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ARTICLE INFO ABSTRACT

Keywords: Modern Machine Learning (ML) techniques offer numerous opportunities to enable intelligent communication
Machine Learning based reconfigurable designs while addressing a wide range of problems in communication systems. A wide majority of communica-
decoder

tion systems ubiquitously employ the Maximum Likelihood (MLH) decoder in the symbol decoding process with
QPSK modulation, thereby providing a non-reconfigurable solution. This work addresses the application of an
ML-based reconfigurable solution for such systems. The proposed decoder can be considered a strong candidate
for future communication systems, owing to its upgradable functionality, lower complexity, faster response,
and reconfigurability. First, a novel low-complexity dataset for model training/testing is generated, that uses
only the received symbols. Subsequently, three predictors are extracted from each of the received noisy symbols
for model training/testing. The model is then trained/tested using nineteen standard ML-based classifiers, and
the computations of various performance metrics indicate the suitability of Naive Bayes (NB), and Ensemble
Bagged Decision Tree (EBDT) classifiers for the model. The simulation results show that the model respectively
delivers significant decoding accuracies and error rates of about 93% and 7% during testing, even for a low
SNR of 5 dB. Moreover, the statistical analysis of simulation results shows the marginal superiority of the
Gaussian Naive Bayes (GNB) classifier. Further, the model reconfiguration is validated using a BPSK modulated
dataset. Finally, a user-separation scheme that eliminates Successive Interference Cancellation (SIC) in the next-
generation Power-Domain (PD) Non-Orthogonal Multiple Access (NOMA) networks is suggested by employing
the proposed decoder.

Naive Bayes

Ensemble Bagged Decision Tree
Decoding performance
PD-NOMA

1. Introduction communication systems (Tan et al., 2022; Moon et al., 2022), owing

to its good trade-off between higher bandwidth utilization and lower

Recently, Artificial Intelligence (AI)/ML techniques are being uti-
lized for various detection-based real-world problems. Applications
such as Quadrature Amplitude Modulation (QAM), Spatial Modulation
(SM), Generalized Spatial Modulation (GSM), modulation classification,
SNR estimation, pulse shaping, Convolutional Neural Network (CNN),
and applicability in Long Term Evolution (LTE), Wireless Local Area
Network (WLAN), and the next-generation Visible Light Communica-
tion (VLC) networks represent their relevancy. AI/ML techniques are
significantly helpful in determining the unknown patterns and their
influence on the optimizable objective function, so such applications
are highly researched in various real-life scenarios. The application
of Al in the existing communication systems is still an open area for
research, specifically for decoding the received symbols among various
modulation schemes. Some ML algorithms are employed for clustering
analysis and classification purposes in such Al applications but have
not been applied for symbol decoding in the existing communication
systems.

QPSK is regarded as a prominent modulation scheme of modern
communication systems, that is also being utilized for next-generation

* Corresponding author.

error rate. The Fifth-Generation (5G) standards organization, European
Telecommunication Standards Institute (ETSI), also mentions the appli-
cation of the QPSK modulation mapper in the technical specifications
of 5G-New-Radio (NR) (Tg, 2018). The QPSK modulation mapper maps
a pair of bits {b(2i),b(2i + 1)} to a modulation symbol in the complex
2-dimensional signal space, d(i)= Lz[(l —2b(2i)) + j(1 = 2b(2i + 1))]. At
the receiver, this modulation symbol d(i) suffers amplitude and phase
variations due to channel noise and gets corrupted as d(i). For the
current work, the problem of successful decoding is considered, by
employing an ML-based alternative to the classical MLH decoder. The
present work assumes noise to be zero-mean Additive White Gaussian
Noise (AWGN) ~AN'(0, 62). Now the task of the receiver is to obtain the
correct symbol d(i) from the noisy symbol di).

This can be seen in Fig. 1(a), where the red-colored box shows one
of the transmitted symbols d(i) and the nearby green point represents
the noisy symbol d(i), for a given SNR. The receiver then tries for
the best approximation to the transmitted symbol d(i) utilizing the
statistical properties of the corrupting AWGN. On increasing the SNR,
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Glossary

H Channel Matrix.

FN, False negative for class n.

FP, False positive for class n.

N Noise vector (Complex).

P Predictor (complex) obtained from noisy
signal.

P, Predictor obtained from real-part of P;.

Py Predictor obtained from imaginary-part of
P,

S Closed set of QPSK constellation symbols.

TN, True negative for class n.

TP, True positive for class n.

T True class of transmitted symbol.

X Vector of transmitted symbols.

Y Vector of received symbols.

d(i) Received corrupted QPSK symbol.

N(0,062) Gaussian distribution with 0 mean and &2
variance.

dii) Estimated QPSK symbol.

{0,1,2,3} QPSK constellation points.

{b(2i), b(2i + 1)}
d(i)

Input QPSK bits.
QPSK modulated symbol.

h Channel Coefficient.

Acronyms

5G Fifth-Generation.

Al Artificial Intelligence.

AUC Area Under the Curve.

AWGN Additive White Gaussian Noise.

B5G Beyond 5G.

Bagging Bootstrap Aggregating.

BPSK Binary Phase-Shift Keying.

CM Confusion Matrix.

CNN Convolutional Neural Network.

DL Deep Learning.

DNN Deep Neural Network.

DT Decision Tree.

EBDT Ensemble Bagged Decision Tree.

ETSI European Telecommunication Standards
Institute.

FN False Negative.

FNR False Negative Rate.

FP False Positive.

FPR False Positive Rate.

GNB Gaussian Naive Bayes.

GSM Generalized Spatial Modulation.

11D Independent and Identically Distributed.

IoT Internet of Things.

IQR Inter Quartile Range.

the discrete received noisy symbols tend to concentrate on the respec-
tive transmitted symbol, as shown in Fig. 1(b).

To decode the correct symbol or the best approximation, various
algorithms such as the MLH, Maximum-A-Posteriori (MAP), Minimum
Distance (MD), Nearest Neighbor (NNR), and others, exist in the liter-
ature. Among them, the MLH is popularly used by researchers (Men
and Jin, 2014). For a given received symbol d(i), the MLH decoder
estimates d(i) € {0,1,2,3}, where {0,1,2,3} represents one of the

KNB Kernel Naive Bayes.

LR Logistic Regression.

LTE Long Term Evolution.

MAP Maximum-A-Posteriori.

MCC Matthews Correlation Coefficient.

MD Minimum Distance.

MIMO Multiple Input Multiple Output.

ML Machine Learning.

MLbD ML-based Decoder.

MLH Maximum Likelihood.

MVMN Multi-Variate Multi-Nomial.

NB Naive Bayes.

NN Neural Network.

NNR Nearest Neighbor.

NOMA Non-Orthogonal Multiple Access.

NR New-Radio.

PD Power-Domain.

PPV Positive Predictive Value.

PSK Phase-Shift Keying.

QAM Quadrature Amplitude Modulation.

QoS Quality of Service.

QPSK Quadrature Phase-Shift Keying.

RL Reinforcement Learning.

ROC Receiver Operating Characteristics.

SC Superposition Coding.

SDR Software-Defined Radio.

SER Symbol Error Rate.

SIC Successive Interference Cancellation.

SISO Single Input Single Output.

SM Spatial Modulation.

SNR Signal to Noise Power Ratio.

SVM Support Vector Machine.

SWIPT Simultaneous Wireless Information and
Power Transfer.

N True Negative.

TNR True Negative Rate.

TP True Positive.

TPR True Positive Rate.

VLC Visible Light Communication.

WLAN Wireless Local Area Network.

QPSK constellation points. In other words, the MLH decoder maximizes
the likelihood function or the probability given by P{d(i) received |
d(i) sent}. As the QPSK modulator has four different constellation points
in the complex signal space that represents the transmitted symbol
d,(i),m = 0,1,2,3, each of the points can be regarded as being of a
specific class. The model proposed in this work assumes the class labels
as elements of the set {0, 1,2,3}, corresponding to each of the symbols

d(i). The MLH decodes, and then determines d(i) = argminlldfi) -
0<m<3

d,()||>. The NNR decoding of a received symbol d(i) also operates
by minimizing the Euclidean distance metric between d(i) and all the
probably transmitted symbols d(i) and gives a similar result. For the
QPSK-symbol decoding problem, it becomes intuitive to apply simple
ML algorithms and develop a reconfigurable system for the same. As
per the author’s knowledge, an ML-based reconfigurable model has not
been proposed in the literature. This motivates us to apply classical ML
algorithms to the existing symbol decoding problem. This paper utilizes
the existing classical ML algorithms for the decoding of QPSK symbols
at the receiver, considering an AWGN channel.
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(a) QPSK constellation diagram (SNR = 15 dB)
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(b) QPSK constellation diagram (SNR = 25 dB)

Fig. 1. QPSK constellation points with two different SNRs.

The randomness of the received symbols motivates the application
of learning algorithms in this work. Specifically, a supervised-learning-
based reconfigurable model is developed and validated in this work.
Supervised learning maps the input data to the output data, and is
extensively used in data classification problems.

Reconfigurability is a growing trend in modern electronics (Lyke
et al., 2015), where it provides flexible control through different bit-
pattern specifications. A reconfigurable learning-based system shows
higher reliability, ease of upgradation, and reduced costs, apart from
an embedded intelligent ML algorithm, that motivates its candidature
in the next-generation systems. Such systems are highly solicited in
the Software-Defined Radio (SDR) platforms. In this paper, a flexible
reconfigurable symbol decoder is proposed, and its performance is
compared with the existing non-reconfigurable decoder. Specifically,
the decoding performances of the EBDT (Ghosh et al., 2021), and
NB (Blanquero et al., 2021) classifiers are compared against the MLH
decoding performance, for a base system such as QPSK.

Classifiers such as NB (Blanquero et al., 2021) and techniques such
as Bootstrap Aggregating (Bagging) (Kotsiantis, 2014; Hillebrand et al.,
2021) are used for the same. The specific dataset generated is utilized
to make the system learn; hence is referred to as a QPSK ML-based
Decoder (MLbD) dataset. Further, to validate the reconfigurability of
the model, the same model is evaluated for a BPSK modulation system.
Hence, this work presents an interesting and novel application of ML
in next-generation communication systems. The contributions of this
work are:

Application of the classical ML algorithms to the QPSK-symbol
decoding problem in the existing communication systems
Development of a reconfigurable symbol decoder that is indepen-
dent of the underlying modulation scheme; hence can be used for
next-generation communication systems

Generation of smaller QPSK-MLbD datasets for training, valida-
tion, and testing of the proposed model, that does not require
pre-processing (as in Deep Learning (DL)). All the employed
predictors are derived using a single parameter only, i.e., the
received noisy symbols

Performance evaluation of the NB and EBDT decoders through
decoding accuracy and symbol error along with the comparative
analysis of the MLH decoder

Model reconfigurability validation through a BPSK modulation
scheme, using the generated dataset, specifically for the BPSK
modulation

This work considers the novel application of ML algorithms to
train the model through the supervised multi-class classification. The
trained model is then compared with the existing MLH decoder for its
performance. The results show the comparable performance of both
the decoding schemes, however, the proposed model is reconfigurable
since it utilizes the ML algorithms. Another advantage of the proposed
model is its lower complexity and faster operation due to the following
reasons. Firstly, the model utilizes only three predictors for symbol

decoding. Secondly, the received noisy symbol itself acts as the first
predictor, and the other two required predictors are extracted using
the first predictor, as explained later in Section 3.1. Thirdly, a lower
number of predictors are used in the dataset preparation, which implies
much low complexity and faster decoding than any other DL model.
Last but not the least, the next-generation communications systems
are required to include intelligence in them, and as such the proposed
model may serve as a prototype for a low complexity, reconfigurable,
fast and intelligent symbol decoder.

The novelty of the proposed work lies in the modeling of the de-
coding problem through a reconfigurable system. Since, it is crucial to
study the system performance under low SNR, as the systems are more
error-prone at lower SNRs. The proposed system can perform well, even
under low SNR scenarios, and can be utilized for decoding the users’
data in next-generation PD-NOMA systems, that currently plan to use
the SIC decoding process. SIC and SC are the two processes for such
systems, with the former at the receiver side, and the latter at the
transmitter side, respectively. The SC and SIC processes are highlighted
in Figs. 2(a), and 2(b), respectively. As per the authors’ knowledge,
the PD-NOMA networks employ SIC to differentiate between the users’
messages, and as such the limitations of SIC viz. error-propagation
and higher latency pose stringent system restrictions; however, the
proposed model overcomes these limitations by eliminating the SIC.

The rest of the paper is organized as follows. A literature survey of
some prominent ML-based techniques, and their application in modern
as well as state-of-the-art communication systems, is given in Section 2.
This survey motivates an ML-based model that finds application in
the next-generation NOMA networks. Section 3 describes the proposed
model and provides details on the methodology adopted for proper
dataset generation, model training, validation, and finally its testing
using simulations in MATLAB. A discussion on the performance mea-
sures related to this work followed by a discussion on the simulation
results obtained is presented in Section 4. Finally, the paper concludes
by highlighting the future scope of the work in Section 5.

2. Related work

ML algorithms utilize statistical, probabilistic, and optimization
approaches to learn from previous experiences and discover valuable
patterns in vast, complicated datasets. Primarily, these are used for
classification and regression purposes. Classification implies the cate-
gorization of instances, which may be in two classes (binary), or more
than two classes (multi-class). The NB and the Decision Tree (DT)
are binary classifiers that may be utilized for multi-class classification.
The binary and multi-class applications of these algorithms range from
automated text categorization (Bhavani and Kumar, 2021; Kukreja
et al., 2021; Charalampakis et al., 2016), information technology (Meng
et al., 2022), consumer purchase behavior recognition (Wang and Xu,
2020), industrial processes (Li et al., 2020; Shen et al., 2021), face de-
tection (Soula et al., 2020), pollution modeling (Ostad-Ali-Askari et al.,
2017), disease modeling (Park et al., 2021; Ghosh et al., 2021), etc. An
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Fig. 2. Illustration of SC and SIC processes.

interesting application domain of such algorithms is the communication
area. Oswaldo Simeone discussed the application of some ML-based
algorithms in communication systems (Simeone, 2018). Further, the
scope, limitations, and future enhancements of ML techniques are
analyzed from a 5G/Beyond 5G (B5G) viewpoint (Morocho-Cayamcela
et al., 2019). The authors define the supervised classification problem
formulation using instances in the training dataset and the correspond-
ing labels. Then the ML algorithm finds a functional mapping from the
training dataset instances to the corresponding labels. Moreover, the
authors define the classification performance measure of accuracy as
the percentage of samples for which the model produces the correct
output.

Moreover, the supervised ML approach for specifically shaped pulse
signals has been studied (Bari et al., 2016). The authors analyzed
the accuracy performance of various classifiers and showed a decent
performance of an ML classifier for their application. A comparison
of SNR estimation techniques for BPSK in the real AWGN channel
and 8-Phase-Shift Keying (PSK) in the complex AWGN is also per-
formed (Pauluzzi and Beaulieu, 2000), mentioning the MLH estimator
as the optimum estimator for the given application. Further, a low com-
plexity MLH detection algorithm with an M-ary PSK constellation has
been suggested (Men and Jin, 2014). The proposed detector’s Symbol
Error Rate (SER) performance is compared with the optimal MLH-SER
performance, with lower computational complexity. Some other state-
of-the-art applications of a few ML-based algorithms are provided (Xie
et al., 2020; Chen et al., 2021). On the other hand, a DT is used for
classification using the discrete target class values, being a popular ML
algorithm owing to its simplicity (Wu et al., 2008). This paper uses the
ensemble method of bagging, for achieving a higher decoding accuracy
and a uniform prediction. DTs have also been used for medical and
academic performance predictions (Njoku, 2019). Thus, an ensemble
of DTs is employed for a uniform decision, by constructing subsets of
the training data, evaluating their decision, and finally voting on the
trees (Breiman, 1996).

Similarly, the optimality of the NB classifier is explored (Zhang,
2005; Kupervasser, 2014). Kotsiantis et al. (2007) mentions prediction
accuracy as the performance metric for classifier evaluation and reports
cross-validation techniques for effective evaluation of the classifier
performance. In this paper, five-fold cross-validation of the training
dataset is performed, by dividing the training set into five mutually
exclusive, equal-sized subsets. For each subset, the classifier is trained
on the union of all other subsets, and the error rate of each subset is
computed, representing the error rate of the classifier. The application
of such ML algorithms usually demands high prediction accuracy, as
well as low misclassifications cost.

A few recent applications of ML are included in the Internet of
Things (IoT) networks, for improving the Quality of Service (QoS)
(Vairagade and SH, 2021), in the Simultaneous Wireless Information
and Power Transfer (SWIPT) NOMA network (Sparjan et al., 2021).
Similarly, Bayesian Neural Network (NN) has been employed for at-
tack detection on IoT devices (Togacar, 2022). Further, a vertical

handover decision is evaluated using fuzzy logic for the decision pro-
cess (Drissi et al,, 2017). The next-generation massive-connectivity
issues and spectrum scarcity highlight the application of NOMA, even
under generalized fading conditions (Nauryzbayev et al., 2021).

Different from the work (Pauluzzi and Beaulieu, 2000), the model
proposed in this paper does not compute the SNR, but instead decodes
the received noisy symbols, independent of the underlying modulation
scheme; hence, it is flexible and therefore suits the next-generation
communications. Using the Al-based approach, the complexity becomes
independent of the number of antennas, against the optimal MLH
approach adopted (Men and Jin, 2014). Similarly, the work (Xie et al.,
2020) utilizes DL-based techniques that require heavy resources from
the end-user. The authors (Xie et al., 2020) derived a DL-based SNR
estimation technique with three DL networks — AlexNet, Inception V1,
and VGG 16, respectively, and compared their performances. Specif-
ically, the SNR is estimated utilizing the three-channel constellation
diagrams by mapping signal observations to a 7 x 7 complex plane
and using a significant number of predictors for the prediction. This
increased the training times to many hours, which is quite undesirable
for a reconfigurable system. Further, as our model requires only the
received symbols and not a massive number of images, our approach
can be substituted for DL-based SNR detection, as a future job. Inspired
by the works (Morocho-Cayamcela et al., 2019), our model helps to
reduce the error probability by replacing the SIC block in the next-
generation NOMA network, using an SDR setup (Garnier et al., 2020).
Another application is achieving a reduced decoding-error probability
through resource allocation in future networks (Qureshi et al., 2021),
through a reconfigurable system. However, this will be a future ex-
tension of the present work. A few specific contributions towards the
application of AI/ML techniques in communications are represented in
Table 1. A majority of the considered references highlight the presence
of DL, NN, and similar techniques. However, no such reference deals
with the symbol decoding problem and its implementation in the
next-generation communication systems.

3. Proposed ML-based reconfigurable decoder

The central task of the work is to estimate the transmitted QPSK
symbol d(i) from the corrupted received symbol d(i) at a given SNR. For
this, the formulated problem becomes an estimation problem (estimat-
ing the correct QPSK symbol from the interference-plus-noise corrupted
symbol). Thus, it is required to determine the mapping function from
the received symbol to the transmitted symbol.

The block diagram of the research is shown in Fig. 3, and the
model considered in this work is shown in Fig. 4, where a performance
comparison is made between the existing MLH decoder and the pro-
posed ML-based decoders, i.e., KNB, GNB, and EBDT decoders, and it is
suggested to replace the MLH decoder with a reconfigurable ML-based
decoder. This requires a large collection of data for every SNR value; so
the first part of the work is the generation of a suitable dataset for the
experimentation, as described in Section 3.1. A similar work (Xie et al.,
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Table 1
Al applications in communications.
S. No.  Field of application, Ref. No. Year Employed technique
1 QAM/PSK symbol synchronization (Matta et al., 2019) 2019 Reinforcement Learning (RL) agent design through Q-learning
2 Modulation classification (Peng et al., 2021) 2021 Signal representation and data preprocessing in DL
3 DL applications in communications (Liao et al., 2020) 2020 DL in intelligent communication systems, channel estimation, signal
detection, and modulation recognition
4 Optical performance monitoring and modulation format identification (Saif et al., 2020 Modulation Format Identification, Optical Performance Monitoring
2020) using DL algorithms
5 Modulation classification Using CNN (Peng et al., 2017) 2017 CNN based DL
6 Signal detection in the GSM-VLC system (Sun et al., 2021) 2021 Support Vector Machine (SVM) aided signal detection
7 Channel estimation and signal detection (Liu et al., 2022) 2022 Tiny ML model
8 Blind modulation classification (Norolahi and Azmi, 2021) 2021 Combined ML and Feature Extraction
9 Communication system (Simeone, 2018) 2018 Supervised and Unsupervised ML algorithms
10 5G/B5G communications (Morocho-Cayamcela et al., 2019) 2019 RL, Q-learning, clustering,
NN, Deep Neural Network (DNN), etc.
11 Pulse shaping in communications (Bari et al., 2016) 2016 SVM, Logistic Regression (LR), NN
12 SNR estimation techniques (Pauluzzi and Beaulieu, 2000) 2000 MLH detection
13 SM (Men and Jin, 2014) 2014 MLH detection
14 SNR estimation using constellation diagrams (Xie et al., 2020) 2020 DL
15 IoT attack detection (Togacar, 2022) 2022 Bayesian NN
16 LTE and WLAN network selection (Drissi et al., 2017) 2017 Multicriteria decision framework
T Damgeneraior ) § Troe-class information *_ _____________
+ : i k
q i Training data
modulation mapper Predictor P, _.__ : 2
(Through channel) | i MLbD
| i Dataset
P - | i ;
o K 1 i Testing data
e 6‘# ':90,}. alale (10 sets)
z:\. 00 fem e e ———————
Predictor P, Predictor P; ————

MLH decoding

Accuracy Performance , Error Performance

ML-based
decoding

Fig. 3. Block diagram of the proposed research.

Data generator |
QPSK, U € [0,3] _J‘) Modulator
BPSK, U € [0,1] |

N~(0,62)

d(i)

Performance
comparison:
1. Decoding
Accuracy
2. Symbol
Errors

Replacement

(i)

Fig. 4. The proposed ML-based model.

2020), deals with a DL-based SNR estimation technique using three DL
networks — AlexNet, Inception V1, and VGG 16, respectively, and com-
pares their performances. Specifically, the estimated SNR is determined
by utilizing a three-channel constellation diagram by mapping signal

observations to a 7 x 7 complex plane and using a significant number
of predictors for the prediction of SNR (Xie et al., 2020). This increased
the training times to many hours, which is undesirable for any desired
reconfigurable system.
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DL techniques, in general, are much more resource-hungry and
require huge processing capabilities, and thus are highly complex. To
keep the dataset complexity and model training time low, this paper
focuses on the generation of simpler QPSK-MLbD datasets for efficient
symbol decoding. Another drawback with the DL techniques is the
signal pre-processing requirements, such as resizing images to proper
resolution for the input layer of the DL network. On the other hand,
this work utilizes much smaller QPSK-MLbD datasets, that incorporate
very few predictors, against the huge datasets required in DL-based
techniques. Further, all the predictors in the generated dataset are
extracted using only the received symbol. Since it is assumed that the
proposed model utilizes the AWGN channel, each of the QPSK-MLbD
datasets is generated for specific values of the channel SNR. In this
paper, though all the datasets are generated using MATLAB simulations,
the real-field data would also serve the purpose. A complete block
diagram of the carried work is shown in Fig. 3, which shows the dataset
generation, as well as the application of the dataset to the proposed
reconfigurable model.

For this work, a Single Input Single Output (SISO) communication
model is considered, which is given as:

Y=hX+N (€Y

where, Y, h, and X, represent the output vector of the received symbols,
the channel coefficient between the transmitter and the receiver, and
the input vector of the transmitted symbols, respectively. As mentioned
earlier, the complex noise vector N is assumed to be Gaussian ~
N(0,62). For the simplest case (without fading or channel effects), the
input-output relation is given by:

Y=X+N (2)

Modified datasets in the presence of channel effects for the Multiple
Input Multiple Output (MIMO) are also generated easily by replacing h
with a suitable channel matrix H in Eq. (1), but this paper focuses on
highlighting the decoding methodology; so the SISO model specified
by Eq. (2) is employed in the paper. QPSK is the simplest modulation
format that provides higher reliability by providing admirable robust-
ness even in the presence of high interference; so, a QPSK constellation
is selected for this work. The points in set .§ = {00,01, 10,11} of the
QPSK constellation are assumed to be arranged in a counter-clockwise
fashion. Thus, S = (00) represents the red-colored box at the top-right
corner of Fig. 1(a) (in the first quadrant). Similarly, S = (01), S =
(10), and S = (11), are in the second, third, and fourth quadrants
of the complex constellation plane, respectively. Each of the received
constellation points is also mapped to the “true” class, T = {0, 1,2,3},
depending upon the quadrant in which it lies.

Using the true-class information given above, and extracting the
predictors as shown in Fig. 3, the appropriate dataset is generated,
as shown in the next section. As per the author’s knowledge, such a
novel mechanism for the suitable dataset generation with predictors’
extraction using the received symbols, and the application of the gen-
erated dataset in a reconfigurable, supervised-learning network, has not
been explored in contemporary literature. A major advantage of using
this supervised-learning approach in current communication systems is
the elimination of complex channel estimation techniques; and in the
next-generation PD-NOMA systems, it is the simultaneous decoding of
user information, reducing the network latency with the elimination of
channel estimation and SIC decoding procedures.

The model considered in this work is represented in Fig. 4. As
shown in the figure, the theme of this work is to compare the decoding
performances of the existing MLH decoder with those of the proposed
reconfigurable learning-based decoders using the generated datasets
(shown in Fig. 3), hence, suggesting a novel reconfigurable application
of ML in communication systems, especially the next-generation NOMA
networks. The SIC decoding algorithm is described in Pei et al. (2022)
using an MLH decoder, employing the composite constellation diagram
of two NOMA users. However, the ML-based decoder that employs a
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Fig. 5. Typical histogram of generated samples for validation/testing.

suitable dataset (similar to MLbD, but prepared for the joint constella-
tion) can decode both the users simultaneously without the SIC process.
This offers the possible next-generation system large flexibility, in terms
of system reconfiguration.

3.1. Generation of QPSK-MLbD datasets

The QPSK MLbD datasets used in this work are generated in MAT-
LAB. For the QPSK decoding problem, a dataset of size 64000 x 5 is
generated, out of which 50% of the data is utilized for model-training
and validation, and the rest is utilized for a series of ten model tests.
The generation of the dataset is shown in Fig. 3. As shown in the
figure, the three predictors are extracted using only the received noisy
symbol and are used along with the true-class information to form
the dataset. Each of the training and validation QPSK-MLbD datasets
consists of 4000 complex-valued samples for a specific SNR, distributed
evenly among the four true classes. This uniform distribution across
the true classes is necessary so that the algorithms do not bias towards
a given class. The QPSK-MLbD dataset is generated by corrupting the
transmitted symbol d(i) with the AWGN, to produce the received noisy
symbol d(i), corresponding to the specific SNR.

Initially, 4000 real integer data samples are generated that are
uniformly distributed in [0,3], as shown in Fig. 5. As can be seen
from the figure, each class includes approximately 1000 samples out
of 4000 total validation/training samples. The generated (real) integer
data samples are next mapped to the corresponding QPSK constellation
points (classes), to yield a complex QPSK symbol d(i). As shown in
Fig. 6, each of the 4000 real integer points is mapped to one of the true
classes, where the classes are represented by the 2-dimensional complex
points (0.7071 + 0.7071i,—0.7071 + 0.7071i,-0.7071 — 0.7071,0.7071 —
0.7071i), respectively. The symbol power of the mapped data is com-
puted before the addition of AWGN to ensure a specific transmit SNR.
This is next followed by corrupting each of the mapped points with
AWGN at the given SNR, to give the noisy QPSK symbol d(i), as shown
in Fig. 7.

With the MLH decoder, the noisy QPSK symbol is then demodulated,
followed by the prediction of its respective class. Comparing the trans-
mitted symbol class and the predicted class of the received symbol, the
MLH decoding accuracy can be computed. Other validation datasets
for different SNR values are generated following the same procedure.
Next, three predictors are employed to form the Multi-Variate Multi-
Nomial (MVMN) QPSK-MLbD datasets. These predictors are obtained
utilizing only the received noisy QPSK symbol d(i). The first predictor
P, is selected as the complex received symbol 4(i) itself, and the second
predictor P, is derived from it, by considering the real part of P;.
Similarly, the imaginary part of d(i) is considered the third predictor P;.
This also makes the datasets flexible for use with other 2-dimensional
constellation systems.



S. Srivastava and P.P. Dash

QPSK constellation mapping

[ J 9
Class 1 Class 0

0.6

I
~

o
N

Mapped data samples

Quadrature
o

-0.2}
04t ]
08¢ Class 2 Class 3 -
[ B
-06 -04 -02 0 0.2 0.4 0.6

In-Phase

Fig. 6. Mapping of dataset samples into predictor classes of QPSK constellation.

QPSK Training/Validation symbols (@ 5 dB SNR)

Classes
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Table 2

Dataset format.
Predictor P, Predictor P, Predictor P, True class
0.6788 — 1.1342i 0.6788 —1.1342i 3
1.2017 + 0.2474i 1.2017 0.24741 0
—0.6309 — 0.2956i -0.6309 —0.2956i 2

Table 2 shows the instances of the received symbol and the for-
mulation of predictors with it, as a part of the QPSK-MLbD dataset.
Here, the predictor P; is the noisy QPSK symbol d(i) at the given SNR,
and predictors P, and P; are the real and imaginary parts of P, that
are used for classifier learning. The last column represents the true
class of the symbol d(i), which is obtained using Fig. 6. The same
format is used to generate the datasets for training and validation, and
the test dataset preparation, for specific SNR values. As the generated
samples are independent and AWGN is also random, the predictor
instances may be considered Independent and Identically Distributed
(IID). This independence allows for the use of NB-based classifiers in the
model. The NB algorithm leverages the Bayes theorem and assumes that
predictors have conditional independence for the given class. Further,
a GNB classifier works with continuous predictor values. In this paper,
another NB classifier, KNB, which has a Gaussian kernel smoother with
unbounded support is employed for the performance evaluation of the
proposed ML-based decoder.

For testing the model, 10 test datasets, each of size 3200 x 5, are
obtained from the testing part of the QPSK-MLbD dataset. However,
keeping a 10:1 ratio of the training and testing dataset samples, each
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Table 3
List of ML-based classifiers for model evaluation.
S. No. Classifier S. No. Classifier
1 GNB 10 Bilayered NN
2 KNB 11 Linear SVM
3 EBDT 12 Coarse Gaussian SVM
4 Wide NN 13 Cubic SVM
5 Coarse Tree 14 Ensemble RUSBoosted Tree
6 Fine Tree 15 Fine Gaussian SVM
7 Medium Tree 16 Medium Gaussian SVM
8 Ensemble Boosted Tree 17 Quadratic SVM
9 Medium NN 18 Trilayered NN
19 Narrow NN
Table 4
Classifier parameters for simulation.
S.No. Classifier Classifier settings
1. GNB Numerical predictors distribution: Gaussian;
Categorical predictors distribution: MVMN
2. KNB Numerical predictors distribution: Kernel;
Categorical predictors distribution: MVMN;
Kernel type: Gaussian;
Support: Unbounded
3. EBDT Ensemble method: Bag;

Learner type: DT;

Max. no. of splits: 1;

No. of learners: 211;

Max. no. of predictors to sample: 2

of the test datasets for the given SNR includes 400 samples. Since su-
pervised classification is used in this work, both the training and testing
datasets are recorded with the transmitted or true symbol points, to aid
in the learning process of the classifiers. It is assumed that the channel
statistics do not vary during the period from symbol transmission to
symbol prediction at the receiver. For a fair comparison with the exten-
sively used MLH method, the predicted class of the received samples is
also determined, along with the symbol detection errors (i.e., misclas-
sifications). The model performance results are tabulated against each
SNR value. To effectively evaluate the classifier’s performance, five-fold
cross-validation is employed, as suggested (Kotsiantis et al., 2007).

3.2. Model training and validation

The datasets generated in Section 3.1 are then provided to the
classifiers for training and validation purposes. Depending upon the
size of the generated dataset and the extracted predictors, which are
three in the current work, and the ease of interpretation, a wide variety
of ML classification algorithms are selected for model training and
validation, ranging from NB to NN to SVM to DT based classifiers. The
size of the dataset, and parameters such as training speed, prediction
speed, decoding accuracy, and misclassification cost, further motivated
the classifier choices for training and validation, in the present work.
The training is performed with nineteen classical ML classifiers, out
of which only three classifiers (GNB, KNB, and EBDT) showed decent
performance for the symbol decoding problem. All the other selected
classifiers are not considered owing to their inferior performances in
terms of their validation accuracy/cost/prediction speed and/or re-
quired training time. The complete list of considered classifiers is shown
in Table 3. The classifier parameters considered for simulations with the
three outperforming classifiers (with their settings) are given in Table 4.

For the GNB classifier, a Gaussian predictor distribution is assumed,
and for the KNB classifier, a Gaussian type kernel distribution is as-
sumed, as can be seen from Table 4. For both the NB classifiers,
the categorical predictors’ distribution is assumed to be MVMN. For
the EBDT classifier, a DT is used for the classification with a bagged
ensemble having 211 learners and a single split. The maximum no.
of predictors sampled is 2. Table 5 represents the classification cost
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Table 5
Classification cost matrix.

Predicted class

True class
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matrix for the system, as every incorrect prediction is given a cost of
unity. The system is trained with the prepared dataset of 4000 symbols
uniformly distributed over each class (for SNRs 5 dB, 6 dB, ..., 12 dB),
followed by its validation, using the classifiers mentioned in Table 4.
The generated training/validation symbols are shown in Fig. 7. The
blue, red-orange, yellow, and violet-colored points, represent classes
“07,17,2”, and “3”, respectively. As shown in the figure, 4000 QPSK
symbols are generated with an SNR of 5 dB. The constellation symbols
follow a uniform density function, as mentioned earlier.

The training/validation dataset is first split into five disjoint sets,
representing a five-fold split for cross-validation. Next, the classifiers
are trained with four of the disjoint sets, keeping the fifth one for vali-
dation. The process is repeated keeping each disjoint set for validation
and using the other four sets for training. Finally, the validation results
are averaged over all the disjoint sets to produce a consistent result.

Table 6 shows the performance of GNB, KNB, and EBDT classifiers
for 25 runs of training/validation over a given training/validation data.
It can be seen that all the three considered classifiers are almost 93%
accurate and have around 280 misclassified samples. However, for
every validation run, the prediction speed and training time does vary.
Table 7 gives the average performance of the three classifiers over the
complete training process.

The simulation results indicate good accuracies with the GNB, KNB,
and EBDT classifiers, approximately having the same misclassifica-
tion cost. However, the prediction speed and the training time vary.
Hence, this work is based on the performance evaluation of the above
classifiers, and a comparison of their performances with the exist-
ing MLH-based decoder. For the performance comparison, the CM is

adopted, having entries in the form given in Table 8. The inference
drawn from Table 7 is that the NB classifiers provide good decoding ac-
curacies with lower training times, compared to the EBDT classifier. So,
all three classifiers are selected for a fair comparison of their decoding
performance with the MLH decoder. Further, the decoding accuracies
are evaluated for the given classifiers for various values of SNR, until
the accuracies increased to 100%, i.e., a perfect classification.

The validation CM for all the three classifiers is shown in Table 9,
for a validation dataset of 4000 observations, for a given validation
run. Table 9 is a combined representation of the performance of each
classifier, shown with a different color; for example, the red-colored
entries specify the corresponding values for the GNB classifier, and
the green and blue-colored entries specify the obtained values for the
KNB and EBDT classifiers, respectively. Further, the validation perfor-
mances of the classifiers can be analyzed from Fig. 8, where Figs. 8(a),
8(b), 8(c), and 8(d), respectively represent the decoding accuracy,
misclassifications cost, prediction speed, and the training time.

Another tabular structure, i.e., Table 10 is utilized for testing the
classifier’s performance, as shown in Section 3.3, and is described next.
Lastly, the testing is performed 10 times for each SNR value, and the
obtained results are shown in Table 11, where the red, green, blue, and
brown color entries respectively represent the corresponding values of
GNB, KNB, EBDT, and MLH.

3.3. Model testing

For testing the classifier’s performance, 10 test datasets, each of 400
noisy QPSK symbols are generated for a given SNR having a uniform
distribution over the classes. For the given range of SNRs, the per-
formance metrics of test accuracy (correct classifications percentage)
and the number of errors (misclassifications) are selected against the
same metrics in MLH decoding. The simulation test performed with the
given classifiers upon one of the test datasets generated earlier gives the
resulting CM, as shown in Table 10.

4. Simulation results and discussion

The simulations are performed on a Windows 10 PC with a dual-
core, Intel i-5 2.90 GHz processor, with 16 GB of installed RAM. The
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Table 6
Classifier validation results for 25 runs (each @ 5 dB SNR).
SNR (dB) Run # GNB KNB EBDT
Accuracy Cost Prediction  Training Accuracy Cost Prediction  Training Accuracy Cost Prediction  Training
(%) (Samples) speed time (s) (%) (Samples) speed time (s) (%) (Samples) speed time (s)
~(obs/s) ~(obs/s) ~(obs/s)
1 93 282 27000 6.5871 93 282 980 24.923 93.1 277 730 150.39
2 93 278 6300 10.904 929 284 900 25.665 93 280 770 153.01
3 93 279 15000 10.201 93 282 900 29.054 93 278 1100 126.96
4 93 279 8000 14.693 93.2 274 1200 30.995 93.2 274 540 160.48
5 93 278 14000 9.8813 93 278 840 33.618 93 279 840 152.85
6 93 282 8700 29.655 93 282 560 47.272 93 280 690 184.31
7 93 278 20000 7.3765 92.9 284 1400 22.93 92.9 284 750 169.86
8 93 281 11000 9.251 92.9 283 1000 29.508 93 278 870 143.08
9 93 282 18000 9.6128 93 279 740 28.321 93 280 1000 151.61
10 93 279 9300 8.6036 93.1 275 1100 33.266 92.8 290 750 148.51
11 93 281 16000 10.823 92.9 283 790 30.941 93 280 990 148.9
12 93 282 7900 36.266 93 282 780 49.873 93.1 275 620 196.7
5 13 93 282 6200 16.303 93 279 860 38.77 93 280 1100 151.87
14 93 278 12000 8.4907 93 279 680 33.024 93.1 275 960 130.28
15 93 281 9400 10.957 929 283 700 35.95 92.9 283 520 193.25
16 93 282 21000 12.003 93 279 500 43.716 93.1 275 1200 182.87
17 93 282 6600 13.056 93 279 1000 28.023 92.9 284 670 179.17
18 93 278 13000 7.9711 92.9 284 820 24.34 93 280 980 143.2
19 93 281 12000 9.3114 92.9 283 1000 24.498 92.9 283 790 130.69
20 93 282 24000 10.386 93 279 790 23.554 93 280 1500 119.25
21 93 279 13000 8.9689 93.1 275 990 27.069 92.7 292 860 168.94
22 93 278 21000 7.6051 92.9 284 1200 20.381 929 284 840 127.2
23 93 278 13000 9.5657 93 279 980 33.02 93 279 680 149.46
24 93 282 15000 8.9842 93 279 800 27.12 93 280 870 125.73
25 93 279 20000 8.0119 93.1 275 900 29.256 92.8 290 1100 131.09
Table 7 » Accuracy: The ratio of correct predictions and total predictions,
The mean performance metrics (training and validation @ 5 dB SNR). ie.,
S.No. Classifier ~ Validation Validation cost Prediction Training
accuracy (%) (samples) speed ~(obs/s) time (s) Accuracy = TP+TN 3
1. GNB 93 280.12 13896 11.8187 TP+TN+FN+FP
2. KNB 92.989 280.2 896.4 31.0035 « Error rate: The ratio of incorrect predictions and total predictions,
3. EBDT 92.976 280.8 868.8 152.786

MATLAB version 9.12.0.1884302 (R2022a), is used for the generation
of datasets and performance assessment of the learning-based classi-
fiers. The performance parameters are evaluated based on the CMs
obtained with the experimentation. The CM for a given classifier is con-
structed using its class-wise performance results. The results comprise a
tabular structure showing the correct decisions made by the classifier,
as given in Table 8.

4.1. Performance measures

The performance parameters that are concerned with this paper
include the True Positives (TPs), True Negatives (TNs), False Positives
(FPs), and False Negatives (FNs), which can be analyzed with the CM.
A CM is an N x N matrix, that represents the actual values and the
predicted values in a matrix form, where N is the number of classes.
The rows of a CM specify the N true classes, whereas the columns specify
the N predicted classes.

Consider a 4x4 CM as shown in Table 8, where q,b,c,...,p rep-
resent the values within the respective cells of the matrix. The four
performance parameters can be obtained from the given matrix as
TP, (n = 0,1,2,3) using the intersection of class n row and class n
column, where the subscript represents the given class. Similarly, the
FN, is the sum of all the values of the corresponding row, except the
TP,. The FP, value for a class is the sum of values of the corresponding
column except for the TP, value. The TN, is determined by the sum of
the values of all columns and rows except for class n. As an example, for
class “0”, we have TP, as a, FN,, as (b+c+d), FP, as (e+i+m), and TN,
is given as (f+g+h+j+k+l+n+o+p). These parameters together specify
the performance measures of a classifier concerning the given class (Eze
et al., 2020):

i.e.,

FP+ FN
TP+TN+FN+FP

(€3]

Error rate = 1 — Accuracy =

Sensitivity/Recall/True Positive Rate (TPR)/Hit-Rate: The ratio of
correct positive predictions and total positives, i.e.,

TP

Sensitivity (TPR) = ———
TP+ FN

(5)

Specificity/True Negative Rate (TNR): The ratio of correct negative
predictions and total negatives, i.e.,

TN

Specificity (TNR) = ————
peci ficity ( ) TN+ FP

(6)

Precision/Positive Predictive Value (PPV): The ratio of correct pos-
itive predictions and total positive predictions, i.e.,

TP

Precision (PPV) = —————
TP+ FP

(7)

False Positive Rate (FPR): The ratio of incorrect positive predic-
tions and total negatives, i.e.,

FP

FPR= ———
TN+ FP

(8)

Matthews Correlation Coefficient (MCC) (Boughorbel et al., 2017):
The correlation coefficient is calculated using all the four param-
eters of CM, i.e.,

(TP-TN)—-(FP-FN)
\/(TP+FP)(TP+FN)(TN+FP)(TN+FN)

MCC =

©)

F, score: The harmonic mean of precision and sensitivity, i.e.,

Precision - Sensitivity 10)

F =2 — —
Precision + Sensitivity
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Table 8
A sample CM (4 X 4).
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Table 9
Classifier validation CM @ 5 dB SNR.

Predicted class “0”

Predicted class “1”

Predicted class “2” Predicted class “3”

True class “0” 907 914 903 34 29 37 4 4 3 31 29 33
True class “1” 33 36 33 916 913 916 29 29 29 2 2 2
True class “2” 1 1 1 32 33 33 974 971 967 34 36 40
True class “3” 40 41 39 1 0 0 34 35 28 928 927 936
GNB KNB EBDT

Table 10

Classifier testing CM @ 5 dB SNR.

Predicted class “0”

Predicted class “1”

Predicted class “2” Predicted class “3”

True class “0” 99 99 100 5 5 4 0 0 0 3 3 3
True class “1” 1 1 1 87 87 88 4 4 3 0 0 0
True class “2” 0 0 0 4 4 4 97 97 97 4 4 4
True class “3” 1 1 1 0 0 0 8 7 5 87 88 920
GNB KNB EBDT

Fig. 9 shows the ROC curves and the AUC, which are considered
prominent metrics for the performance evaluation of the classifiers.
The ROC is a probability curve that uses specificity and sensitivity
measures and gives the TPR (i.e, sensitivity) for various thresholds of
FPR (i.e., 1- specificity). The AUC provides a measure of separability
between different classes, provided by the model. For a given class,
the higher the value of AUC, the better the model predictions for that
class. An AUC of 0.5 implies no class separability, whereas AUC values
close to unity denote good separability between the classes. Further, the
model predictions (correct/incorrect) with the NB and EBDT classifiers
for a representative training/validation dataset are shown in Figs. 10
and 11, respectively, for an SNR of 5 dB. For each of the considered
classifiers, the class-wise evaluation of the above performance measures
and results is given in Table 12.

4.2. Result analysis and discussion

From the CM ( Table 9), the total QPSK symbols generated for
classes “07, “17, “2”, and “3”, are determined as 976,980, 1041, and
1003, respectively. This shows an approximate uniform distribution
over the classes. The validation accuracy of a given classifier is deter-
mined by the CM. For example, 907 out of 976 (907 + 34 + 4 + 31 = 976)
class “0” symbols are positively predicted using GNB. This implies
a TPR of 907/976 = 92.93%, for class “0”. Also, the False Negative
Rate (FNR) is seen to be (34 + 4 + 31)/976 = 7.07% for the same
predicted class. Similarly, 936 symbols are predicted correctly out of
1003 (936 + 39 + 0 + 28 1003) symbols of class “3” using EBDT.
From Table 10, it can be observed that out of 107 symbols generated of
class “0”, 99 are correctly predicted (decoded) with the GNB and KNB
classifiers, whereas 100 are correctly decoded with the EBDT classifier.

Using the performance measures mentioned in Section 4.1, the
performances of all the three ML-based classifiers are tabulated in
Table 12. The table shows that all the three ML-based classifiers have
approximately the same performance metrics for the given valida-
tion dataset. Thus, the testing performance (average accuracy over all
classes) of the NB decoders is almost the same (~ 96.55%), and slightly
higher than the EBDT decoder (96.52%). However, Table 7 shows
significant differences between the training times of the classifiers.

10

Similar to the testing performance, the NB classifiers have a validation
accuracy of about 93% and a validation cost of about 280 samples. For
the simulation scenario considered in this work, GNB offers the best
performance with the highest prediction speed in observations/second
(obs/s), of 13896, followed by KNB (896.4), and EBDT (868.8), re-
spectively. Similarly, the training times in seconds, required by the
classifiers are seen as GNB (11.8187 s), KNB (31.0035 s), and EBDT
(152.786 s), respectively. This shows improved performance of the GNB
decoder than the KNB, and EBDT decoders.

On comparing the simulation test results of the MLH decoder with
the GNB, KNB, and EBDT decoders, against the given SNR range, and
using the results of Table 11, it is observed that all the three learning-
based classifiers show comparable performance with the MLH decoder.
The GNB and MLH decoders have almost the same median values for
10 test evaluations for each SNR value. Moreover, as the SNR increases,
the KNB and the EBDT decoders also achieve the same performance as
of GNB decoder. This can be seen in Fig. 12(a) for SNR values > 9 dB for
QPSK modulation. The circular dot and horizontal line segment inside
the corresponding boxes represent the mean value and the median
value of the prediction, respectively. Moreover, Fig. 12(b) shows the
number of symbol errors in the decoding process. In both Figs. 12(a)
and 12(b), as the SNR increases, the decoding accuracies also increase
asymptotically towards 100%, and simultaneously the incurred symbol
errors decrease asymptotically towards 0. At an SNR > 11 dB, the
decoding accuracy and the symbol errors are seen to converge at
100% and O, respectively. This is also evident from the reduced Inter
Quartile Range (IQR), shown in Figs. 12(a) and 12(b). Specifically, from
Figs. 12(a) and 12(b), it is observed that as the SNR increases, the IQR
approaches zero, and the mean and median converge. This shows that
the ML-based decoders have performances similar to the MLH decoder.
Moreover, the proposed decoders are reconfigurable because of their
learning abilities.

The performance comparison between the ML-based classifiers sug-
gests the application of the GNB classifier as it requires the lowest
training time, highest prediction speed, higher accuracy, and a mod-
erate misclassification cost. The KNB and EBDT classifiers have similar
misclassification costs and accuracies but differ in the prediction speed
and training time, from the GNB classifier. The EBDT classifier requires
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Table 11

Comparison of classifiers’ test results.

SNR Test # GNB KNB EBDT MLH SNR Test # GNB KNB EBDT MLH

(dB) (dB)

Accuracy  Symbol Accuracy  Symbol Accuracy  Symbol Accuracy  Symbol Accuracy  Symbol Accuracy  Symbol Accuracy ~ Symbol Accuracy  Symbol
(%) errors (%) errors (%) errors (%) errors (%) errors (%) errors (%) errors (%) errors

1 93 28 92.5 30 91.8 33 93.25 27 1 99.2 3 99.2 3 99.2 3 99.25 3
2 93.2 27 93 28 93 28 93.5 26 2 99.2 3 99.2 3 99.5 2 99.25 3
3 91.8 33 91.5 34 91.2 35 91.75 33 3 99.8 1 99.8 1 99.8 1 99.75 1
4 94 24 94 24 94 24 94 24 4 100 0 100 0 100 0 100 0

5 5 93.2 27 93.2 27 93.5 26 93.25 27 9 5 99.2 3 99.2 3 99.5 2 99.25 3
6 92.2 31 92.2 31 92.2 31 92.5 30 6 100 0 100 0 99.8 1 99.75 1
7 92.2 31 92.5 30 91.8 33 92.5 30 7 99.5 2 99.2 3 99 4 99.5 2
8 94.5 22 94.5 22 93.5 26 94.5 22 8 99 4 99.2 3 99 4 99 4
9 92.5 30 92 32 92.2 31 92.25 31 9 99.8 1 99.8 1 99.8 1 99.75 1
10 92 32 92 32 92.2 31 91.5 34 10 99.5 2 99.5 2 99.5 2 99.5 2
1 95.8 17 96 16 96.2 15 96.25 15 1 100 0 100 0 100 0 100 0
2 95.2 19 95.2 19 95.5 18 95.25 19 2 100 0 100 0 100 0 100 0
3 95.5 18 96 16 96 16 95.25 19 3 99.8 1 99.8 1 99.8 1 99.75 1
4 97 12 96.2 15 96.5 14 97 12 4 100 0 100 0 99.8 1 100 0

6 5 96 16 95.5 18 95 20 95.75 17 10 5 100 0 100 0 100 0 100 0
6 95.5 18 95.5 18 95.8 17 95.75 17 6 100 0 100 0 100 0 100 0
7 95.2 19 95.2 19 95.5 18 95.25 19 7 100 0 100 0 100 0 100 0
8 96.8 13 96.8 13 95.2 19 96.5 14 8 99.8 1 100 0 100 0 99.75 1
9 96.5 14 96.5 14 95.8 17 96.75 13 9 99.8 1 99.8 1 99.8 1 99.75 1
10 95.8 17 95 20 95.2 19 95.75 17 10 99.8 1 99.8 1 99.8 1 99.75 1
1 97.2 11 97.5 10 97 12 97.5 10 1 100 0 100 0 100 0 100 0
2 96.8 13 96.8 13 96.8 13 96.75 13 2 100 0 100 0 100 0 100 0
3 97.2 11 97.2 11 97.2 11 97.25 11 3 100 0 100 0 100 0 100 0
4 97.8 9 97.8 9 97.5 10 97.75 9 4 100 0 100 0 100 0 100 0

7 5 97.5 10 97.5 10 97.2 11 97.75 9 1 5 100 0 100 0 100 0 100 0
6 96.8 13 97 12 97.5 10 97 12 6 100 0 100 0 100 0 100 0
7 96.5 14 96.8 13 96.2 15 96.75 13 7 100 0 100 0 100 0 100 0
8 96.5 14 96.2 15 95.8 17 96.25 15 8 100 0 100 0 100 0 100 0
9 97.2 11 97.2 11 97.2 11 97.25 11 9 100 0 100 0 100 0 100 0
10 98 8 97.8 9 97.8 9 97.75 9 10 100 0 99.8 1 99.8 1 100 0
1 99.2 3 99 4 98.2 7 99.25 3 1 100 0 100 0 100 0 100 0
2 99.2 3 99.5 2 99 4 99.25 3 2 100 0 100 0 100 0 100 0
3 99 4 99 4 98.5 6 98.75 5 3 100 0 100 0 100 0 100 0
4 99.2 3 99.2 3 99.2 3 99.25 3 4 100 0 100 0 100 0 100 0

s 5 98.5 6 98.8 5 99 4 98.25 7 12 5 100 0 100 0 100 0 100 0
6 99.2 3 99.2 3 98.8 5 99.25 3 6 100 0 100 0 100 0 100 0
7 98.5 6 98.5 6 98 8 98.5 6 7 100 0 100 0 100 0 100 0
8 98.8 5 98.8 5 99 4 98.75 5 8 100 0 100 0 100 0 100 0
9 99.2 3 99.2 3 99.2 3 99.25 3 9 100 0 100 0 100 0 100 0
10 99 4 99 4 99 4 99 4 10 100 0 100 0 100 0 100 0
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Fig. 9. ROC and AUC for GNB, KNB and EBDT classifiers.

Table 12
Performance metrics for classifiers (training/validation @ 5 dB SNR).

Performance metric GNB predictor classes

KNB predictor classes

EBDT predictor classes

0 1 2 3 0 1 2 3 0 1 2 3
Accuracy (%) 96.425 96.677 96.650 96.450 96.500 96.753 96.579 96.425 96.350 96.650 96.650 96.450
Error rate (%) 3.575 3.323 3.350 3.550 3.500 3.247 3.421 3.575 3.650 3.350 3.350 3.550
Sensitivity (%) 92.930 93.470 93.560 92.520 93.648 93.163 93.276 92.423 92.520 93.469 92.891 93.320
Specificity (%) 97.550 97.710 97.730 97.760 97.421 97.928 97.728 97.764 97.586 97.682 97.972 97.497
hline Precision (%) 92.450 92.990 93.560 93.260 92.137 93.641 93.455 93.259 92.520 92.901 94.158 92.581
FPR 0.024 0.023 0.023 0.022 0.026 0.021 0.023 0.022 0.024 0.023 0.020 0.025
MCC 0.903 0.910 0.913 0.905 0.997 0.912 0.910 0.905 0.901 0.910 0.913 0.906
F, score 92.689 93.229 93.560 92.889 92.886 93.401 93.365 92.839 92.520 93.184 93.520 92.949

the highest training time (152.786 s) out of all the three classifiers. This
can also be seen in Table 7.

Similarly, Fig. 9 shows the ROC curves (for class “0”) obtained after
the validation and testing of the considered learning-based classifiers at
5 dB SNR. The ROC curves are plotted considering their performance
for class “0”’; hence the horizontal axis refers to the FPR and the vertical
axis refers to the TPR for class “0” symbols. These results confirm that
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the same AUCs are obtained during both training and validation. More-
over, the NB classifiers are preferable to the EBDT classifier due to their
slightly higher AUC values. The high AUC values, and the performance
metrics in Table 12, together indicate an admirable learning-based
model performance.

Moreover, the results of Table 12 are computed considering a low
SNR scenario. As the modern and forthcoming communication systems
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Fig. 11. Misclassifications with learning-based classifiers (SNR = 5 dB).

shall deliver a much higher SNR, very high accuracies can be obtained
with our model. It can be seen from Figs. 12 and 13, that the same
ML-based model can be trained with different modulation schemes and
it provides a comparable result with the already existing MLH decoder.
However, the latter has no option for reconfigurability.

The reconfigurable nature of the learning-based decoder can be
visualized with the performance of the proposed model for the BPSK

13

constellation diagram, as shown in Figs. 13(a) and 13(b). For the system
employing BPSK modulation, new datasets were generated similar to
the QPSK-MLbD datasets, but having only two classes (“0” and “1”).
Correspondingly, the number of samples in the training/validation
datasets and testing datasets, are kept as 2000 and 200, respectively.
The model is trained with the new (BPSK-MLbD) datasets, and the
decoder performance is plotted in Figs. 13(a) and 13(b). For the BPSK
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Fig. 12.

system also, the performance of the existing MLH decoder is com-
parable with that of the proposed ML-based decoders, validating the
replacement of the MLH decoder with the ML-based decoder, in an SNR
range of —2 to 5 dB.

For QPSK modulation, Table 12 shows high decoding accuracy
values (success rates) for all the considered classifiers. For example,
each of the classifiers has an accuracy of about 96.5% over all the
four classes, at an SNR of 5 dB. Similarly, the MCC score for each of
the classifiers is nearly 93. Also, there is a little variation among the
class performances of each of the classifiers. This is quite natural, as
the training samples themselves have a uniformly random distribution.
The accuracy of the MLH decoder over the test dataset gives similar
results. However, implementing the decoder through a learning-based
approach, such as ours, makes the model highly reconfigurable, and
suitable for next-generation systems.

The proposed decoder can be utilized for decoding both users’
signals in a two-user PD-NOMA network, simultaneously, without the
requirement of a SIC, as indicated in Section 2. Conventionally, the SIC
block in NOMA is used to decode each user’s message (in a sequential
manner). For the user’s signals decoding via ML-based decoders in the
NOMA system, the SIC block is eliminated, as no cancellation and re-
transmission of signals are required. This can be done by allocating
different fixed power levels to both the NOMA users, determining
the superposed constellation point, and then resolving the superposed
points into the original constellation symbols, as indicated in Fig. 2(b).
However, the exact algorithm is a part of our future work and is in the
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development stage. The real-time datasets for application to the two-
user PD-NOMA system, are also being generated as an extension of the
current work. It is expected that the proposed model also reduces the
corresponding error probability of the system, due to the absence of the
SIC block in the NOMA receiver. Further, latency reduction will also be
observed in such systems, due to the elimination of the SIC.

5. Conclusions

In this work, the application of an ML-based symbol decoder is
proposed as a replacement to the traditional MLH decoder in a QPSK
system, where both the decoders have comparable performance, but the
former is reconfigurable. Since the model is based on the ML approach
rather than the DL approach, it has lower complexity indicating a faster
response. The model utilizes only the received symbols to extract all
the required predictors. Appropriate low-complexity datasets are also
generated utilizing the received symbols. After investigating the perfor-
mance of nineteen standard ML classifiers, three well-known classifiers,
viz: the KNB, the GNB, and the EBDT are found to be appropriate for the
proposed system, for both QPSK and BPSK modulations. Additionally,
the model shows a high decoding accuracy and low decoding error even
for small SNR values. Overall, the test results show the appropriateness
of the GNB classifier for the proposed model. The learning property,
and the dataset generation mechanism together make the proposed
model invariant of channel fading, thereby eliminating the complex
channel estimation strategies. Further, the model supports the MIMO
configuration and can simultaneously decode PD-NOMA users reducing
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Fig. 13. Performance comparison of proposed decoders with BPSK constellation.

network latency in next-generation systems where it also solves the
problem of SIC.
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