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A B S T R A C T   

This paper evaluates the impact of climate policy uncertainty on renewable and non-renewable energy con-
sumption in the United States over the quarterly data from 2000Q1 to 2021Q3. Economic growth and crude oil 
prices are added to the energy consumption functions as control variables. The paper considers several ap-
proaches to model both renewable and non-renewable energy demand. It is found that crude oil prices promote 
non-renewable energy demand and climate policy uncertainty reduces it. Surprisingly, the impact of economic 
growth on non-renewable energy consumption is positive but insignificant. It is also observed that economic 
growth promotes renewable energy demand, and crude oil prices reduce it. Furthermore, climate policy un-
certainty positively affects renewable energy demand in the long run. Some policy implications are provided for 
reducing non-renewable energy consumption and promoting renewable energy use in the United States through 
climate policy implementation.   

1. Introduction 

Climate change is one of the leading problems in the 21st century. 
Scholars have demonstrated that risks and uncertainties related to 
climate change can affect various dimensions of the global economic 
system [1,2]. Climate change is attributed to global warming, environ-
mental pollution, and caused by greenhouse gas emissions. Also, CO2 
emissions are driven by fossil fuels and non-renewable energy sources 
[3,4]. Therefore, the transition from fossil fuels to green renewable 
energy is an important policy tool to transfer economies to the low 
carbon economy. It is suggested that higher renewable energy con-
sumption can slow down the negative consequences of climate change 
on the economic system [5,6]. Similarly [7], argued that promoting 
renewable energy usage in consumption and production activities can 
also reduce the adverse impact of climate change and global warming on 
living human beings and natural habitats in the long run. Therefore, the 
determinants of the non-renewable and renewable energy demand are 
crucial for designing climate change policies in developing and 

developed economies. 
Since the early 1990s, the transformation from non-renewable to 

renewable energy has increased in advanced countries and some 
developing economies. This transformation to renewable and other 
alternative energy sources has four aspects. The first reason is the 
progress in technology, and the costs of new investments in energy 
sources have been significantly reduced [8–10]. The second issue is 
governments’ renewable energy supporting policies (e.g., defining 
portfolio standards, providing cheaper credits and tax benefits on 
renewable energy investments) [11–13]. The third aspect is the climate 
change crisis. Negative outcomes of climate change are related to 
greenhouse gas emissions. Fossil fuels (non-renewable energy sources) 
increase greenhouse gas emissions. In other words, renewable energy 
sources can decrease greenhouse gas emissions, favouring the slowdown 
of climate change [14–16]. Finally, the price volatility in crude oil due to 
the geopolitical risks and market uncertainty has increased the interest 
in alternative energy sources [17,18]. 

Given this backdrop, this paper analyses the determinants of the non- 
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renewable and renewable energy demand. The paper focuses on the 
quarterly 21st century data of the largest CO2 emitter economy in the 
World, i.e., the United States, from 2000Q1 to 2021Q3. Note that the 
United States is also the largest primary energy consumer in the World, 
with a share of 15.8% in 2020, and the share of CO2 emission is 13.8% in 
2020 [19]. The country’s electricity generation from renewable energy 
is increasing yearly, and this transformation in the energy mix decreases 
carbon dioxide emissions [61]. Despite this effort, Fig. 1 shows that the 
carbon emissions are increasing in the United States compared to other 
emerging economies of the World from 2012 to 2018. 

The United States economy is chosen for our analysis because it is 
one of the advanced economies where fossil fuel consumption per capita 
is 60,167 kWh in 2020, keeping the United States as the number one 
country, followed by China is 23,674 kWh (4th), and India is 5, 7888 
kWh (9th).1 It shows that the economy like the United States is lagging 
behind other growing countries in increasing renewable energy invest-
ment and reducing fossil fuel consumption and carbon emissions. 
Moreover, renewable energy investment as % of gross domestic product 
(GDP) in 2015 was 0.2% for the United States, which is much lower than 
other emerging countries, i.e. South Africa (1.4%), China (0.9%), India 
(0.5%), and Brazil (0.4%). Therefore, when the World is facing the 
threat of climate change and global warming, our study is timing one 
and motivates us to explore the determinants of non-renewable and 
renewable energy demand for the United States so that better climate 
change mitigating policy could be designed for sustainable environment 
in long-run. 

This paper uses a new potential energy demand driver, i.e., the index 
of climate policy uncertainty introduced by Ref. [20]. The Climate 
Policy Uncertainty index is similar to the Economic Policy Uncertainty 
index. Precisely, it measures the changes in government policies on 
environmental issues (e.g., changes in subsidiaries and tax regulations). 
The policy changes can create uncertainties that can delay consumption 
and investment decisions by consumers and firms. For example, uncer-
tainty about subsidiaries and tax regulations can create extra costs for 
the firms. Therefore, climate policy uncertainty can affect firms by 
delaying or postponing investments and reducing economic output. The 
possible changes in energy consumption and investments can also affect 
economic performance [21]. 

As we discuss in the next section, few papers in the empirical liter-
ature consider the determinants of renewable energy demand in the 
United States [22]; Schumacher and [23]; Yang, 2018) but ignores the 
role of Climate Policy Uncertainty index of [20] on non-renewable and 
renewable energy demand. However, to the best of our knowledge, there 
is no paper in the literature to consider the Climate Policy Uncertainty 
index of [20] in the renewable and non-renewable energy demand 
functions for the United States. This paper contributes to the empirical 
literature by using the climate policy uncertainty index as a new mea-
sure of environmental policy or regulation affecting non-renewable and 
renewable energy demand. Both economic growth and oil price are 
included in renewable and non-renewable energy demand functions as 
control variables, following the existing studies (Sadosrky et al., 2009a, 
2009b; [7,24–26]. The paper uses various time-series techniques to 
focus on the case of the United States with the quarterly data from 
2000Q1 to 2021Q3. The paper shows that climate policy uncertainty 
reduces non-renewable energy demand. Furthermore, climate policy 
uncertainty positively affects renewable energy demand in the long run. 
Therefore, climate policy uncertainty is crucial in changing the energy 
demand in the United States economy in the long run. This evidence is 
reflected in Fig. 2 & 3, where one can see the long-run relation between 
the climate policy uncertainty and the pattern of non-renewable and 
non-renewable energy demand in the United States. Interestingly, the 
relationship between climate policy uncertainty and renewable energy 
consumption appears close to that between non-renewable energy 

consumption and climate policy uncertainty in the United States. This 
issue is another motivation for us to understand whether climate policy 
uncertainty equally promotes the renewable and non-renewable energy 
demand in the United States. 

The rest of the paper is organized as follows. Section 2 reviews the 
previous papers in the empirical literature for the determinants of en-
ergy demand and the impact of climate change uncertainty on energy 
variables. Section 3 explains the details of the data and the methodol-
ogy. Section 4 discusses the empirical results and their implications. 
Section 5 highlights policy implications. Section 6 concludes with 
evaluates limitations and future research. 

2. Literature review 

2.1. Determinants of energy demand 

There are various papers to analyse the determinants of energy de-
mand. Among the earliest studies [17], examines the determinants of 
renewable energy in the G7 countries and finds that per capita income 
and CO2 emissions increase renewable energy, but oil price harms it. In 
a further study [18], illustrates that the per capita income positively 
relates to renewable energy in 18 emerging economies. However, [24]; 
using the panel technique for 24 European countries, found that income 
level and carbon dioxide emissions are the important drivers of renew-
able energy demand. Their findings indicate that European countries 
can reduce their dependence on fossil fuels (i.e. coal, oil, and natural 
gas) if they can invest more in renewable energy deployment with the 
increased income level support. 

[25] observe the impacts of income, carbon dioxide emissions and 
crude oil price on renewable energy consumption in six major emerging 
economies (i.e. Brazil, China, India, Indonesia, Philippines, and Turkey). 
They indicate that the crude oil price is the main determinant of the 
renewable energy demand in China and Indonesia, where oil price re-
duces the adoption of clean energy. They also find the positive impact of 
per capita income on renewable energy demand in all six emerging 
economies, while pollutant emissions increase the renewable energy in 
Brazil, China, India, and Indonesia). Their findings provide valuable 
insights for emerging economies to reduce carbon intensity by 
improving the share of renewable energy in the primary energy mix 
[26]. investigate the drivers of renewable energy demand in 64 coun-
tries from 1990 to 2011. They find that income level and carbon emis-
sions positively and significantly impact renewable energy demand, 
whereas oil prices harm it. 

Similarly [27], study the determinants of renewable energy demand 
in 38 countries. Carbon emissions and income levels are significant 
drivers of renewable energy growth. [22]; using 1990–2008 state-level 
panel data for the United States’ electricity market, studied the rea-
sons for the development of renewable energy and found that promoting 
renewable energy projects as a potential job creator is one of the main 
drivers of renewable energy projects. Lin and Moubarak [60] show that 
economic output and financial development positively affect renewable 
electricity consumption, while trade openness, FDI inflows and tradi-
tional energy lobby activities reduce it in China. 

Meanwhile [28], indicate that domestic and foreign capitals promote 
clean energy use in the EU, the G20, and the OECD countries from 1993 
to 2012. [29]; using China’s regional data, finds that economic devel-
opment enhances renewable energy production [30]. shows that eco-
nomic freedom positively affects renewable energy demand in 28 
member states. Schumacher and Yang [31], using the state-level data in 
the United States, find that financial incentives and regulatory measures 
are weak indicators of wind energy growth [7]. indicate that economic 
globalization increases the renewable energy demand in the panel 
dataset of 30 OECD countries from 1970 to 2015. They further indicate 
the positive effects of per capita income, oil price and per capita carbon 
emissions on renewable energy for a sample of 30 OECD economies. 
Their findings provide insightful insights for advanced economies where 1 https://ourworldindata.org/grapher/fossil-fuels-per-capita. 
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they can improve the quality of the natural environment by increasing 
the share of renewable energy in the total primary energy mix with the 
help of income generation and increased oil price. 

In addition [32], studied the determinants of renewable energy 
consumption using the panel data from 1995 to 2015 for a sample of 97 
countries. They find that in countries where better democratic rights of 
the people are preserved, higher economic growth increases the use of 
renewable energy and vice-versa for less democratic countries. They also 
find that real oil prices induce renewable energy demand in less dem-
ocratic countries and play no significant role in more democratic 
countries. Their findings show that democratic institutions are crucial in 
channelling economic growth to renewable energy [33]. examine the 
determinants of the energy demand in the panel dataset of 25 OECD 
economies from 1978 to 2016. The authors utilised various panel data 
estimation techniques and observed that real per capita income in-
creases the energy demand. In addition, real energy prices and economic 
complexity decrease the energy demand. The authors conclude that 
technological progress measured by economic complexity decreases the 
necessity of energy consumption [34]. analyse the effects of age de-
pendency and urbanisation on renewable and non-renewable energy 
consumption in Brazil, India, China, and South Africa from 1990 to 
2019. The authors observe that age dependency ratios and urbanisation 
reduce the renewable and non-renewable energy demand. However, 

economic growth promotes renewable and non-renewable energy de-
mand. It is also found that globalisation (measured by FDI) has a mixed 
impact on inflows on energy demand in the related economies. 

[23]; using the annual data from 1990 to 2020 for the United States, 
study the drivers of energy efficiency. They find that investment in 
renewable energy sources benefits energy efficiency, while industrial 
production, trade openness and financial inclusion improve it. [35]; 
using the panel data from 1993 to 2018 for a sample of 20 OECD 
countries, examine the role of energy prices and economic growth in 
renewable energy capacity expansion. They indicate economic growth 
and coal oil prices drive renewable energy capacity development. They 
also find the positive impact of natural gas prices on renewable energy 
capacity. Also, they found a positive impact of coal oil price on renew-
able energy capacity development than the price of natural gas. Their 
findings suggest having a quick transition to renewable energy through 
price effect, which is key to sustainable development [36]. studied the 
impact of higher oil prices, carbon emissions, and income on renewable 
energy consumption in resource-rich countries like Iran from 1980 to 
2019. They indicate that oil price and carbon emissions have significant 
and negative impacts on renewable energy consumption, while income 
does not significantly impact it. 

Few papers have considered uncertainty measures as a possible 
driver of the energy demand [37–39]. For instance Ref. [37], examine 

Fig. 1. The trend of CO2 emissions per capita in the United States, India, China, and Brazil.  

Fig. 2. The trend of non-renewable energy consumption and climate policy uncertainty in the United States.  
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the impact of economic policy uncertainty (EPU) on renewable energy 
consumption in the USA using the monthly data from 1986 to 2019. 
They find that higher economic policy uncertainty lowers renewable 
energy consumption and vice-versa [38]. studies the asymmetric impact 
of policy-induced uncertainty on renewable energy consumption in G7 
countries from 1997 to 2019. As control variables, income, institutions, 
and innovation are included in renewable energy consumption. The 
non-linear autoregressive lag model results indicate that both a negative 
and a positive shock in lagged policy uncertainty reduce renewable 
energy consumption in the long run. It shows that policy uncertainty is 
also a significant driver of renewable energy demand but not asym-
metric in the short run. It is further found that income and investment in 
research & development drive renewable energy consumption in the 
long run. Their findings suggested promoting renewable energy use by 
reducing policy uncertainty and improving technological advances from 
a policy perspective. 

Similarly [39], investigate the impact of the EPU on the per capita 
energy consumption in a panel dataset of 72 developing and developed 
economies from 1960 to 2016. The novel finding of the paper is that the 
EPU spurs energy consumption. Several econometric methods show that 
per income increases energy demand, but energy prices reduce it. These 
findings are robust enough to utilize different econometric techniques 
and exclude various countries from the dataset. 

2.2. Effects of climate policy uncertainty measure on energy and 
environmental pollution indicators 

The index of Climate Policy Uncertainty is a new indicator to mea-
sure changes in environmental policies, particularly in the United States. 
It may also measure the level of technology uncertainty related to 
environmental pollution. There are a few papers in the empirical liter-
ature for using the Climate Policy Uncertainty index of [20] on energy 
and environmental pollution indicators. For instance Ref. [40], inves-
tigate the impact of climate policy uncertainty of [20] on the return 
performances of brown and green energy stocks. It is observed that the 
index of climate policy uncertainty increases the returns of green stocks 
compared to brown stocks, especially during crisis periods. 

[41] show the significant effects of the indices of the Economic 
Policy Uncertainty in China and Climate Policy Uncertainty of [20] on 
the price volatility of the Wind Carbon-Neutral Concept (CNCI) index. 
The Climate Policy Uncertainty has a higher forecast ability for the CNCI 
values during volatile market times [42]. investigates the impact of the 
index of the Climate Policy Uncertainty on Research and Development 
(R&D) investments of various firms in the United States from 2000 to 

2019. There is a significant positive impact of the Climate Policy Un-
certainty on the R&D investments of firms in general. However, the 
Climate Policy Uncertainty harms the R&D investments of heavy-emitter 
firms in the United States. [43]; using the monthly data from January 
1988 to August 2017, study the impact of global energy market uncer-
tainty and economic policy uncertainty on oil prices. They find that oil 
price variation is primarily contributed by the energy market uncer-
tainty shock than the economic policy uncertainty shock following 12 
months. It clearly shows that since oil price changes respond more to the 
energy market uncertainty, consumers and producers need to consider 
the shock coming from the energy market uncertainty before buying the 
oil from the open market. Otherwise, non-renewable energy consumers 
and producers will pay more to mitigate their consumption and pro-
duction activities while buying the oil needed. Their findings also pro-
vide valuable insights into the policymakers’ need to consider different 
types of uncertainty in the energy demand framework. 

Overall, reviewing the existing studies indicates that there are 
various papers on the determinants of energy demand (Sadosrky et al., 
2009a, 2009b; [7,24–26,35–39], but there are a few papers [40–42] in 
the empirical literature to consider the role of Climate Policy Uncer-
tainty index of [20] on green stocks and innovation. This paper con-
tributes to the empirical literature by using this new measure as a 
potential determinant of the non-renewable and renewable energy de-
mand in the United States, with the quarterly data spanning from 
2000Q1 to 2021Q3. The climate policy uncertainty reduces 
non-renewable energy demand. Moreover, the climate policy uncer-
tainty positively affects renewable energy demand in the long run. 

3. Data and methodology 

3.1. Data 

The paper focuses on the United States economy over the quarterly 
data from 2000Q1 to 2021Q3. The quarterly data period from 2000Q1 
to 2021Q3 was chosen. Note that climate policy uncertainty data are 
only available for the United States. The quarterly data with a higher 
frequency enables us to effectively understand the relationships between 
the variables. Moreover, quarterly information increases the sample size 
and captures the significant policy changes in domestic and globalized 
countries related to mitigating climate change and achieving energy 
conservation [44]. 

The dependent variable is the source’s primary energy consumption 
(quadrillion Btu). We divide primary energy consumption into non- 
renewable energy (Non-REC) and renewable energy consumption 

Fig. 3. The trend of renewable energy consumption and climate policy uncertainty in the United States.  
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(REC). The related data are downloaded from the US Energy Information 
Administration [62]. 

We use two control variables. The first captures the income effect on 
the energy demand: gross domestic product (GDP) per capita in the USD 
with the seasonally-adjusted annual rate (LNGDPC). Secondly, we con-
trol the price effect, measured by crude oil prices, based on the West 
Texas Intermediate (WTI)-Cushing, Oklahoma, USD per barrel. These 
data are obtained from the St. Louis Fed [45]. 

The main variable of interest is the United States Climate Policy 
Uncertainty (CPU) index introduced by Ref. [20]. Following the meth-
odology of the economic policy uncertainty (EPU) index of Baker et al. 
(2016) [20], constructs the CPU index by searching words in eight 
leading United States, such as “uncertainty”, “carbon dioxide”, “climate 
risk”, “greenhouse gas emissions”, “CO2 emissions” “global warming”, 
“climate change”, “green energy”, “renewable energy” or “environ-
mental”, including the variants such as “uncertainties”, “regulatory”, 
“policies”. These eight series are standardised to have a unit standard 
deviation and then averaged across newspapers by the period. Finally, 
the averaged series are normalised to have a mean value of 100 for the 
corresponding period under concern [20]. scales the number of relevant 
articles per month with each newspaper’s total number of articles. The 
CPU index data are downloaded from the website https://www.policyu 
ncertainty.com/climate_uncertainty.html. 

Since we use the quarterly data for the United States, it is important 
to check the seasonality of the variables. Except for real GDP per capita, 
all remaining variables (i.e. NON-REC, REC, WTI, and CPU) possess 
seasonality in the data series. The seasonality present in the data series is 
adjusted with the help of additive and multiplicative decompositions. 
The seasonality adjusted series are considered for our empirical 
modelling. However, the values of other variables are small, have 
minimal variation and are highly predictable, which is not the case for 
real GDP per capita. Therefore, we use the natural logarithm to real GDP 
per capita to reduce skewness and bring homogeneity in data series 
values [44]. 

3.2. Conceptual framework 

Existing studies identify various determinants of energy demand 
(Sadosrky et al., 2009a, 2009b; [7,24–26,35–39]. The results are 
inconclusive due to the missing important factors in energy demand 
modelling. Therefore, the key purpose of this analysis is to investigate 
the effects of climate policy uncertainty on renewable and 
non-renewable energy in the United States by controlling the economic 
growth and crude oil prices. Adding economic growth and crude oil 
prices in modelling renewable and non-renewable energy consumption 
helps us avoid omitted variable bias. To do so, we have employed the 
following equations for the United States economy within time series 
estimations: 

NON − RECt = f (LNGDPCt, WTIt, CPUt) (1)  

RECt = f (LNGDPCt, WTIt, CPUt) (2)  

where NON − RECt and RECt stand for non-renewable energy con-
sumption and renewable energy consumption at period t. LNGDPCt 
measures real GDP per capita used as a proxy for income level. WTIt 
refers to the West Texas Intermediate used as a proxy for crude oil prices. 
CPUt stands for climate policy uncertainty index. It is also essential for 
someone to understand the effects of income, crude oil price, and 
climate policy uncertainty on non-renewable and renewable energy 
consumption. Income can drive the demand for non-renewable and 
renewable energy. One can argue that the rising income of the people 
can enable them to buy renewable and non-renewable energy from the 
open energy market because it is required to carry out their consumption 
and production activities. Thus, we hypothesize that the higher the in-
come, the higher the renewable and non-renewable energy demand. 

Crude oil price is also another determinant of non-renewable and 
renewable energy demand. Crude oil prices can increase the demand for 
non-renewable energy if renewable energy price becomes expensive for 
the people in the open energy market. In addition, crude oil prices can 
reduce renewable energy consumption if the government provides oil 
subsidies to cover the cost of oil producers and consumers. Finally, 
climate policy uncertainty can reduce the demand for non-renewable 
energy. As we know, producers often want profit maximization at the 
cost of the natural environment. Such a situation calls for stringent 
environmental regulation imposed on the producers if they use dirty 
energy in their business, which generates pollution and threatens the 
balance of the eco-system. Therefore, a strict climate change mitigating 
policy can reduce the non-renewable energy demand. Also, stringent 
climate change policy can increase the demand for renewable energy. 
This issue is because people want to escape the pollution tax imposition 
under the climate policy regulation. One can conclude that climate 
policy uncertainty is the crucial determinant of non-renewable and 
renewable energy demand. 

Since we aim to understand renewable and non-renewable energy 
consumption determinants, we have created separate energy consump-
tion Models (Model1 & Model2) for our empirical setting. To be used for 
empirical estimation, Equations (1) and (2) are converted to econo-
metric format in the form of intercept, the coefficients and error terms as 
specified in Eq. (3) and Eq. (4). Equations (3) and (4) indicate that 
variables are in a semi-logarithm form where the real GDP per capita is 
only converted into the logarithm. The data converted to their natural 
logarithm form reduces the skewed distribution of the variables and 
enables us to get the best estimates of the renewable and non-renewable 
energy consumption modelling. 

Model 1 : NON − RECt = α1 + α2LNGDPCt + α3WTIt + α4CPUt + ε1t

(3)  

Model 2 : RECt =α1 + α2LNGDPCt + α3WTIt + α4CPUt + ε2t (4) 

In Model1, ε1t is the error term with the satisfying property of the 
normal distribution and α1,α2,α3, α4 are the intercept, coefficients of 
real economic growth, crude oil prices, and climate policy uncertainty. A 
similar interpretation also applies to Model2. However, LN is the natural 
log taken for real GDP per capita to reduce the skewness in data series 
values. 

3.3. Econometric procedures 

3.3.1. Unit root tests 
In time series analysis, preventing the problem of spurious regression 

is essential [46]. Hence, the unit root was examined first with the help of 
Augmented Dickey and Fuller (ADF) [47] and the Phillips and Perron 
(PP) [48] tests. We account for the criticism levied at both tests 
regarding their size vulnerability, poor strength and incapacity to 
consider breaks in the series. The used variables have been further 
applied to a structural break test proposed by Ref. [49] to capture the 
structural changes arising in the data series. The linear Autoregressive 
Distributed Lag (ARDL) model accommodates a single structural break 
occurring in the data series. The method can also avoid the endogeneity 
arising from the link between independent variables and error terms 
while estimating the carbon dioxide emissions models. 

3.3.2. ARDL model 
This study uses the ARDL bound test [50,51] to investigate the 

presence of long-term cointegration among the variables. The significant 
benefits of the ARDL bound testing approach over other cointegration 
approaches, such as [52]; are that it does not really place any constraint 
on data of any type and also estimates the energy demand models in the 
presence of mixed order of integration, i.e. I (1) or I (0). The usage of this 
model can be handicapped if the series are found to be integrated at I(2). 
It is also an ideal model for small size samples and addresses the issue of 
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endogeneity associated with the linkage between independent variables 
and the error term. 

The ARDL bounds testing approach’s unrestricted error correction 
models (UECM) for the first model shown in above Eq. (3) and Eq. (4) 
can also be defined in Eq. (5): 

ΔNON − RECt = θ1 + θ2LNGDPCt− 1 + θ3WTIt− 1 + θ4CPUt− 1

+
∑p

i=1
α2iΔNON − RECt− i +

∑m

i=0
α3iΔLNGDPCt− i

+
∑n

i=0
α4iΔWTIt− i +

∑k

i=0
α5iΔCPUt− i + ε1t (5)  

where Δ represents lag operator; θ1 is the constant; ε1t symbolises the 
error term by satisfying the normal distribution’s zero mean and con-
stant variance. Moreover, the error term includes other non-renewable 
and renewable energy determinants assumed to be neutral. The first 
half of Eq. (5) deals with the long-run dynamics, whereas the second half 
with the summation sign also stands for the short-run dynamics between 
the variables. The ARDL bounds testing approach of the long-run coin-
tegrating relationship is selected based on the F-test values based on the 
coefficient of the variables at their lagged levels. Hence, the null hy-
pothesis of no cointegration relationship between the variables shown in 
Eq. (5) is estimated as H0 : θ2 = θ3 = θ4 against the alternative hy-
pothesis of the long-run relationship as H1: θ2 ∕= θ3 ∕= θ4. 

Suppose measured F-statistics surpass upper critical thresholds, i.e., 
lower and upper bounds critical values. In that case, the null hypothesis 
of no cointegration can be rejected. Therefore, the long-run relationship 
between the variables exists. The null hypothesis cannot be opposed if 
the F-statistics calculated are lower than the lower bound critical limits, 
enabling us to conclude that there is no long-term relationship between 
the variables. Suppose the calculated value of F-statistics lies between 
the lower and upper limits of the critical values. In that case, there can 
be no decisive conclusion on cointegration between the variables. If a 
long-term relationship is formed in Eq. (5), then the long-run relation-
ship and related short-run dynamic error correction models (ECM) can 
be obtained using Eq. (6). 

ΔNON − RECt = θ1 +
∑p

i=1
α2iΔNON − RECt− i +

∑m

i=0
α3iΔLNGDPCt− i

+
∑n

i=0
α4iΔWTIt− i +

∑k

i=0
α5iΔCPUt− i + γ1ECMt + ε1t (6)  

where γ1 is the coefficient of system adjustment speed to long-term 
equilibrium between the variables. Finally, we use the Akaike Infor-
mation Criterion (AIC) to select lag order in the ARDL model. Similarly, 
the second model is shown in above Eq. (4) for estimating both the long 
run and short-run relationships between the variables is also specified in 
Eq. (7) and Eq (8). The estimation process of the ARDL model for the 
following Eq. (7) and Eq. (8) is the same as the above. The long-run form 
is specified in Eq. (7) as follows: 

ΔRECt = θ1 + θ2LNGDPCt− 1 + θ3WTIt− 1 + θ4CPUt− 1 +
∑p

i=1
α2iΔRECt− i

+
∑m

i=0
α3iΔLNGDPCt− i +

∑n

i=0
α4iΔWTIt− i +

∑k

i=0
α5iΔCPUt− i + ε2t

(7) 

The ECM is further shown in Eq. (8) as follows: 

ΔRECt = θ1 +
∑p

i=1
α2iΔRECt− i +

∑m

i=0
α3iΔLNGDPCt− i +

∑n

i=0
α4iΔWTIt− i

+
∑k

i=0
α5iΔCPUt− i + γ1ECMt + ε2t

(8) 

To evaluate the robustness of our estimated results, we have further 
employed the Fully-Modified Ordinary Least Squares (FMOLS) of [53] 
and the Dynamic Ordinary Least Squares (DOLS) of [54]. The estimated 
results are in line with the specified ARDL models. 

4. Empirical results and discussion 

4.1. Baseline analyses and discussion 

Before proceeding to some unit root tests, it is essential to check the 
descriptive statistics and correlation of the series. Table 1 shows the 
presence of normality and minimal heterogeneity in the data series. 

Table 2 also shows the correlation matrix and does not show any 
threat of multi-collinearity due to the low correlation present in the 
series. The low variance inflation factor also confirms this finding. 
Interestingly, a negative and significant correlation between climate 
policy uncertainty and non-renewable energy demand is found. In 
contrast, climate policy uncertainty and renewable energy demand have 
a positive and significant relationship. This issue allows us to use the 
linear technique for modelling the pattern of renewable energy and non- 
renewable energy demand functions for the United States economy. It 
further indicates the important role of climate policy uncertainty in the 
pattern of renewable and non-renewable energy demand. 

This study also undertakes some unit root tests. We adopt two 
frequently used time series based unit root tests (the ADF, 1979 and the 
PP, 1988) to evaluate the stationary and non-stationary properties of the 
variables. Moreover, Zivot & Andrew’s (2002) unit root test is applied to 
ensure the structural break of the examination. The unit root conse-
quences are reported in Table 3. 

Table 3 shows that the original series of each variable cannot deny 
the null hypothesis of the existence of a unit root across most of the 
variables (REC, LNGDPC, WTI), but their first order difference series 
deny the null hypothesis significantly at the 1% level. This evidence 
signifies that these are the first-order difference and can support coin-
tegration examinations. 

Table 4 shows the presence of the mixed-order of integration with 
structural breaks present in the data series. Moreover, other variables 
(Non-REC, CPU) are stationary at their levels. Finally, it shows that series 
signal the mixed order of integration, i.e. I(0) & I(1). These results justify 
an application of the ARDL bounds test to cointegration. 

Table 5 shows the consequences of cointegration by applying 
Pesaran’s cointegration approach. It is found that each test statistic 
significantly rejects the null hypothesis that no cointegration linkage 

Table 1 
Descriptive statistics.   

Non- 
REC 

REC LNGDPC WTI CPU 

Mean 22.34 2.11 10.82 60.83 100.95 
Median 22.31 2.15 10.81 58.08 87.25 
Maximum 23.74 3.02 11.16 123.95 358.12 
Minimum 19.04 1.23 10.48 20.40 17.84 
Std. Dev. 0.90 0.54 0.18 25.38 70.94 
Skewness − 0.57 0.12 − 0.12 0.41 1.22 
Kurtosis 3.63 1.57 2.04 2.26 4.33 
Jarque-Bera (chi-square 

value) 
6.21** 7.57** 3.54 4.40 27.91*** 

Observations 87 

Notes: LN is the natural log taken to enhance the smoothness of the data. *** and 
** are 1% and 5% levels of significance. Non-REC, REC, GDP, WTI, and CPU are 
non-renewable energy consumption, renewable energy consumption, gross do-
mestic product (economic growth), west texas intermediate (crude oil prices), 
and climate policy uncertainty. Except for real GDP per capita, all remaining 
variables possess seasonality in the data series. The seasonality present in the 
data series is adjusted with the help of additive and multiplicative de-
compositions. The seasonality adjusted series are considered. 
Source: Authors’ estimation. 
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exists among the variables. This evidence indicates that these variables 
own stable equilibrium in the long run, and estimation of these variables 
can be done. 

Table 6 reports the long-run estimation results of the variables in 
models 1 & 2. As revealed in Model 1 of Table 6, the outcome indicates 
that the impact of economic growth on non-renewable energy con-
sumption is ineffective as its coefficient remains insignificant in the long 
run. This result suggests that even if people in the United States have 
income, they do not spend money buying non-renewable energy from 
the open market. This evidence is because they think about environ-
mental protection and spend money on alternative energy compatible 
with nature. 

The influence of the United States crude oil prices on non-renewable 
energy consumption are positive and insignificant. This result indicates 

that even if crude oil prices rise, it does not effectively increase the non- 
renewable energy demand of the people in the United States. This evi-
dence could be because the efficiency involved in non-renewable energy 
sources than renewable energy sources does not convince many people 
in the United States. For example, consumers are habituated to the usage 
of fossil fuels. They know how to use and do the work quickly, but this is 
not the case when they go for renewable energy sources. Therefore, this 
motivates fewer people in the United States to demand more fossil fuels 
when crude oil prices rise. 

The climate policy uncertainty adversely influences non-renewable 
energy consumption in the United States. This outcome indicates that 
the higher the climate policy uncertainty, the lesser demand for fossil 
fuels will be. This issue could be one of the reasons for the producers to 
reduce their fossil fuel demand when the government in the United 
States imposes taxes on pollution creating firms. The pollution tax 
imposition can come when firms use dirty energy extensively. 

The first quarter of 2008 structural break also significantly reduced 
the demand for non-renewable energy in the United States. This result 
indicates that 2008 was the sub-prime crisis that originated from the 
banking and real estate sectors of the United States [44,55] and affected 
fossil fuel demand. This evidence is related to the issue because people in 
the United States have their income loss due to rising unemployment in 
the construction and banking industries. This result denies people to 
consumption of more fossil fuels. 

As revealed in Model 2 of Table 6, the outcome indicates that eco-
nomic growth positively affects renewable energy demand in the United 
States. One explanation might be that rising economic growth in the 

Table 2 
Pair-wise correlations and the VIF.  

Variables Non_REC REC LNGDPC WTI CPU 

Non_REC 1.000     
REC − 0.548*** 1.000    
LNGDPC − 0.414*** 0.948*** 1.000   
WTI − 0.126 0.267** 0.297** 1.000  
CPU − 0.353*** 0.621*** 0.674*** 0.041 1.000 
Average Variance 

Inflation Factor (VIF) 
1.73 

Note: *** and ** represent 1% and 5% levels of significance. 
Source: Authors’ estimation. 

Table 3 
ADF (1979) and PP (1988) unit root test results.   

Levels Ist differences Decision  

Intercept Intercept & Trend Intercept Intercept & Trend  
ADF 
Non-REC − 8.087 (− 3.530) − 10.156 (− 4.071) − 17.212 (− 3.531) − 17.112 (− 4.073) I(0) 
REC − 1.026 (− 3.530) − 6.319 (− 4.071) − 11.471 (− 3.531) − 11.438 (− 4.073) I(1) 
LNGDPC − 0.375 (− 3.530) − 2.688 (− 4.071) − 10.467 (− 3.531) − 10.403 (− 4.073) I(1) 
WTI − 2.167 (− 3.530) − 2.133 (− 4.071) − 7.307 (− 3.531) − 7.274 (− 4.073) I(1) 
CPU − 3.607 (− 3.530) − 5.026 (− 4.071) − 13.534 (− 3.531) − 13.456 (− 4.073) I(0) 
PP 
Non-REC − 8.087 (− 3.530) − 10.187 (− 4.071) − 34.177 (− 3.531) − 34.023 (− 4.073) I(0 
REC − 1.026 (− 3.530) − 6.078 (− 4.071) − 16.234 (− 3.531) − 16.414 (− 4.073) I(1) 
LNGDPC − 0.374 (− 3.530) − 2.734 (− 4.071) − 10.565 (− 3.531) − 10.402 (− 4.073) I(1) 
WTI − 2.285 (− 3.530) − 2.273 (− 4.071) − 7.160 (− 3.531) − 7.120 (− 4.073) I(1) 
CPU − 3.396 (− 3.530) − 5.067 (− 4.071) − 14.351 (− 3.531) − 14.252 (− 4.073) I(0) 

Note: MacKinnon’s approximate p-value is at a 1% significance level inside the parenthesis (). 
Source: Authors’ estimation. 

Table 4 
Zivot-Andrews (2002) unit root test results.   

Levels 1st difference  

T statistics Time break Decision T statistics Time break Decision 
Non-REC − 11.4284*** 2008Q1 

No Break## 
I(0) − 7.8292*** 2008Q1 I(0) 

REC − 7.6872*** 2009Q1 
2009Q1## 

I(0) − 11.6718 2002Q1 I(0) 

LNGDPC − 4.956* 2008Q3 
2003Q3## 
2008Q3## 

I(1) − 12.673*** 2019Q4 I(0) 

WTI − 4.5495 2014Q3 
2003Q4## 
2008Q3## 2014Q3## 

(1) − 7.729*** 2008Q1 I(0) 

CPU − 5.9773 *** 2019Q2 
2006Q3## 
2015Q3## 

I(0) − 14.502*** 2020Q4 I(0) 

Notes: *** and * represent 1% and 5% significance levels. Critical values: 0.01 = − 5.57, 0.05 = − 5.08, 0.1 = − 4.82. 
## Break points based on Bia-Perron Test. 
Source: Authors’ estimation 
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United States implies households have higher income levels and 
continue to demand more renewable energy from the open market for 
environmental protection. Moreover, producers with larger income 
support (i.e. subsidy) from the government increase the number and 
scale of factories and use environmental-friendly technology to expand 
production, resulting in tremendous renewable energy consumption. 
This result suggests that increasing the United States’ economic growth 
adds to renewable energy consumption. This empirical evidence is 
consistent with the findings of [17] for G7 countries [18], for 18 
emerging market economies [24], for 24 European countries [25], for 
six emerging economies [27], for 38 countries [26], for 64 countries 
[22], for the United States, Lin and Moubarak [60] for the Chinese 
economy [7], for 30 OECD countries [34], for selected emerging econ-
omies, and [35] for 20 OECD countries where they observe the positive 
impact of economic growth on renewable energy demand. 

The coefficient of crude oil prices on renewable energy consumption 
is negative and significant at the 1% level. This finding can be inter-
preted as the effect of crude oil price inflation on clean energy demand in 
the United States. This result shows that consumers usually adopt a 
lifestyle based on affordable crude oil prices. Consumers decrease 
renewable energy consumption when crude oil prices rise. This finding 
indicates the right choice of consumers in the United States, even if non- 
renewable energy is more expensive than renewable energy. This result 
is basically due to consumers’ lifestyle choices in their day-to-day lives. 
Also, producers reduce their dependence on renewable energy when 
crude oil prices rise. This evidence is because they are already habitu-
ated to fossil fuel usage. This empirical evidence is consistent with the 
studies of [25] for China and Indonesia and [26] for 64 countries where 
they observe the adverse effect of oil prices on renewable energy de-
mand. The empirical evidence from our analysis is also inconsistent with 
a few recent studies by Ref. [7] for 30 OECD economies and [35] for 20 
OECD countries, where they find the promoting role of oil price on 
renewable energy demand. Our finding is inconsistent with a few studies 
[7,35] because their panel-based renewable energy demand modelling. 

The impact of climate policy uncertainty on renewable energy con-
sumption is positive and insignificant. This result indicates that the 
climate mitigating policy imposed by the United States policymakers 
does not become effective in increasing renewable energy consumption. 
This finding may be because accessing renewable energy is expensive for 
people. As long as producers are concerned, it can be a subsidy of the 
United States government that fails to incentivize producers to use 
renewable energy in production expansion. 

Furthermore, the effect of structural break found in the initial 
quarter of 2009 on renewable energy consumption is positive and sig-
nificant at a 1% level. This result indicates that this was the year of the 

sub-prime financial crisis in the banking sector. The consumers who 
have taken loans from the banks following the banking crisis prefer to 
spend more on renewable energy consumption. This is because con-
sumers know that the banking crisis triggered by the real estate builders 
will sustain, and the possible loan wave could benefit consumers not to 
return money to the banks. 

However, short-run results are different from long-run results, as 
reported in Table 6. For instance, economic growth has a positive and 
significant impact on non-renewable energy but is insignificant in the 
long run. This evidence may be true in the short-run because people in 
the United States spend money buying non-renewable energy from the 
open market with their increased income level. This evidence reveals 
that people lack environmental awareness in the short run. Similarly, 
crude oil prices negatively and significantly impact non-renewable en-
ergy in the short run. Though people in the United States habituated to 
crude oil usage, increasing crude oil prices discouraged people from 
consuming less non-renewable energy. This issue may be because rising 
crude oil prices are evidence of an inflationary situation that can hurt 
people’s financial savings in the United States. 

Finally, the impact of crude oil prices on renewable energy is positive 
and significant in the short run. It shows the crucial role of crude oil 
prices in adopting renewable energy in the short run. This evidence 
could be true because people in the United States know that consuming 
more non-renewable energy at rising crude oil prices reduces their 
financial saving capacity and impedes the environmental quality by 
discharging higher amounts of carbon into the atmosphere. Therefore, 
increasing crude oil prices encourage people in the United States to 
prefer energy transitioning of renewable energy demand over non- 
renewable energy. 

The coefficients of all the error correction terms are negative and 
significant, supporting the validity of the error correction specification. 
More specifically, the negative and significant levels of the error 
correction model (i.e. convergence coefficient) are − 0.377 for non- 
renewable energy use and − 0.362 for renewable energy consumption. 
It justifies the presence of a long-run cointegrating relationship between 
the variables, and also, short-run disequilibrium for both Models 1 & 2 is 
corrected towards owning the long-run equilibrium. It further indicates 
that short-run disequilibrium correction is marginally higher (− 0.377) 
for non-renewable energy consumption than the renewable energy de-
mand, which is − 0.362. It implies that the United States economy will 
take more than 268 (276) quarters to reach the long-run equilibrium of 
non-renewable energy demand (renewable energy consumption). 

The R-squared values for Models 1 & 2 indicate that the factors 
included in the modelling energy demand equations explain more non- 
renewable energy use variation than renewable energy consumption. 

Table 5 
ARDL bounds testing cointegration results.  

Bound testing to cointegration Diagnostic tests 

Estimated model Lag 
length 

Break year [dependent 
variable break year] 

F- 
statistics 

Jarque-Bera for 
Normality 

Ramsey RESET 
Test 

Heteroskedasticity Test: 
Breusch-Pagan-Godfrey 

Breusch-Godfrey Serial 
Correlation LM Test: 

Model-1 
Non-REC = f 
(LNGDPC, WTI, 
CPU) 

(1, 1, 1, 
0, 1) 

2008Q1 6.45*** 2.82 (P-value: 
0.2437) 

F-statistic 2.62 
(P-Value: 0.0106) 

0.27 (P-value: 0.9744) 2.02E-05 (P-value: 
0.9964) 

Model-2 
REC = f(LNGDPC, 
WTI, CPU) 

(1, 0, 3, 
0, 3) 

2009Q1 5.90*** 2.07 (P-value: 
0.3550) 

2.75 (P-value: 
0.0493) 

1.07 (P-value: 0.3929) 1.54 (P-value: 0.2119) 

Significance Levels Model-1 Critical values (n = 87, k = 4) Model-2 Critical values (n = 87, k = 4) 
Narayan (2005) 

tabulated values 
Lower 
bound 

Upper bound   Lower bound Upper bound  

10% 2.303 3.22   2.303 3.22  
5% 2.688 3.698   2.688 3.698  
1% 3.602 4.787   3.602 4.787  

Notes: ***, ** and * represent at 1%, 5%, and 10% levels of significance, respectively. The lag length is in parenthesis (), n is the actual sample size, and k is the number 
of explanatory variables, including the dummy accommodated for the single structural break. 
Source: Authors’ estimation. 
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The climate policy uncertainty could be the main reason for this dif-
ference. The threat of autocorrelation in Durbin-Watson (D-W) statistics 
is minimal across Models 1 & 2. We also use Cumulative Sum Square 
(CUSUM) and CUSUM of squares (CUSUMsq) of recursive residuals 
proposed by Ref. [56] to check the ARDL model stability. Figs. 4 and 5 

indicate the model stability at a 5% significance level for the 
non-renewable and renewable energy consumption. This result enables 
us to confirm the findings of the ARDL models shown in Table 6. 

Finally, the FMOLS and the DOLS methods also check the robustness 
of the results. The results in Table 7 indicate similar results as noticed in 
Table 6. This evidence suggests that these are efficient findings that can 
be used by policymakers and governments of the United States and other 
advanced economies while mitigating climate change and global 
warming. 

4.2. Robustness checks 

Robustness checks are implemented in this section by taking three 
steps. First, we examine whether baseline findings hold for alternative 
estimators, i.e. structural break unit root test and cointegration with 
regime shifts. Second, we test that the main results are robust to the 
ARDL model. We have added new structural breaks arising in the data 
series. Third, we also use both FMOLS and DOLS for estimation in the 
presence of new structural breaks. 

Tables 8 and 9 present econometric methodological comparisons of 
structural break unit root and cointegration with regime changes. The 
results reported in Tables 8 and 9 confirm the robustness of our baseline 
estimation results. However, it is worth noting that using new structural 
breaks in the ARDL bounds test, short-run and long-run, as well as in 
FMOLS and DOLS models, does not materially alter the economic 
magnitude and statistical significance of coefficients on renewable en-
ergy and non-renewable energy consumption in the United States (see 
Tables A1, A2, and A3 of the Appendix). The evidence reported in 
Tables A2 and A3 confirms that climate policy uncertainty is essential to 
the USA economy’s renewable and non-renewable energy demand. 

5. Policy implications 

The findings of this study bear important policy implications. The 
United States is one of the mature economies where economic growth is 
not the driving factor of non-renewable energy use. It shows that poli-
cymakers in the United States need to understand whether the energy 
impact of income level is shifting to renewable energy sources. If it 
happens to be true, it is a good sign for the natural environment in the 
United States. Crude oil prices also increase non-renewable energy de-
mand in the long run. It shows that rising crude oil prices encourage 
people to use non-renewable energy. The positive impact of rising crude 
oil prices on non-renewable energy use is beneficial for the people in the 
United States because of oil efficiency and subsidy. For instance, people 
can buy oil because it is available in the open energy market whenever 
needed. Even if the oil price is much higher for the people, but still the 
demand for oil increases because they know that oil price could some-
times be reduced later because of the oil subsidy provided by the gov-
ernment to the oil producers to avoid the adverse effect on the economy 
[25]. Hence, these reasons motivate people to use more fuel in economic 
activities and limit its availability for future generations. It is also a 
matter of concern as excessive usage of fossil fuels can put the quality of 

Table 6 
Estimated long-run and short-run coefficients based on the ARDL bounds tests.  

Long-run analysis 
Model-1: Dependent variable (Non-REC) 
Independent variables Coefficient Std. Error t-Statistics 
LNGDPC 0.706 1.269 0.556 
WTI 0.006 0.006 1.057 
CPU − 0.004* 0.002 − 1.679 
DU2008Q1 − 1.492*** 0.465 − 3.208 
C 15.281 13.412 1.139  

Model-2: Dependent variable (REC) 
Independent variables 
LNGDPC 2.071*** 0.206 10.054 
WTI − 0.003*** 0.0009 − 3.662 
CPU 0.0001 0.0003 0.299 
DU2009Q1 0.495*** 0.067 7.369 
C − 20.384*** 2.176 − 9.365  

Short-run analysis 
Model-1: Dependent variable (Non-REC) 
Independent variables 
D(LNGDPC) 17.045*** 2.598 6.558 
D(WTI) − 0.009** 0.004 − 2.284 
D(DUMMY_BREAK_NON_REC) 0.435 0.389 1.116 
ecm(-1) − 0.377*** 0.058 − 6.421 
Short-run diagnostics 
R2 0.500 R2

a 0.482 
SE of regression 0.387   
Std. Deviation of DV 0.539 Mean of DV − 0.013 
D-W statistics 1.994    

Model-2: Dependent variable (REC) 
Independent variables 
D(WTI) − 0.0003 0.0006 − 0.538 
D(WTI(-1)) 0.002*** 0.0007 2.953 
D(WTI(-2)) 0.001** 0.0007 1.937 
D(DUMMY_BREAK_REC) 0.167** 0.070 2.356 
D(DUMMY_BREAK_REC(-1)) 0.075 0.071 1.053 
D(DUMMY_BREAK_REC(-2)) − 0.148*** 0.060 − 2.470 
ecm(-1) − 0.362*** 0.058 − 6.157 
Short-run diagnostics 
R2 0.361 R2

a 0.311 
SE of regression 0.055   
Std. Deviation of DV 0.066 Mean of DV 0.017 
D-W statistics 1.919   

Notes: DV means the dependent variable. R2
a indicates adjusted R2. D-W statistics 

shows the Durbin–Watson statistic; it talks about the presence of autocorrela-
tion. The value of the Durbin–Watson statistic lies between 0 and 4. If the value 
is 2, then there is no autocorrelation. If the value is between 0- and <2, there is a 
positive autocorrelation. If the value is between >2-and 4, there is a negative 
autocorrelation. ***, **, and * represent 1%, 5%, and 10% levels of significance. 
Source: Authors’ estimations. 

Fig. 4. Cumulative sum and cumulative sum of the squares at the 5% level of significance.  
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the natural environment at risk through increasing greenhouse gases in 
the atmosphere. Therefore, policymakers in the United States need to 
understand the role of crude oil prices in energy conservation building 
and mitigating climate strategies. 

Interestingly, climate policy uncertainty significantly reduces non- 
renewable energy use in the long run. The government imposes a 
higher pollution tax on producers because they use dirty energy exten-
sively in production activity. It further indicates that increasing the 
pollution tax reduces the usage of non-renewable energy in the United 
States, which is a good signal, keeping its beneficial environmental 
quality in mind. Hence, the policymakers should consider the role of 
climate policy uncertainty in energy conservation and climate change 

mitigating policies. 
We also find economic growth’s crucial positive and significant role 

on renewable energy demand in the United States. This finding confirms 
[22] study conducted for the United States. It indicates that economic 
growth has become remarkable for the people as it increases their in-
come through employment generation. As a result, people with rising 
income levels buy renewable energy for consumption and production 
activities. Similarly, the fiscal government should invest more in 
renewable energy capacity generation that can be supplied to the open 
market on a bigger scale. Thus, increased renewable energy supply over 
demand can reduce the price in the open energy market. Reducing 
renewable energy prices can motivate people in the United States to 

Fig. 5. Cumulative sum and cumulative sum of the squares at the 5% level of significance.  

Table 7 
DOLS and FMOLS robust checking results.   

NON-REC: Dependent Variable REC: Dependent Variable 

Variable DOLS FMOLS DOLS FMOLS 
LNGDPC 2.177*** [71.616] 2.178*** [94.793] 0.091*** [7.870] 0.130*** [12.594] 
WTI 0.006 [1.313] 0.007** [2.004] − 0.001 [-0.984] − 0.0009 [-0.575] 
CPU − 0.005*** [-2.981] − 0.004*** [-3.480] 0.004*** [6.915] 0.002*** [4.713] 
DUMMY_BREAK − 1.756*** [-5.978] − 1.920*** [-8.316] 0.736*** [8.898] 0.770*** [8.466] 
R2 0.750 0.588 0.968 0.826 
Adjusted R2 0.695 0.573 0.948 0.819 

Notes: *** and ** indicate 1% and 5% levels of significance. [] shows the t-statistics. 2008Q1 is a break year for NON_REC, and 2009Q1 is for REC. The dummy break is 
used for the structural break year. Lag 1 (3), decided by the Akaike Information criteria, is chosen for NON-REC (REC) variable. These lags apply only to the DOLS 
technique. 
Source: Authors’ estimations. 

Table 8 
[34] Structural break unit root test.   

Levels 1st difference  

T-statistics Time break Decision T-statistics Time break Decision 
Non-REC − 5.75*** 2008Q2 I(0) − 6.41 2017Q3 I(0) 
REC − 3.59 2009Q4 I(1) − 8.21 2016Q4 I(0) 
LNGDPC − 4.482** 2008Q2 I(1) − 12.67*** 2019Q4 I(0) 
WTI − 5.19*** 2014Q2 (0) − 7.67*** 2014Q1 I(0) 
CPU − 4.33** 2016Q2 I(0) − 7.43*** 2016Q2 I(0) 

Note: ***represents significance at the 1% level. 

Table 9 
Gregory and Hansen test [26] for cointegration with regime shifts.  

Statistics Variables Test Statistic Breakpoint Critical Values Cointegrated 

1% 5% 10% 

ADF Non-REC − 6.07** 2008Q3 − 6.51 − 6.00 − 5.75 Yes 
REC − 5.97* 2008Q4 Yes 

Zt Non-REC − 6.43** 2008Q3 − 6.51 − 6.00 − 5.75 Yes 
REC − 6.00* 2008Q4 Yes 

Note: ** and * represent significance at the 5% and 10% levels, respectively. 
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extensively use renewable energy in both consumption and production 
activities. Eventually, the massive usage of renewable energy also pro-
motes the quality of the natural environment and habituates the future 
generation for its use. Thus, the policymakers need to consider the role 
of economic growth while designing clean energy building policy for 
sustainable development and the environment in the long run [7]. 

We further confirm crude oil prices’ negative and significant impact 
on renewable energy. It indicates that higher crude oil prices reduce 
renewable energy use in the United States. Even if oil prices rise, people 
in the United States still reduce renewable energy demand and increase 
their dependence on oil. The possible reason might be that people are 
habituated to oil usage because of its higher efficiency than renewable 
energy. Another reason might be that renewable energy has a limited 
supply and is becoming expensive for people to afford. Furthermore, oil 
is imported by the United States to mitigate the domestic market re-
quirements. Therefore, the rising oil price is also subsidized by the 
government of the United States to avoid its adverse impact on the 
economy [25]. These are why people in the United States reduce their 
demand for renewable energy and increase the demand for 
non-renewable energy, which is also evident in our analysis. Therefore, 
the policymakers should design a policy toward making renewable en-
ergy at an affordable rate. As a result, the adoption of renewable energy 
should be higher by the people in the United States for a sustainable 
environment. 

Finally, the study confirms climate price uncertainty’s negative and 
insignificant impact on renewable energy consumption. It shows that 
climate policy uncertainty is ineffective in increasing renewable energy 
in the United States. Thus, the policymakers should provide effective 
financial support to enlarge the extensive demand for renewable energy 
because of its expensive nature. Since renewable energy is costlier than 
fossil fuels and beneficial for the natural environment, imposing less 
pollution tax on green producers should be implemented. As a result, 
such producers would think of producing and supplying more renewable 
energy into the open market. In such a way, the scale of energy pro-
duction would occur massively, benefiting the producers in maximizing 
their profit and reducing the clean energy market uncertainty. Reducing 
clean energy market uncertainty reduces clean energy insecurity and 
poverty and promotes the quality of the natural environment [43]. 

6. Conclusion 

The determinants of energy consumption patterns have been an 
important issue in achieving sustainable environmental quality in the 
current context of energy depletion, climate change, and global warm-
ing. The following facts motivated us to explore the topic. The first fact is 
that the concept of “green recovery” or “green economic growth” in 
2020 has reignited the debate among scholars about the influence of 
climate policy uncertainty, economic growth and crude oil prices on the 
pattern of energy consumption (non-renewable and renewable) pres-
sure. The second fact is that the relevant empirical findings are incon-
clusive when they are based on the influences of economic growth and 
crude oil prices on the energy consumption pattern. This evidence 
suggests that we should use climate policy uncertainty as to the key 
factor in non-renewable and renewable energy consumption functions, 
which need to be further investigated empirically using the right 
methods. The third fact is that advanced economies like the United 
States are the leading energy consumers and second-best pollution 
creating countries globally; experiencing the factual findings can pro-
vide effective policy recommendations for their authorities and de-
partments to adopt energy sustainability measures. This result can 
promote sustainable environmental quality for the United States and 
other growing economies in the long run. 

In this connection, we argue that this is the first study that motivates 
us to examine the effects of climate policy uncertainty on renewable and 
non-renewable energy consumption in the United States over the 
quarterly data from 2000Q1 to 2021Q3. As control variables, economic 
growth and crude oil prices are added to non-renewable and renewable 
energy functions. This objective is modelled by applying the ARDL 
bounds test to cointegration. This model helps us to estimate the long- 
run and short-run results. Moreover, the DOLS and the FMOLS tech-
niques are used as results of robust checking purposes. 

The empirical results from the ARDL model display the positive and 
insignificant impact of economic growth on non-renewable energy 
consumption in the United States. This finding shows that economic 
growth is ineffective in stimulating non-renewable energy use. Non- 
renewable energy use is positively (negatively) related to crude oil 
prices (climate policy uncertainty). These results indicate that though 
rising crude oil prices enhance non-renewable energy demand but 
remain insignificant, the greater climate policy uncertainty reduces it. 
The results also show the positive and significant impact of economic 
growth on renewable energy use in the long run. However, rising crude 
oil prices reduce renewable energy. Surprisingly, climate policy uncer-
tainty positively affects renewable energy use but is insignificant, indi-
cating that any climate change mitigating policy does not encourage 
people to use clean energy in the United States. 

Our study is not free from limitations. One limitation is that our 
theoretical framework on the impact of climate policy uncertainty on 
renewable and non-renewable energy consumption needs to be 
expanded further. Second, this study only considers the role of climate 
policy uncertainty on renewable and non-renewable energy consump-
tion in the United States but neglects the effects of economic policy 
uncertainty and energy market uncertainty [37,43]. Interestingly, 
existing studies have shown that environmental regulation and tech-
nological innovation can influence the energy demand in developed and 
emerging economies [57–59]; Hao et al., 2018; Liu et al., 2018). Given 
this, future research can introduce these variables into the framework. 
Finally, the long-term nature of climate policy changes posed by the 
threat of climate change and global warming inevitably requires more 
research from advanced methodological viewpoints over an extended 
period. What is clear is that the issue of energy demand determinants 
that we address in this paper cannot be resolved based on aggregate 
empirical analysis alone [58]. Therefore, more research is needed on 
non-renewable and renewable energy consumption determinants in 
developed and emerging economies within a panel framework. As a 
result, the findings emerging from panel studies can have generalization 
possibility, which can help policymakers to design the right clean energy 
transition policy for mitigating climate change and global warming. 
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Table A1 
ARDL Bounds Testing Cointegration Results  

Bound testing to cointegration Diagnostic tests 

Estimated models Lag 
length 

Break year [dependent 
variable break year] 

F- 
statistics 

Jarque-Bera for 
Normality 

Ramsey RESET 
Test 

Heteroskedasticity Test: 
Breusch-Pagan-Godfrey 

Breusch-Godfrey Serial 
Correlation LM Test: 

Model-1 
Non-REC = f 
(LNGDP, WTI, 
CPU) 

(1, 1, 1, 
0, 0) 

2008Q2 6.394*** 3.205 (0.201) F-statistics: 7.436 
(P-value: 0.007) 

F-statistics: 0.212 (P-value: 
0.98) 

F-statistics: 0.099 (P- 
Value: 0.75) 

Model-2 
Non-REC = f 
(LNGDP, WTI, 
CPU) 

(1, 1, 1, 
0, 0) 

2008Q3 6.804*** 2.727 (0.255) F-statistics: 8.70 
(P-value: 0.004) 

F-statistics: 0.104 (P-value: 
0.997) 

F-statistics: 0.823 (P- 
value: 0.366) 

Model-3 
REC = f(LNGDP, 
WTI, CPU) 

(1, 0, 1, 
0, 0) 

2009Q4 4.40** 8.82 (0.01) 0.42 (0.65) 0.80 (0.57) 1.179 (0.31) 

Model-4 
REC = f(LNGD, 
WTI, CPU) 

(1, 0, 3, 
0, 4) 

2008Q4 6.11*** 1.79 (0.40) 2.87 (0.02) 1.15 (0.33) 1.34 (0.26) 

Significance levels Model1: Critical values [n = 87, k =
4] 

Model2: Critical values [n =
87, k = 4] 

Model3(4): Critical values [n = 87, k = 4] 

Narayan (2005) 
tabulated values 

Lower 
bound 

Upper bound Lower 
bound 

Upper bound Lower bound Upper bound  

10% 2.303 3.22 2.303 3.22 2.303(2.303) 3.22(3.22)  
5% 2.688 3.698 2.688 3.698 2.688(2.688) 3.698(3.698)  
1% 3.602 4.787 3.602 4.787 3.602(3.602) 4.787(4.787)  

Notes: P-values are in parenthesis (). The lag length is selected based on the Akaike Information Criteria. ***, ** and * indicate 1%, 5%, and 10% levels, respectively. n 
is the actual sample size, and k is the number of explanatory variables.  

Table A2 
Estimated Long-run and Short-run Coefficients Using the ARDL Bounds Test Approach  

Long-run analysis 
Model-1: Dependent variable (Non-REC) 
Independent variables Coefficient Std. Error t-Statistics 
LNGDPC 0.900 1.229 0.732 
WTI 0.008 0.005 1.448 
CPU − 0.003* 0.002 − 1.665 
DU2008Q2 − 1.639*** 0.428 − 3.821 
C 13.195 12.982 1.016 
Model-2: Dependent variable (Non-REC) 
Independent variables Coefficient Std. Error t-Statistics 
LNGDPC 1.133 1.149 0.986 
WTI 0.006 0.004 1.279 
CPU − 0.004** 0.002 − 1.933 
DU2008Q3 − 1.670*** 0.382 − 4.364 
C 10.822 12.123 0.892 
Model-3: Dependent variable (REC) 
Independent variables Coefficient Std. Error t-Statistics 
LNGDPC 2.011*** 0.283 7.084 
WTI − 0.001* 0.001 − 1.733 
CPU 0.0003 0.0004 0.812 
DU2009Q4 0.435*** 0.085 5.078 
C − 19.774*** 2.995 − 6.600 
Model-4: Dependent variable (REC) 
Independent variables Coefficient Std. Error t-Statistics 
LNGDPC 2.099 0.195 10.743 
WTI − 0.003 0.0008 − 3.742 
CPU 9.44E-05 0.0003 0.289 
DU2008Q4 0.489 0.065 7.457 
C − 20.694 2.066 − 10.014 
Short-run analysis 
Model-1: Dependent variable (Non-REC) 
Independent variables Coefficient Std. Error t-Statistics 
D(LNGDPC) 16.552 2.595 6.377 
D(DES_WTI) − 0.009 0.004 − 2.115 
ecm(-1) − 0.385 0.060 − 6.389 
Short-run diagnostics 
R-squared 0.494 Adjusted R2 0.482 
SE of regression 0.387   
Std. Deviation of DV 0.539 Mean of DV − 0.013 
D-W statistics 1.944   

(continued on next page) 
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