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ABSTRACT In this paper, novel hard-decision iterative decoding algorithms for binary Reed-Muller (RM)
codes are presented. First, two algorithms are devised based on the majority-logic decoding algorithm
with reliability measures of the received sequence. The bit-flipping (BF) and the normalized bit-flipping
(NBF) decoding algorithms are hard-decision decoding algorithms. According to the updated hard reliability
measures, the BF and NBF algorithms flip one bit of the received hard-decision sequence at a time in each
iteration. The NBF decoding algorithm performs better than the BF decoding algorithm by normalizing
the reliability measures of the information bits. Moreover, the BF and NBF algorithms are modified to flip
multiple bits in one iteration to reduce the average number of iterations. The modified decoding algorithms
are called the multiple-bits-flipping (MBF) algorithm and the normalized multiple-bits-flipping (NMBF)
algorithm, respectively. The proposed algorithms have low computational complexities and can converge
rapidly after a small number of iterations. The simulation results show that the proposed hard-decision
decoding algorithms outperform the conventional decoding algorithm.

INDEX TERMS Reed-Muller code, bit-flipping, majority-logic decoding, iterative decoding.

I. INTRODUCTION
The Reed-Muller (RM) code is a class of multiple-error-
correction codes. In the past, RM codes were used in wireless
communications, especially in deep-space communications.
RM codes were first discovered by Muller [1] and the
conventional decoding scheme of RM code, which is the
majority-logic decoding, was proposed by Reed in 1954 [2].
Ever since their discovery, a number of efficient decod-
ing schemes have been constructed. In 1995, Schnabl and
Bossert proposed a generation of Reed-Muller codes by mul-
tiple concatenations and provided a new decoding procedure
using soft-decision information [3]. In 1999, a maximum-
likelihood (ML) decoder which uses a distance-preserving
map and multiple fast Hadamard transforms (FHTs) was
presented by Jones and Wilkinson [4] whereas a maximum
a posterior (MAP) decoding algorithm for the first-order
RM codes was proposed in [5]. In 2000, a new soft-decision
majority-logic decoding algorithm was presented by revising
the conventional majority-logic decoding [6]. Besides, the
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recursive decoding algorithms were provided in [7]–[11].
In 2006, the recursive list decoding was modified by Dumer
and Shabunov to approach the performance of ML decod-
ing [9]. Recently, Ye and Abbe proposed the recursive
projection-aggregation (RPA) decoding algorithm with lists
to have comparable performance with the recursive list
decoding [10]. In the same year, the recursive puncturing-
aggregation (RXA) algorithm was proposed via replacing the
projection by puncturing in RPA [11].

In recent years, the breakthrough of polar codes [12]–[15]
has brought attention back to RM codes due to the sim-
ilarity of these two codes. The performance comparison
between RM codes and polar codes was demonstrated
in [10], [15]–[17]. It has been shown that the RM codes
with RPA decoding [10] can significantly outperform the
polar codes under successive-cancellation list (SCL) decod-
ing [18]–[20]. In addition, by exploiting the idea of decoding
polar codes, [21], [22] presented permutation-based decoding
methods for RM codes.

Although various algorithms for decoding RM codes
have been designed, most of them are soft-decision
decoding. In this paper, the hard-decision decoding is taken
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into consideration with low complexity. The conventional
majority-logic decoding has low complexity but the perfor-
mance is not good enough. In contrast, the hard-decision
ML decoding algorithm has better performance but the com-
plexity of the ML decoding is extremely large. In this work,
we aim for new algorithms outperforming the conventional
majority-logic decoding with controllable complexity.

This paper presents novel iterative decoding algorithms for
Reed-Muller codes by exploiting the idea of bit-flipping [23]
and min-sum [24] decoding algorithms for low-density
parity-check (LDPC) codes [25]. These proposed algo-
rithms are devised based on the min-sum operation and
the reliability measures of the received sequence. The first
proposed algorithm is called the bit-flipping (BF) decod-
ing algorithm because we flip one bit of the received
hard-decision sequence at a time in each iteration. Through
decoding iterations, the hard-decision sequence is updated.∗

Next, the second decoding algorithm, called the normal-
ized bit-flipping (NBF) decoding algorithm, is proposed.
The reliability measures of information bits are normalized
depending on the degree to balance the number of votes.
Therefore, the NBF decoding algorithm offers better perfor-
mance compared with the BF decoding algorithm. To reduce
the number of iterations and the complexity, a termina-
tion process is provided as well. These proposed iterative
decoding algorithms can converge very rapidly. For the
hard-decision BF and NBF decoding algorithms, we addi-
tionally provide a condition to allow flipping multiple bits
in each iteration. The advantage of multiple-bits flipping is
to reduce the required number of iterations and hence to
have less computational complexity. We call them multiple-
bits-flipping (MBF) decoding and normalized multiple-bits-
flipping (NMBF) decoding, respectively.

The numerical experiment results show that the proposed
hard-decision decoding algorithms perform better than the
conventional majority-logic decoding algorithm over the
additive white Gaussian noise (AWGN) channel.

The rest of this paper is organized as follows. Nota-
tions and definitions are provided in Section II. Section III
introduces the conventional majority-logic decoding for RM
codes. In Section IV, the steps and examples for the proposed
algorithms are given. Section V shows the simulation results
over the AWGN channel. Finally, the concluding remarks are
given in Section VI.

II. PRELIMINARY AND NOTATIONS
We denote the binary r th-order Reed-Muller code of length
2m over GF(2) by RM(r,m). Let the 2m-tuple vectors

xi = (00 · · · 0︸ ︷︷ ︸
2i−1

11 · · · 1︸ ︷︷ ︸
2i−1

00 · · · 0︸ ︷︷ ︸
2i−1

· · · 11 · · · 1︸ ︷︷ ︸
2i−1

) (1)

with 2m−i+1 segments for i = 1, 2, . . . ,m and x0 =
(11 · · · 1) which is the all-one vector. For vectors a =
(a0, a1, . . . , an−1) and b = (b0, b1, . . . , bn−1), we denote

∗The BF algorithm was briefly described in the conference paper [26].

ab = (a0 · b0, a1 · b1, . . . , an−1 · bn−1) where ‘‘·’’ represents
the product and say that the product vector xi1xi2 · · · xiγ where
1 ≤ i1 < i2 < · · · < iγ ≤ m has degree γ . Then, RM(r,m)
can be generated by the following vectors:

{x0, x1, x2, . . . , xm, x1x2, . . . , xm−1xm,

. . . , up to products of degree r}. (2)

Therefore, the generator matrix of RM(r,m) can also be
expressed as

G =



x0
x1
...

xm
x1x2
...

xm−1xm
...

up to products of degree r


. (3)

Assume that u = (u0, u1, . . . , uK−1) is the information
vector where K is the number of information bits. Then, the
encoded codeword c = (c0, . . . , c2m−1) can be obtained by

c = u · G =
K−1∑
j=0

ujgj (4)

where gj is the jth row of the generator matrix G. For 1 ≤
j ≤ K − 1, if uj is the coefficient of the product vector
xi1xi2 · · · xiγ where 1 ≤ i1 < i2 < · · · < iγ ≤ m,
we call uj the information bit corresponding to a product
vector of degree γ . Also, u0 is called the information bit cor-
responding to the all-one vector because it is the coefficient
of x0. Take RM(2, 3) for example, if the information vector
is u = (u0, u1, u2, u3, u4, u5, u6), then the encoded codeword
is expressed as

c= u0x0 + u1x1+ u2x2 + u3x3+ u4x1x2+ u5x1x3 + u6x2x3

where u0 is the information bit corresponding to all-one vec-
tor; u1, u2, and u3 are the information bits corresponding to
the product vectors of degree 1; u4, u5, u6 are the information
bits corresponding to the product vectors of degree 2.

III. REVIEW OF THE CONVENTIONAL
MAJORITY-LOGIC DECODING
For the hard-decision decoding, the conventional decoding
algorithm is themajority-logic decoding algorithmwhichwas
first proposed by Reed in [2]. The concept of the conventional
majority-logic decoding is simple and the majority-logic
decoding has low complexity. However, the performance
is limited. In contrast, the hard-decision ML decoding
algorithm has better performance but the complexity is
extremely large. The comparison of complexities for different
hard-decision decoding algorithms is given in Table 1. In our
work, the major contribution is to modify the conventional
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majority-logic decoding with better performance and accept-
able complexity. In the following, we will introduce the pro-
cedure of the conventional majority-logic decoding.

During the decoding process, there are 2m−γ votes that can
be used to estimate each information bit corresponding to a
product vector of degree γ . We denote k the index of vote
where 0 ≤ k < 2m−γ . Let uj be the coefficient of the product
vector xi1xi2 · · · xiγ of degree γ where 1 ≤ i1 < i2 < · · · <
iγ ≤ m. We first define the set A as

A =
{
a12i1−1 + a22i2−1 + · · · + aγ 2iγ−1 : at ∈ {0, 1},

for t = 1, 2, . . . , γ } . (5)

Then, the set E is defined as

E = {0, 1, . . . ,m− 1}\{i1 − 1, i2 − 1, . . . , iγ − 1}

= {j1, j2, . . . , jm−γ } (6)

and the set B is defined as

B =
{
b12j1 + b22j2 + · · · + bm−γ 2jm−γ : bt ∈ {0, 1},

for t = 1, 2, . . . , γ } . (7)

For each qk ∈ B, we can construct the following set:

Sk = qk + A = {qk + p : p ∈ A} (8)

consisting of bit indices of the received sequence.
The steps of the conventional majority-logic decoding for

RM(r,m) can be described as follows:
Initialization: Let γ = r and n = 2m.
Step 1. For 0 ≤ l < n, make a hard-decision on each

received value yl from noisy channel by

vl =

{
0, if yl > 0;
1, otherwise.

(9)

Step 2. For any information bit uj which is the coefficient
of a product vector of degree γ , compute each ûj,k
for uj by

ûj,k =
∑
l∈Sk

vl (10)

for k = 0, 1, . . . , 2m−γ −1 where Sk is given in (8).
Step 3. Then, determine the estimation of uj according to

the majority voting of 2m−γ equations from (10). If
γ = 0, go to Step 5.

Step 4. Remove the estimated information of uj’s corre-
sponding to vectors of degree γ from the received
sequence and modify vl → v′l for 0 ≤ l < n by

v′ = v−
∑

1≤i1<i2<···<iγ≤m

ujxi1xi2 · · · xiγ (11)

where v = (v0, v1, . . . , vn−1) and v′ =

(v′0, v
′

1, . . . , v
′

n−1). Set γ = γ − 1, go to Step 2.
Step 5. Stop decoding and obtain all decoded information

bits uj.
In Step 2, it can be found that there are 2m−γ estimates

for one information bit uj and the estimated uj is determined

based on these 2m−γ votes in Step 3. The estimation of uj
is the value (∈ {0, 1}) with majority votes. That is why it is
called the majority-logic decoding. Then, Step 4 decreases
the degree by setting γ = γ − 1 and repeats the decoding
process until γ = 0.

IV. PROPOSED ITERATIVE DECODING ALGORITHMS
In this section, we first demonstrate the hard-decision BF
and NBF decoding algorithms. Then, two modified decoding
algorithms, i.e., MBF and NMBF algorithms, which consider
multiple-bits flipping are introduced.

A. BF DECODING ALGORITHM
We follow the same notations given in Section III. Besides,
let Imax be the maximum number of iterations in the decoding
process. For 1 ≤ i ≤ Imax, let v(i) = (v(i)0 , v

(i)
1 , . . . , v

(i)
n−1)

denote the hard-decision codeword generated in the ith
decoding iteration. For 1 ≤ i ≤ Imax and 0 ≤ j < K ,
R(i)j denotes the reliability measure of the jth information bit
uj in the ith decoding iteration. Furthermore, Ml represents
the set of index j such that Gj,l = 1 which is the element
in the jth row and lth column of the generator matrix G
in (3). Giving an additional condition on γ , Mγ

l represents
the collection of j’s such that Gj,l = 1 and the jth row vector
of G is a product vector of degree γ . Moreover, Dl denotes
the difference between the estimated codeword bit v(i)l and
the reliability measure in the lth position of the received
sequence. Based on the notations defined above, the block
diagram of the decoding scheme is illustrated in Fig. 1.
In each decoding iteration, it allows flipping only one bit

from the updated codeword at a time.
Initialization: Set i = 1 and γ = r . Let Imax denote the

maximum number of iterations and let y = (y0, y1, . . . , yn−1)
be the received sequence over AWGN channel.

Step 1. For 0 ≤ l < n, determine v(1)l for each received bit
yl according to the hard-decision rule:

v(1)l =

{
1, if yl > 0;
−1, otherwise.

(12)

Also, let φ(1) = v(1).
Step 2. For 0 ≤ k < 2m−γ , compute each vote information

for the information bit uj corresponding to a vector
of degree γ :

ûj,k =
∏
l∈Sk

φ
(i)
l (13)

where Sk is the set of indices in the received
sequence which are related to uj as given in (8).

Step 3. Obtain the reliability measure of the information
bit uj by summing all 2m−γ votes from Step 2:

R(i)j =
2m−γ−1∑
k=0

ûj,k . (14)

If γ = 0, go to Step5.
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FIGURE 1. The block diagram of the hard-decision bit-flipping decoding algorithm.

Step 4. For l = 0, 1, . . . , n− 1, if φ(i)l does not involve the
information of any information bit of degree γ , then(
φ
(i)
l

)′
= φ

(i)
l ; otherwise,(
φ
(i)
l

)′
= φ

(i)
l

∏
j∈Mγ

l

sgn(R(i)j ). (15)

Set γ = γ − 1 and φ(i) =
(
φ(i)

)′
. Go to Step 2.

Step 5. If i = Imax, make the following hard-decision:
1) uj = 1, if R(i)j ≤ 0; 2) uj = 0, if R(i)j > 0 and
stop decoding. Otherwise, go to Step 6.

Step 6. (Re-encoding) Let v̂ = (v̂0, v̂1, . . . , v̂n−1) where

v̂l =
∏
j∈Ml

sgn(R(i)j ) (16)

and 0 ≤ l < n. Go to Step 7.
Step 7. (Termination) If v(i)l = v̂l for all l, make the

following hard-decision: 1) uj = 1, if R(i)j ≤ 0; 2)

uj = 0, if R(i)j > 0 and stop decoding. Otherwise,
go to Step 8.

Step 8. For l = 0, 1, . . . , n− 1, if

v(i)l 6= v̂l, (17)

calculate

Dl =

∣∣∣∣v(i)l − v̂l ·min
j∈Ml
|R(i)j |

∣∣∣∣ ;
otherwise, Dl = 0. Go to Step 9.

Step 9. Find l ′ with the maximum value of Dl , i.e.,

l ′ = argmax
0≤l<n

Dl .

Set i = i+ 1. Then, for l = 0, 1, . . . , n− 1, update
the estimated codeword bit as follows:

v(i)l =

{
−v(i−1)l , if l = l ′;

v(i−1)l , otherwise.

Set γ = r and φ(i) = v(i). Go to Step 2.

To reduce the complexity, a termination process is devel-
oped in Step 7. The decoding process is terminated when
the updated sequences are identical within two consecutive
iterations.

Note that Step 2, Step 4, and Step 8 of the BF algorithm
in [26] are modified in this manuscript to have simpler
expressions.
Example 1: To demonstrate the decoding process, let us

consider RM(1, 3) with the generator matrix given by

G =


1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

 .
Assume the information vector is u = (u0, u1, u2, u3) =
(0, 0, 1, 0) where u0 is the information bit corresponding
to the all-one vector and u1, u2 and u3 are the infor-
mation bits corresponding to vectors of degree 1. Hence,
we have the encoded codeword c = (c0, c1, . . . , c7) =
(0, 0, 1, 1, 0, 0, 1, 1). Assume the received sequence is

y = (y0, y1, . . . , y7)

= (1.5, 0.4,−2.3, 1.5, 0.3, 2.4,−1.2,−0.7)

over the AWGN channel. First of all, we make the
hard-decision of y and obtain the initial information φ(1) =
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(φ(1)0 , φ
(1)
1 , . . . , φ

(1)
7 ) = (1, 1,−1, 1, 1, 1,−1,−1) according

to Step 1. From (13), we have the following four equations

û1,0 = φ
(1)
0 φ

(1)
1 = 1;

û1,1 = φ
(1)
2 φ

(1)
3 = −1;

û1,2 = φ
(1)
4 φ

(1)
5 = 1;

û1,3 = φ
(1)
6 φ

(1)
7 = 1

for j = 1. Then, the reliability measure of u1 in the first
iteration is

R(1)1 = û1,0 + û1,1 + û1,2 + û1,3 = 1+ (−1)+ 1+ 1 = 2

according to (14). Similarly, we can also obtain R(1)2 =

−2 and R(1)3 = 2 which are the reliability measures of u2 and
u3, respectively. Next, we need to modify φ(1) by removing
the contributions from u1, u2, and u3. Then, we obtain the
estimations of u0 as follows:

û0,0 = φ
(1)
0 = 1;

û0,1 = φ
(1)
1 sgn(R(1)1 ) = 1 · sgn(2) = 1;

û0,2 = φ
(1)
2 sgn(R(1)2 ) = −1 · sgn(−2) = 1;

û0,3 = φ
(1)
3 sgn(R(1)1 )sgn(R(1)2 ) = 1 · sgn(2)sgn(−2) = −1;

û0,4 = φ
(1)
4 sgn(R(1)3 ) = 1 · sgn(2) = 1;

û0,5 = φ
(1)
5 sgn(R(1)1 )sgn(R(1)3 ) = 1 · sgn(2)sgn(2) = 1;

û0,6 = φ
(1)
6 sgn(R(1)2 )sgn(R(1)3 ) = −1 · sgn(−2)sgn(2) = 1;

û0,7 = φ
(1)
7 sgn(R(1)1 )sgn(R(1)2 )sgn(R(1)3 )

= −1 · sgn(2)sgn(−2)sgn(2) = 1.

Therefore, the reliability measure of u0 is

R(1)0 = û0,0 + û0,1 + û0,2 + û0,3
+û0,4 + û0,5 + û0,6 + û0,7

= 1+ 1+ 1+ (−1)

+1+ 1+ 1+ 1 = 6.

In Step 6, we can re-encode the estimated codeword based on
the reliability measures of information bits:

v̂0 = sgn(R(1)0 ) = sgn(6) = 1;

v̂1 = sgn(R(1)0 )sgn(R(1)1 ) = sgn(6)sgn(2) = 1;

v̂2 = sgn(R(1)0 )sgn(R(1)2 ) = sgn(6)sgn(−2) = −1;

v̂3 = sgn(R(1)0 )sgn(R(1)1 )sgn(R(1)2 )

= sgn(6)sgn(2)sgn(−2) = −1;

v̂4 = sgn(R(1)0 )sgn(R(1)3 ) = sgn(6)sgn(2) = 1;

v̂5 = sgn(R(1)0 )sgn(R(1)1 )sgn(R(1)3 )

= sgn(6)sgn(2)sgn(2) = 1;

v̂6 = sgn(R(1)0 )sgn(R(1)2 )sgn(R(1)3 )

= sgn(6)sgn(−2)sgn(2) = −1;

v̂7 = sgn(R(1)0 )sgn(R(1)1 )sgn(R(1)2 )sgn(R(1)3 )

= sgn(6)sgn(2)sgn(−2)sgn(2) = −1.

In this example, we find v(1)3 6= v̂3. Therefore, we have

D3 =

∣∣∣v(1)3 − v̂3 ·min {|6|, |2|, | − 2|}
∣∣∣ = |1− (−2)| = 3

and

D = (D0,D1, . . . ,D7) = (0, 0, 0, 3, 0, 0, 0, 0)

where there is only one position of v(1) distinct from the
re-encoded codeword. The largest value is D3 = 3, so we
obtain l ′ = 3. Thus, we flip one bit of the initial sequence
v(1) by

v(2)l =

{
−v(1)l , if l = 3;

v(1)l , otherwise.

Then, φ(2) = v(2) = (1, 1,−1,−1, 1, 1,−1,−1) is the
updated sequence for the next decoding iteration.
After performing Steps 1 to 6 in the second iteration,

we can obtain that v(2)l = v̂l for all l = 0, 1, 2, . . . , n. That is,

v(2)0 = v̂0 = sgn(R(2)0 ) = 1;

v(2)1 = v̂1 = sgn(R(2)0 )sgn(R(2)1 ) = 1;

v(2)2 = v̂2 = sgn(R(2)0 )sgn(R(2)2 ) = −1;

v(2)3 = v̂3 = sgn(R(2)0 )sgn(R(2)1 )sgn(R(2)2 ) = −1;

v(2)4 = v̂4 = sgn(R(2)0 )sgn(R(2)3 ) = 1;

v(2)5 = v̂5 = sgn(R(2)0 )sgn(R(2)1 )sgn(R(2)3 ) = 1;

v(2)6 = v̂6 = sgn(R(2)0 )sgn(R(2)2 )sgn(R(2)3 ) = −1;

v(2)7 = v̂7 = sgn(R(2)0 )sgn(R(2)1 )sgn(R(2)2 )sgn(R(2)3 ) = −1.

It means that the re-encoded codeword v̂ is identical to the
updated sequence v(2) in the previous iteration. Hence, there
is no need to flip any bit. The updated hard-decision sequence
v(2) = (v(2)0 , v

(2)
1 , . . . , v

(2)
7 ) = (1, 1,−1,−1, 1, 1,−1,−1)

is a valid codeword, so we can terminate the decoding
process. Then, we output the decoded information vector
(û0, û1, û2, û3) = (0, 0, 1, 0) based on the hard-decision of
the reliability measures R(2)0 , R(2)1 , R(2)2 , and R(2)3 in Step 7.

B. NBF DECODING ALGORITHM
For the BF algorithm, the reliability measure is updated only
based on the signum of R(i)j ’s in (15). In the NBF algorithm,
we want to introduce the magnitudes of reliability measures
when φ

(i)
l ’s are updated. In addition, the concept of the

min-sum algorithm is exploited and then (13) and (15) are
modified with the min-sum operations. Besides, the reliabil-
ity measures R(i)j ’s in (14) have to be normalized to balance
the number of votes for different degrees. Therefore, the
modified algorithm is called the normalized BF algorithm.
By letting µγ be the normalized factor used for degree γ ,
Steps 2 to 4 of the BF decoding are modified and described
as follows.
Step 2. For 0 ≤ k < 2m−γ , compute each vote information

for the information bit uj corresponding to a vector

VOLUME 10, 2022 59377



Y.-T. Ni et al.: Iterative Hard-Decision Decoding Algorithms for Binary Reed-Muller Codes

of degree γ by the min-sum operation:

ûj,k =

∏
l∈Sk

sgn(φ(i)l )

×min
l∈Sk
|φ

(i)
l | (18)

where Sk is the set of indices in the received
sequence which are related to uj as given in (8).

Step 3. Obtain the reliability measure of the information
bit uj by summing all 2m−γ votes from Step 2:

R(i)j =
1
µγ

2m−γ−1∑
k=0

ûj,k . (19)

where µγ is a positive integer. If γ = 0, go to
Step 5.

Step 4. For l = 0, 1, . . . , n− 1, if φ(i)l does not involve the
information of any information bit of degree γ , then(
φ
(i)
l

)′
= φ

(i)
l ; otherwise,

(
φ
(i)
l

)′
=

sgn(φ(i)l )
∏
j∈Mγ

l

sgn(R(i)j )


×min

{
|φ

(i)
l |, min

j∈Mγ
l

|R(i)j |

}
. (20)

Set γ = γ − 1 and φ(i) =
(
φ(i)

)′
. Go to Step 2.

Remark 1: For the BF decoding algorithm, because φ(i)l ∈
{1, 0,−1} and R(i)j ∈ N, (18) and (20) can be reduced to

ûj,k =

∏
l∈Sk

sgn(φ(i)l )

×min
l∈Sk
|φ

(i)
l |

=

∏
l∈Sk

φ
(i)
l

and

(
φ
(i)
l

)′
=

sgn(φ(i)l )
∏
j∈Mγ

l

sgn(R(i)j )


×min

{
|φ

(i)
l |, min

j∈Mγ
l

|R(i)j |

}
= φ

(i)
l

∏
j∈Mγ

l

sgn(R(i)j )

which are identical to (13) and (15), respectively.
Remark 2: To obtain better performance, µγ can be

adjusted for different RM(r,m). We will discuss its impact
on the error performance in Section V.

C. MBF AND NMBF DECODING ALGORITHMS
Except for the notations given in Section IV-A, we define the
new parameter DTh which is a pre-defined threshold. If the
distances calculated in Step 8 of the BF algorithm are larger
than DTh, then the corresponding bits are flipped. Therefore,

multiple bits can be flipped at a time in each iteration. The
MBF algorithm can be obtained by modifying Step 9 of the
BF algorithm.
Initialization: Set i = 1 and γ = r . Assign a pre-defined

value to DTh. Let the maximum number of iterations be Imax.
Step 9.Find the index l ′ with the maximum value of Dl ,

i.e.,

l ′ = argmax
0≤l<n

Dl .

Set i = i + 1. Then, update the estimated code-
word by flipping not only the codeword bit with the
largest distance but also the codeword bits whose
distances are larger thanDTh. That is, for 0 ≤ l < n,

v(i)l =


−v(i−1)l , if l = l ′;

−v(i−1)l , if l 6= l ′ and Dl > DTh;

v(i−1)l , if l 6= l ′ and Dl ≤ DTh.

Set γ = r and φ(i) = v(i). Go to Step 2.
The major difference between the BF and the MBF algo-

rithms is that the MBF algorithm allows flipping multiple
bits in each iteration. Therefore, the required iterations of
the MBF algorithm is reduced. In addition, the bit error
rate (BER) performance is not affected if an appropriate value
of DTh is selected.
Next, by utilizing the concept of normalization in NBF,

we can devise the normalized MBF decoding algorithm, i.e.,
the NMBF decoding algorithm. The NMBF algorithm can
perform close to the NBF algorithm with fewer iterations,
which will be demonstrated in the next section.

V. SIMULATION RESULTS AND COMPLEXITY ANALYSIS
In this section, we compare the performance and complexity
among various decoding algorithms over the AWGN channel.
First, we will discuss the influence of the normalization factor
µγ onBER performance. In theNBF decoding algorithm,R(i)j
is normalized by µγ since the number of votes could be
very large. Furthermore, in order to balance the number of
votes for different degrees, we set µγ = 2µγ+1 for γ =
0, 1, . . . , r − 1. For the ease of presentation, we use ‘‘NX ’’
to denote the normalization factor µ0 = X . Also, ‘‘IX ’’
represents that the maximum number of iterations is X . E.g.,
in Fig. 2, ‘‘N4’’ and ‘‘I30’’ represent that we use µ0 = 4 and
Imax = 30, respectively, for the NBF decoding.
Fig. 2 demonstrates the BER performances of the NBF

decoding algorithm with different µ0 for RM(2, 7). From
Fig. 2, we can observe that the NBF decoding algorithm with
µ0 = 32 (N32) has the best BER performance in RM(2, 7).
To evaluate the number of iterations for the BF and

NBF decoding algorithms to reach the performance of con-
vergence, we provide the BER performances of RM(2, 7)
decoded with these two algorithms in Fig. 3 and Fig. 4,
respectively. Fig. 3 shows that the performances of RM(2, 7)
decoded with the BF decoding algorithm converge at
10 iterations. Similarly, the NBF decoding algorithm requires

59378 VOLUME 10, 2022



Y.-T. Ni et al.: Iterative Hard-Decision Decoding Algorithms for Binary Reed-Muller Codes

FIGURE 2. BER performances of RM(2,7) decoded with the NBF
algorithm for different µ0.

FIGURE 3. BER performances of RM(2,7) decoded with the BF algorithm
for different iterations.

10 iterations to converge to the best performance according
to Fig. 4. Numerical experiments show that a small number
of iterations is needed for performance convergence. In the
sequel, we set Imax = 30 for the BF and NBF decoding
algorithms.

Moreover, the BERperformances of different hard-decision
decoding algorithms are shown in Fig. 5 and Fig. 6. We com-
pare the performances among the proposed BF decoding
algorithm, NBF decoding algorithm, and the conventional
majority-logic decoding algorithm (It is labeled by the hard
majority.) in Figs. 5 and 6. We can see that the BF decod-
ing algorithm outperforms the conventional majority-logic
decoding algorithm. At the BER of 10−5, the proposed
BF decoding algorithm has at least 0.3 dB gain over the
conventional majority-logic decoding algorithm. The NBF
decoding algorithm performs better than the BF decoding
algorithm. As shown in Fig. 6, the NBF algorithm can
have 0.5 dB gain compared to the BF algorithm. Moreover,

FIGURE 4. BER performances of RM(2,7) decoded with the NBF
algorithm for different iterations.

FIGURE 5. BER performances of RM(2,7) decoded with various
hard-decision algorithms.

TABLE 1. The comparison of computational complexities for different
hard-decision decoding algorithms.

there are 0.55 dB and 0.81 dB gain in comparison with the
conventional majority-logic decoding algorithm for RM(2, 7)
and RM(3, 8), respectively.

The general complexity comparison for hard-decision
algorithms is provided in Table 1. From Table 1, we find

∗Note that, for the first-order RM codes, the complexity order of the
hard-decision maximum likelihood (HDML) algorithm is O(n log n) when
FHT decoding is used [27], [28]. Besides, K denotes the code dimension
and 2K is the number of codewords.
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FIGURE 6. BER performances of RM(3,8) decoded with various
hard-decision algorithms.

FIGURE 7. The average number of iterations for RM(2,7) decoded with
the BF and NBF algorithms.

that our proposed BF and NBF algorithms have the same
complexities of additions. The NBF algorithm outperforms
the BF algorithm in BER, but it requires additional multipli-
cations. However, we can choose the normalization factor to
be a power of two. Hence, multiplications can be avoided for
fixed-point implementation.

The comparison of the average number of iterations for the
proposed algorithms is shown in Fig. 7. We set Imax = 30.
That is, the decoding process will be terminated before or at
the 30th iteration. Since the BF andNBF decoding algorithms
flip only one bit in each iteration, they require more iterations
to successfully decode the erroneous codewords. The MBF
and NMBF decoding algorithms require fewer iterations
compared with the BF and NBF algorithms, respectively. The
number of iterations can be reduced by 40% to 80%. The
major complexities of these iterative algorithms are the com-
putations in each iteration. For each iteration, the complexity
order of required operations is O

(∑r
i=0

(m
i

)
· 2m−i

)
. If we

FIGURE 8. BLER performances of RM(2,7) decoded with various
hard-decision algorithms.

FIGURE 9. BLER performances of RM(2,7) decoded with the MBF
algorithm for different DTh.

can terminate the decoding process with fewer iterations, the
overall complexity can be reduced significantly.

Fig. 8 shows the block error rate (BLER) performances of
the BF, MBF, NBF, and NMBF algorithms. The NBF and
NMBF algorithms have the same BLER performances. The
MBF algorithm performs close to the BF algorithm. There is
only a 0.02 dB difference at BLER of 10−4. However, at SNR
of 7 dB, the average number of iterations for the BF algorithm
is 9.44 while that for the MBF algorithm is only 2.07. The
reduction ratio is 78.07% ((9.44− 2.07)/9.44).
Fig. 9 demonstrates the performances of the MBF algo-

rithm with different values of DTh. We observe that if an
appropriate thresholdDTh is selected, theMBF algorithm can
perform close to the BF algorithm.

VI. CONCLUSION
In this paper, we have proposed several hard-decision decod-
ing algorithms for binary RM codes. They are iterative
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decoding algorithms that have not been proposed in the litera-
ture. The performance can be improved by updating the relia-
bility measures and flipping codeword bits. These algorithms
do not need large computational complexity since they can
converge very rapidly in a small number of iterations. For
hard-decision decoding, our proposed NBF decoding algo-
rithm outperforms the conventional majority-logic decoding
algorithm with 0.55 dB to 0.8 dB gain. These proposed
algorithms have the same complexity orders. Specifically,
the BF and MBF decoding algorithms only require integer
additions.

Decoding the RM codes with our iterative decoding
algorithms converges very fast with a small number of iter-
ations. Moreover, the proposed MBF/NMBF algorithms can
decrease the number of iterations such that the overall com-
plexity can be reduced. The average number of iterations
can be reduced by 40% to 80% compared to the BF/NBF
algorithms.

Possible future work includes the theoretical analysis of the
core parameters of the proposed algorithms, e.g.,µ0 andDTh.
Furthermore, the generalization of our proposed algorithms to
decode non-binary RMcodes is suggested as a future research
topic.
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