solutions, which contains a large
number of portfolio solutions. To solve this problem, there
are three methods (a priori, a posteriori or interactively)
in the search process that can be used to introduce DM
preferences in the optimization process. At present, most
of the work that introduces the decision process into
the optimization problem is a priori method [12] and an
interactive method [13], and the posterior decision method
has been proved to be more subjective than the other
two [14]. In addition, the search and decision process of
the posterior decision method are separated, so when the
DM preferences change, there is no need to repeat the
optimization algorithm.

At the same time, some scholars use the method of
multi-attribute decision-making to determine the optimal
portfolio from limited portfolio schemes [15, 16]. In reality,
investment portfolios have unlimited possibilities, so we
can consider combining multi-objective optimization and
multi-attribute decision-making to solve the problem of
portfolio optimization. First, a limited Pareto optimal set
is determined from an infinite portfolio through multi-
objective optimization, and then multi-attribute decision-
making is adopted as a posterior decision method for the
Pareto optimal set for DM preferences, and finally the
optimal compromise portfolio is determined. For securities
investment, DM preferences can be roughly divided into
risk-averse, risk-neutral and risk-seeking. Therefore, a
clustering algorithm can be used to divide the Pareto optimal
set to distinguish different DM preferences. Among them,
the fuzzy C-means (FCM) clustering algorithm introduces
the concept of membership to measure the degree of data
objects belonging to different groups [17], and has the
advantages of using a minimum number of fuzzy rules and
minimum computational complexity. At the same time, the
grey relational projection (GRP) method [18] is constructed
by the combination of the grey relational method and the
projection method. It has the advantages of both and has
a good application in the field of multi-attribute decision-
making.

Therefore, in the multi-attribute decision-making stage,
this paper adopts the FCM-GRP hybrid method. At the
same time, because the multi-attribute decision-making
stage is a posterior decision-making method for the multi-
objective optimization stage, the pros and cons of the final
selected optimal compromise portfolio will depend on the
pros and cons of the Pareto optimal set obtained in the
multi-objective optimization stage. Therefore, in the multi-
objective optimization stage, this paper proposes a multi-
population parallel NSGA-II based on sparsity strategy
(SMP-NSGA-II) to obtain a better Pareto optimal set.

Finally, a case study of 9 semiconductor stocks in China’s
Shanghai and Shenzhen stock markets was carried out for
a dual-objective portfolio optimization model with CVaR as

a risk measurement and including transaction costs, which
verified the effectiveness of the improved algorithm and the
feasibility of the multi-attribute decision-making method.
At the same time, the optimal compromise portfolio under
different DM preferences is given.

The rest of the paper is organized as follows. Section 2
introduces the mathematical model of the portfolio model.
Section 3 introduces the method of model solving, that is,
the method of combining multi-objective optimization and
multi-attribute decision making. At the same time, several
comparative MOEAs introduced to verify the effectiveness
of the improved algorithm and evaluation indicators for
comparing the performance of MOEA are introduced. In
Section 4, the dual-objective portfolio optimization model
with CVaR measuring risk and including transaction costs
is set with different parameters to discuss its impact on
the portfolio. At the same time, Section 4 introduces
the comparison results of several MOEAs in the multi-
objective optimization stage to solve the model, and applies
the multi-attribute decision-making method to the Pareto
optimal set obtained by the best-performing MOEA to
give the optimal compromise portfolio under different DM
preferences. Finally, Section 5 summarizes and discusses
the full paper.

2Model building

The problem of portfolio optimization is a multi-objective
problem that maximizes returns and minimizes risks. In
this section, we use CVaR [3] as the risk measurement
method. The return is based on Markowitz’s M-V model,
which is weighted by multiplying the average return by the
investment ratio. At the same time, in the real securities
market, the transaction costs is unavoidable. Therefore,
the transaction costs is considered in the expected return,
and finally a dual-objective portfolio model including the
transaction costs is constructed.

2.1 CVaR risk measurement method

In the field of securities investment, the current indicators
used to quantify risk are mainly VaR and CVaR. In 1994,
a risk measurement system based on VaR was proposed
by Morgan J P Investment Bank, but VaR does not satisfy
subadditivity and convexity, and it cannot describe the
risk situation of securities investment well. To overcome
the deficiencies of VaR, Rockfellar and Uryasev proposed
Conditional Value-at-Risk (CVaR) [1] to measure risk. Let
ψ(ω, y) : Rn × Rn → R represent the loss function of
the portfolio, where ω is the asset decision vector, which
represents the proportion of assets, y is a random vector of
asset portfolio losses. Let p(y) be the probability density
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function of vector y, then for any α ∈ R, the expected loss
distribution function of the portfolio is defined by

ϕ (ω, α) =
∫

ψ(ω,y)≤α

p (y)dy (1)

According to the definition of VaR model and CVaR model,
for any confidence level β ∈ (0, 1), we can get

V aRβ = min {α ∈ R |ϕ (ω, α) ≥ β } (2)

CV aRβ = V aRβ + E
[
ψ (ω, y) − V aRβ

∣∣ψ (ω, y) ≥ V aRβ

]

= 1

1 − β

∫

ψ(ω,y)≥V aRβ

ψ (ω, y) p (y)dy (3)

It is not difficult to see from (3) that VaR must be used
in the process of solving CVaR, and the mathematical
expression given by (3) is very complicated and difficult
to calculate. Therefore, Rockfellar and Uryasev effectively
connect CVaR and VaR by constructing auxiliary function
Fβ(ω, α), the auxiliary function is

Fβ (ω, α) = α + 1

1 − β

∫

y∈Rn

[ψ (ω, y) − α]+p (y) dy (4)

where [ψ(ω, y) − α]+ is max{ψ(ω, y) − α, 0}. At the
same time, literature [1] proves that when the function
Fβ(ω, α) is the smallest, it is the value of CV aRβ , and
the obtained α∗ is the value of VaR, and the corresponding
ω∗ = (ω∗

1, ω
∗
2, · · · , ω∗

n) is the corresponding weight of each
asset in the optimal portfolio. But at the same time, we can
know from (4) that solving Fβ(ω, α) requires knowing the
expected loss distribution function of the portfolio. Due to
the complexity of the market, the losses caused are also
uncertain, and the probability density function p(y) is not
easy to calculate, so historical data is used to predict the
distribution of random vectors in the future. For historical
trading data of T trading days for n known securities, the
corresponding approximation to Fβ(ω, α) as follows

F̃β (ω, α) = α + 1

T (1 − β)

T∑
t=1

[
ψ

(
ω, yt

) − α
]+ (5)

where ψ(ω, yt ) = − ∑n
i=1 yitωi , yit represents the return

rate of the asset i on the trading day t . (i = 1, 2, . . . , n; t =
1, 2, . . . , T )

2.2 Dual-objective portfolio model

Suppose an investor purchases n securities, the proportion
of asset i in portfolio ω = (ω1, ω2, · · · , ωn) is ωi , and the
expected return rate is ri = 1

T

∑T
t=1 yit , then the expected

return rate of the portfolio is E = ∑n
i=1 riωi . However,

in the real stock market, one cannot avoid the transaction
costs such as stamp duty and commission that must be borne

during the transaction process. Especially when the amount
of funds is small, the dispersion of funds will increase
transaction costs. Ignoring the impact of these transaction
costs may result in an inefficient portfolio. Therefore, for
the convenience of calculation, the transaction costs of all
securities are uniformly set to c. And the dual-objective
portfolio optimization model that contains transaction costs
is defined as follows⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min F̃β (ω, α) = α + 1
T (1−β)

T∑
t=1

[
ψ

(
ω, yt

) − α
]+

maxE (ω) =
n∑

i=1
riωi −

n∑
i=1

cωi

s.t .
n∑

i=1
ωi = 1, 0 ≤ ωi ≤ 1, i = 1, 2, · · · , n

(6)

Among them, the loss function of n risk assets becomes
ψ(ω, yt ) = ∑n

i=1(−yitωi + cωi), and ωi ≥ 0 means short
selling is not allowed.

3Model solving

In order to give the optimal compromise portfolio under
different DM preferences, this paper adopts the method of
combining multi-objective optimization and multi-attribute
decision-making. First, in the multi-objective optimization
stage, the improved algorithm proposed in this paper is
applied to obtain a portfolio set, which enters the multi-
attribute decision-making stage as the scope of decision-
making. In this stage, the FCM clustering algorithm is first
used to cluster the portfolios within the decision-making
range to distinguish different DM preferences, which are
divided into risk-seeking portfolio collections, risk-averse
portfolio collections, and risk-neutral portfolio collections.
Then, the GRP method is used to evaluate each investment
portfolio in the three portfolio sets, and the optimal
compromise portfolio under different DM preferences is
given. The specific process is shown in Fig. 1.

3.1 Multi-objective optimization

Compared with traditional techniques, MOEAs incorporate
the concept of Pareto optimality and modified selection
schemes to simultaneously evolve a set of solutions at
multiple points along the trade-off surface, Such features
provide the MOEAs with a global perspective of the multi-
objective problem, as well as the capability of identifying
a set of Pareto-optimal solutions in a single run. At the
same time, literature [19] compares the computing power of
several popular multi-objective evolutionary algorithms in
solving portfolio optimization problems, and believes that
nondominated sorting genetic algorithm II (NSGA-II) [20]
and strength pareto evolutionary algorithm 2 (SPEA2) [21]
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Fig. 1 Solution framework

have certain advantages in them. Based on NSGA-II, this
paper proposes a multi-population parallel NSGA-II based
on sparsity strategy, namely SMP-NSGA-II.

The normal distribution crossover (NDX) operator [22]
improves the exploration and development capabilities of
the solution space by introducing the normal distribution
on the premise of solving accuracy, and uses the discrete
reorganization operation to further expand the search space.
If this operator is introduced into the NSGA-II, the global
search performance and convergence of the algorithm
can be improved, thereby obtaining a high-quality Pareto
optimal solution set.

Therefore, the main ideas of the improved algorithm
in this paper are as follows: First, a single NSGA-II
population is decomposed into multiple subpopulations,
the main population using the simulated binary crossover
(SBX) operator and the auxiliary exploration population
using the NDX operator are constructed to carry out a multi-
population parallel strategy which can make the individuals
close to the true Pareto front. Secondly, in order to promote
the evolution of various groups, a parallel evolution cycle
is set, and the non-dominated solutions obtained in each
parallel evolution cycle are externally archived. Finally,
the sparsity strategy is used to select the optimal solution
set with a relatively uniform overall distribution from the
candidate solution set to achieve the purpose of improving
the distribution of the solution set.

3.1.1 Crossover operator

The crossover operator in real-coded NSGA-II is simulated
binary crossover (SBX) [23] by{

V ∗
1,i = 0.5

[
(1 − θ) V1,i + (1 + θ) V2,i

]
V ∗
2,i = 0.5

[
(1 + θ) V1,i + (1 − θ) V2,i

] , 1 ≤ i ≤ m (7)

where V1,i and V2,i are the i-th decision variables corre-
sponding to the two parent individuals, V ∗

1,i and V ∗
2,i are the

i-th decision variables corresponding to the two child indi-
viduals, m is the number of decision variables, and θ is a ran-
dom variable, each decision variable i is regenerated as follows

θ =
{

(2u)
1

1+ηc , u ≤ 0.5

(2 (1 − u))
− 1

1+ηc , u > 0.5
(8)

where u is a random value between (0, 1), ηc is the cross
operators.
In order to enhance the algorithm’s ability to search for
a feasible solution space, Zhang et al. [22] introduced
the normal distribution and the discrete recombination
operation in the evolution strategy into the SBX operation,
and proposed the normal distribution cross (NDX) operator:{

V ∗
1/2,i = V1,i+V2,i

2 ± A |N (0, 1)| V1,i−V2,i
2 , u ≤ 0.5

V ∗
1/2,i = V1,i+V2,i

2 ∓ A |N (0, 1)| V1,i−V2,i
2 , u > 0.5

(9)

Among them, N(0, 1) represents a normally distributed
random variable, A is the exploration coefficient. Literature
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[22] gives an experimental comparison between the SBX
operator and the NDX operator. It can be seen that due
to the introduction of normal distribution and discrete
recombination, the NDX operator has a stronger ability
to explore feasible solution spaces than the SBX operator.
Therefore, by using the NDX operator, the algorithm can
further expand the search range of the feasible solution
space and make the searched solution space wider.

3.1.2 Multi-population parallel evolution strategy

Based on the idea of a parallel evolution strategy for
multiple populations, SMP-NSGA-II set up two populations
(total number of individuals is N) instead of a single
population of the original population size of N . The two
populations use different evolution strategies to search in
the feasible solution space in parallel. Among them, the
subpopulation 1 is the main population, adopts the SBX
operator, and carries out certain explorations while taking
into account exploitation, and the number of individuals is
τN , where τ ∈ (0, 1) is population size division coefficient.
At the same time, it can be seen from Section 3.1.1 that
the NDX operator can improve the algorithm’s ability
to search for a feasible solution space, so in order to
expand the searchable space of the algorithm and avoid
premature convergence, this paper sets an subpopulation
2 with (1 − τ)N individuals as auxiliary exploration
population. At the same time, in order to promote the
evolution of each subpopulation, this paper assumes that
each parallel evolution cycle is g generation, that is,
after each parallel evolution cycle, the subpopulations are
merged, and the optimal N individuals are selected through
elitism approach. Then the initial population is assigned
to the subpopulation again, and the next generation of
parallel evolutionary cycles is searched, and repeated until
the maximum generation number is reached.

3.1.3 Sparsity strategy

During evolution, each individual in the population has two
attributes, that is

a. non-domination rank (irank) and b. crowding distance
(idistance).

The crowded-comparison operator relies on the above
two attributes to guide the selection process to a uniformly
spread-out Pareto optimal front at different stages of
the algorithm. That is, between two individuals with
differing non-domination ranks, we prefer the individual
with the lower rank (smaller irank value). Otherwise, if two
individuals belong to the same front, then we prefer the
individual that is located in a lesser crowded region (higher
idistance value).

Generally speaking, for a population with sufficient
evolution, the individuals in the late evolution stage
are almost all located in the first non-dominated front
F1(irank = 1), that is, the uniformity of the final solution set
depends on the uniformity of the individuals in F1. When
selecting N uniformly distributed individuals from |F1|
individuals, regions with sparsity solution set distributions
cannot be uniformly distributed by adding individuals, but
for regions with dense solution set distributions, individuals
can be reduced, so we can consider increasing the number
of candidate solutions.

It can be seen from Section 3.1.2 that every time a
parallel evolutionary cycle needs to merge subpopulations,
an external archive set is established at this time to
store individuals in the first non-dominated front of the
merged population, and when the maximum generation
is reached, the external archive set is re-executed non-
dominated sorting process, fromwhich the individuals in the
first non-dominated front after deduplication are selected
as candidate solutions (because these individuals may be
retained during evolution, so there is duplication).

In order to see the effect of the sparsity strategy
intuitively, here is the classic dual-objective test function
ZDT4 [24] as an example. Figure 2 shows the distribution of
individuals in the candidate solution set after 500 iterations.
Then, the candidate solution set is processed by the sparsity
strategy, and then a uniformly distributed solution set is
obtained. The sparsity strategy is as follows:

Let the number of individuals in the candidate solution
set be N ′. First sort the candidate solution set, calculate
the Euclidean distance between the two consecutive
candidate solution sets dxi , and then accumulate to get

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f1

0

0.2

0.4

0.6

0.8

1

1.2

f2

Fig. 2 The distribution of individuals in the candidate solution set of
ZDT4 problem



Y. Zheng and J. Zheng

Dx = ∑N ′−1
i=1 dxi . Since there are many individuals

in the candidate solution set, if N uniformly distributed
individuals are selected from this time, the distance between
each individual is approximately dint = Dx

N−1 , and the first
and last individuals in the candidate solution set are taken as
the head and end individuals of the final solution set, then
N−2 individuals in the middle are distributed in the interval
with the length of darea = Dx

N−2 .
Then, starting from the first interval, using the greedy

strategy, traverse all the individuals in the interval, and keep
the individuals with the closest distance to dint from the
previous one in this interval, and delete the rest individuals,
then traverse all the intervals in turn. Finally, the remaining
individuals are used as the final solution set. Figures 3 and 4
respectively show the individual distributions obtained by
using two different methods for the candidate solution set in
Fig. 2: the elitism strategy and the sparsity strategy. It can be
seen that a well-distributed solution set is obtained through
the sparsity strategy.

3.1.4 Algorithm flow

Through the above introduction, we proposed the SMP-
NSGA-II, and then applied it to the multi-objective
optimization stage of the portfolio optimization model
solution, where the maximum evolutionary generation
number of the population be gen, and each parallel
evolutionary cycle be g generations. The specific steps as
follows:

Step 1: Initialize the population, using real coded, for any
chromosome V k = (Xk, α), where Xk = (x1, x2, · · · , xi),
k = 1, 2, · · · , N , xi (1 ≤ i ≤ n,

∑n
i=1 xi = 1) is a random

value generated in [0, 1], which represents the weight of

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f1

0

0.2

0.4

0.6

0.8

1

1.2

f2

After elitism approach
True Pareto

Fig. 3 The distribution of individuals processed by elitism approach

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f1

0

0.2

0.4

0.6

0.8

1

1.2

f2

After sparsity strategy
True Pareto

Fig. 4 The distribution of individuals obtained by the sparsity strategy

each assets, And α represents the VaR value, N represents
the population size and n represents the number of securities
invested;

Step 2: Pass all the individuals in the initial population to
the subpopulation and start parallel evolution;

Step 3: The objective function value is calculated for
all individuals in the subpopulation according to the risk
measurement function and expected return function in (6),
where the expected return function is minimized by taking
a negative number;

Step 4: Perform the fast nondominated sorting method
for each subpopulation in parallel and calculate the
crowding distance;

Step 5: Each subpopulation is selected through a binary
tournament mechanism;

Step 6: Set different crossover methods for the subpopu-
lations, expand the search range by exploration population
while the main population is searching normally, and gener-
ate new portfolios;

Step 7: Respectively use the elitism approach for the
subpopulations separately to obtain new populations, that is,
select the optimal N∗ group portfolios;
Step 8: When the independent evolution generation of the
subpopulation is g, merge the population, and use the elitism
approach to select the new initial population from it, and at
the same time keep the solution in the first non-dominated
front to the external archive set and return to Step 2,
otherwise return to Step 3; When the maximum evolution
generation is gen, the candidate solution set is processed by
sparsity strategy, and the currently obtained solution set is
the Pareto optimal solution set, which enters the following
multi-attribute decision-making stage as a decision range.
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3.1.5 Comparison algorithm

In the problem of portfolio optimization, literature [19]
compared five kinds of MOEAs, and the experiment
proved that NSGA-II [20] and SPEA2 [21] are better
than the other three algorithms. Multiobjective optimization
framework based on nondominated sorting and local search
(NSLS) [25] has been proposed in recent years as an
effective algorithm to solve multi-objective optimization
problems. Different from NSGA-II’s crowding-comparison
mechanism, it uses a farthest-candidate mechanism to
maintain the diversity of non-dominated solutions. At the
same time, based on the non-dominated sorting suggested
in NSGA-II, NSLS presents a new local search schema
for convergence. Different from GA-based MOEAs such
as NSGA-II, SPEA2, and NSLS, multi-objective particle
swarm optimization (MOPSO) algorithm [26] is a PSO-
based MOEA. Due to its high efficiency and speed, it is also
widely used in multi-objective Optimization problem.

Furthermore, in addition to the above-mentioned
MOEAs based on the Pareto dominance framework, mul-
tiobjective evolutionary algorithm based on decomposition
(MOEA/D) as a decomposition-based MOEAwas proposed
by Zhang et al. [27]. In MOEA/D, the traditional decom-
position method is used to decompose the multi-objective
optimization problem into a set of single-objective sub-
problems, and the neighbor relationalship between the sub-
problems is defined by the distance relationalship between
the weight vectors, and then the evolutionary algorithm is
used to solve these sub-problems at the same time. Mean-
while, when optimizing a sub-problem, a new solution is
generated through the evolution process of cross-mutation
between adjacent sub-problems, and the new solution is
used to update the solution of the current sub-problem.
MOEA/D also introduces a method of information shar-
ing between neighbor sub-problems, that is, a new solution
updates its neighbor sub-problems while updating the cor-
responding sub-problems. At the same time, their research
team further improved MOEA/D and proposed MOEA/D
based on differential evolution (MOEA/D-DE) [28] and
MOEA/D with covariance matrix adaptation evolution strat-
egy (MOEA/D-CMA) [29] as new versions of MOEA/D,
which further improved the performance of the algorithm.

Therefore, in this paper, the performance of the SMP-
NSGA-II will be compared with NSGA-II, SPEA2, NSLS,
MOPSO, MOEA/D-DE and MOEA/D-CMA.

3.1.6 Performance evaluation indicators

In this paper, we choose the spacing (SP) [30] and
hypervolume (HV) [31] to verify the effectiveness of the
improved algorithm compared with other algorithms in

terms of convergence and diversity through the above
indicators. The SP and HV are computed as follows:

SP =
√√√√ 1

|C|
|C|∑
k=1

(
d̄ − dxk

)2
(10)

HV (C, R) = volume

( |C|∪
k=1

ak (ck, rk)

)
(11)

where C is the solution set to be evaluated, dxk is the
Euclidean distance between the k-th solution in the solution
set C and its nearest solution, and d̄ is the average value of
all dxk; R is the reference set, for each solution ck ∈ C,
a hypercube ak (ck, rk) is constructed with ck and rk ∈ R

as diagonal corners. Among them, smaller values of SP
indicate the solutions distribute more uniform, larger values
of HV indicate the solutions have better convergence as well
as diversity.

In order to compare the performance of different
algorithms fairly, before using performance indicators, this
paper uses the following normalization method:

fq = fq − fmin
q

fmax
q − fmin

q

(12)

Among them, fmax
q and fmin

q are the maximum and
minmum values of the q-th objective function. At the same
time, the reference point r in the HV-metric is set to (1, 1).

3.2 Multi-attribute decisionmaking

Through the introduction of Section 3.1.4, we have obtained
the Pareto optimal set. In order to further give the optimal
compromise portfolio of different DM preferences, in this
section, we adopt the FCM-GRP hybrid method. First, use
the FCM clustering algorithm to cluster the Pareto optimal
set to distinguish different DM preferences, and then run
the grey relational projection method on the Pareto optimal
set under different DM preferences to determine the optimal
compromise portfolio.

3.2.1 Fuzzy C-means clustering

Fuzzy C-means algorithm [17] is an unsupervised fuzzy
clustering algorithm, and its mathematical model is:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min J =
N∑

k=1

Nclu∑
j=1

uh
kjD

2
kj

s.t .
Nclu∑
j=1

ukj = 1
(13)

Where J is the clustering loss function, N is the number
of solutions in the Pareto optimal solution set, that is, the
number of portfolios in the portfolio set, and Nclu is the
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number of clusters. To reflect different DM preferences, the
number of clusters Nclu = 3, that is, the clustering results
reflect different investment preferences. Where ukj is the
degree of membership of portfolio k that belongs to DM
preference j , Dkj is the Euclidean distance between the
portfolio k and the center of DM preference j . And in the
application of FCM, fuzzifier h = 2 is usually selected [17].
Through the minimum similarity between portfolios under
different DM preferences and the largest similarity between
portfolios under the same DM preference, the division of
portfolio sets is realized.

3.2.2 Grey relational projection method

GRP [18] method is constructed by the combination of
the grey relational method and the projection method. It
has the advantages of both and has a good application in
the field of multi-attribute decision-making. According to
the fuzzy C-means algorithm in Section 3.2.1, the pareto
optimal set obtained in the multi-objective stage is divided
into three categories, reflecting different DM preferences.
In order to further give the optimal portfolio under different
DM preferences, this section evaluates each portfolio under
different DM preferences by the GRP method, and selects
the optimal compromised portfolio based on the value of the
priority membership. The process of calculating the priority
membership is given below.

Suppose there are N∗ portfolios under the DM prefer-
ence, which are composed of Q evaluation indicators(Q in
this section is 2, that is, risk and benefit). It can be seen from
the characteristics of the indicators that the risk (CVaR) is a
“cost-type” indicator, and the expected return is a “benefit-
type” indicator. Standardize the two indicators separately,
that is, both types of indicators are converted into “benefit-
type” indicators and dimensionless processing is performed.
And the grey relational coefficient ξ

+(−)
kq of the q-th indi-

cator of the k-th portfolio and the positive ideal (negative
ideal) portfolio is calculated:

ξ
+(−)
kq =

min
N∗ min

Q

∣∣∣L+(−)
0q − Lkq

∣∣∣ + λmax
N∗ max

Q

∣∣∣L+(−)
0q − Lkq

∣∣∣
∣∣∣L+(−)

0q − Lkq

∣∣∣ + λmax
N∗ max

Q

∣∣∣L+(−)
0q − Lkq

∣∣∣ (14)

Among them, Lkq is the q-th evaluation indicators of the

k-th portfolio after standardization, L+(−)
0q is the evaluation

indicators under the positive ideal (negative ideal) portfolio,
|L+(−)

0q − Lkq | is the absolute difference between the
portfolio k and the corresponding indicator of the positive
ideal (negative ideal) portfolio, λ is the discrimination
coefficient, usually takes 0.5 [32].

According to the grey relational coefficient ξ
+(−)
kq , the

projection value S
+(−)
k of the portfolio k on the positive

ideal (negative ideal) portfolio is obtained as:

S
+(−)
k =

Q∑
q=1

ξ
+(−)
kq

w2
q√

Q∑
q=1

w2
q

(15)

In particular, the modulus values of the positive ideal
portfolio and the negative ideal portfolio (Where wq is the
weight of each indicator of the portfolio, which represents
the relative importance of each indicator. Since returns and
risks are equally important under the same DM preference,
this paper takes wq = 0.5, q = 1, 2):

S0 =
Q∑

q=1

w2
q√

Q∑
q=1

w2
q

(16)

The priority membership dk of the k-th portfolio is defined
as:

dk =
(
S0 − S−

k

)2
(
S0 − S−

k

)2 + (
S0 − S+

k

)2 , 0 ≤ dk ≤ 1 (17)

It can be seen from (17) that the larger the value of
the priority membership, the closer the portfolio is to the
positive ideal portfolio, and the farther from the negative
ideal portfolio, and vice versa. Therefore, under different
DM preferences, the portfolio with the largest value of the
priority membership is the optimal compromise portfolio
under this DM preference.

4 Empirical analysis

In this section, the dual-objective portfolio model with
CVaR as a measure of risk and including transaction costs
is set with different parameters to discuss its impact on the
portfolio. At the same time, the proposed SMP-NSGA-II
is compared with the other six MOEAs, and the FCM-
GRP hybrid method is used to make a posteriori decision
on the Pareto optimal set obtained by the SMP-NSGA-II,
then the optimal compromise portfolio under different DM
preferences are given.

4.1 Sample selection

In recent years, the rise of new applications such as 5G
mobile phones, car electrification and the Internet of Things
has pushed the chip industry out of the trough. With the
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stock price of the semiconductor industry plummeted in the
fall of 2018 and the gradual recovery in 2019, we are all
reminded of the cyclicality of the industry and the long-term
positive factors that we believe will bring income growth
for investors in the next few years. Therefore, this paper
selects 6 stocks from the Shanghai stock market and 3 stocks
from the Shenzhen stock market from several stocks in the
semiconductor industry. Two trading years from January
2, 2019 to January 29, 2021 are selected (The above data
comes from the NetEase Finance website). Based on the
data of each trading day, the average daily return rate of each
stock is calculated as shown in Table 1.

4.2 Model evaluation

In this section, we set different parameters for the dual-
objective portfolio model constructed in Section 2.2, and
solve the models with different parameters through SMP-
NSGA-II to discuss the impact of different parameters on
the portfolio.

4.2.1 The impact of the confidence level on the portfolio

In order to study the impact of the confidence level on the
portfolio, the confidence level β = 0.90, 0.95 and 0.99 are
selected respectively, and the transaction costs c=0.00185
is set. It can be seen from Fig. 5 that when the expected
return is constant, as the confidence level increases, the
CVaR value increases, which means that the degree of risk
aversion increases.

4.2.2 The impact of transaction costs on portfolio

For comparison, when the same confidence level β = 0.90,
different transaction costs c = 0.00185, 0.001 and 0.0005
are selected. It can be seen from Figure 6 that under the

Table 1 Experimental stock and the average daily rate of return

Stock code The average
daily rate of
return

600360 0.320451%

603005 0.533416%

600703 0.309700%

600171 0.220730%

603328 0.071419%

600206 0.225541%

002129 0.218171%

002156 0.348161%

002185 0.422847%
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Fig. 5 Impact of different confidence levels on the portfolio

same CVaR value, the increase in transaction costs reduces
the expected return. Since transaction costs are incorporated
into the optimization problem, they also affect the choice of
stocks.

Through the above discussion, we can see that the
selection of different parameters on the model will affect
the final investment portfolio. Literature [4] through
experimental comparison believes that if the confidence
level β higher than 0.90, it will decrease the effectiveness of
CVaR portfolios. Therefore, for the portfolio optimization
model constructed in Section 2.2, we set the confidence
level β = 0.90. At the same time, for the transaction costs,
in order to facilitate the calculation, refer to the Shanghai
and Shenzhen Stock Exchange regulations, and set the
transaction costs of all securities as c = 0.00185.
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4.3 Performance comparison of MOEAs

4.3.1 Parameter settings

In order to compare the performance of SMP-NSGA-II
with the other six algorithms, experiments with different
parameters were carried out. Except that the two parameters
(the population size is 100 and the maximum number of
generations is 500) common to each algorithms. SMP-
NSGA-II, NSGA-II, SPEA2, NSLS, MOPSO, MOEA/D-
DE, MOEA/D-CMA also need some other parameters. For
other parameters in NSGA-II, SPEA2, NSLS, MOPSO,
MOEA/D-DE, MOEA/D-CMA, they have remained the
same with their original studies [20, 21, 25, 26, 28, 29]. For
SMP-NSGA-II, three additional parameters need to be set,
that is, the parallel evolution cycle g is 25, the population
size division coefficient τ is 0.8, and the exploration
coefficient A is 1.481 [22]. Among them, g and τ were
empirically set during previous experiments.

4.3.2 Results discussion

According to the portfolio optimization model in
Section 2.2 and the SMP-NSGA-II proposed in Section 3.1,
we perform 30 independent repeated experiments on all
algorithms in the same computing environment and set
the same initial population for each algorithm to achieve
fairness. At the same time, in addition to reflecting the
performance of each algorithm through the results of the
performance evaluation indicators in Section 3.1.6, the time
required for the algorithm to run is also compared here.

Table 2 shows the average values, standard deviations,
best values and worst values of the two indicators and
running time. It can be seen from Table 2 that although
SMP-NSGA-II is lower than SPEA2 and MOPSO in the
best value of spacing, it has the best performance in average
value and standard deviation. At the same time, SMP-
NSGA-II performs better than the other six algorithms on
hypervolume, so it can be considered that the Pareto solution

obtained by our proposed algorithm has good convergence
and diversity. In terms of running time, although the
performance in standard deviation is poor, it can be seen
from the reflection of the average value of running time that
SMP-NSGA-II still has a certain degree of competitiveness
compared to other algorithms. Further analysis of other
algorithms shows that NSLS performs the worst in terms of
running time. The results also show that, in the case of this
paper, although MOPSO performs quite good on running
time and spacing, its worst performance on hypervolume
shows that its ability to approximate the true frontier is
the worst. At the same time, the overall performance of
MOEA/D-DE and MOEA/D-CMA is also poor.

4.4 Selection and analysis of the optimal
compromise portfolio

After the solution of the multi-objective optimization stage,
the Pareto frontier of the portfolio under the confidence
level β = 0.90 is obtained, as shown in Figure 7. We
know that the optimal Pareto means that the risk can-
not be reduced without reducing the return. For these
non-dominated solutions, it is still difficult for DMs to
determine the preferred portfolio. Therefore, this paper
adopts the FCM-GRP hybrid method to automatically iden-
tify portfolios representing different DM preferences.

First, clustering the portfolio set through the FCM
algorithm. From Fig. 8, you can intuitively see that
the Pareto solution set is divided into three categories,
representing different DM preferences (the red part in the
figure represents the risk-averse type, and the orange part
represents the risk-neutral type, the blue part represents risk-
seeking type). Then, the GRP method is used to evaluate
each portfolio under different DM preferences. And the
priority membership of each portfolio under different DM
preferences is calculated according to the introduction in
Section 3.2.2. We already know that the larger the value of
the priority membership, the closer the portfolio is to the

Table 2 Statistical information on spacing, hypervolume metric and running time

variables Average Standard deviation Best Worst

SP HV Time(s) SP HV Time(s) SP HV Time(s) SP HV Time(s)

SMP-NSGA-II 0.0056 0.6943 5.1244 0.0003 0.0004 1.0547 0.0050 0.6953 4.8134 0.0063 0.6933 10.698

NSGA-II 0.0077 0.6916 5.3696 0.0021 0.0006 0.0928 0.0064 0.6927 5.2330 0.0158 0.6898 5.7326

SPEA2 0.0291 0.6935 14.377 0.0797 0.0005 0.1181 0.0040 0.6947 14.224 0.3994 0.6925 14.651

NSLS 0.0073 0.6915 277.24 0.0010 0.0008 2.7113 0.0059 0.6929 275.79 0.0096 0.6897 291.20

MOPSO 0.0074 0.5771 6.2959 0.0042 0.0282 0.0530 0.0035 0.6331 6.2141 0.0241 0.5174 6.4298

MOEA/D-DE 0.8997 0.6856 28.842 1.3746 0.0042 0.1158 0.0236 0.6918 28.697 4.2609 0.6707 29.353

MOEA/D-CMA 0.8405 0.6866 38.422 1.3707 0.0036 0.1503 0.0237 0.6912 38.129 4.2610 0.6737 38.813

Bold represents the optimal value of each column
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Fig. 7 Efficient frontier obtained by SMP-NSGA-II

positive ideal portfolio, so the optimal compromise portfolio
under different DMs are finally given, as shown in Table 3.

It can be seen from Table 3 that for risk-seeking investors,
the investment ratio will be mainly concentrated in the stock
with highest yield(stock code is 603005), and the number
of stocks invested will be smaller, and the actual return at
this time will be higher, but the risk is also high, in line
with the investment theory of high risk and high return.
At the same time, for risk-averse investors, there are more
stocks invested, and the investment ratio will be dispersed
among other stocks with lower expected returns. Although
the returns are lower, the risks will also decrease, which
is also in line with the investment theory of diversified
investment can reduce risks. And it can be seen from Fig. 7
that there is a positive correlational between return and risk.
Obviously, this model is reasonable and effective.
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Fig. 8 Efficient frontier reflecting DM preference

Table 3 Optimal compromise portfolio under different DM prefer-
ences

DM preference Risk seeking Risk averse Risk neutral

600360 0.0488 0.0047 0.2002

603005 0.8639 0.1637 0.5645

600703 0 0 0.1207

600171 0 0.1126 0

603328 0 0.5907 0.0299

600206 0 0.1042 0.0114

002129 0 0 0

002156 0 0 0

002185 0.0866 0.0237 0.0730

CVaR(Risk) 0.0545 0.0359 0.0484

Benefit 0.003282 0.000045 0.002533

The priority membership 0.5479 0.6279 0.5255

5 Conclusion

In order to solve the dual-objective portfolio optimization
model with conditional value-at-risk (CVaR) as a measure
of risk and including transaction costs, this paper proposes
a method combining multi-objective optimization and
multi-attribute decision-making. In the multi-objective
optimization stage, this paper proposes a multi-population
parallel NSGA-II based on sparsity strategy (SMP-NSGA-
II). In the case studies of 9 stocks in the semiconductor
industry, we compared SMP-NSGA-II with the other six
MOEAs through two performance evaluation indicators
(HV and SP) and running time, then verified the feasibility
of the SMP-NSGA-II algorithm. In the multi-attribute
decision-making stage, this paper adopts the FCM-GRP
hybrid method to give the optimal compromise investment
portfolio under different DM preferences.

There are a couple of drawbacks in the present study.
Firstly, the model studied in this paper is relatively simple
and does not take into account the many unstable factors of
the real securities market; Secondly, the space complexity
of the proposed SMP-NSGA-II algorithm is also high.
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12. Ruiz AB, Saborido R, Bermúdez JD, Luque M, Vercher E (2017)
Preference-based evolutionary multi-objective optimization for
solving fuzzy portfolio selection problems. Revista Electronica de
Comunicaciones y Trabajos de ASEPUMA. Rect@ 18(1):1–15

13. Sun J, Xiong Y, Zhang H, Liu ZP (2020) Interval multi-objective
programming methods for solving multi-period portfolio selection
problems. Control Decis 35(3):645–650. (in Chinese)

14. Bui LT, Alam S (2008) An introduction to multi-objective
optimization. In: Multi-objective optimization in computational
intelligence: Theory and practice. IGI Global, pp 1–19

15. Emmerich MT, Deutz AH, Yevseyeva I (2015) A bayesian
approach to portfolio selection in multicriteria group decision
making. Procedia Comput Sci 64:993–1000

16. Zhou XY, Wang LQ, Liao HC, Wang SY, Lev B, Fujita H (2019)
A prospect theory-based group decision approach considering
consensus for portfolio selection with hesitant fuzzy information.
Knowl-Based Syst 168:28–38

17. Zhou KL, Yang SL (2016) Exploring the uniform effect of
FCM clustering:A data distribution perspective. Knowl-Based
Syst 96:76–83

18. Zhang X, Jin F, Liu PD (2013) A grey relational projection
method for multi-attribute decision making based on intuitionistic
trapezoidal fuzzy number. Appl Math Model 37(5):3467–3477

19. Anagnostopoulos KP, Mamanis G (2011) The mean–variance
cardinality constrained portfolio optimization problem: an exper-
imental evaluation of five multiobjective evolutionary algorithms.
Expert Syst Appl 38(9):14208–14217

20. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and
elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans
Evol Comput 6(2):182–197

21. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Improving
The strength Pareto evolutionary algorithm. TIK-103. Department
of Electrical Engineering Swiss Federal Institute of Technology,
Zurich

22. Zhang M, Luo WJ, Wang XF (2009) A normal distribution
crossover for ε-MOEA. J Softw 20(2):305–314. (in Chinese)

23. Deb K, Agrawal RB (1995) Simulated binary crossover for
continuous search space. Complex Syst 9(2):115–148

24. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjec-
tive evolutionary algorithms: Empirical Results. Evol Comput
8(2):173–195

25. Chen BL, Zeng WH, Lin YB, Zhang DF (2015) A new local
search-based multiobjective optimization algorithm. IEEE Trans
Evol Comput 19(1):50–73

26. Coello CAC, Lechuga MS (2002) MOPSO: A proposal for
multiple objective particle swarm optimization. In: Proceedings of
the 2002 Congress on Evolutionary Computation, pp 1051–1056

27. Zhang QF, Li H (2007) MOEA/D: a multi-objective evolutionary
algorithm based on decomposition. IEEE Trans Evol Comput
11(4):712–731

28. Li H, Zhang QF (2009)Multiobjective optimization problems with
complicated pareto sets, MOEA/D NSGA-II. IEEE Trans Evol
Comput 13(2):284–302

29. Li H, Zhang QF, Deng JD (2016) Biased multiobjective
optimization and decomposition algorithm. IEEE T Cybern
47(1):52–66

30. Schott JR (1995) Fault tolerant design using single and
multicriteria genetic algorithm optimization. Master’s thesis,
Department of Aeronautics and Astronautics Massachussetts
Institute of Technology, Cambridge

31. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms:
a comparative case study and the strength Pareto approach. IEEE
Trans Evol Comput 3(4):257–271

32. Ke HF, Chen YG, Xia B (2007) An algorithm of multiple criteria
decision-making based on similarity to ideal grey relational
projection. Acta Electron Sin 35(9):1757–1761. (in Chinese)

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.


	A novel portfolio optimization model via combining multi-objective optimization...
	Abstract
	Introduction
	Model building
	CVaR risk measurement method
	Dual-objective portfolio model

	Model solving
	Multi-objective optimization
	Crossover operator
	Multi-population parallel evolution strategy
	Sparsity strategy
	Algorithm flow
	Comparison algorithm
	Performance evaluation indicators

	Multi-attribute decision making
	Fuzzy C-means clustering
	Grey relational projection method


	Empirical analysis
	Sample selection
	Model evaluation
	The impact of the confidence level on the portfolio
	The impact of transaction costs on portfolio

	Performance comparison of MOEAs
	Parameter settings
	Results discussion

	Selection and analysis of the optimal compromise portfolio

	Conclusion
	References


