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A B S T R A C T

A tolerance framework is developed to address a group multiple criteria ranking problem with indirect prefer-
ence information, which is referred to as the interaction, importance and tolerance of criteria as well as pairwise 
comparisons among alternatives and criteria. Choquet integral preference model is employed to capture the 
interaction, importance and tolerance of criteria, all of which are specific to decision makers (DMs). Some 
mandatory/sufficient requirements concerning criteria which are global or local, also called the tolerance atti-
tudes of DMs, are quantified as tolerability constraints. Preference disaggregation analysis is extended to solve 
this type of tolerability constraints for preference elicitation. Confronted with the inconsistency issue (the 
feasibility of the whole preference constraints translated from indirect preference information), cause oriented 
strategy and consequence oriented strategy are established by regression-based mixed 0–1 integer linear pro-
grams with the objectives of the most credible minimal inconsistent preference constraints and the most credible 
maximal preference constraints in the context of group decision making. Considering a wide range of the min-
imal unsatisfied subsets of preference constraints responsible for the inconsistency and the maximum satisfied 
subsets of preference constraints as a consistent result, to reach a robust decision, stochastic multicriteria 
acceptability analysis (SMAA)-like simulation analysis is generated to examine the whole instances of compatible 
preference models in the modified feasible preference polyhedron and compute the result in a probabilistic form. 
Simulation experiment is conducted to investigate the influence of global tolerance attitudes of DMs on pref-
erence elicitation in conservative and radical scenarios. Finally, the application of the proposed approach to a 
credit ranking of small and medium-sized enterprises (SMEs) and the comparison analysis with objective 
methods are presented and discussed for the effectiveness of the proposed tolerance framework.   

1. Introduction

Many real-world decision problems in different fields can be
formulated as multiple criteria decision making (MCDM) as the perfor-
mance of alternatives can be decomposed as the evaluation of alterna-
tives on considered criteria and ranked by the comprehensive score 
which is a straightforward intuition for decision makers (DMs) to 
comprehend. The preference model in MCDM would be paid more 
attention to the property that is consistent with observable properties of 
human decision process (i.e., intuitive reasoning, common sense, and 
expert knowledge), otherwise it would deteriorate a justifiable decision. 
The theory of fuzzy measures and integrals Liginlal and Ow (2006) has 
emerged to characterize the preference of DMs with the realistic hy-
pothesis about preferential dependence among criteria and give the 

opportunity to represent and interpret the typical human decision pro-
cess, which is such a predominant character that can address numerous 
practical preference modelling. 

The DMs have distinguished aggregation behaviors in context of 
group MCDM, also called the tolerance attitudes of DMs in some liter-
atures. From a mathematical perspective, the tolerance attitudes of DMs 
are equivalent to the tolerance (or intolerance) of criteria represented by 
the aggregation operator (Li, Yao, Sun, & Wu, 2018). In a strategic in-
vestment decision problem, when searching for most qualified candi-
dates among prospective alternatives, every candidate failing at most k 
criteria would be rejected. It implies k-intolerance attitudes of the DMs 
which can be perceived as a selection policy. In the field of fuzzy ag-
gregation operator field, ordered weighted averaging (OWA) operator 
was studied which used the global tolerance of criteria to measure the 
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optimism degree of DMs (Kim & Ahn, 2018; Zeng, Li, & Gu, 2018). Based 
on the k-tolerance (or k-intolerance) properties of the Bonferroni mean 
aggregation operator (Beliakov & James, 2013), Dutta, Figueira, and 
Das (2019) studied orness measure to define the or-like degree of the 
Bonferroni mean and its variants. Considering non-additive value 
function, previous researchers constructed the optimization model using 
fuzzy measure to capture tolerance attitudes required from DMs without 
any post optimality analysis (Li, et al., 2018; Yao, Li, Sun, & Wu, 2018). 
It is doubted that the decision from the inferred preference model is 
robust in case of the existence of the multiple feasible near-optimal so-
lutions. As noted by Dujmović and Larsen (2007), the requirements (or 
expectations) on criteria combining by preference model cannot be 
neglected during preference aggregation. Subsequently, concise math-
ematical formulas for them (Hudec & Mesiar, 2020; Marichal, 2004) 
were defined to express a global or local tolerance degree of the DMs. 
Such the mandatory or sufficient requirements of DMs can be trans-
formed in the form of the tolerability constraints for the sake of 
simplicity of preference construction. Any quantified preference infor-
mation may reduce the feasible polyhedron of all compatible preference 
model as long as inconsistent preference constraints don’t exist. There-
fore, the investigation of the impact of tolerability constraints on the 
preference constructive learning process is significant. Even though 
aforementioned studies prompt the development of tolerability theory, 
they emphasize the characterization of tolerance attitude and provide a 
retrospective understanding of how to make a strategic decision but not 
capture the tolerance attitudes of the DMs into MCDM process. 

Preference elicitation is an important and fundamental component of 
multiple criteria decision aiding (MCDA). In order to achieve this, 
preference elicitation method should (a) maintain a flexible represen-
tation of the DMs’ preference; (b) handle uncertainty in a principled 
manner; (c) rank alternatives that allow the inferred preference model to 
discriminate among alternatives; and (d) allow for the incorporation of 
prior knowledge from the DMs (Corrente, Greco, Kadziński, & Słowiński, 
2013). Fuzzy measure (or capacity) and integrals can be used to capture 
the value system of the DM associated with every subset of criteria. 
Therefore, models’ parameters are in exponential number relatively to 
the number of criteria and their elicitation is a challenging issue. Most of 
the works aiming at determining a suitable capacity for the Choquet 
integral. With distinguished objectives such as entropy maximum 
(Aggarwal, 2019; Beliakov & Wu, 2019), andness/orness index 
maximum (Beliakov & Wu, 2019) or maximum split approach (Chen & 
Huang, 2019; Marichal & Roubens, 2000), the “optimal” preference 
parameters can be acquired, which vary as the distinctive selection of 
the objective function. Apart from the statistic preference elicitation, 
through a sequence of pairwise comparisons among alternatives, 
Benabbou, Perny, and Viappiani (2017) investigated the incremental 
elicitation of the capacity using a minimax regret strategy. The consis-
tency of the stated preference statements and the inferred preference 
model is implicitly enforced. Korhonen, Silvennoinen, Wallenius, and 
Öörni (2012) conducted an empirical study and observed that people are 
not very often fully consistent with any value function when making 
binary choices. Taking this fact into account, preference disaggregation 
analysis (PDA) explores indirect preference information grounded on 
the ordinal regression paradigm and concludes that whether the pref-
erence over pairwise alternatives induced by the whole inferred pref-
erence model instances are consistent with DMs’ prior preference or not 
(Tomczyk & Kadziński, 2019). It is in line with the essence of value 
judgment of MCDA, i.e., the elicited preference model should be 
consistent with observable properties of human reasoning (Dujmović, 

2013). Indirect preference information admitted by PDA is in a variety 
of categories such as pairwise comparison (i.e., one vs one among 
reference alternatives or criteria) (Bous, Fortemps, Glineur, & Pirlot, 
2010; Liu, Liao, Kadziński, & Słowiński, 2019), intensities of preference 
(i.e., pair vs pair among reference alternatives or criteria) (Ma, 2019; 
Roszkowska & Wachowicz, 2015), rank-related requirements (Kadziń-
ski, Greco, & Słowiński, 2013) and interaction among criteria (Angilella, 
Corrente, & Greco, 2015). The global or local pairwise judgments 
specified by the DMs impose constraints on the parameters of preference 
model. Such extensive and accounted types of indirect preference in-
formation improve the flexibility of preference construction procedure. 
DMs just need to provide any decision judgments rather than explaining 
them without less cognitive efforts. On the other hand, the plausible set 
of the instances of preference model ensures a large credit for generality, 
plurality and interpretability, but the aforementioned frameworks are 
insufficient and challenging in the characterizations of the mandatory or 
sufficient requirements on criteria which limits the potential to repre-
sent the real-world aggregation process. 

There is no compatible Choquet integral preference model if indirect 
preference information given by DMs cannot match the underlying 
preference model due to the preference controversary or preference 
dominance violation among the DMs or the insufficient expressive 
power of chosen preference model (Corrente, et al., 2013). The decision 
about working alongside this inconsistency or seeking and revising the 
pieces of preference information impeding the incompatibility is next 
step. The prevailing methods devoted to such inconsistency issue can be 
divided into two categories. Some scholars assume that the DMs are 
acceptable to carry out the decision analysis with this incompatibility 
when the margin of the misranking error is not more than artificial 
threshold (Corrente, Greco, Kadziński, & Słowiński, 2016). Built on this 
minimal change principle, Mousseau, Dias, and Figueira (2006) 
extended algorithms to relax (rather than to delete) assignment exam-
ples and incorporated confidence level attached to each assignment 
example in multiple criteria sorting model. As for pairwise comparison 
matrix (PCM), Bozóki, Fülöp, and Poesz (2015) established nonlinear 
mixed-integer optimization to determine the minimum number of 
judgment changes required to reach a threshold value of inconsistency. 
Considering a trade-off between the judgment alternation of alternatives 
and the inconsistency reduction, Abel, Mikhailov, and Keane (2018) 
constructed a multi-objective optimization model facilitating inconsis-
tency reduction whilst also looking to minimize the amount of alter-
ation. Fernandez, Navarro, Solares, and Coello (2020) proposed an 
interval-based PDA approach guided by a genetic algorithm, allowing 
the DM’s decision policy to contain imperfect knowledge. Others try to 
identify the sources of inconsistency and propose correction strategies 
for further decision process. Recognizing the troublesome pieces from 
the whole preference constraints, once this set is removed, a set of the 
remaining preference constraints can generate a non-empty polyhedron 
of compatible value functions (Mousseau, Figueira, Dias, Gomes da 
Silva, & Climaco, 2003). Therefore, Mousseau, et al. (2003) proposed 
two alternative algorithms to identify such subsets of constraints which, 
when removed, lead to a consistent preference system. The maximal 
subsets of preference constraints are explored to act as input-level in-
formation in the subsequent decision process (Kadzhiski, Ghaderi, & 
Dabrowski, 2019; Liu, Liao, Huang, & Liao, 2019). The literature dis-
cussed above doesn’t involve with the selection policy and the DMs are 
confused with the existence of multiple feasible solutions such as the 
minimal subsets of inconsistent preference constraints or maximal sub-
sets of consistent preference constraints. The DMs suffers from a 
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subjective selection among objectively determined solutions. 
Some scholars characterize the inconsistency or conflict pieces of 

preference information through Dempster–Shafer Theory (DST) and 
resolve it by improving the combination rule or designing the dis-
counting methods (Zhao, Xue, Dong, Tang, & Wei, 2020). The mass of 
the empty set, i.e., m(∅), can be interpreted as the amount of conflict in 
the preference information (Destercke & Burger, 2013). m(∅) > 0 cor-
responds to the fact that no preference model satisfies all preferential 
information items at once. In the field of preference elicitation, without 
the assumption of the form of preference model, Destercke (2018) 
adopted belief functions to quantify such inconsistencies defining the 
selected space of preference model. To construct an efficient and robust 
preference elicitation, Guillot and Destercke (2019) extended the DST 
framework based on the minimax regret strategy considering a subset of 
possible preference models. To capture the extensive conflict, different 
conflict measures are taken into account in multi criteria decision 
making method. Therefore, outranking model is adopted by Silva and de 
Almeida-Filho (2016) and Silva and de Almeida-Filho (2018) to divide 
the conflict into the different levels within DST framework and then 
addressed prudently the pieces of preference information with high 
conflict. 

Preference elicitation and machine learning (ML) have the same 
spirit in the paradigm of learning form examples (Corrente, et al., 2013). 
Both try to build a specified preference model from exemplary judg-
ments delivered by the DM or decision examples from a training data set 
complying with the underlying preference. Th former does not allow the 
violation between the known holistic judgments and predicted results, 
while the latter converts it to the empirical error as loss function 
(Aggarwal & Fallah Tehrani, 2019). ML can be qualified as preference 
discovery without any intervention of the DM, which emphasizes the 
predictive precision, while preference elicitation is capable of acquiring 
enough knowledge and arguments for explanation of the decision (Liu, 
Kadziński, Liao, & Mao, 2021). This enables the DM to establish the 
preferences that previously had not pre-existed in her/his mind, to 
discover what is important for them, and to learn about their values, 
which contributes to the increase of the consistency between the evo-
lution of the process and value systems of the DMs. In summary, the 
multi-dimensional comparisons among Preference elicitation, Evidence 
reasoning and ML (covering the ordinal regression, ranking and pref-
erence learning settings) are conducted in Table 1: 

Uncertainties and imperfections constitute an indispensable part of 
MCDA such as uncertain data linked with future outcomes or imprecise 
model parameters (Mavrotas, Pechak, Siskos, Doukas, & Psarras, 2015). 
It is acknowledged that the inferred preference model should preserve 
the partial order between the compared pairs of alternatives. More 
concretely, pairwise comparison in the form of a≻b given by DMs should 
be consistent with the inferred preference relation, i.e., a should be 
ranked at least better than b. However, there is typically more than one 
minimal subset composed of inconsistent preference constraints or 
maximal subset composed of consistent preference information so that a 
wide range of the instances of preference model compatible with indi-
rect preference information exist. From a constructive perspective, 
preferences are highly context-dependent (Tversky & Simonson, 1993), 
and the selection policy and the tolerance attitudes of the DMs may 
change as the information learnt by the DMs is processing (Yang, Tou-
bia, & De Jong, 2015). Confronted with multiple optional strategies, the 
DMs are likely to change their selection on spot, depending on the in-
formation they encounter. Therefore, a major internal factor underlying 
uncertainty of preferences stems from changing the strategies and 
changing the revised preference constraints set used for conducting an 
assessment of decision alternatives, which would result in the variation 
of ranking order of alternatives. This uncertainty has been addressed by 
a Bayesian approach over the feasible utilities and an exploration of the 
space of the feasible utilities in the literatures (Corrente, et al., 2013). 
From the second view, depending on the problem setting, stochastic 
multicriteria acceptability analysis (SMAA) (Pelissari, Oliveira, Amor, 
Kandakoglu, & Helleno, 2019) determines all possible rankings or 
classifications for the alternatives, and quantifies the possible results in 
term of probabilities which considers each scenario that can occur or 
each set of preference parameters that can constitute a good represen-
tation of the reality (Hites, De Smet, Risse, Salazar-Neumann, & Vincke, 
2006). Furthermore, SMAA could provide the DMs with the descriptive 
indices like the rank acceptability index of alternatives or central pref-
erence parameters. As noted by Doumpos, Zopounidis, and Grigoroudis 
(2016), the investigation of robustness of the provided conclusions 
consists in verifying whether they are valid for the set of the most 
plausible instances of preference model. Obviously, the greater the 
robustness of the decision result that can be derived after taking into 
account uncertainties in the elicitation of preference parameters, the 
better. Therefore, in this paper, a SMAA-like simulation algorithm is 
proposed to analyze the robustness of the decision problem with respect 
the uncertainty of the decision model. 

Therefore, regarding the weights of DMs as credible levels attached 
to pieces of preference information, we undertake all these challenges 
together and provide a tolerance framework for robust group multiple 
criteria decision making to address the following research questions:  

• How to model the mandatory/sufficient requirements on criteria and
accommodate these tolerability constraints into group decision
making process?

• How to resolve the inconsistence issue resulting from indirect pref-
erence information associated with the distinctive credible levels
under tolerance framework?

• How to derive a robust decision confronted with the multiple feasible
minimal unsatisfied inconsistent preference constraints or maximum
satisfied consistent preference constraints?

The new features of the proposed approach are outlined as follows in
the fourfold. First, the tolerance attitudes of DMs such as the manda-
tory/sufficient requirements on criteria for specific alternatives, are 
quantified as tolerability constraints. PDA is extended to solve this type 
of tolerability constraints for preference elicitation. Second, in case of 
inconsistency issue, cause oriented optimization model and 
consequence-oriented optimization model are established so as to 
identify the whole minimal inconsistent or maximal consistent subsets of 
preference constraints. Third, simulation experiment is conducted to 

Table 1 
Elicitation procedure versus other methods.   

Preference 
elicitation 

Evidence reasoning ML 

Preference model Assumed a 
prior 

Not tailored to a 
specific form 

Flexible 

Input oriented 
information 

Human 
subjective 
judgments 

Human subjective 
judgments 

Observation of 
people’s 
behavior 

Interaction with 
human 

Yes Yes No 

The number of DMs One or group one –- 
Confidence levels to 

pieces of 
preference 
information 

Yes Yes No 

Typical sample size Small Small Large 
Noise/Inconsistency Noise-free data Noise-free data Noise allowed 
How to deal with 

noise or 
inconsistency? 

Discover and 
address 

Characterized as the 
empty set of mass 
function 

Viewed as loss 
function 

Is the preference 
model explicit? 

Yes No Yes 

Goal Provide a 
ranking result 
for DMs    
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investigate and verify the influence of global tolerance on the decision 
results in the conservative and radical scenarios. Lastly, to treat all 
possible sets of consistent preference constraints derived from the 
disposal of the minimal inconsistent preference constraints or the 
restoration of the maximum consistent preference constraints from a 
robust perspective, SMAA-like simulation algorithm is generated to 
handle the uncertainties in a probabilistic form by exploring the whole 
compatible set of instances of preference model. 

Overall, the paper is organized as follows. In Section 2, we introduce 
fuzzy measure and integrals and the characterization of local/global 
tolerance of criteria. In Section 3, two strategies with tolerability con-
straints are developed for inconsistency management in the context of 
group MCDM. Then, an SMAA-like simulation algorithm is proposed for 
robust analysis. In Section 4, a simulation experiment is given in con-
servative and conservative scenarios. In Section 5, a hypothetical 
application of the credit ranking of small and medium-sized enterprises 
(SMEs) is illustrated using the proposed framework. In Section 6, con-
clusions and future research are discussed. 

2. Preliminaries

Considering the advantage of fuzzy measures over additive measures
in describing criteria interactions, Choquet integral preference model 
(Grabisch, 1997) defined on fuzzy measures is employed in this paper 
characterizing the human preference over alternatives with interaction 
criteria. Then tolerability constraints are also described. 

2.1. Fuzzy measure 

In general, fuzzy measures can be regarded as generalizations of 
weights during the aggregation process for MCDM. Denote N = {1,…,n} 
as the finite set (the label set of criteria set) and P(N) as power set. 
Denote lower case letter s as the cardinality of set S. 

Definition 1. (Grabisch, 1997) A fuzzy measure is a set 
function:μ : P(N)→[0, 1], satisfying the normalization and monotonic con-
ditions respectively: 

(1) μ(∅) = 0 andμ(N) = 1; 
(2) ∀S,T⫅P(N) andT⫅S⫅N ⇔ μ(T)⩽μ(S). 
A fuzzy measure assigns weights to all subsets S⫅N to reflect relative 

importance of the coalitions of inputs. The Möbius representation of a 
fuzzy measure μ is a set function m on N defined by. 

m(S) =
∑

T⫅S

( − 1)(s− t)μ(T),∀S⫅N (1) 

Its inverse is the Zeta-transform: 

μ(S) =
∑

T⫅S

m(T), ∀S⫅N (2) 

In terms of Möbius representation, properties (1) and (2) are 
respectively transformed into. 

(1a) m(∅) = 0 and
∑

T⫅Nm(T) = 1; 
(2a)∀i ∈ N,S⫅N\i,m({ i})+

∑
T⫅Sm(T ∪ { i})⩾0. 

Definition 2. (Grabisch, 1997) For a givenx ∈ [0, 1]n, its discrete Cho-
quet integral with respect to μ is defined as follows: 

C I μ(x) =
∑n

i=1

[
x(i) − x(i− 1)

]
μ ({(i), ..., (n)}) (3) 

or equally by C I μ(x) =
∑n

i=1[N(i) − N(i+1)] x(i) where the paren-
theses used for indices represent a permutation on N. x(i) stands for a 
non-decreasing permutation induced by xi such that x(0)⩽x( 1 )⩽...⩽x(n)

andx(0) = 0.N(i) = {(i), ..., (n)}. 
In Möbius representation, the above discrete Choquet integral can be 

explained as follows: 

C I μ(x) =
∑

T⫅N

m(T)min i∈T {xi } (4)  

Definition 3. (Grabisch, 1997) Let μ be fuzzy measure on N. The 
Shapley index can be used to characterize the importance of individual 
inputs: 

φ(i) =
∑

S⫅N\i

(n − s − 1)!s!
n!

(μ(S ∪ {i}) − μ(S)) (5)  

where 0! = 1 as usual. Interaction index which generalized Shapley 
index to characterize the interactions between the inputs is defined as: 

I(S) =
∑

T⫅N\S

(n − t − s)!t!
(n − s + 1)!

∑

R⫅S

( − 1)s− rμ(T ∪ R),∀S⫅N (6) 

I(S) reduces to Shapley index when S is a singleton. 
When I(S) is negative, criteria among S are substitutive or have a 

negative synergy. Similarly, when I(S) is positive, criteria among S are 
complementary or have a positive synergy. When I(S) is equal to 0, 
criteria among S are independent and have no interaction. 

Definition 4. A fuzzy measure μ is said to be k-additive if its Möbius 
transform satisfies m(S) = 0 for any S⫅N such that s > k and there exists at 
least one subset S⫅N of exactly k elements such that m(S) ∕= 0. 

Definition 5. (Marichal, 2007) Fuzzy measure μ on N is k-tolerant (k =
1,…,n) if μ(S) = 1 for all S⫅N such that s ⩾k and there exists a subset T⫅N 
with t = k − 1 such thatμ(T) ∕= 1; Fuzzy measure μ on N is k-intolerant (k 
= 1,…,n) if μ(S) = 0 for all S⫅Nsuch that s ⩽n − k and there exists a subset 
T⫅N with t = n – k + 1 such thatμ(T) ∕= 0. 

2.2. Tolerance attitudes of the DMs 

The tolerance attitudes of the DMs measure the tolerance of criteria 
locally and globally, which is a type of requirement on criteria and can 
be modeled into human decision process under fuzzy measure decision 
making environment. 

2.2.1. Characterization of global tolerance 
The concept of andness (closeness to the minimum) and orness 

(closeness to the maximum) is first proposed to depict conjunctive and 
disjunctive degrees, respectively. Based on the theoretical research, the 
practical implications of these concepts are considered in real decision- 
making problems. In the engineering field (Dujmovic, 2007), the level of 
satisfaction of system was interpreted as the degree to which an 
analyzed system completely satisfies all requirements in post-hoc anal-
ysis. Yager and Alajlan (2015) suggested that the degrees of conjunction 
and disjunction of operators, measured by andness/orness, can be 
regarded as a measure of optimism. Marichal (2004) provided a concise 
format of andness/orness index to depict the tolerance attitudes of the 
DMs on criteria for management decision. 

Definition 6. (Marichal, 2004) Let μ be fuzzy measure on N. The 
relationship between global tolerance and intolerance is deduced as follows: 

oreness
(
C I μ

)
=

1
n − 1

∑

T⊂N

(n − t)!t!
n!

μ(T) (7)  

andness
(
C I μ

)
= 1 − orness

(
C I μ

)
(8) 

The mathematical and behavioral interpretations of orness index 
correspond to the disjunction of max operator and a tolerant (rick- 
seeking) propensity of DMs which are willing to accept that only some 
criteria are satisfied. On the other side, the mathematical and behavioral 
interpretations of the andness correspond to a conjunction of min 
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operator and an intolerant (rick-averse) propensity of DMs demanding 
that most criteria be satisfied. From an applicable perspective, k-intol-
erant and k-tolerant fuzzy measures can reduce preference parameters of 
preference elicitation from O(2n) to O(nk− 1). Moreover, when varying k 
from 1 to n, all the possible fuzzy measures on n criteria can be disclosed. 

2.2.2. Characterization of local tolerance 
The global tolerance attitudes of the DMs can be expressed by the 

andness/orness index, but sometimes local attitudes to specific criteria 
also play an integral role where some criteria may have a certain degree 
of veto or favor effect. A veto index indicates more or less the degree to 
which the DMs demand that a specific criterion is satisfied. A favor index 
indicates the degree to which the DMs consider that a good score along a 
specific criterion is sufficient to be satisfied. 

Definition 7. (Marichal, 2004) Let μ be fuzzy measure on N. The veto 
index and favor index for certain criteria as local tolerance are defined as 
follows: 

veto
(

C I μ, i
)
= 1 −

n
n − 1

∑

T⫅N/i

1
t + 1

m(T) (9)  

favor(C I u, i) =
n

n − 1
∑

T⫅N/i

1
t + 1

[m(T ∪ i) + m(T)] −
1

n − 1
(10) 

Even though the veto and favor effect on criterion mentioned above 
are extreme cases, some criteria may have a certain degree of veto or 
favor in the real applications. Therefore, it is worth investigating the 
influence of the mandatory or sufficient requirement of criteria on the 
final decisive decision. 

The local/global tolerance degrees of DMs for criteria can be defined 
in multiple forms. First, they can be derived in a direct manner rated by a 
numerical degree measuring the intensity (between 0 and 1) to which a 
given criterion behaves like a veto or a favor for Choquet integral 
preference model. For example, the question that “would you like to 
accept the performance of criterion g1 as the minimum of the entire 
alternative?” could be provided to the DMs and they are required to 
assign the scale of favor/veto degree on certain criterion. The larger the 
score is, the more possibly the DMs would like to accept the performance 
of criterion g1 as the minimum limit of the entire alternative and vice 
versa. To enhance the flexibility of the proposed approach, the various 
applicable indirect manners are provided to the DMs for expressing the 
tolerance attitudes. The detail descriptions consist in the Subsection 3.1. 

3. Robust development of tolerance framework by Monte Carlo
simulation 

3.1. Problem formulation 

We consider the following multiple criteria decision making prob-
lem. A = {a1, ..., ai, ..., am} is a set of alternatives evaluated by a family 
criteria setG = {g1, ..., gj, ..., gn}. Without the loss of the generality, we 
assume that all criteria are benefit types. The priority of each DM in the 
context of group decision making is differentiated by a weight vector λ =

{λ1, ..., λt , ..., λT} such that 
∑T

t=1λt = 1 andλt > 0, which can be perceived 
as confidence level or credible level of preference information. Ac-
cording to indirect preference information such as pairwise comparison 
among alternatives and criteria as well as the interaction, importance 
and tolerance of criteria, Choquet integral preference model tends to 
give a range of aggregation results for the same arguments of aggrega-
tion under the condition that indirect preference information is consis-
tent. To this end, we intend to learn the whole compatible instances of 
preference parameters and give the result in a probabilistic form for 
robust multiple criteria group decision making. 

It is worth noting that the DMs’ tolerance attitudes are not manda-
tory at all. They can express neutral tolerance attitudes with no 

additional information. At this time, the problem is reduced to the 
objective preference elicitation. The basic constraints related to 
boundary and monotonicity conditions for the identification of fuzzy 
measures in Möbius representations are denoted asEBase: 

EBase

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

m(∅) = 0,
∑

gj∈G
m
(
gj
)
+

∑

gj ,gk∈G
m
( {

gj, gk
})

= 1

m
(
gj
)
⩾0, ∀gj ∈ G

∑

i∈T,T⫅S

m(T)⩾0, ∀S ∈ 2G

m
(
gj
)
+
∑

gk∈T
m
( {

gj, gk
})

⩾0, ∀gj∈ G, T⫅G\gj, T ∕= ∅ 

Some criteria may be decisive in the sense that the global score (of 
any alternative) obtained by aggregation is bounded by the partial score 
along one of them. With this consideration, borrowing the idea from (Li 
et al., 2018) to resolve the first research question, veto/favor effects are 
employed to depict the tolerance to individual criterion. Given this, we 
model tolerances attitudes fully into MCDA in fuzzy measures and enrich 
the literature about preference elicitation. 

The DMs’ indirect preference information such as pairwise compar-
ison among alternatives and criteria as well as the interaction, impor-
tance and tolerance of criteria is translated into the linear constraints, 
denoted as EPI: 

Indirect preference information on criteria:  

• Comparisons related to importance and interaction of criteria:

Criterion j is more important than criterion k (gj ≻ gk):
φ (gj)⩾φ (gk) + ε 

Criteria j and k exhibit the same importance (gjgk̃): φ (gj) = φ (gk)

Criteria j and k are synergic (or redundant): φ ({gj, gk})⩾ε(⩽ − ε).

• Comparisons related to local tolerance attitude of criteria:

Criterion j is more intolerant than criteria k (gj≻vetogk): veto (C I μ,

gj) > veto (C I μ,gk). 
Criteria and k exhibit the same intolerance (gj ∼ vetogk): veto (C I μ,

gj) = veto (C I μ,gk). 
Criterion j is more tolerant to criteria k (gj≻fa vorgk): favor (C I μ,gj)

> favor (C I μ, gk). 
Criteria j and k exhibit the same tolerance (gj ∼ favorgk): favor (C I μ,

gj) = favor (C I μ,gk). 
Indirect preference information on reference alternatives.
Alternative ai is preferred to ah (ai ≻ ah): C I μ (ai)⩾C I μ (ah) + ε 
Alternative ai is indifferent to ah (aiãh): C I μ (ai) = C I μ (ah)

Note that the above statements quantify the veto/favor effect on
criterion in a preference relation. More expression can be referred to 
Subsection 3.2. 

When indirect preference information provided by the DMs is 
consistent, there exist at least one set of preference parameters satisfying 
the constraints inEBase ∪ EPI. 

3.2. Strategies for inconsistency issues under tolerance framework 

DMs can benefit from the available and various preference infor-
mation when articulating decision judgments, while the inconsistency 
issue impedes the further analysis. To assure the feasibility of poly-
hedron transformed from the DMs’ indirect preference information, a 
linear program (named P0) is constructed to check the feasibility of the 
constraints in EBase ∪ EPI and decide whether at least one set of Möbius 
parameters compatible with indirect preference information of DMs or 
exists or not. An instrumental variableε, a small arbitrary positive value, 
is introduced to transform strict inequalities into weak inequalities. 
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(P0 ) m a x ε
s.t. EBasic ∪ EPI 

If ε* = max ε > 0, the linear system is consistent and at least one 
Choquet integral preference model compatible with indirect preference 
information derived from the DMs. In this case, m* is the optimal so-
lution of this linear program. Ifε* = max ε⩽0, there is no feasible 
solution. 

Considering that the DMs may drop two constraints they consider 
unimportant rather than drop a single important one, sets of constraints 
with minimum cardinality that restore the consistency if removed need 
to be discovered. If one of the constraints caused the inconsistency is 
recognized, DMs removing them is a trivial manner, while the question 
here is what preference constraints with minimum cardinality exist. If 
the DMs cannot decide to remove any piece of preference information, 
decision analyst needs to provide possible subsets of the maximal 
consistent preference information. Therefore, to resolve the second 
research question, in case of preference inconsistency, we propose two 
strategies based on 0–1 mixed integer linear program to resolve it. 

3.2.1. Cause oriented strategy 
In case of the incompatibility (i.e., the linear system translated from 

the ordinal preference information is infeasible), the identification of the 
minimal subset of inconsistent preference constraints can decipher the 
reason of the preference contradiction for the DMs. The preference 
constraints in EPI introduce the binary variables to find the inconsistent 

constraints, which is denoted asẼ
PI

: 
C I μ(ai)+M v(ai, ah)⩾C I μ(ah)+ε* ifai ≻ ah. 

C I μ(ai) = C I μ(ah) ifaiãh. 
φ(gj)+M vφ(gj, gk)⩾φ(gk)+ε* ifgj ≻ gk. 

φ(gj) = φ(gk) ifgjgk̃. 
φ({gj, gk})⩾ε if gjand gk are synergic. 
φ({gj, gk})+ε⩽0 if gj and gk are redundant. 
veto(φμ, gj)+M vveto

μ (j, k)⩾veto(φμ, gk)+ε ifgj≻vetogk. 
veto(φμ, gj) = veto(φμ, gk) ifgj ∼ vetogk. 
favor(φμ, gj)+M vfavor

μ (j, k)⩾favor(φμ, gk)+ε ifgj≻fa vorgk. 
favor(φμ, gj) = favor(φμ, gk) ifgj ∼ favorgk. 
The weight of each DM in the group can be regarded as the confi-

dence level or credible level of preference information. According to 
this, preference constraint with the higher priority occurs more 
frequently in minimal inconsistent subsets of preference information 
than that with a lower priority. Therefore, the goal aim to find the most 
credible minimal set of inconsistent preference information. 

( MIP 1 ) min
∑

λt ,t=1,....,T
λt(

∑

ai ,ah

v(i,h)+
∑

gj ,gk

vφ(j,k)+vveto
μ (j,k)+vfavor

μ (j,k))

s.t. EBasic∪Ẽ
PI

v(i,h)∈{0,1}

vφ(j,k), vveto
μ (j,k),vfavor

μ (j,k)∈{0,1}

After solving the model MIP1, v(i,h)=1,vφ(j,k)=1, vveto
μ (j,k)=

1,vfavor
μ (j,k)=1 for any (ai,ah)∈A×A and (gj,gk)∈G×G associated with 

indirect preference information represent inconsistent preference in-
formation which would be discarded. Let f*

1 and v(i,h)*,vφ(j,k)*,
vveto

μ (j,k)*,vfavor
μ (j,k)* be the optimum of the objective function and the 

optimal solution of model MIP 1. Let SAlt = {(ai, ah)|v(i, j)*∕=0}andSCri =

{(gj, gk)

⃒
⃒
⃒vφ(j, k)*∕=0, vveto(j, k)*∕=0, vfavor(j, k)*∕=0}. Note that there is 

more than one minimal subset of inconsistent preference constraints. In 
some cases, there are multiple possible solutions corresponding to the 
minimum number of preference information. We can search for more 
solutions by solving MIP1 with one additional constraint|

∑
(ai ,ah)∈SAlt v(i,

h)+
∑

(gj ,gk)∈SCri vφ(j, k)+ vveto
μ (j, k)+ vfavor

μ (j, k)⩽f *
1 − 1. Model MIP1 is solved 

continuedly with the extended constraint set until the optimum of the 
objective function is less than f *

1 The optimal solution at each iteration 
indicates different solutions. 

3.2.2. Consequence oriented strategy 
When the group is not willing to learn and understand where and 

why their judgements do not comply with the consistency principle, 
finding the consequence that restoring the maximal consistent prefer-
ence information is a straightforward way. The constraints in EPI intro-
duce the binary variables to find the whole consistent constraints, which 

is denoted asẼ
PI

: 
C I μ(ai)+M(1 − v(ai, ah))⩾C I μ(ah)+ε* ifai ≻ ah. 

C I μ(ai) = C I μ(ah) ifai ∼ ah. 
φ(gj)+M(1 − vφ(gj, gk))⩾φ(gk)+ε* ifgj ≻ gk. 

φ(gj) = φ(gk) ifgj ∼ gk. 
φ({gj, gk})⩾ε if gjand gk are synergic. 
φ({gj, gk})+ε⩽0 if gj and gk are redundant. 
veto(φμ, gj)+M(1 − vveto

μ (j, k))⩾veto(φμ, gk)+ε ifgj≻vetogk. 
veto(φμ, gj) = veto(φμ, gk) ifgj ∼ vetogk. 
favor(φμ, gj)+M(1 − vfavor

μ (j, k))⩾favor(φμ, gk)+ε ifgj≻fa vorgk. 
favor(φμ, gj) = favor(φμ, gk) ifgj ∼ favorgk. 
It is assumed that each piece of preference information with a higher 

priority occurs more frequently in maximal subsets of consistent pref-
erence information than that with a lower priority. Therefore, the goal 
aim to find the most credible set composed of maximal consistent 
preference information. 

( MIP 2 ) max
∑

λt ,t=1,....,T
λt

⎛

⎝
∑

ai ,ah

v(i,j)+
∑

gj ,gk

vφ(i,j)+vveto
μ (i,j)+vfavor

μ (i,j)

⎞

⎠

s.t. EBasic∪Ẽ
PI

v(i,h)∈{0,1}

vφ(j,k), vveto
μ (j,k),vfavor

μ (j,k)∈{0,1}

After solving the model MIP2, v(i,h)=1,vφ(j,k)=1, vveto
μ (j,k)=

1,vfavor
μ (j,k)=1 for any (ai,ah)∈A×A and (gj,gk)∈G×G associated with 

indirect preference information represents the consistent preference 
information which would be restored. Let f *

2 and v(i,h)*,vφ(j,k)*,
vveto

μ (j,k)*,vfavor
μ (j,k)* be the optimum of the objective function and the 

optimal solution of model MIP 2. Let SAlt
2 ={(ai,ah)|v(i,j)*∕=0} andSCri

2 =

{(gj, gk)

⃒
⃒
⃒vφ(j, k)*∕=0, vveto(j, k)*∕=0, vfavor(j, k)*∕=0}. Note that there is 

more than one maximal subset of consistent pairwise comparisons. In 
some cases, there are multiple possible solutions corresponding to the 
maximum number of preference information. We can search for more 
solutions by solving MIP2 with one additional constraint|

∑
(ai ,ah)∈SAlt

2
v(i,

h)+
∑

(gj ,gk)∈SCri
2

vφ(j, k)+ vveto
μ (j, k)+ vfavor

μ (j, k)⩽f *
2 − 1. Model MP2 is solved 

continuedly with the extended constraint set until the optimum of the 
objective function is less than f *

2 The optimal solution at each iteration 
indicates different restoration solutions. 

Other constraints on veto (C I μ, gj) (or favor (C I μ,gj)) (j = 1,...,n) 
can also be incorporated into the optimization models. Five types of 
constraints on veto (C I μ, gj) (or favor (C I μ, gj)) (j = 1, ...,n) are also 
handled under tolerance framework including: (1) fuzzy preference 
constraint, such asveto(C I μ, g1)/(veto(C I μ, g1)+ veto(C I μ, g2)) =

p12, where p12 denotes a reciprocal fuzzy preference relation with values 
in the interval [0,1] (Al Salem & Awasthi, 2018); (2) multiplicative 
preference constraint, such asveto(C I μ, g1)/veto(C I μ, g2)) = r12, 
where r12 denotes a reciprocal multiplicative preference relation with 
values in the interval scale [1/9,9] (Herrera-Viedma, Herrera, Chiclana, 
& Luque, 2004); (3) linear inequality constraint, such asveto(C I μ,g1) +

veto(C I μ, g2)⩽veto(C I μ, g3),veto(C I μ, g1)⩾0.1,veto(C I μ,
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g1) − veto(C I μ,g2)⩾0.1, andveto(C I μ,g1) − veto(C I μ,g2)⩽veto(C I μ,

g3) − veto(C I μ, g4); (4) fuzzypreference inequality constraint, such 
asveto(C I μ, g1)/(veto(C I μ, g1)+ veto(C I μ, g2))⩾p12; and (5) multi-
plicative preference inequality constraint, such asveto(C I μ, g1)/

veto(C I μ,g2))⩾r12. The constraints (1) and (2) are stricter than (4) and 
(5). All specified constraints on veto(C I μ, gj) (or favor(C I μ,gj)) (j =

1, ..., n) should be consistent with the intrinsic constraintEBase. If more 
than one constraint on veto(C I μ, gj) (or favor(C I μ, gj)) (j = 1, ...,n) 
needs to be handled, the constraints must form a feasible region. 
Otherwise, the relevant optimization models and problems will have no 
feasible solutions. For the sake of simplification, tolerability constraints 
can be simplified as the linear constraints {Am⩽b} where A is the co-
efficient matrix and b is constant factor vector related to the preference 
parameters m. 

3.3. Simulation concern 

Cause oriented strategy and consequence oriented strategy are 
available to DMs simultaneously. When DMs select any aforementioned 
one for inconsistency management, the obtained preference parameters 
in Möbius representations may generate a corresponding but different 
solution. Confronted with the incompatible indirect preference infor-
mation, guaranteeing necessary consistency (i.e., the removal of 
inconsistent preference information or the restoration of the consistent 
preference information) are obviously achievable but not affirmable for 
DMs, which results in the third research question. To address this 
obstacle, we concatenate the strategies to resolve the inconsistency of 
indirect preference information into a Monte Carlo simulation used as a 
supplement for uncertainty. In the tolerance framework, the primary 
step is to produce the set of the whole preference parameters compatible 
with indirect preference information of DMs and further generate a so-
lution in a probabilistic form for robustness concern. In the following we 
analyze how much the rank acceptability indices and the lexicographic 
rankings of alternatives change with the tolerance attitudes of DMs 
when the whole set of the feasible preference parameters is taken into 
account. 

Choquet integral preference model can capture the interaction, 
importance and tolerance degree of criteria as well as pairwise com-
parison among alternatives and criteria in this study. The Monte Carlo 
simulation for robust decision is developed to. 

(1) randomly and feasibly generate preference parameters in Möbius 
representations based on the subjective human judgments; 

(2) randomly select the resolution strategies for inconsistent 
management; 

(3) randomly select a possible minimal inconsistent or maximal 
consistent set of preference constraints. 

This simulation is similar to SMAA and can undertake the decision 
mission under highly uncertain environment. It must be noted that 
under the term “sensitivity analysis” we change one parameter at a time. 
On the contrary, using Monte Carlo simulation (like e.g. in SMAA) we 
can simultaneously change the required parameters (the three random 
factors in our case) in a systematic way (Mavrotas, et al., 2015). The 
proposed methodology suggests that all above random variables are 
subject to the uniform distribution and independent and identically 
distributed when preferential information is available but uncertainty. 

Random generation of the preference parameters is performed with 
the use of continue uniform distribution and defined on a convex 

polyhedron constrained in EBase ∪ Ẽ
PI

. The application of the Choquet 
integral defined on fuzzy measures is used as preference aggregation. On 
the other hand, random generation of the selection strategy is performed 
with the use of discrete uniform distribution because there are two 
inconsistency management strategies. On the same note, random gen-
eration of the application of the concordant preference information set 
disclosed by the MIP1 or MIP2 is conducted with the use of discrete 
uniform distribution. In each Monte Carlo iteration one independent 

random variable from [1,2] is generated to adopt the corresponding 
strategy: 

Sk i.i.d.U{1, 2} (11)  

where random variable Sk generated in the k-th iteration determines the 
strategy selection (1 –cause oriented strategy, 2 –consequence oriented 
strategy). 

PIk i.i.d.U{1, 2, ...} (12)  

where random variable PIk generated in the k-th iteration determines the 
concordant preference information set. The number of the concordant 
preference information is associated the selection of strategies and the 
intra nature of inconsistency preference information. 

Mathematically, Choquet integral preference model C I (ai,m) is a 
map function defined on the basic feasible preference parameter space 
in Möbius representations denoted as  

M =
{

m ∈ Rn+C2
n : m(∅) = 0 ; ∀gi ∈ G, T⫅G/{gi},

∑
gi∈Gm(gi)+

∑
{gi ,gj}∈Gm({gi, gj})= 1 };∀i ∈ N, m(i)⩾0 ; T ∕= ∅,

m(gi) +
∑

j∈Tm({gi, gj})⩾0
}

where the preference parameters follow a

continuous uniform distribution with a density functionfM(m) =

1/vol(M). Rank function for counting the rank of alternative ai is defined 
as rank(ai) = 1+

∑m
k=1,i∕=kρ(C I (ai,m) > C I (ak,m)) whereρ(true) = 1, 

andρ(false) = 0. 
Similar to SMAA, the primary measure, named as the rank accept-

ability index (RAI) br
i is defined which measure the share of different 

preference parameters to determine preference model and give the i-th 
alternative the r-th position in the ranking. More concretely, it is the 
proportion of all possible configurations of the preference parameters in 
favorable preference space that makes ai acceptable to a certain rank r. 
During the subsequent iterations Bir statistic collects the numbers of 
alternative ai obtaineing the r-th position in the ranking. The second 
descriptive measure named as central preference parameter vector in 
Möbius representations is defined which is the barycenter of the feasible 
preference parameter space assuring that alternative ai ranks 1. The 
algorithm of SMAA-like generic simulation analysis is given as 
following.  

Algorithm. Generic simulation analysis 

Input: Assume a preference model C I (ai,m) for ranking with indirect preference 
information, i.e., the interaction, importance and tolerance of criteria as well as 
pairwise comparison among alternatives and criteria. 

Use mathematical programming to check whether there exist the compatible 
preference model with DMs’ indirect preference information. 

If the result is true 
Compute C I (ai,m*) and Rank the alternatives according to CI (ai,m*) where m* 
is the optimal preference parameters. 

Else 
Repeat K times { 

Select randomly strategies for the inconsistency issues and concordant preference 
information disclosed by MIP1 or MIP2. 
Treat stochastic preference parameters and Draw CI (ai,m) from their 
distributions 
Rank the alternatives using C I (ai,m)

Update statistics about alternatives 
} 

Output RAI and central preference parameters based on the collected statistics  

4. Simulation experiment

In this section, the illustration from (Angilella, Corrente, & Greco,
2012) is adopted across two extreme scenarios to verify the proposed 
approach and investigate the influence of the global tolerance of criteria 
(e.g., tolerability constraints) on the final decision. In the conservative 
scenario, DMs are prudent to make a decisive decision because each 
criterion acts as a block role where the performance on any criterion is 
such a dissatisfactory-one that the corresponding alternative would be 
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denied. On the contrary, in the radical scenario, partial satisfactory 
performances of the alternative on certain criteria regarded as push roles 
are aggregated to an adequate overall assessment. For the sake of 
simplicity, the tolerance attitudes of DMs are given by an ordinal 
assessment in two scenarios. 

The conservative scenario considers a global tolerance with a k- 
intolerant fuzzy measures (k = 1,…,4). The DMs can deny an alternative 
that performs poorly on any k criteria, even though they are likely to 
perform very well on others. Let veto (C I μ, g1) > veto (C I μ, g3) >

veto (C I μ, g4) > veto (C I μ, g2). Jointly with the boundary and 
monotonicity conditions, the consistency of these preference constraints 
is checked, and it is verified that there is no inconsistency issue. When 
the veto index for each criterion is determined, the preference param-
eters are not to identify the most representative or general one (Kad-
ziński, Ghaderi, Wąsikowski, & Agell, 2017) while the robust one is the 
target in this study. At the end of all the iterations, RAIs in the conser-
vative scenario are obtained in Table 2. 

There are some interesting results. Firstly, as shown in Table 2, with 
the limitation of tolerance attitude of DMs, the RAIs of alternatives drop 
slightly especially on the top rank with the increase of k (the criteria 
number of intolerance), whereas RAIs increase on the bottom rank. Take 
an example of a7. In 1-intolerance case, the first RAI of a7 is 1, indicating 
a7 is the best alternative based on the DMs’ prior knowledge and global 
tolerance attitude. 1-tolerance is not so restrictive requirement that the 
assessment of the alternative a7 would be slightly liberal. An alternative 
has more possibility to get a higher rank if it outperforms the others but 
only fails at most one criterion. With the increase of k, the first RAI of a7 
decreases from 1 to 0.66. The probability of a7 obtaining the best rank 
deduces. Confronted with the more mandatory requirements on criteria, 
the advantageous assessment of an alternative is more difficult to ac-
quire than before. It is the solid evidence that the tolerance framework 

corresponds to the human logic. Secondly, the dispersion of the ordinary 
alternatives whose the peak RAIs are located in the middle of rank po-
sition grows with the increase of k. Take examples of a3 and a6. In 1- 
intolerance case, the greatest RAIs of a6 and a3 are b4

6 (=0.55) and 
b5

3(=0.45), respectively, indicating that a6 and a3 are the most credible 
fourth and fifth alternatives based on the DMs’ prior knowledge and 
global tolerance attitude. In 4-intolerance case, the possible ranks of a6 
and a3 increase, implying the conservative attitude of DMs. They cannot 
affirm which is the most predominant alternative. 

The radical scenario is with a k-tolerance fuzzy measures (k =
1,2,3,4). The DMs can prefer alternatives who perform predominantly 
on any k criteria of four criteria, even though they perform poorly 
compared with other alternatives on others. Let favor (C I μ, g1) >

favor (C I μ,g3) > favor (C I μ,g4) > favor (C I μ,g2). Jointly with the 
boundary and monotonicity conditions, the consistency of these pref-
erence constraints is checked and it is verified that there is no incon-
sistency issue. At the end of all the iterations, RAIs in the radical scenario 
are obtained in Table 3. 

There are some interesting results. Firstly, as shown in Table 3, with 
the alleviation of tolerance attitude of DMs, the RAIs of alternatives 
increase remarkably especially on the top rank with the increase of k 
(the criteria number of tolerance). By contrast, RAIs decrease on the 
bottom rank. Take an example of a7. In 1-tolerance case, the first RAI of 
a7 is 0.66 and the second RAI of a7 is 0.34. Note that 1-tolerance case is 
relatively restrictive that the assessment of the alternative would not be 
as liberal as 1- intolerance case. Therefore, with the increase of k, the 
first RAI of a7 increases from 0.66 to 1. The probability of a7 obtaining 
the first rank grows indicating that the advantageous assessment of any 
alternative from the DMs is easy compare with the 1- intolerance case. It 
is obvious that the DMs ease the global tolerance attitudes towards 
criteria where the alternative with partial satisfactions on some criteria 

Table 2 
RAIs in the conservative scenario with different k-intolerance (k = 1,2,3,4).   

k  b1
i b2

i b3
i b4

i b5
i b6

i b7
i b8

i b9
i 

a1 1  0 1 0 0 0 0 0 0 0  
2  0 0.80 0.20 0 0 0 0 0 0  
3  0 0.30 0.70 0 0 0 0 0 0  
4  0 0.14 0.83 0.03 0 0 0 0 0 

a2 1  0 0 0.01 0.01 0.01 0.16 0.14 0.66 0  
2  0 0 0 0 0.01 0.08 0.32 0.60 0  
3  0 0 0 0 0.03 0.07 0.29 0.61 0  
4  0 0 0.01 0.02 0.08 0.07 0.33 0.49 0 

a3 1  0 0 0.20 0.25 0.45 0.10 0 0 0  
2  0.01 0.17 0.26 0.35 0.21 0 0 0 0  
3  0.19 0.49 0.15 0.16 0 0 0 0 0  
4  0.34 0.51 0.09 0.06 0 0 0 0 0 

a4 1  0 0 0 0 0.09 0.62 0.28 0.01 0  
2  0 0 0 0 0 0.87 0.13 0.01 0  
3  0 0 0 0 0.01 0.71 0.27 0.01 0  
4  0 0 0 0 0.10 0.61 0.28 0.01 0 

a5 1  0 0 0 0 0 0.09 0.59 0.33 0  
2  0 0 0 0 0 0.05 0.56 0.39 0  
3  0 0 0 0.02 0.06 0.09 0.44 0.38 0  
4  0 0 0 0.01 0.07 0.05 0.36 0.50 0 

a6 1  0 0 0 0.55 0.42 0.04 0 0 0  
2  0 0 0 0.22 0.77 0.01 0 0 0  
3  0 0 0 0.01 0.86 0.13 0 0 0  
4  0 0 0 0 0.70 0.27 0.03 0 0 

a7 1  1 0 0 0 0 0 0 0 0  
2  0.99 0.01 0 0 0 0 0 0 0  
3  0.81 0.19 0 0 0 0 0 0 0  
4  0.66 0.34 0 0 0 0 0 0 0 

a8 1  0 0 0.79 0.19 0.02 0 0 0 0  
2  0 0.03 0.54 0.43 0 0 0 0 0  
3  0 0.01 0.15 0.80 0.03 0 0 0 0  
4  0 0.02 0.07 0.86 0.05 0 0 0 0 

a9 1  0 0 0 0 0 0 0 0 1  
2  0 0 0 0 0 0 0 0 1  
3  0 0 0 0 0 0 0 0 1  
4  0 0 0 0 0 0 0 0 1  
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are adequate, which is consistent with the human logic. Secondly, al-
ternatives whose RAIs are equal to 1 regardless of the rank position 
increase, indicating the DMs’ radical attitude towards criteria. Those 
alternatives with adequate performance on certain criteria consistent 
with the tolerance attitudes of the DMs have chance to rank better. 

5. Illustrative example

5.1. Application in the project selection problem 

A hypothetical 20 SMEs (small and medium-sized enterprises) credit 
ranking problem on considered six criteria is analyzed in this section, 
which is adopted from (Angilella & Mazzù, 2015). There are six criteria 
denoted as development risk (g1), technological risk (g2), market risk 
(g3), production risk (g4), innovation capability (g5) and finance capa-
bility (g6). The evaluations on criteria of SMEs have been normalized on 
a common scale in Table 4. 

For the sake of simplicity, 2- tolerant or 2-intolerant fuzzy measures 
are considered here. For example, a SME performs well on financial 
indicator (g6) and innovation indicators (g5) but poorly in other in-
dicators. In this regard, the DMs (credit officers in the bank) think it 
qualified well in the long term. By contrast, a SME is perceived as un-
qualified because it performs deficiently on technological risk (g2) and 
market risk (g3). In the former case, the DMs regards finance capability 
(g6) and innovation capability (g5) as favor criteria, which work more 
like a pusher than other criteria. In other words, the DMs exert more 
expectation on these two criteria (e.g., g5 and g6) than other criteria. 
However, technological risk (g2) and market risk (g3) act as veto criteria, 
indicating a block effect than other criteria. Namely, the DMs exert more 
restrictions on these two criteria (e.g. g2 and g3) than any other criteria. 
Assume that the weights of four DMs in the group are equal. Indirect 
preference information is expressed as follows:  

• φ (1) > φ (2) > φ (4) > φ (5) > φ (3) > φ (6)
• veto (5) > veto(3) > veto(4)
• favor (6) > favor(1) > favor(2) > favor(4)
• a1 ≻ a2 ≻ a3 ≻ a4 ≻ a5 ≻ a6 

Table 3 
RAIs in the radical scenario with different k-tolerance (k = 1,2,3,4).   

k b1
i b2

i b3
i b4

i b5
i b6

i b7
i b8

i b9
i 

a1 1 0 0.14 0.83 0.03 0 0 0 0 0  
2 0 0 0 0 1 0 0 0 0  
3 0 0.62 0.35 0.03 0 0 0 0 0  
4 0 0.95 0.05 0 0 0 0 0 0 

a2 1 0 0 0.01 0.02 0.08 0.07 0.33 0.49 0  
2 1 0 0 0 0 0 0 0 0  
3 0 0.01 0 0.01 0.05 0.12 0.27 0.48 0.05  
4 0 0 0 0 0.01 0.03 0.06 0.85 0.04 

a3 1 0.34 0.51 0.09 0.06 0 0 0 0 0  
2 0 1 0 0 0 0 0 0 0  
3 0 0.32 0.15 0.20 0.18 0.09 0.04 0.02 0  
4 0 0.04 0.08 0.06 0.32 0.16 0.29 0.04 0 

a4 1 0 0 0 0 0.10 0.61 0.28 0.01 0  
2 0 0 0 0 0 0.04 0.67 0.28 0  
3 0 0 0 0.02 0.06 0.66 0.16 0.10 0  
4 0 0 0 0 0.24 0.61 0.13 0.02 0 

a5 1 0 0 0 0.01 0.07 0.05 0.36 0.50 0  
2 0 0 0 0 0 0.01 0.27 0.72 0  
3 0 0 0 0 0.05 0.08 0.52 0.35 0  
4 0 0 0.01 0.02 0.22 0.19 0.51 0.05 0 

a6 1 0 0 0 0 0.70 0.27 0.03 0 0  
2 0 0 0 0 0 0.95 0.05 0 0  
3 0 0 0.07 0.30 0.58 0.04 0 0 0  
4 0 0 0.33 0.57 0.11 0 0 0 0 

a7 1 0.66 0.34 0 0 0 0 0 0 0  
2 0 0 1 0 0 0 0 0 0  
3 1 0 0 0 0 0 0 0 0  
4 1 0 0 0 0 0 0 0 0 

a8 1 0 0.02 0.07 0.86 0.05 0 0 0 0  
2 0 0 0 1 0 0 0 0 0  
3 0 0.05 0.43 0.44 0.07 0.01 0 0 0  
4 0 0.01 0.53 0.36 0.10 0 0 0 0 

a9 1 0 0 0 0 0 0 0 0 1  
2 0 0 0 0 0 0 0 0 1  
3 0 0 0 0 0 0 0 0.05 0.95  
4 0 0 0 0 0 0 0 0.04 0.96  

Table 4 
SMEs’ criteria evaluations.  

Alternative g1 g2 g3 g4 g5 g6 

a1 14 18 10 15 16 10 
a2 17 15 11 17 14 11 
a3 14 18 13 15 16 14 
a4 15 19 18 12 17 15 
a5 19 19 19 14 15 17 
a6 15 12 13 11 14 16 
a7 19 11 11 18 13 12 
a8 11 14 17 12 16 18 
a9 20 20 10 15 12 12 
a10 16 18 13 14 18 20 
a11 11 20 10 17 12 13 
a12 13 17 11 17 15 12 
a13 16 10 19 18 17 12 
a14 20 19 17 13 19 16 
a15 20 20 13 17 20 15 
a16 11 17 20 17 16 13 
a17 20 18 10 11 11 19 
a18 20 18 14 11 11 16 
a19 15 14 14 15 12 16 
a20 18 17 18 20 19 20  
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Based on transformation rule in Section 3.1, the above pieces of 
preference information can be converted into the linear constraints. 
Taking the preference information concerning the veto effect on criteria 
as an example, the tolerability constrains are converted as follows: 

veto(5) > veto(3) ⇒− 3/5*m3 + 3/5*m5 − 2/5*m{1, 3} + 2/5* m{1, 5} 
− 2/5*m{2, 3} + 2/5* m{2, 5}- 2/5*m{3, 4} − 2/5*m{3, 6} + 2/5* m{4,5} +

2/5*m{5, 6} > 0; 
veto(3) > veto(4) ⇒ 3/5*m3 − 3/5*m4 + 2/5*m{1, 3}- 2/5*m{1, 4} + 2/ 

5*m{2, 3} − 2/5*m{2, 4} + 2/5*m{3, 5} + 2/5*m{3, 6} − 2/5*m{4,5} − 2/ 
5*m{4, 6} > 0. 

At the beginning of group decision making process, the DMs provide 
indirect preference information, whereas some controversy opinion may 
exist. The resolution is to disclose and conserve the consistent infor-
mation to proceed the decision. For example, the cause-oriented strategy 
is adopted and the minimal subsets resulting in the inconsistency are 
recognized by MIP1. The first three of them are showed in Table 5. 

For robust concern, we propose and run the SMAA-like simulation 
algorithm to compute RAIs and central preference parameters in Möbius 
representations though the favorable preference parameter space. The 
RAIs of alternatives are showed and illustrated in Table 6 and Fig. 1. 
Fig. 1. visually shows the probabilities that each alternative obtains the 
rank from 1 to 20. Table 6 indicates that RAIs of alternatives a20, a15 and 
a14 are pretty large for best ranks and extremely small for worst ranks. 
For example, a20 has quite large RAIs for the best ranks (61.1 % for rank 
1, 31.3 % for rank 2, and they add up to 92.4 %) and zero RAIs for the 
worst ranks (0 % for rank 10–20). a15 and a14 have similar RAI distri-
butions where the sum of the 2nd and 3rd RAI of a15. 

and a14 are respectively up to 60.2 % and 60.0 % while the 1st RAI of 
a15 (equal to 38.6 %) is far greater than. 

a14
′s (close to 0.3 %) so that a15 is superior to a14. We can conclude 

that a20, a15 and a14 are the most credible SMEs, since they are almost 
impossible to obtain the worst credit rank through the favorable pref-
erence parameter space. The last three RAIs of alternatives a17, a11 and 
a6 are almost equal to 50 %, indicating that these alternatives have the 
great higher possibility of defaulting. According to the holistic RAI 
(Lahdelma & Salminen, 2001) measuring the overall performance of 
alternatives, the full ranking sequence of the 20 alternatives determined 
by simulation analysis are: 
a20 ≻ a15 ≻ a14 ≻ a5 ≻ a10 ≻ a4 ≻ a3 ≻ a16 ≻ a13 ≻a2 ≻ a9 ≻ a12 ≻ a1 
≻ a7 ≻ a19 ≻ a18 ≻ a8 ≻ a17 ≻ a6. 

Fuzzy measures, defined over subsets of criteria in the decision 
model, provide a natural basis for analyzing criteria interaction and 
importance. The central preference parameters for projects a20, a15 and 
a14 are given in Fig. 2. According to the definition of central preference 
parameters, an alternative will have a larger probability to get the best 
rank if the sampled fuzzy measures in Möbius representations are closer 
to its central one. It suggests that the arbitrary selection of the optimal 
preference parameters may make an alternative the best. In the case 
study, all of the criteria are benefit type (i.e. the larger the better), 
hence, those criteria with large criteria assessments should be assigned 
with relatively large weights to guarantee the best rank for a specific 
alternative. Overall, the shapely indices Table 7 computed by central 
preference parameters in rationally reflect the weighting rule when each 
alternative gets the first rank. Due to the irreversibility of decision 
making, DMs usually face huge psychological pressure about indirect 

preference information because MCDA results depend greatly on it and 
will have significant impacts on the credit risk. In conclusion, central 
preference parameters are useful to help the DMs express their prefer-
ences considering various situations. 

As shown in Fig. 2, taking an example of a14, the interaction between 
criterion g4 and any other criteria are negative. That implies disjunctive 
behavior (subadditivity) of criterion g4 across all other criteria when 
assessing alternative a14. More concretely, the DMs are willing to 
compensate for the weakness of one criterion with the strength of the 
other. In fact, it may be interpreted that they seem to consider the 
satisfaction of one of the two criteria as sufficient. When the sign of the 
interaction index is positive for two criteria, it means that considering 
them together is much more important for the decision problem than 
considering them separately; that is, they are synergistic or comple-
mentary. With respect to a20, all the interaction indices of g4 across the 
other criteria except g2 are close to zero, which implies a certain degree 
of neutral attitudes. 

As shown in Table 8, the veto indices are greater than favor indices 
across all criteria. This confirms that risk-averse DMs in the group de-
mand that all criteria be satisfied to a relatively higher degree than their 
risk-seeking counterparts. We note from Table 8 that andness index of 
these three promising SMEs are quite higher than orness index, implying 
the robustness of result. A higher andness degree indicates a conjunctive 
aggregation behavior with the comprehensive score near to the mini-
mum of the criteria evaluations. DMs would deny those the evaluations 
of alternatives failing on at most k criteria. Only one of the criteria not 
doing well would bring the aggregated value down with high andness. 
An alternative tends to have a high comprehensive score only when it 
has all the criteria evaluations with high values. The most credible SMEs 
are selected with the mandatory requirements. Overall, DMs are con-
servative to decide which is consist with the problem background. Such 
information regarding andness or orness in aggregation behavior pro-
vides vital information for modelling DMs behavior. 

5.2. Compassion with the sole selection strategy for inconsistency issue 

What has been analyzed above is on the condition that the unified 
tolerance framework is adopted without any arbitrary selection for 
strategy and concordant preference information. It is an interesting 
question to find out what will happen if the sole strategy and concordant 
preference information is adopted. Answering this question helps to 
highlight the significant influence of tolerance framework on solutions 
to the credit ranking problem. 

To examine the influence of the sole strategy on preference elicita-
tion to the SMEs credit ranking problem, we find the solution to the 
SMEs credit ranking problem under the conditions where the cause 
oriented strategy is adopted and compare it with the solutions generated 
in Section 5.1. As explained in Section 3, we need to check whether the 
preference constraints are compatible with the indirect preference in-
formation provided by the DMs. We solveε* = maxε, s.t. EBasic ∪ EPIand 
find thatε* < 0, indicating that there is no Choquet integral preference 
model that can restore indirect preference information. Specifically, 
there is no admissible solutions in the linear systemEBasic ∪ EPI. Thus let 
us identify the minimal subsets of inconsistent pairwise comparisons for 
DMs. Set ε = 0.0001 and solve MIP1. In the first iteration, the minimal 

Table 5 
The partial result when adopting the cause-oriented strategy.  

φ1 >

φ2 

φ2 >

φ4 

φ4 >

φ5 

φ5 >

φ3 

φ3 >

φ6 

veto5 >

veto3 

veto3 >

veto4 

favor6 >

favor1 

favor1 >

favor2 

favor2 >

favor4 

U1 >

U2 

U2 >

U3 

U3 >

U4 

U4 >

U5 

U5 >

U6 

√a* √ ×b* √ √ √ √ √ √ √ √ × × √ √ 
√ √ √ √ √ √ √ √ √ √ × √ × × √ 
√ √ √ √ √ √ × √ √ √ × √ √ × √ 

a*: the piece of preference information is feasible. 
b*: the piece of preference information is not feasible. 
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set of inconsistent preference constraints is{φ(4) > φ(5), a2 ≻ a3,

a3 ≻ a4}. Without the loss of generality, it is assumed that the DMs 
discard this one. According to the holistic RAI measuring the overall 
performance of alternatives, the full ranking sequence of the 20 alter-
natives determined by simulation analysis are: 

a20 ≻ a14 ≻ a15 ≻ a4 ≻ a5 ≻ a10 ≻ a13 ≻ a16 ≻ a8 ≻ a3 ≻ a12 ≻ a6 ≻ a1

≻ a2 ≻ a19 ≻ a18 ≻ a7 ≻ a9 ≻ a11 ≻ a17 

This indicates that a20, a14, a15, a4 and a5 are the most appropriate 
three options with the preferential order ofa20 ≻ a14 ≻ a15 ≻ a4 ≻ a5. 
This solution is clearly different from the solutions generated from a 
robust perspective when tolerance framework is adopted because a14, 
a15 and a5 have changed from the third, second, and fourth best choices 
to the second, third, and five best choices, respectively. a10 enters the top 
five SMEs and a4 falls out of the top five rank. The observation indicates 
the significant influence of the sole strategy on the credit ranking order 
of the SMEs. 

It can be seen that the rank of alternatives changes slightly. However, 
the difference mainly occurs in the middle of rank position. When the 
DMs focus on the promising alternatives, the two methods would not 
have a big influence. However, when the DMs focus on the ordinary 
alternatives, in this credit ranking problem, it is difficult to make a 
convincible decision. Then, we select three RAIs (i.e.,b1

20,b5
4, b15

9 ) with 
low, medium and high values to perform the robustness analysis con-
cerning sampling variability. Fig. 3 illustrates the box plot of these RAIs 
and holistic RAIs under the 200 replicates. As can be seen, the three RAIs 
vary within small ranges and holistic RAI vary very small ranges where 
the box plots almost narrow into lines. The results indicate that the 
proposed simulation algorithm is robust with respect to sampling vari-
ability in terms of the RAI. 

5.3. Comparison with objective methods 

To validate the proposed tolerance framework, it is compared with 
three existing methods for preference elicitation by addressing the credit 
ranking problem, including the maximum entropy method (Li, et al., 
2018), the maximum deviation method (Lo & Guo, 2010) and the 
maximum orness/andness method (Beliakov & Wu, 2019; Chen, Yang, 
Wang, Chin, & Tsui, 2019). Three methods are objective to handle 
preference elicitation in the context of fuzzy measure decision making. 
For this reason, the three methods are selected to be compared with the 
tolerance framework. The brief introduction of each method is shown as 
following. 

( LP 4 ) max
∑

gj∈G

∑

S⫅G\gj

(n − s − 1)!s!
n!

h [μ(S ∪ i) − μ(S)],

h(x) =

{
− xlnx, x > 0

0, x = 0

s.t. EBasic ∪ Ẽ
PI

( LP 5 ) max
∑

i,h=1,...,m

i∕=h

(U(ai) − U(ah))
2

s.t. EBasic ∪ Ẽ
PI

( LP 6 ) max
/

min Orness
(

C I μ
)/

Andness
(

C I μ
)

s.t. EBasic ∪ Ẽ
PI 

The three methods are used to determine preference parameters in 
Möbius representations. Based on the three sets of the optimal prefer-
ence parameters, the overall assessment and ranking order of SEMs are 
obtained by using Choquet integral preference model as presented in Ta
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Fig. 1. RAIs for twenty SMEs with the DMs’ tolerance attitudes on criteria.  

Fig. 2. Central preference parameters for three SMEs with non-zero first RAI.  

Table 7 
The shapely index of alternatives with central preference parameters.   

φ (1) φ (2) φ (3) φ (4) φ (5) φ (6)

a14 0.236  0.206  0.124  0.123  0.242  0.068 
a15 0.196  0.225  0.078  0.208  0.255  0.038 
a20 0.184  0.165  0.168  0.238  0.164  0.082  

Table 8 
The global/local tolerance of criteria of alternatives with non-zero first RAI.    

g1 g2 g3 g4 g5 g6

a14 veto  0.565  0.537  0.497  0.463  0.581  0.452 andness  0.516 
favor  0.291  0.260  0.245  0.191  0.353  0.334 orness  0.279 

a15 veto  0.581  0.601  0.489  0.580  0.623  0.471 andness  0.557 
favor  0.304  0.298  0.263  0.260  0.302  0.321 orness  0.292 

a20 veto  0.599  0.583  0.596  0.621  0.581  0.531 andness  0.585 
favor  0.294  0.280  0.228  0.213  0.277  0.323 orness  0.269  
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Fig. 3. Box plots of three RAI (b1
20, b5

4,b15
9 ) and holistic RAI (a20, a4, a9) under the 200 replicates.  

Table 9 
The top ten overall assessments and ranking orders by using the objective 
methods.  

The top 10 SMEs 

Maximum 
Entropy 

Maximum 
Deviation 

Maximum 
Orness 

Maximum 
Andness 

Rank score Rank score Rank score Rank score 

a20  18.54 a20  18.36 a15  19.99 a20  18.19 
a14  17.45 a14  17.46 a20  19.00 a14  17.44 
a15  17.30 a4 17.03 a14  19.00 a10  16.33 
a10  16.40 a5 17.03 a16  18.66 a15  16.09 
a4 16.37 a16  16.59 a13  18.32 a4 16.05 
a5 16.37 a13  15.81 a10  18.00 a5 16.05 
a16  15.39 a15  15.80 a4 17.66 a3 14.47 
a13  15.27 a10  15.64 a5 17.66 a8 14.42 
a3 15.08 a8 15.54 a8 16.66 a16 14.05 
a8 14.69 a3 14.23 a3 16.00 a13 13.69  

Fig. 4. The comparison of fuzzy measure in Möbius presentation.  

Table 10 
The last ten overall assessments and ranking orders by using the objective 
methods.  

The last 10 SMEs 

Maximum 
Entropy 

Maximum 
Deviation 

Maximum 
Orness 

Maximum 
Andness 

Rank score Rank score Rank score Rank score 

a12  13.96 a6 13.61 a1  15.99 a6 13.30 
a19  13.66 a19 13.29 a12  15.00 a12  12.82 
a1 13.53 a18 12.98 6  14.00 a19 12.58 
a2 13.53 a12 12.57 a2 14.00 a1 12.21 
a9 13.5 a1 12 a19  13.33 a2 12.21 
a6 13.45 a2 12 a18  13.00 a18  12.10 
a11  13.43 a7 11.9 a7 13.00 a7 11.91 
a18  13.41 a17 11.68 a9 12.00 a11 11.75 
a7 13.39 a9 11.13 a11  12.00 a9 11.75 
a17  13.17 a11 11.04 a17  11.01 a17  11.14  
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Tables 8 and 9. And the optimal fuzzy measures in Möbius representa-
tions using three objective method are also shown in Fig. 4. 

As shown in Table 9, when the objective methods of entropy to 
determine preference parameters, the most appropriate four SMEs are 
a20, a14, a15 and a10 with the preferential order ofa20 ≻ a14 ≻ a15 ≻ a10. 
When the objective methods of deviation to determine preference pa-
rameters, the most appropriate four SMEs are a20, a14, a4 and a5 with the 
preferential order ofa20 ≻ a14 ≻ a4 ≻ a5. When the objective methods of 
orness index to determine preference parameters, the most appropriate 
four SMEs are a15, a20, a14, and a16 with the preferential order 
ofa15 ≻ a20 ≻ a14 ≻ a16. When the objective methods of andness index 
to determine preference parameters, the most appropriate four SMEs are 
a20, a14, a10 and a15 with the preferential order ofa20 ≻ a14 ≻ a15 ≻ a10. 
Computed by the proposed tolerance framework, the most appropriate 
six SMEs are a20, a15, a14, a5, a10 and a4 with the preferential order 
ofa20 ≻ a15 ≻ a14 ≻ a5 ≻ a10 ≻ a4. To sum up, the top four alternatives 
obtained by the objection methods are the same as the tolerance 
framework’s but the rank order of them is dissimilar from each other. 
The highest overall score of the best alternative (a20 or a15) by objective 
methods is 19.99 which is computed by the orness index. And the lowest 
overall score of the best alternative (a20 or a15) by objective methods is 
18.19 which is computed by the andness index. The overall score of the 
best alternative (a20 or a15) by other two methods consists in the interval 
of these two extreme values. Maximum orness index refers to an ag-
gregation behavior approaching the maximum comprehensive score of 
alternatives, whereas maximum andness index refers an aggregation 
behavior approaching the minimum comprehensive score of alterna-
tives. Simulation experimental and numerical results, well consistent 
with the theoretical predictions, have validated the proposed scheme. 

As shown in Table 10, when the objective methods of entropy to 
determine preference parameters, the most inappropriate four SMEs are 
a11, a18, a7 and a17 with the preferential order ofa11 ≻ a18 ≻ a7 ≻ a17. 
When the objective methods of deviation to determine preference pa-
rameters, the most inappropriate four SMEs are a7, a17, a9 and a11 with 
the preferential order ofa7 ≻ a17 ≻ a9 ≻ a11. When the objective 
methods of orness index to determine preference parameters, the most 
appropriate four SMEs are a7, a9, a11, and a17 with the preferential order 
ofa7 ≻ a9 ≻ a11 ≻ a17. When the objective methods of andness index to 
determine preference parameters, the most inappropriate four SMEs are 
a7, a11, a9 and a17 with the preferential order ofa7 ≻ a11 ≻ a9 ≻ a17. 
Computed by the proposed tolerance framework, the most inappropriate 
five SMEs are a19, a18, a8, a17 and a6 with the preferential order 
ofa19 ≻ a18 ≻ a8 ≻ a17 ≻ a6. To sum up, although the last four alterna-
tives obtained by the objection methods are slightly dissimilar from each 
other, they all have one thing in common: the least SME is a11 or a17. The 
highest overall score of the worst alternative (a17 or a11) by objective 
methods is 13.17 which is computed by maximum entropy method. The 
lowest overall score of the worst alternative (a17 or a11) by objective 
methods is 11.01 which is computed by the orness index. Other 
comprehensive scores of inappropriate alternatives computed by the 
maximum entropy method and maximum orness index are higher than 
those by the maximum deviation method and maximum orness index. 
The two extreme aggregation behaviors have been manifested. 

Tables 9 and 10 show that the overall assessments and ranking orders 
of alternatives obtained by using SMAA-like simulation analysis are 
slightly different from those obtained by using the objective methods 
such as maximum entropy, maximum deviation and maximum orness/ 
andness index. Different from the three methods, the proposed tolerance 
framework does not intend to create a unique set of preference param-
eters but to consider set of the whole preference parameters in Möbius 
representations that are generated compatibly with DMs’ indirect pref-
erence information. This supports the fact that tolerance framework 
with the provisions to consider the DMs’ tolerance attitudes, models the 
real-world human decision-making processes with a reasonable accu-
racy. The different propensity of tolerance of criteria guarantees the 
distinguished contributions of six criteria to twenty SMEs. Extreme 

preference parameters that are beneficial to any SMEs are effectively 
avoided. Or else, some criteria may contribute almost nothing to the 
solution, which may not be what the DMs anticipates in general. 
Compared with using one optimal set of preference parameters to 
generate a solution, considering the set of the whole preference pa-
rameters compatible with indirect preference information seems more 
reliable and convinced. 

As shown in Fig. 4, preference parameters in Möbius representations 
determined by the three methods have certain differences. Furthermore, 
there are certain differences in the credit ranking of SMEs, which also 
reflects that the optimal solution under the single objective is not the 
best in reality. The arbitrary choice of consistent preference information 
also invalidates the comprehensive evaluation. In particular, the optimal 
solutions based on the objectives of maximum deviation and orness 
index fluctuate strongly. Maximum deviation method only emphasizes 
the generation of preference parameters through the distances of various 
alternatives, as far as possible. Maximum orness index method only 
emphasizes the generation of preference parameters through the 
disjunctive aggregation behavior. The single-objective optimization 
method may not achieve the pareto optimal even if a certain scheme 
under this goal has a good performance. In the near neighborhood of the 
optimal preference parameters or even in the feasible space, the inte-
grated score for some alternatives can be improved. However, the 
method in this paper is more robust and the results are given in the form 
of probability distribution. It can be seen intuitively to see the pros and 
cons of the alternatives, and it has a better advantage in resisting 
instability. 

6. Conclusion

In this paper, under a robust perspective, we present a tolerance
framework to address a group multiple criteria ranking problem with 
indirect preference information such as the interaction, importance and 
tolerance of criteria as well as pairwise comparison among alternatives 
and criteria. Based on indirect preference information, Choquet integral 
preference model is elicited to capture the interaction, importance and 
tolerance of criteria for the final decision. With respect to the tolerance 
attitudes of DMs such as the mandatory/sufficient requirements on 
criteria for specific alternatives, they are quantified as tolerability con-
straints for preference elicitation. Once inconsistency issue (the feasi-
bility of the whole preference constraints) in preference constructive 
learning process occurs, in the tolerance framework, two developed 
strategies including cause oriented strategy and consequence oriented 
strategy are applied. Then identify the minimal unsatisfied subsets of 
preference constraints responsible for the inconsistency or the maximum 
satisfied subsets of preference constraints as a specific set of consistent 
preference information by regression-based mixed 0-1 integer linear 
programs. By following the idea of treating all possible sets of preference 
parameters in line with indirect preference information, SMAA-like 
simulation algorithm is constructed to generate the rank result in the 
probabilistic form, which is used to generate a solution considered by 
exploring the whole instances of the compatible preference model. The 
proposed method can deal with indirect preference information 
involved with not only less cognitive effort but also the tolerance atti-
tudes on criteria for the DMs, which has been paid insufficient attention 
in the literatures. From the illustration and application, it suggested that 
the proposed unified framework for MCDA has two characteristics: 
expressiveness of the underlying preference model which can recon-
struct indirect preference information provided by the DMs and 
robustness of the final result which address uncertainties and impreci-
sion observed in the actual decision support processes. 

What we investigate in this study is a new attempt for preference 
elicitation capturing both pairwise comparison among alternatives 
criteria and the tolerance, importance and interaction of criteria, which 
are not considered in existing studies on how to get a robust solution in 
the context of group MCDM. The restriction on the consistency of 
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indirect preference information is significant in the process of preference 
elicitation which are used to generate a solution as reported in this 
study, but a trade-off between the number of the removal of certain 
preference information and the feasibility of preference constraints are 
not investigated with the tolerance framework, which drives more 
research to be conducted. Besides, if the form of prefer model is too 
sophisticated to set, preference handling with the assistance of evidence 
theory defining on the selected preference model space is worth 
exploring. Note that indirect preference information in the proposed 
framework can be perceived as training set compared with preference 
learning, which is a subfield of machine learning. It is still an open 
question that how to learn and interpret the preference from massive 
preference information and how to accelerate algorithms to reduce the 
computation time and cost, especially considering the tolerability con-
straints on criteria. 
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