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A B S T R A C T

Traditional MIMO decoding schemes are complex, impractical, and perform poorly for massive multiple-
input multiple-output (M-MIMO) systems. Deep learning (DL) has recently emerged to perform many complex
operations more efficiently within a shorter time. This paper proposes a learning-based network (DLNet) to
design an M-MIMO decoder. The DLNet network architecture is designed by iteratively unfolding the gradient
descent algorithm. The proposed DLNet decoder consists of 15 neural networks (NN) layers with some trainable
parameters. This work considered uplink Rayleigh and correlated M-MIMO channels, which are perfectly
known to the receiver. With the knowledge of the received signals and the M-MIMO channels, the proposed
DLNet decoder decodes the messages of all the users. In the M-MIMO perspective, the proposed DLNet has
been evaluated for symbol-error-rate (SER) performance, algorithm complexity, and run-time requirement. The
simulations show that the proposed DLNet converges faster than other available decoders and performs better
than other M-MIMO decoding schemes, by at least 2 dB in SER and at least 11 times faster than the baseline
(OAMP-Net) and nine times less complex.
1. Introduction

Massive multiple-input multiple-output (M-MIMO) is one of the
primary transmission techniques for fifth-generation (5G) wireless com-
munication systems. M-MIMO shows many advantages over classical
MIMO schemes and can achieve all of its merits on a grander scale [1].
t mainly uses a large antenna array at a base station (BS) and a
ew antennas at user equipment (UE) to increase the data rate, link
eliability, and coverage and reduce outage in the wireless systems.
dditionally, using a sufficiently large number of antennas at BS and
E, the noise and intracell interference can be averaged out [2]. Con-
entional MIMO decoders are mainly developed using mathematical
nd information theory concepts that only capture the approximate
ehavior of the system. This makes it more challenging to perform
nd-to-end optimization of the communication system in practice and
roduces sub-optimal performance. These limitations on conventional
IMO decoders motivate researchers to investigate new M-MIMO de-

oding techniques that give near-optimal solutions, if not optimal, with
ess complex hardware implementation while faster processing speed.
his paper proposes a Massive MIMO decoder using a deep neural
etwork (DNN) that can satisfy the above criteria.

Recently, researchers have started using DL-based networks to ad-
ress the problems related to communication systems [3,4]. While
sing DL-based techniques, mathematical and statistical models of the
ireless channel and hardware systems are not required to implement
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the communication system. The data obtained from the real-world
communication channels and hardware is used to optimize the system
through rigorous training of the DNN. The DL-based systems capture
the channel and hardware-based characteristics better than non-DL-
based systems. In conventional wireless communication systems, the
hardware and channels suffer from many impairments that make these
systems highly nonlinear. As we know that neural networks can approx-
imate any system function in a better way and are universal function
approximators [5]. Such DNN detectors do not require a rigidly defined
model for representation and transformation of information and can be
optimized for a practical wireless system in a better manner [6].

Many MIMO detectors have been investigated in the literature; the
maximum likelihood (ML) decoder is one. ML decoder can give optimal
error rate performance. However, it is an exhaustive search algorithm,
and its complexity increases exponentially with the number of trans-
mitted bits, making it nearly impossible to implement into practical
systems. Some researchers have proposed the Sphere decoding [7,8]
algorithm by limiting the search space. Its performance is close to ML
decoder, but it is still very complex to implement practically. Zero-
Forcing (ZF) and Minimum mean-squared error (MMSE) are two of
many sub-optimal MIMO decoders. They are less complex in imple-
mentation but give a sub-optimal performance. Also, researchers have
proposed expectation propagation (EP) [9] and approximate message
passing (AMP) [10] as MIMO detection algorithms, and both of them
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Fig. 1. Internal structure of 𝑙th layer of the proposed DLNet decoder.
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work iteratively. The AMP performs well on independent, ideally dis-
tributed (i.i.d.) Gaussian channels while EP decoder is more complex
than AMP and performs well on unitary invariant MIMO channels.

Recently, researchers have used convolutional neural network
(CNN) and DNN to detect MIMO signals in perfect and imperfect
channel knowledge cases [11–13]. Some other iterative MIMO decoders
with neural-network such as detection-network (DetNet) [14] and

rthogonal AMP (OAMP) [15] have been proposed. The DetNet is
ased upon a data-driven approach where knowledge about the channel
odel is not required. DetNet relies on a massive dataset for training

nd has many trainable variables. This large number of trainable
ariables makes the DetNet more complex, and thus it runs slower
uring training and decoding. In another work, quasi-ML decoding of
IMO signals has been discussed, for that two semi-definite relaxation

SDR) based models have been proposed [16]. These DetNet and SDR
odels provide near-optimal error rate performance but take more time
hile decoding and perform well on channels having i.i.d. Gaussian

oefficients, whereas their error rate severely degrades on correlated
IMO channels. Based upon OAMP, in [17], authors proposed a
odel-driven deep learning network-based MIMO decoder OAMP-Net.
AMP-Net is trained offline and works well for both i.i.d Gaussian
hannel and correlated channels. OAMP-Net has only two trainable
ariables per layer, but it makes strong assumptions about the channel.
he OAMP-Net is based on the MMSE model and needs to calculate the
hannel inverse in each iteration, which is too complex for large MIMO
hannels and thus takes more time during training and detection. A
imilar iterative and learning-based MIMO decoder has been proposed
n [18]. In this, the authors have proposed two distinct NN architectures
or i.i.d. Gaussian and spatially correlated channels. In i.i.d. Gaussian
hannels, the network (MMNet-iid) has very few trainable variables
nd needs to train offline on several channel realizations. However, the
etwork (MMNet) needs to train online on every channel realization in
patially correlated channels. As we know, training neural networks
s a time-consuming and highly resource greedy task. In MMNet, the
roposed online training requires hardware with huge computational
omplexity and introduces latency, and thus cannot be used in practical
ystems.

.1. Contribution of the paper

In this work, we propose a DL-based network (DLNet) architecture
or signal decoding in the M-MIMO system. In particulars, the main
ontribution of this work is to design a DL decoder for M-MIMO,
hich is less complex, has a lower run time requirement, and provides
etter SER performance. This detector is built on DNN architecture
hich has exact knowledge of the channel. It takes the received signal
s input to decode the transmitted bits. DLNet decoder is designed
ith several DNN layers, as shown in Fig. 1 (discussed in detail in
ection 3). The selection of layers is essential for the optimum and
2

c

ccurate performance of the DLNet decoder. In the proposed DNN
tructure, the DLNet decoder uses 40 DNN layers, which depends on ML
stimator’s projected gradient descent-based solution. The simulation
hows that the proposed DLNet achieves better performance, is less
omplex, and takes less time than many conventional MIMO decoders.
his algorithm can be implemented in real-time and can decode an M-
IMO system with a large number of transmit–receive antennas. This

resented M-MIMO decoder shows better SER performance, consumes
t least 800 times less time while decoding and has 13 times fewer
rainable parameters than DetNet.

In DLNet, we have used a different approach while choosing the loss
unction of the network for training than DetNet. DLNet’s loss function
s the sum of mean squared errors between transmitted and estimated
essage vectors at each layer of DLNet. The idea of this loss function

s derived from the ML decoder that gives optimal performance. This
oss function does not require matrix inverse calculation. Calculation
f matrix inverse is computationally expensive. This further makes
LNet less complex and faster. (The loss function of DetNet requires
atrix inverse calculation. See Ref [14]. Eq. (14)). Apart from this,

he architecture of the proposed DLNet is based upon a learning-based
olution of maximum likelihood (ML) decoder and uses a very less
umber of trainable variables than other M-MIMO decoders. These
ewer trainable variables make the DLNet faster during training and
ecoding. It also requires less complex hardware for implementation.
hus the main contributions of this paper are as follows:

• A deep-learning-based decoder (DLNet) is proposed for M-MIMO
signal decoding.

• We have chosen a loss function of the neural network that makes
the MIMO decoder faster while decoding and less error-prone.

• Design the DLNet decoder architecture for M-MIMO with less
trainable variables and less complex structure than the other
available M-MIMO decoders.

• The number of the DNN layers, the number of the training it-
erations and the skip connection weight of the proposed DLNet
decoder are estimated for optimal performance.

In this paper, we are denoting the mean and variance of a random
ariable as m and 𝜎2 respectively. Normal distribution with mean m
nd variance 𝜎2 as  (𝑚, 𝜎2). The uniform distribution between a and b
s  (𝑎, 𝑏). Matrices are denoted by bold uppercase alphabets whereas
old lowercase alphabets are representing row or column vectors. 𝑥𝑖
ill be the 𝑖th element of a vector and (.)𝑇 is denoted as transpose of a
atrix.

The organization of this paper is as follows. The conventional M-
IMO system model is discussed in Section 2. Section 3 presents the

ecoding structure of the proposed DLNet architecture. This section
lso presents the proposed M-MIMO decoder’s mathematical model and
etwork architecture. The simulation result and performance evalua-
ion of the proposed DLNet have been discussed in Section 4. Section 5
oncludes the work.
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2. Massive-MIMO system model

Consider an M-MIMO system, where 𝑁𝑇 user equipments (UEs)
with single antenna transmit data to a base station (BS) of 𝑁𝑅 receive
antennas (𝑁𝑅 > 𝑁𝑇 ≫ 1). The channel between each transmit–
receive antenna pair is assumed to be frequency flat fading and remain
unchanged over one transmitted packet. In this work, we have con-
sidered the working frequency 5500 MHz, bandwidth is 80 MHz,
channel model is Rayleigh and Correlated MIMO channels, and we have
assumed that the channel state is perfectly known to the receiver.This
M-MIMO system can be represented using the following mathematical
expression:

𝐲𝑐 = 𝐇𝑐𝐱𝑐 + 𝐧𝑐 (1)

where 𝐲𝑐 ∈ C𝑁𝑅 is received message vector, 𝐱𝑐 ∈ S𝑁𝑇 is transmitted
signal vector of equiprobable and independent symbols from a finite
constellation S, we assume that all the constellation points in constel-
lation set S are normalized to unity power, 𝐇𝑐 ∈ C𝑁𝑅×𝑁𝑇 is MIMO
channel matrix and 𝐧𝑐 ∈ C𝑁𝑅 is complex symmetric i.i.d. Gaussian
noise of zero mean and variance 𝜎2𝑛 . The real-valued equivalent of a
complex MIMO system in (1) is given as
[

Re{𝐲𝑐}
Im{𝐲𝑐}

]

=
[

Re{𝐇𝑐} −Im{𝐇𝑐}
Im{𝐇𝑐} Re{𝐇𝑐}

]

×
[

Re{𝐱𝑐}
Im{𝐱𝑐}

]

+
[

Re{𝐧𝑐}
Im{𝐧𝑐}

]

(2)

For conciseness, Eq. (2) can be represented as

𝐲 = 𝐇𝐱 + 𝐧 (3)

where 𝐲 ∈ R2𝑁𝑅 , 𝐱 ∈ R2𝑁𝑇 and 𝐧 ∈ R2𝑁𝑅 . 𝐇 ∈ R2𝑁𝑅×2𝑁𝑇 is real-valued
matrix. In this paper, the channel matrix H is stochastically generated,
and it is assumed that the receiver perfectly knows it.

Upon receiving a message, the receiver needs to decode it properly.
Among many traditional MIMO decoders, the ML decoder performs
optimally. It minimizes the joint probability of error of all the sym-
bols simultaneously. It uses the nearest Euclidean distance with the
knowledge of the channel state and received signal to estimate the
transmitted message. In order to maximize the probability of correctly
calculating the x, the error needs to be minimized. The joint probability
of the error is represented below:

𝑃 (𝐱 = 𝐱̂|𝐲,𝐇) =
𝑃 (𝐱 = 𝐱̂)𝑓𝑦|𝑥,𝐻 (𝐲|𝐱 = 𝐱̂,𝐇)

𝑓𝑦|𝐻 (𝐲|𝐇)
(4)

fter maximizing expression (4), we will get the ML decoder which is
iven below:

̂𝐌𝐋 = arg min
𝐱̂∈S𝐍𝐓

‖𝐲 −𝐇𝐱̂‖2 (5)

ince the ML estimator uses an exhaustive search approach, it searches
or all possible combinations of transmitted symbols. Its computational
omplexity increases exponentially 𝑂

(

𝑀𝑁𝑇
)

with the increasing num-
er of transmit antennas and modulation order (𝑀 = log2 𝑛(S)). Where
is the constellation set. Some other linear decoders, such as ZF and
MSE have been proposed for decreasing complexities. Despite using

igher complexity, the imperfect channel information or unavailability
f channel state information leads to performance degradation. To
vercome these limitations, people search for an efficient, fast, and
ess complex M-MIMO decoder. Dl-based DLNet is one such M-MIMO
ecoding technique.

. DLNet M-MIMO decoder architecture

This section shows the network architecture of the proposed DLNet.
he DNN approach has been incorporated into the classical ML estima-
or iteratively to make the DLNet architecture. The basic idea behind
he DLNet decoder is the projected gradient descent-based solution of
he ML estimator (5).
3

𝐱

.1. Network structure of DLNet

To estimate the transmitted symbol vector (𝐱̂), we are mimicking
projected gradient descent-based solution for the ML optimization of
IMO systems. To estimate transmitted symbol vector 𝐱, we formulate
projected gradient descent based expression given as:

̂ 𝑙+1 = 𝛱
[

𝐱̂𝑙 − 𝜆
𝜕‖𝐲 −𝐇𝐱̂𝑙‖2

𝜕𝑥

]

= 𝛱
[

𝐱̂𝑙 + 2𝜆𝐇𝑇 𝐲 − 2𝜆𝐇𝑇𝐇𝐱̂𝑙
]

(6)

where, 𝐱̂𝑙+1 is the estimate of the transmitted message 𝐱 after 𝑙th
teration, 𝛱[.] represents a nonlinear projection operator. In 𝑙th iter-
tion, the step size and the estimate of x are 𝜆 and 𝐱̂𝑙 respectively.
he gradient of Eq. (5) which is the objective function for any MIMO
ecoder with respect to transmitted symbols 𝐱 is 2𝐇𝑇 𝐲−2𝐇𝑇𝐇𝐱̂𝑙. Now,
he iterations using gradient descent will become 𝐳𝑙+1 = 𝐱̂𝑙 + 2𝜆𝐇𝑇 𝐲 −
𝜆𝐇𝑇𝐇𝐱̂𝑙. Where, 𝐳𝑙+1 is the noisy estimate of x after 𝑙th iteration. After
his step a denoising process is required to remove the noise from 𝐳𝑙+1.
ere in DLNet, this denoising process is a series of non linear operations
sed to remove the residual error arisen due to deviation of 𝐳𝑙+1 from
he true value of 𝐱 and the channel noise 𝐧. With some loose bound,
e assume that this mixture of noise have Gaussian pdf with 𝛾𝑙𝐈2𝑁𝑡

as
ovariance matrix. Thus, the best denoiser function for Gaussian noise
hat minimizes E[‖𝐱̂𝑙 − 𝐱‖2|𝐳𝑙+1] [19] is given in Eq. (9).

Fig. 1(a) presents the structure of a single iteration of our proposed
LNet. Here, first we perform some linear operation on 𝐱̂𝑙, 𝐇𝑇𝐇𝐱̂𝑙, and
𝑇 𝐲 with trainable variables 𝐖1𝑙 (weights) and 𝐛1𝑙 (biases). After this
peration, the resultant estimate is then fed to a denoising function 𝛹𝐺.
athematically we can write these linear and denoising operation as:

𝑙+1 = 𝐱̂𝑙 +𝐖1𝑙(𝐇𝑇 𝐲 +𝐇𝑇𝐇𝐱̂𝑙) + 𝐛1𝑙
̂ 𝑙+1 = 𝛹𝐺(𝐳𝑙+1; 𝛾𝑙) (7)

Here the denoising function 𝛹𝐺 is a non-linear function 𝜂𝑡 ∶ C𝑁𝑡 →
𝑁𝑡 in general, however, the algorithm apply 𝛽𝑡 ∶ C → C to each
lement of 𝑧𝑡+1. A natural choice for the denoising function is the
inimizer of E[‖𝐱̂ − 𝐱‖2|𝐳𝑡], which is given by:

𝑡(𝐳𝑡) = E
[

𝐱|𝐳𝑡
]

(8)

Optimal denoiser for Gaussian noise: Several existing MIMO de-
ection schemes assume that the noise at the input of the denoiser
𝑡+1 − 𝑥 has an i.i.d. Gaussian distribution with diagonal covariance
atrix 𝜎2𝑡 𝐼𝑁𝑡

. Here, denoiser is a well known Gaussian denoiser [19]
iven as:

𝐺(𝑧𝑙+1; 𝛾𝑙) =
1
𝑍

∑

𝑥𝑖∈S
𝑥𝑖 exp

(

−
‖𝑧𝑙+1 − 𝑥𝑖‖2

𝛾𝑙

)

(9)

where 𝑍 =
∑

𝑥𝑗∈S exp
(

− ‖𝑧𝑙+1−𝑥𝑗‖2

𝛾𝑙

)

and 𝛾𝑙 is the estimated variance
of the error due to channel noise n as well as residual error. During
each iteration, estimation of 𝛾𝑙 is performed, which requires a series of
operations. Fig. 1(b) represents the 𝛾𝑙 estimation steps. Mathematically,
we can represent 𝛾𝑙 as:

𝛾𝑙 =
𝑊2𝑙
𝑁𝑅

(

‖𝐈 −𝐖1𝑙𝐇𝑇𝐇‖

2
𝐹 × 𝑅𝐿

(

‖𝐲 −𝐇𝐱̂𝑡‖22 − 2𝑁𝑅𝜎2𝑛
‖𝐇‖

2
𝐹

)

+
‖𝐖1𝑙𝐇𝑇𝐇‖

2
𝐹

‖𝐇‖

2
𝐹

𝜎2𝑛

)

(10)

ere, 𝐖1𝑙 and 𝐖2𝑙 are trainable variables and 𝑅𝐿(𝑥) = 𝑚𝑎𝑥{0, 𝑥} is the
ectified linear unit.

Such single iteration does not decode well. To improve the perfor-
ance we cascade several such iterations to make proposed DLNet.
he proposed DLNet consists of 15 such repetitive iterations. The final
rchitecture of DLNet is shown in Fig. 2. This detector takes received
ignal y, channel matrix H, and 𝐱̂𝑙 as input where 𝐱̂𝑙 is the estimate of
in the (𝑙−1)th layer of this detector. For first iteration we have taken

0 = 0.
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Fig. 2. Neural Network architecture of the DLNet decoder for M-MIMO system.

3.2. Selection of DLNet parameters

The expressions of 𝐳𝑙+1 and 𝐱̂𝑙+1 are derived from gradient descent
algorithm where weights 𝐖1𝑙, 𝑊2𝑙 and bias 𝐛1𝑙 were introduced as
trainable variables to lift the input to a higher dimension while neu-
ron activation functions were used to introduce non-linearities in the
system that are common in DL-networks. The dimension of 𝐳𝑙+1 and

1𝑙 are 2𝑁𝑇 × 1 and 2𝑁𝑇 × 2𝑁𝑇 respectively whereas the dimension
f 𝑊2𝑙 is 1 × 1. The single layer of the proposed DLNet detector is
epresented in Eq. (7). Fifteen such layers are cascaded iteratively

to make the proposed DLNet. The number of layers in the proposed
DL architecture depends upon the desired accuracy and complexity.
Fig. 3(a) shows the SER performance of the proposed DLNet having a
different number of layers. This graph shows that the SER performance
increases significantly up to 15 layers, and then a small increment
is seen beyond 15 layers. With the increasing number of layers, the
training variables, unit edges, and thus complexity increase. To make
the DLNet decoder more accurate and less complex, we choose the
network architecture, which is 15 layers deep. During training, the
following parameters of the DLNet detector need to be optimized:

{𝐖1𝑙 ,𝐛1𝑙 ,𝑊2𝑙}𝑙=𝐿𝑙=1

where 𝐿 = 15 is the layers in the DLNet detector.
Training is complex for DNN architecture. While training of a DNN

converges, a degradation problem was observed. With an increasing
number of layers at first, accuracy gets saturated and then degrades
rapidly. The over-fitting of the NN is not the cause of the above degra-
dation problem. While being trained, back-propagation of the gradient
to previous layers occurs. Due to repeated multiplication, the gradient
may become infinitely small. Also, increasing the number of layers
results in higher training errors. During training, the objective function
of the network may not be optimized due to wrong initialization and
many more reasons. [20].

To overcome the above-discussed issues, two modifications have
been made while making the network deeper. First, the proposed
network is made residual, and second, a loss function that considers
the outputs of all of the layers has been adopted. In [21] authors
have shown that compared to swallow non-residual networks, residual
networks can gain accuracy from the considerably increased depth and
are easier to optimize. However, with increasing depth, the ability
to backpropagate the gradients through all the layers in an effec-
tive manner is a concern [22]. Furthermore, to overcome repeated
multiplication, it is required to amplify the gradient that propagated
back along with additional regularization. Following this approach of
GoogleNet [22], to address these challenges, the loss of all the layers
has been taken into account to form the loss function of the DLNet.

For making the DLNet residual, the 𝑙th and (𝑙 − 1)th layer output is
weighted and averaged. To choose the weight factors of 𝑙th and (𝑙−1)th
layers, we have simulated the SER performance of the proposed DLNet
for different weights at different SNR values and presented in Fig. 3(b).
This simulation shows that the weight value of 0.97 gives a minimum
4

BER for all SNR. Owing to this simulation, the weight of the current
and previous layers are kept as 0.03 and 0.97, respectively. The loss
function of the proposed DLNet is calculated as:

𝑙𝑜𝑠𝑠 =
𝐿
∑

𝑙=1
‖𝐱 − 𝐱̂𝑙‖22 (11)

The 𝑙𝑜𝑠𝑠 used during training is the sum of errors between the esti-
mated transmitted messages at every DLNet layer. Stochastic gradient-
descent algorithm [23] with Adam Optimizer [24] is used to train the
proposed DLNet decoder for the M-MIMO system. The loss gradients
are used to compute the weight updates at every training step. For
training, batch processing has been used. In each batch, 1000 channel
realizations have been used during each training iteration. In general,
a large number of iterations may cause the proposed DLNet to over-fit
over the training data. This means that in place of learning, the DLNet
memorizes the data, and thus, performance degrades. To determine
the iteration size, the BER of the proposed M-MIMO decoder with
the increasing number of training iterations has been simulated and
shown in Fig. 4. Upon investigating this result, it is found that 10 000
training iterations give optimal performance. For training, intel Xeon
4114 computer with 22 GB NVidia GTX 1080 Ti GPU has been used.
The training took 3 min and 5 s for 𝑁𝑇 = 32 and 𝑁𝑅 = 64 M-MIMO
system and 2 min and 34 s for 𝑁𝑇 = 16 and 𝑁𝑅 = 64 M-MIMO system.

4. Simulation results

In the M-MIMO perspective, the proposed DLNet has been evaluated
for complexity, SER performance, and run-time required over a wide
SNRs range. The training phase of any DNN system is very critical. The
training efficiency decides its performance. For efficient DNN training,
the acceptable SNR range for training data generation is a crucial
factor. To find this, normalized validation error (NVE) for various SNR
ranges has been observed [25]. From NVE, it is found that neither too
high nor too low SNR ranges are suitable for efficient training. owing
this observation, the SNR values uniformly distributed from 5 dB to
18 dB,  (5, 18) dB have been chosen to train the DLNet. In our work,
SNR is defined as:

𝑆𝑁𝑅(𝑑𝐵) = 10 log
‖𝐇𝐱‖22
‖𝐧‖22

(12)

For training the presented DLNet, the transmit–receive (x–y) data
pair has been randomly generated for all the transmitters. Each trans-
mitter randomly generates transmit symbol 𝑥 belonging to any QPSK,
16-QAM, 64-QAM, and 256-QAM modulation schemes. All the trans-
mitters are assumed to transmit using the same modulation scheme.
The channel matrices H are either time-varying where each element is
sampled from Rayleigh channel having each column of H ∼  (0, (1∕
𝑁𝑅)𝐈𝑁𝑅

) or they are generated via correlated MIMO channel described
by the Kronecker model 𝐇 = 𝜽0.5𝑅 𝐀𝜽0.5𝑇 . Where the spatial correlation
matrix 𝜽0.5𝑇 and 𝜽0.5𝑅 at the transmitter and receiver are generated using
exponential correlation model [26] having correlation coefficient 𝜌 =
0.5 and matrices A as Rayleigh channel coefficients.

During training, the channel 𝐇𝑐 is generated independently for each
batch in each iteration. During the simulations, various performance
measures are simulated and compared with the following existing
M-MIMO decoding schemes:

1. MMSE: A linear decoder uses the pseudo inverse of SNR regu-
larized channels to find the nearest point on the constellation
set.

2. MMNet_iid: A DL-based iterative algorithm that has very few
trainable variables for i.i.d. Gaussian channels. However, the
network (MMNet) needs to train online on every channel real-
ization in spatially correlated channels. In MMNet, the online
training requires hardware with enormous computational com-
plexity as well as introduces latency, thus difficult to use in
practical systems [18].



AEUE - International Journal of Electronics and Communications 155 (2022) 154350S. Kumar et al.

d
M
t
c
m

Fig. 3. Selection of the DLNet parameters.
w
D
m

l
O
b
b
F

Fig. 4. SER performance for different number of training iterations (𝑁𝑇 = 16, 𝑁𝑅 =
64, Modulation = QPSK, Number of Layers = 15).

3. OAMP-Net This is based on famous OAMP-based architecture
[17]. It is also a DL-based iterative approach, but it makes strong
assumptions about the channel. The OAMP-Net is based on the
MMSE model and needs to calculate the channel inverse in each
iteration, which is too complex for large MIMO channels and
thus takes more time during training and detection.

4. SDR: Semi-definite relaxation is an optimization technique. Sev-
eral researchers have used SDR to make M-MIMO decoders [16].

5. AMP: Approximate message passing algorithm based MIMO de-
coder [27].

6. DetNet: This has a data-driven DNN-based architecture. It also
uses gradient-descent to make M-MIMO decoder [14].

7. FS-Net: A fast converging, sparsely connected deep learning-
based network which is made by applying enhancements in
DetNet [28].

Table 1 compares the various parameters of DetNet, OAMP-Net, and
the proposed DLNet decoder.

4.1. SER performance

Figs. 5 and 6, 7 present the SER performance of the proposed DLNet
ecoder for two different channel models Rayleigh channel & correlated
IMO channels respectively. Fig. 5 presents the SER performance of

he proposed DLNet for the Rayleigh channel model with two antenna
onfigurations (Tx = 16, Rx = 64 and Tx = 32, Rx = 64) and different
odulation schemes. The figure also compares the proposed DLNet
5

ith other decoders such as MMSE, AMP, SDR, OAMP-Net, MMNet_iid,
etNet, and FS-Net. From this figure, the following observations are
ade:

1. If we double the number of transmit antennas, there is more
interference, and thus SNR required to achieve a particular SER
will increase by 3−4 dB.

2. Performance of DetNet severely degrades on higher modulation
order, especially for 64-QAM and higher.

3. At higher SNRs and higher modulation order (16-QAM and
higher), the performance of MMNet_iid saturates.

4. AMP suffers from robustness issues, is unstable, and saturates at
higher SNRs for all modulation schemes.

5. SDR performs best for QPSK, but its gap with MMSE decreases
with increasing modulation order.

6. DLNet and OAMP-Net perform similarly throughout the SNR
range for all modulation schemes and 16 transmit antennas.
While doing timing and complexity analysis, we have found that
OAMPNet takes more time for training and testing and requires
more complex hardware to implement than DLNet.

7. DLNet performs superior to OAMP-Net at higher modulation
(64-QAM and 256-QAM) for 32 transmit antennas.

8. DLNet performance is similar to SDR for QPSK, but for higher
modulation schemes, DLNet outperforms SDR.

Figs. 6 & 7 show SER performance of the proposed DLNet for corre-
ated channel model For correlated channels, we consider MMNet_iid,
AMP-Net, and MMSE only. SDR and DetNet training are highly unsta-
le in the case of correlated channels. Also, the AMP decoder has not
een designed for correlated channels and poorly performs on them.
rom this figure, the following observations are made:

1. If we double the number of transmit antennas, nearly 4 dB
increase in SNR is required to achieve the same SER. Corre-
lated channels require 1.5 − 2 dB increase in SNR to match the
performance with Rayleigh channels.

2. MMNet_iid suffers from robustness issues for correlated channels
and performs poorer than MMSE for higher modulation orders
(16-QAM and higher)throughout the SNR range.

3. The performance of DLNet and OAMP-Net is similar with 16
transmit antennas, whereas DLNet performs better than OAMP-
Net with 32 transmit antennas for all modulation orders.

4. With the increase in the number of transmit antennas, DLNet
outperforms OAMP-Net.

5. DLNet performs better than MMSE for all modulation orders, but

its gap with MMSE decreases with increased modulation order.
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Table 1
DetNet, OAMP-Net and proposed DLNet comparison.
Parameters DetNet OAMP-Net DLNet

Input shape 5𝑁𝑇 × 1 2𝑁𝑇 × 1 2𝑁𝑇 × 1
Hidden layer neurons 8𝑁𝑇 – 2𝑁𝑇
Iterative layers 3𝑁𝑇 10 15
Skip connections Yes No Yes

Loss function 𝑙(𝐱; 𝐱̂𝜃 (𝐇, 𝐲)) =
∑𝐋

𝑘=1 log(𝑘)
‖𝐱−𝐱̂𝑘‖2

‖𝐱−𝐱̃‖2

𝐱̃ = (𝐇𝑇𝐇)−1𝐇𝑇 𝐲
𝑙𝑜𝑠𝑠 =

∑𝐿
𝑙=1 ‖x − 𝑥̂𝑙‖2 𝑙𝑜𝑠𝑠 =

∑𝐿
𝑙=1 ‖x − 𝑥̂𝑙‖2

Supported channel Real and complex i.i.d. Gaussian
channels Only

Real and complex i.i.d. Gaussian and
Correlated Channels

Real and complex i.i.d. Gaussian and
Correlated Channels

Matrix inverse Not required Required Not required

Trainable 3 513 650 (𝑁𝑇 = 32, 𝑁𝑅 = 64) 20 (𝑁𝑇 = 32, 𝑁𝑅 = 64) 42 250 (𝑁𝑇 = 32, 𝑁𝑅 = 64)
Parameters 886 450 (𝑁𝑇 = 16 and 𝑁𝑅 = 64) 20 (𝑁𝑇 = 16 and 𝑁𝑅 = 64) 10 890 (𝑁𝑇 = 16 and 𝑁𝑅 = 64)
Fig. 5. Accuracy performance (SER vs. SNR) graph of the proposed DLNet decoder on Rayleigh channel model. (Training Iteration = 10 000, Number of Layers = 15).
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NN needs to be trained as per the required channel model. A large
ataset is required for efficient training, which takes a long time to train
he network. Once trained, the network can be used for decoding. Re-
raining is required when there is a change in the number of antennas,
perating environment (indoor, outdoor, static, mobile, etc.), operating
requency band, and other parameters that can impact the channel
odel. Once the channel model changes, NN needs to be retrained.
he channel characteristics may be time-varying while working with
he same channel model; DLNet need not be trained again.

.2. Timing and complexity analysis

Timing and complexity are two main aspects of any signal decoder.
n 5G, a message frame is needed to be decoded within a short time
ith minimum hardware complexity. SDR-based decoder, OAMPNet,
MNet_iid, DetNet, and proposed DLNet decoder have been simulated

or timing analysis on a similar hardware platform. Fig. 8 represents
the time required by various decoders to decode M-MIMO signals over
6

a wide SNR range. For the shake of clarity, The 𝑦 axis represents the a
normalized time of the decoders with respect to DLNet. This graph
illustrates that the proposed DLNet decoder decodes at least 3 times
faster than DetNet, on an average 90 times faster than SDR, and 14
times faster than OAMPNet for Rayleigh channels. At the same time,
it is 11 times faster than OAMPNet for correlated channels. For both
orrelated and Rayleigh channels, MMNet_iid is 1.20 times faster than
LNet, but its SER performance is unsatisfactory than DLNet.

After timing analysis, the computational complexity of the M-MIMO
etectors has been estimated. For that, their run time requirements
ere compared. Many factors such as hardware platforms and im-
lementation details make the complexity comparison non-trivial. To
nsure fairness among all, the same machine (See Section 3 for ma-
hine details) with python 3.7 environments, Tensorflow, and NumPy
ackages have been used to test them. While considering the run time
f a DNN, the batch size plays an important role. DL-based decoders
ecode over an entire batch of data to increase the decoding speed,
hile conventional decoders such as SDR cannot work over the whole
atch. AMP algorithm can also compute over an entire batch of signals

t once. However, the batch introduced speed improvement is highly
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Fig. 6. Accuracy performance (BER vs. SNR)of DLNet decoder on Correlated channel model. (Training Iteration = 10 000, Number of Layers = 15).
Fig. 7. Accuracy performance (SER vs. SNR) DLNet decoder on Correlated channel model.
T
m
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dependent on the platform used (FPGA/GPU/CPU, etc.). Therefore, for
completeness, 1000 as batch size has been chosen to present the results.

Table 2 presents the complexity comparison between DLNet and
etNet detectors. This table shows that the proposed DLNet has 82

imes less trainable parameters (unit edges) than DetNet for the same
-MIMO configurations. Though the number of training variables is
7

r

significantly less for OAMP-Net (20 variables), the complexity of OAMP-
Net is dominated by matrix inverse operation in each iteration [17].

he fewer trainable variables (unit edges) and less complex processes
ake the proposed DLNet faster while training and computationally

nexpensive i,e. it requires simple hardware to implement. The time
equired by DetNet and OAMP-Net for being trained is approx 28 and



AEUE - International Journal of Electronics and Communications 155 (2022) 154350S. Kumar et al.

9
3
d

4

t
o

Fig. 8. Normalize Time (Time/Time taken by DLNet Decoder) vs. SNR (QPSK, 𝑁𝑇 = 32 𝑁𝑅 = 64).
Table 2
Comparison with DetNet, DLNet and ML decoder.
𝑁𝑇 and 𝑁𝑅 Network Unit edges Training time Deco ding time Complexity

𝑁𝑇 = 32, 𝑁𝑅 = 64 DLNet 42 250 3 min 5 s 15.29 μs 4𝑁3
𝑇 + 9𝑁2

𝑇 − 5𝑁𝑇
DetNet 3 513 650 1 h 23 min 45 s 45.27 μs 784𝑁3

𝑇 − 120𝑁2
𝑇

OAMPNet 20 27 min 40 s 198 μs 𝑂𝑁3
𝑇 (dominated by Matrix Inverse)

MMNet_iid 650 2 min 19 s 13.20 μs Two magnitude lower than OAMPNet
ML decoder – – 12.65 ms Exponential with 𝑁𝑇

𝑁𝑇 = 16, 𝑁𝑅 = 64 DLNet 10 890 2 min 34 s 12 μs 4𝑁3
𝑇 + 9𝑁2

𝑇 − 5𝑁𝑇
DetNet 886 450 1 h 12 min 11 s 25.75 μs 784𝑁3

𝑇 − 120𝑁2
𝑇

OAMPNet 20 24 min 37 s 194 μs 𝑂𝑁3
𝑇 (dominated by Matrix Inverse)

MMNet_iid 330 2 min 18 s 8.5 μs Two magnitude lower than OAMPNet
ML decoder – – 8.54 ms Exponential with 𝑁𝑇
Fig. 9. Accuracy-complexity tradeoff and Network convergence speed.
times higher than that of DLNet, respectively, whereas it is approx
times faster than DetNet and 14 times faster than OAMP-Net during

ecoding.

.3. Accuracy and complexity tradeoff

One exciting feature of DLNet is that the complexity and accuracy
rade-off can be achieved during run time by changing the number
f layers. Fig. 9(a) represents the relationship between SER and the

increasing number of layers of the proposed decoder at 8 dB SNR for
QPSK modulation. The figure shows that the SER of the DLNet improves
with an increasing number of layers (up to 15), then further minimal
increment is seen. However, increasing DLNet layers results in more
training variables, unit edges, and thus higher decoding complexity. To
keep the DLNet computationally inexpensive, the output of any layer
could be chosen as final on the cost of accuracy, e.g., 10th layer. This
leads to fewer training variables in the decoder, and thus complexity
8

also reduces but on the other hand, SER performance also degrades.
Fig. 9(b) shows the convergence speed of the DetNet, OAMP-Net,
and the DLNet decoder during the training phase. These three networks
were trained on uniformly distributed random SNRs varying from 5 dB
to 18 dB as  (5, 18). Because of the random nature of SNR values,
SER values will converge but never becomes minimum regardless of the
number of iterations. However, the proposed DLNet M-MIMO decoder
converges faster to a minimum SER value than DetNet for a given
number of iterations.

5. Conclusion

This paper proposed a DL-based M-MIMO signal decoder DLNet.
We have simulated its SER performance, implementation complexity,
and decoding time requirement over frequency flat Rayleigh fading
and correlated M-MIMO channels. The proposed DLNet is a 15 layers
DNN based on the projected gradient descent-based solution of the ML
decoder. The proposed DLNet provides near-optimal SER performance

without knowing the SNR level and is computationally inexpensive. The
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training of DLNet was done on the entire channel distribution, which
makes it robust and implementable in a system with changing channel
values where the receiver perfectly knows the channel state. After doing
single-time training, the proposed DLNet decoder can decode signals
accurately over various channels. The data obtained from real-world
channels and real hardware could be used to train the DLNet, and
thus it can be optimized for specific practical M-MIMO environments.
Its iterative layering structure enables a flexible complexity-accuracy
trade-off required for many modern communication systems.
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