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Abstract: The utilization of renewable energy (RE) is a meaningful way to realize the low-carbon
transformation of energy systems. However, due to the imbalance of resources, economy, technology,
society, and environment among regions, the coordinated development of regional RE may be
restricted by different factors, which brings challenges to the formulation of relevant development
policies. This paper focuses on the development of RE in 30 provinces in China from 2011 to
2019. It uses the AHP-EM integrated evaluation model to evaluate the constructed multilayer
indicator system for the comprehensive development of RE. The characteristics of the coupling and
coordination relationship between indicators are explored, and the critical driving factors affecting
the coordinated development and change in RE in different regions are quantitatively identified
through the logarithmic mean Divisia index method. The results show that the comprehensive
development level of RE in each province is relatively low, and the relatively high-level areas
gradually move eastward in terms of spatial distribution. The degree of coupling and coordination
between indicators is still in a low-level coupling stage, and RE in each region has not achieved
coordinated development. In addition, the comprehensive development of regional RE is consistent
with the spatial evolution characteristics of the degree of coordination among indicators, emphasizing
the importance of coordinated development among indicators for RE. These findings will provide
broader insights for improving the comprehensive development level of regional RE and formulating
differentiated policies.

Keywords: renewable energy; coupling coordination; logarithmic mean divisia index; regional differences

1. Introduction

The development of renewable energy (RE) is closely related to the issue of carbon
emission reduction, which has attracted widespread attention. From a long-term perspec-
tive, the development of RE has become a key measure to address global climate change
and achieve carbon emission reduction [1,2], as well as an essential means to promote the
low-carbon development of the energy structure [3]. On a global scale, RE (wind energy,
solar energy) has become a necessary force to replace fossil energy due to its nonpolluting
and environmentally friendly nature, and excellent resource potential [4,5]. It is estimated
that RE in the EU and the US has received sufficient attention as advocates of a global
low-carbon energy system. It is manifested in the rapid growth of wind power and solar
installed capacity, increased investment in the RE industry [6–8], and an increase in the pro-
portion of RE power generation [9]. However, with the scale development and widespread
use of RE, issues such as social acceptance [10–12], infrastructure construction [13,14], and
grid transmission technology [15,16] related to the RE industry also follow.
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In contrast, China, as the world’s largest carbon emitter, is indispensable in addressing
climate change and in the process of low-carbon transformation of the global energy
system. RE development has become essential for China’s energy transition and carbon
neutrality goals [17]. China’s RE industry has also achieved rapid development with the
support of relevant policies under the urgent requirement of realizing carbon emission
reduction commitments, especially the power generation and utilization of wind and solar
energy. China’s installed wind and solar power capacity reached 328.48 GW and 306.56 GW
in 2021. It accounts for 24.3% of the total installed capacity (total installed capacity of
thermal energy, hydropower, wind power, and photovoltaic power generation). Compared
with 2011, its installed capacity’s average annual growth rate reached 21.67% and 62.81%,
respectively. However, the proportion of RE power generation in the power structure is
still low at this stage, with a total proportion of only 9.53%. Moreover, its future sustainable
development also faces many challenges, such as large-scale abandonment of wind and
light [18], the difficulty of grid connection and consumption caused by randomness and
intermittentness [19], the delay of power grid construction, and insufficient transmission
channels [20]. Under this circumstance, how to realize the coordinated and sustainable
development of RE has become an urgent problem.

Given the importance and urgency of RE development, many scholars try to under-
stand the development of the RE industry from different perspectives and methods (e.g.,
Bamati et al. [21]; Clausen et al. [22]; and Zhang et al. [23]). Some scholars have evaluated
the development of RE (e.g., Mukeshimana et al. [24] and Wang et al. [25]). The evaluation
of energy capacity includes the development level, industrial development potential, and
performance of RE utilization. Specifically, using the analytic network process (ANP),
Yu et al. [26] comprehensively assessed China’s RE development from the energy, eco-
nomic, environmental, technological, and social levels. Furthermore, they proposed that
the installed capacity of RE is the critical factor affecting its all-around performance. Wang
et al. [25] used principal component analysis to comprehensively evaluate RE development
from multiple perspectives. The results show that institutions are the most challenging
for RE development. Liang et al. [27] used the long-range energy alternatives planning
system (LEAP) model to evaluate the impact of RE development planning in China’s power
industry and explore possible paths for future power development. Sun et al. [28] evalu-
ated the available potential of different types of RE in China’s eastern coastal provinces
using a multicriteria assessment technique of geographic information systems. Singh and
Prakash [29] focused on the specific utilization of RE and conducted a feasibility analysis of
wind power generation in different regions of India. Sun et al. [30] evaluated the power
generation efficiency of biomass energy in China using power generation enterprises as
research samples. Dong and Pan [31] decomposed the RE consumption of countries along
“the Belt and Road.” They pointed out that energy structure and energy intensity are the
main positive and negative contributors to RE consumption. Generally, the development
status of RE often does not depend on the outstanding performance of a specific factor.
However, most studies only pay attention to the evaluation results and ignore discussing
the development balance between indicators.

On the other hand, some scholars have focused on the relevant factors affecting RE
development, including technological innovation investment [32–34], energy resource en-
dowment [35,36], economic benefits [37,38], social development [39,40], and environmental
sustainability [41,42]. Specifically, as a technology-intensive emerging industry, RE has
relatively high requirements for related technologies. Investment in scientific and tech-
nological innovation can provide sufficient technical support for RE development [43].
Increasing scientific and technological personnel and R&D investment has become the
driving force for RE to expand production and play an essential role in improving the
utilization efficiency of RE. Energy resource endowment is the basis for the development of
RE. The establishment of RE power production in regions with relatively scarce resources
will undoubtedly increase the operating cost of electricity [44], which will dampen the
enthusiasm for regional RE development. The development of RE requires a stable eco-
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nomic foundation because economic growth can often drive the rapid consumption of
electricity, thus increasing the development potential of RE [45]. It is worth noting that to
avoid the external diseconomy caused by economic growth, the improvement in economic
benefits will inevitably drive the development potential of RE [46]. Similar to economic
development, RE for social development is also necessary in the long run [40,41]. The
development of RE can provide low-carbon industrial support for the development of the
whole society, including sufficient jobs, an increase in residents’ income, and an increase in
social welfare. In addition, the primary purpose of developing RE is to reduce environmen-
tal pollution. Therefore, environmental sustainability can measure the development level
of RE. In short, a high level of RE development can improve environmental pollution and
ensure sustainable development of the environment [47,48].

Although scholars at home and abroad have gained some knowledge in understanding
RE development in recent years, some issues must be further discussed. First, most of the
previous scholars only analyzed some aspects involved in the development of RE, such
as the impact assessment of economic growth on RE [49], the resource risk assessment
of RE [50], and the assessment of technology on the development of RE [51]. However,
cross-synthesis research from multiple perspectives is lacking, which may lead to certain
deviations in the research results. Second, there are few quantitative analyses of RE after
assessment by relevant scholars, and identifying the limitations of RE development often
remains at the qualitative stage [3,22].

To make up for the insufficiency of RE development research at the current stage, this
research constructs a multidimensional comprehensive evaluation system of RE develop-
ment level based on careful consideration of economic, social, technological, energy, and
environmental factors. We accurately measure the comprehensive development level of
RE. On this basis, combined with the coupling coordination degree and the exponential
decomposition model, the coordination of RE development and the dominant factors af-
fecting the change in the coordination degree were quantitatively identified to supplement
the qualitative analysis in previous research on the development of RE. In addition, due to
differences in natural resource endowment, economic development, technological level,
and geographical location among regions, China’s RE industry also has regional imbal-
ances in its industrial development [45,46], which undoubtedly increases the difficulty
of implementing RE development policies. Therefore, the results of this study can also
provide practical suggestions and references for the coordinated development of RE for
national policymakers. The rest of this article is as follows. Section 2 presents the research
methodology and data sources. Section 3 presents the model’s results, including the com-
prehensive development degree of regional RE, the coupling and coordination relationship
between dimensions, and the dominant factors affecting its coordinated development and
changes. Section 4 summarizes the research and puts forward policy recommendations
to improve the comprehensive development level of regional RE and achieve coordinated
development.

2. Research Methods and Data
2.1. Research Methods
2.1.1. Integrated Evaluation Model of the Comprehensive Development Level of
Renewable Energy

Assessing the comprehensive development level of renewable energy is a complex and
systematic issue involving multiple dimensions. To avoid the bias caused by the evaluation
of a single method, this research accurately evaluates the comprehensive development
level of renewable energy by constructing the analytic hierarchy process—entropy method
(AHP-EM) evaluation model (Formulas (1) and (2)). In addition, the indicators that mea-
sure the comprehensive development level of regional renewable energy are divided into
five dimensions: economic benefit indicators, social development indicators, science and
technology investment indicators, energy endowment indicators, and environmental sus-
tainability indicators (Figure 1). In other words, the sustainability of the renewable energy
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industry results from the coordinated development of the economy, society, technology,
energy, and environment.
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The AHP-EM ensemble evaluation model is as follows:

E =
n

∑
i=1

miP (1)

P = α1P1 + α2P2 (2)

where E represents the evaluation result, and the value range is between 0 and 1. The closer
it is to 0, the lower the evaluation, and vice versa. mi represents the standardized value
of the measured data of index i. P represents the AHP-EM integrated evaluation weight.
P1 and P2 represent the AHP weight and EM weight, respectively. α1 and α2 represent
the proportion of AHP weight and EM weight, respectively. This paper believes that the
weights of P1 and P2 have the same importance, so take α1 = α2 = 0.5.
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The AHP weight P1 formula is as follows:

P1 =

a01
...

a0n

×
a11 · · · an1

...
. . .

...
a1n · · · ann

 (3)

(λmaxE− Ak)

ak1
...

akn

 = 0 (4)

where (a01, a02, . . . , a0n)
T represents the indicator weight of criterion layer 1, and

(ak1, ak2, . . . , akn)
T , k 6= 0 represents the index weight of each unit of criterion layer 2.

λmax represents the maximum eigenvalue of the judgment matrix Ak. E represents a unit
vector matrix.

The EM weight P_2 formula is as follows:

P2 =
1− Ej

n−∑n
j=1 Ej

(5)

Ej =

−∑n
i=1

xs
ij

∑m
i=1 xij

ln
(

xs
ij

∑m
i=1 xij

)
ln(n)

(6)

where Ej represents the index information entropy. n and m denote the number and sample
size of criterion layer 2 indicators, respectively. xs

ij represents the actual value in the ith

index after normalization. When xs
ij = 0, make

xs
ij

∑m
i=1 xij

ln
(

xs
ij

∑m
i=1 xij

)
= 0.

2.1.2. Coupling Coordination Model

CCD can effectively measure the benign interaction process between multiple sys-
tems [52]. This paper draws on the model setting in related research [53,54]. It combines the
actual characteristics of China’s RE development to introduce the model into the analysis
of the coordinated development relationship between various dimensions in the compre-
hensive development of regional RE. The coupling degree (CD) and CCD models are as
follows:

C = 5 5

√
UEc ×US ×UT ×UEn ×UE

(UEc + US + UT + UEn + UE)
5 (7)

D =
√

C× T (8)

T = αUEc + βUs + γUT + δUEn + εUE (9)

where C represents the CD. UEc, US, UT, UEn, and UE represent the economic benefit index,
social development index, science and technology investment index, energy endowment
index, and environmental sustainability index, respectively. D represents the degree of
coupling and coordination between dimensions. T represents the coupling coordination
index. α, β, γ, δ, and ε represent the contributions of UEc, US, UT, UEn, and UE to the overall
target system coordination, respectively. This paper considers that each dimension has
an equal contribution to the coordinated development of RE. Set α = β = γ = δ = ε = 1/5.
According to the literature, the CCD is divided into different stages (Table 1).
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Table 1. Coupling coordination degree division stages.

Coupling Coordination Stage D

Low-level coupling stage 0 < D ≤ 0.3
Antagonistic phase stage 0.3 < D ≤ 0.5

Grinding adaptation stage 0.5 < D ≤ 0.8
High-level coupling stage 0.8 < D ≤ 1.0

Note: The standard for the CCD stage division comes from the literature [55].

2.1.3. LMDI Model

This paper’s comprehensive CCD measurement model of regional RE can be expressed
as Equation (10). Based on the decomposition idea of LMDI, the change in the CCD from
base period 0 to target period t can be decomposed into the contribution degree [56]. As
shown in Equation (11):

D =
√

C× T = C
1
2 × T

1
2 =

[
5(UEc×US×UT×UEn×UE)

1
5

UEc+US+UT+UEn+UE

] 1
2

× [ 1
5 (UEc + US + UT + UEn + UE)]

1
2

= (UEc ×US ×UT ×UEn ×UE)
1
10 = UEc

1
10 ×US

1
10 ×UT

1
10 ×UEn

1
10 ×UE

1
10

= U∗Ec ×U∗S ×U∗T ×U∗En ×U∗E

(10)

∆D = Dt − D0 = ∆U∗Ec + ∆U∗S + ∆U∗T + ∆U∗En + ∆U∗E (11)

where ∆U∗Ec, ∆U∗S , ∆U∗T , ∆U∗En, and ∆U∗E represent the contributions of economic benefits,
social development, scientific and technological investment, energy endowment, and
environmental sustainability in the CCD changes from the base period to the target period,
respectively. The specific calculation is shown in Equation (12). When an indicator does not
change from 0 to t, set ∆U∗k = 0 (k = Ec, S, T, En, E); that is, this indicator did not contribute
to the changes in the coordination of the overall comprehensive development of RE during
periods 0 to t. 

∆U∗Ec = L
(

Dt, D0) ln
(

U∗tEc
U∗0Ec

)
∆U∗S = L

(
Dt, D0) ln

(
U∗tS
U∗0S

)
∆U∗T = L

(
Dt, D0) ln

(
U∗tT
U∗0T

)
∆U∗En = L

(
Dt, D0) ln

(
U∗tEn
U∗0En

)
∆U∗E = L

(
Dt, D0) ln

(
U∗tE
U∗0E

)
(12)

2.2. Data Sources

This study aggregated panel data from 30 provinces in China from 2011 to 2019,
excluding Tibet, Taiwan, Hong Kong, and Macao. The original data of indicators such as
economic foundation, support for opening up, environmental protection expenditure, and
air quality are from the China Statistical Yearbook. The raw data for social employment
and income level indicators come from the China Labor Statistical Yearbook. Population
data come from the China Population and Employment Statistical Yearbook. The original
data of indicators such as talent support and scientific research investment come from the
China Statistical Yearbook on Science and Technology. The original data of the electric
power interconnected rate come from the National Energy Administration. The original
data on power grid construction, energy development efficiency, energy development
potential, energy production efficiency, and energy consumption potential are derived
from the China Electric Power Yearbook. The original data of indicators such as electricity
economy, electricity carbon emission intensity, sulfur dioxide emission intensity, nitrogen
oxide emission intensity, and dust emission intensity are from the China Energy Statistical
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Yearbook and China Electric Power Yearbook. In addition, the economic data used in this
paper are all converted into actual values with 2011 as the base period.

3. Results and Discussion
3.1. Comprehensive Assessment of RE Development
3.1.1. AHP-EM Integrated Evaluation Index Weight

The AHP-EM integrated evaluation model can not only avoid the subjectivity of the
weight of the indicators determined by the AHP but also avoid the error problem caused
by the entropy method for weighting time series data, thus improving the accuracy of the
comprehensive evaluation. The weight results are shown in Table 2.

Table 2. Combination weights based on AHP-EM ensemble evaluation.

Indicators Measurement Standard Weight Indicators Measurement Standard Weight

Economic benefits
Electricity economy 0.0933

Energy
endowment

Energy development efficiency 0.0673
Economic basis 0.0528 Energy development potential 0.0700

Economic and trade 0.0824 Energy production efficiency 0.0895

Social
development

Social employment 0.0411 Energy consumption potential 0.0650

Urbanization 0.0319

Environmental
sustainability

Environmental spending 0.0366
Personnel income 0.0410 Electricity carbon intensity 0.0417

Technology
investment

Electric power
interconnected rate 0.0253 SO2 emission intensity 0.0196

Talent support 0.0714 NOx emission intensity 0.0165
Research investment 0.0525 Dust emission intensity 0.0251

Power grid construction 0.0493 Air quality 0.0277

Among the five dimensions of RE development, the weights from small to large are
energy endowment > economic benefits > technological investment > environmental sus-
tainability > social development (Figure 2). Energy endowment has the highest weight,
accounting for nearly 30% of the overall RE development indicators. Energy endowment
has become an essential prerequisite for developing RE, which is the same point of view
as Lorente et al. [57]. China is extremely rich in wind and solar resources. This resource
endowment also provides a steady stream of potential resource support for the sustain-
able development of RE power generation. The weight of economic benefits is 22.9%,
indicating that rapid economic development can provide stable economic support for RE
(e.g., Muhammed et al. [58]). This support includes various investments related to RE and
management experience support from opening to the outside world [37,47,48]. As China’s
economy has entered a new normalized development model, economic development has
changed from extensive high-speed growth to medium-speed high-quality growth. The
method of development has been optimized. The economy as a whole shows a gradual
distribution of high in the east and low in the west. Therefore, this provides a necessary
economic guarantee for offshore wind power and distributed solar power generation in
the eastern coastal areas of China. Developing RE requires investment in infrastructure
construction and technical support as a technology-intensive emerging industry [55]. That
is, technology investment is an essential driving force to promote the sustainable develop-
ment of its industry (e.g., Wang et al. [59]). At the same time, it is also an indispensable
constructive investment for developing RE in the early stage. The weight of technology
investment is close to 20%, and the contribution is in a balanced state. Compared with
resource endowment, economic benefits, and technological investment, environmental
sustainability and social development have relatively low weights, accounting for only
16.7% and 11.4% of the overall RE development indicators, respectively.



Sustainability 2022, 14, 11122 8 of 20

Sustainability 2022, 14, x FOR PEER REVIEW 8 of 21 
 

resource endowment, economic benefits, and technological investment, environmental 
sustainability and social development have relatively low weights, accounting for only 
16.7% and 11.4% of the overall RE development indicators, respectively. 

 
Figure 2. Criterion layer weights. 

3.1.2. Spatial and Temporal Characteristics of the Comprehensive Development Level of 
RE 

Based on the constructed AHP-EM integrated evaluation model, the comprehensive 
weight value of each index is calculated. This paper measures the comprehensive devel-
opment level of RE in 30 provinces in China from 2011 to 2019 (Appendix A). The com-
prehensive RE development level results show that the overall average value of the com-
prehensive RE development level assessment in each region is 0.3558, which means that 
the overall development of RE in China is still at a low level. The nuclear density estima-
tion method is used to analyze the changing trend in the comprehensive development 
level of regional RE in some years (Figure 3). During 2011–2019, the peak value of the 
nuclear density curve shifted to the right as a whole, indicating that the comprehensive 
development level of regional RE improved. At the same time, the nuclear density curve 
changed from “short and fat” to “tall and thin,” indicating that under the same peak, the 
gap in the comprehensive development of RE decreased and gradually tended to be con-
centrated. Notably, the second peak at the end of the nuclear density curve became more 
obvious. This shows that the development level of RE in a few provinces is in a leading 
position, playing a “leader” role in the comprehensive development of regional RE. In 
addition, the comprehensive development level of RE in most regions has achieved dif-
ferent degrees of improvement, which means that the development trend of China’s RE 
industry is improving. RE has achieved rapid development with the support of relevant 
national policies. However, due to the short development time, its industrial development 
is still in its infancy, resulting in a relatively low level of comprehensive RE development 
in various regions. As of 2019, the provinces with better comprehensive RE development 
prospects (>0.4) included Qinghai, Beijing, Jiangsu, Guangdong, Zhejiang, and Shanghai, 
while the less developed (<0.3) provinces included Heilongjiang, Hunan, Liaoning, Si-
chuan, and Xinjiang. The potential for the comprehensive development of RE between 
regions is still quite different. 

Figure 2. Criterion layer weights.

3.1.2. Spatial and Temporal Characteristics of the Comprehensive Development Level
of RE

Based on the constructed AHP-EM integrated evaluation model, the comprehensive
weight value of each index is calculated. This paper measures the comprehensive de-
velopment level of RE in 30 provinces in China from 2011 to 2019 (Appendix A). The
comprehensive RE development level results show that the overall average value of the
comprehensive RE development level assessment in each region is 0.3558, which means
that the overall development of RE in China is still at a low level. The nuclear density
estimation method is used to analyze the changing trend in the comprehensive develop-
ment level of regional RE in some years (Figure 3). During 2011–2019, the peak value of the
nuclear density curve shifted to the right as a whole, indicating that the comprehensive
development level of regional RE improved. At the same time, the nuclear density curve
changed from “short and fat” to “tall and thin,” indicating that under the same peak,
the gap in the comprehensive development of RE decreased and gradually tended to be
concentrated. Notably, the second peak at the end of the nuclear density curve became
more obvious. This shows that the development level of RE in a few provinces is in a
leading position, playing a “leader” role in the comprehensive development of regional
RE. In addition, the comprehensive development level of RE in most regions has achieved
different degrees of improvement, which means that the development trend of China’s RE
industry is improving. RE has achieved rapid development with the support of relevant
national policies. However, due to the short development time, its industrial development
is still in its infancy, resulting in a relatively low level of comprehensive RE development
in various regions. As of 2019, the provinces with better comprehensive RE development
prospects (>0.4) included Qinghai, Beijing, Jiangsu, Guangdong, Zhejiang, and Shanghai,
while the less developed (<0.3) provinces included Heilongjiang, Hunan, Liaoning, Sichuan,
and Xinjiang. The potential for the comprehensive development of RE between regions is
still quite different.
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Figure 4 shows the spatial distribution of the comprehensive development level of
regional RE. Specifically, in 2011, ten provinces had a comprehensive development level of
regional RE greater than 0.4. They are mainly concentrated in the resource-rich areas in the
northwest and developed areas along the eastern coast, including Beijing, Gansu, Shanghai,
Guangdong, Ningxia, Jiangsu, Zhejiang, Qinghai, Tianjin, and Inner Mongolia. At the same
time, there are 12 provinces with a comprehensive development level of regional RE of less
than 0.3. They are mainly concentrated in the central, southwest, and northeast regions,
involving Heilongjiang, Hubei, Guangxi, Sichuan, Chongqing, Hunan, Jiangxi, Shanxi,
Henan, Anhui, Shaanxi, and Guizhou, respectively. In 2019, there were six provinces with
a comprehensive regional renewable development level greater than 0.4. Compared with
2011, the number of provinces with a high level of development gradually decreased,
including only Qinghai, Beijing, Jiangsu, Guangdong, Zhejiang, and Shanghai. The com-
prehensive development of RE in these provinces is in a leading position, and the gap with
other provinces is increasing, gradually showing a leading trend. It is worth mentioning
that there are only five provinces with a comprehensive development level of regional RE
less than 0.3, including Heilongjiang, Hunan, Liaoning, Sichuan, and Xinjiang. The number
of provinces with a low level of development has gradually decreased, indicating that
most regions’ comprehensive development has improved. In addition, during the period
from 2011 to 2019, the high-point provinces of the comprehensive development of regional
RE showed an overall trend of moving eastward, and the distribution of comprehensive
development levels among regions evolved from a “basin type” to a spatial pattern of high
in the east and low in the west.

3.2. Coupling Coordination and Contribution Degree Decomposition Analysis between Dimensions
of Renewable Energy
3.2.1. Coupling Coordination Degree Analysis between Dimensions

China has abundant RE resources, similar to the characteristics of RE resources in the
EU and the US. In response to the global call for a systematic solution to the problem of
climate change, China, the European Union, the United States, and other regions have
proposed various policies (e.g., renewable energy law, renewable portfolio standard, and
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REPowerEU) to promote the development of the RE industry. It is worth noting that
despite the development and implementation of RE development strategies, many barriers
to promoting RE development (e.g., technical, economic support) remain.
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In general, improving the comprehensive development level of regional RE requires
coordinated development among the dimensions of economy, society, technology, energy,
and environment. Based on this requirement, Table 3 shows the quantitative calculation
results of the CCD between various dimensions from 2011 to 2019. In the process of
the comprehensive development of regional RE in China, the overall development of
each dimension is still in the stage of low-level coupling (0~0.3). This shows that the
benign interaction between the economic, social, technological, energy and environmental
dimensions involved in the comprehensive development of RE at the current stage is low.
There is only limited interaction and mutual influence between the dimensions. This is
similar to the findings of Liu et al. [3].

Table 3. Coupling coordination degree of the comprehensive development of regional renewable
energy.

2011 2012 2013 2014 2015 2016 2017 2018 2019

Max 0.3155 0.3093 0.3121 0.3145 0.3103 0.3139 0.3145 0.3152 0.3140
Min 0.1943 0.1827 0.1951 0.1873 0.2071 0.2001 0.1999 0.1613 0.1514

Mean 0.2373 0.2351 0.2425 0.2471 0.2450 0.2444 0.2499 0.2468 0.2442

Note: Numerical statistics of all provinces in the current year.

To better distinguish the differences in the CCD of different provinces between dimen-
sions, this study uses the Jenks natural breakpoint method to divide different provinces into
Class I areas (0.2738–0.3133), Class II areas (0.2407–0.2737), Class III areas (0.2144–0.2406),
and Class IV areas (0.2036–0.2143) (Table 4).

Table 4. Regional classification of the coupling coordination degree.

Regional Level CCD Area

Class I 0.2738–0.3133 Beijing, Shanghai, Guangdong, Jiangsu, Zhejiang, and Qinghai
Class II 0.2407–0.2737 Tianjin, Ningxia, Fujian, Shandong, and Inner Mongolia

Class III 0.2144–0.2406 Liaoning, Hebei, Yunnan, Gansu, Shaanxi, Hainan, Shanxi, Chongqing,
Hubei, Heilongjiang, Guangxi, Sichuan, Jilin, Jiangxi, and Anhui

Class IV 0.2036–0.2143 Henan, Hunan, Guizhou, and Xinjiang

Note: Average value of provinces in 2011–2019.



Sustainability 2022, 14, 11122 11 of 20

Table 5 shows the mean values of subsystem evaluation indicators for the four types
of regions. Specifically, the indicators of the environment (0.1173), science and technology
(0.1017), economy (0.0918), and energy (0.1202) in the Class I areas are balanced. Compared
with the first four evaluation indicators, the social benefit index (0.0477) is a shortcoming
of the whole system. Compared with the Class I areas, the environment (0.0823), science
and technology (0.0642), and economic indicators (0.0715) are lower in the Class II areas.
The energy (0.1250) and social development indicators (0.0475) are similar to those of the
Class I areas. Among the Class III areas, the environment (0.1019) and energy indicators
(0.0978) are relatively high compared with other indicators. Science and technology (0.0493),
economic (0.0356), and social indicators (0.0282) are the shortcomings of the entire system.
The Class IV areas are similar to the Class III areas. The science and technology (0.0471),
economic (0.0346), and social development indicators (0.0248) are short-board indicators,
and the environment (0.0869) and energy indicators (0.0956) are generally lower than those
in the Class III area. In general, the overall coordination degree of regional RE development
is closely related to the contribution and balance of each dimension index. When the
benefit index of each dimension is higher and the difference is more negligible, the CCD of
comprehensive development will be higher.

Table 5. Mean values of subsystem indices in four types of regions.

Regional Level Environment Technology Economy Energy Society

Class I 0.1173 0.1017 0.0918 0.1202 0.0477
Class II 0.0823 0.0642 0.0715 0.1250 0.0475
Class III 0.1019 0.0493 0.0356 0.0978 0.0282
Class IV 0.0869 0.0471 0.0346 0.0956 0.0248

Note: Average value of provinces in 2011–2019.

In addition, Figure 5 compares the comprehensive development level of RE in each
region and the CCD of each dimension. Compared with the provinces in the inland region,
the CCD of the provinces located in the southeast coastal region is relatively high, similar
to the regional characteristics of the comprehensive development of RE. It is also confirmed
that improving the CCD can improve the comprehensive development level of regional
RE. Therefore, it is practical to improve the comprehensive development level of regional
RE by balancing the coordinated development relationship between the dimensions of RE.
Gan et al. [60] also supported this view in the study of the urbanization level.

Figure 6 shows the variation in CCD between dimensions. During the period 2011–2019,
the peak of the nuclear density curve gradually increased, while the width gradually
decreased. This shows that the gap between the CCD of RE development levels in most
provinces is narrowing and tends to be concentrated and stable. As time goes by, the
peak of the curve moves to the right. This shows that the CCD of each area gradually
increases. Notably, the nuclear density curve gradually evolved from a single peak to an
apparent double peak during the development process. This shows that some provinces
have gradually formed a “leader” effect in CCD development. In addition, Figure 7 shows
the spatial distribution characteristics of CCD in each region. The CCD in each region has
gradually evolved from a “basin-like” distribution to a spatial distribution pattern of high in
the east and low in the west. This feature is consistent with the spatial distribution evolution
characteristics of the comprehensive development of regional RE, further indicating the
positive synchronous development relationship between the comprehensive development
level of RE and CCD.

In terms of expansion, the evolution of this spatial distribution pattern may be that
in the early stage of RE development, energy advantages dominated the coupling coordi-
nation. The onshore wind and solar energy in the western region and the offshore wind
energy in the coastal areas have driven the industrial construction and investment of re-
gional RE and promoted regional economic development and scientific and technological
progress. The intervention of RE, the improvement in scientific and technological levels,
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and the improvement in the economy have promoted the stable development of society,
thereby further improving the level of urbanization. Simultaneously, the development of
technology and RE has improved the regional environment. However, with the gradual
development of RE, the dominance of energy has gradually weakened, and the status
of economic and technological factors has gradually become prominent. In recent years,
due to severe population loss and other problems in the western region, energy-driven
economic investment and scientific and technological investment have gradually decreased,
and the overall development of society has been restricted. At the same time, the limitations
of cross-regional transmission grids and the reverse distribution pattern of power supply
and demand have significantly increased the economic investment in RE in the eastern
coastal areas and some central regions. The rapid consumption of energy generated by
population inflow has also driven the innovative development of RE technology in the
eastern region, which has led to the overall transfer of the coupling and coordination of
regional RE to the east.
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3.2.2. Decomposition Analysis of the Dimension Contribution Degree

This paper decomposes the changes in regional CCD from 2011 to 2019 to study the
contribution changes of each dimension in the process of regional coupling and coordinated
development (Figure 8). The results show that the CCD increases in provinces in Class I
and Class III regions are 2.88% and 6.38%, respectively. The CCD declines of provinces in
Class II and Class IV regions are 2.34% and 2.51%, respectively. In addition, the variation
degree of the dimensional contribution of the CCD in different regions is still quite different.
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It is worth noting that environmental sustainability and economic benefits in all regions
limit the degree of coupling and coordination of comprehensive RE development to varying
degrees, indicating that economic development in most regions is still at the expense of
increasing environmental pressure. China is in the late stage of industrialization, and there
is still a rigid demand for fossil energy consumption. In the power generation process to
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promote the utilization of RE, fossil energy power generation still dominates with cost and
resource advantages. In addition, fossil power generation has practical problems such as a
large installed capacity base and short service life of stock units. At the same time, there are
still many practical problems in RE development, such as the large-scale abandonment of
wind and light, a continuous increase in the gap in subsidy funds, an imperfect electricity-
trading market mechanism, and a fragile ecological environment [61–63]. In other words,
the coordinated development of RE remains a considerable challenge at both the economic
and environmental levels. In addition, social development has become an important
driving force for the coordinated development of RE. Urbanization construction at the
current stage has gradually achieved intensive and efficient development. Residents with
high income levels are increasingly aware of environmental protection and highly accept
low-carbon lifestyles in their daily lives [64,65].

For Class I, the CCD increased 2.88% from 2011 to 2019, mainly relying on energy
(2.20%) and social development (1.50%) to drive the overall CCD improvement. The
environment, technology, and economy have slightly hindered the CCD. Most Class I
region provinces are mainly concentrated on the eastern coast, with a relatively high degree
of wealth. Social development welfare has been significantly improved in recent years,
thus making up for the shortcomings of the social dimension in the overall CCD balance.
At the same time, the strategic layout of China’s offshore wind power is close to the power
load center, which has led to a substantial increase in the installed capacity of offshore
wind power in recent years. Therefore, the contribution of the energy dimension to the
comprehensive development of regional RE has been improved. For the Class II region,
its CCD decreased by 2.34% from 2011 to 2019, and technological and social development
are the key to improving its CCD, contributing 2.03% and 1.30% to the improvement in
the CCD, respectively. The environment, economy, and energy hinder the CCD, reducing
it by 1.72%, 3.18%, and 0.76%, respectively. The significant decline in economic benefits
is the main reason for the decline in CCD in such regions. For the Class III region, its
coupling coordination increased by 6.38% from 2011 to 2019. Technology, energy, and
social development have contributed to the rapid improvement in CCD, contributing
2.07%, 4.46%, and 3.52%, respectively. However, the environment and economy hinder
its coordinated development, with the degree of obstruction being −0.70% and −2.98%,
respectively. The lower economic level is the main reason for restricting the region’s
coordinated development of RE. For the Class IV region, the CCD decreased by 2.51% from
2011 to 2019. Among them, relying on energy and social development contributed more
positively to the change in the overall CCD, contributing 7.31% and 2.80%, respectively. The
restrictive effect on the environment is only a slight 0.02%, but technology and economy
have severely restricted the coordinated development of RE in such regions, contributing
−8.75% and −3.85%, respectively. The reduction in science and technology investment is a
critical factor in declining coupling coordination in such regions.

Since the CCD between dimensions is consistent with the comprehensive development
level of regional RE, the dominant factors affecting CCD change can indirectly reflect the
key factors affecting the comprehensive development level of RE. Economy and technology
are essential factors to ensure RE development, which most researchers also recognize (e.g.,
Muhammed et al. [64] and Wang et al. [65]). Therefore, for Class II and Class III regions,
accelerating economic construction is the key to balancing RE development. For Class IV,
prioritizing technology development and increasing technological innovation vitality are
the keys to improving RE development.

Figure 9 shows the changes in CCD in each province and the influence of decom-
position factors. During the study period, CCD increased in most provinces, with the
most significant increase in Shaanxi Province, followed by some provinces in the central
region. At the same time, the CCD in Xinjiang, Ningxia, Inner Mongolia, Liaoning, Yunnan,
Hainan, Tianjin, Beijing, and Shanghai gradually decreased. Among them, Xinjiang and
Ningxia had the most apparent decline. For most provinces, the energy dimension was
the dominant factor promoting the positive development of the CCD. However, there



Sustainability 2022, 14, 11122 15 of 20

were significant regional differences in the impact of economic dimensions on CCD. The
economic development of the provinces located in the western and northeastern regions
dramatically restricted the improvement in CCD. In contrast, the provinces in the central
and eastern regions showed a positive promotion effect. It is worth noting that Xinjiang’s
investment in science and technology seriously inhibited the further development of local
CCDs. Therefore, investment in science and technology and talent is the key to improving
the comprehensive development level of Xinjiang’s RE.
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4. Conclusions and Policy Implications
4.1. Conclusions

For the low-carbon transformation of China’s current energy system, RE has become a
necessary force to replace fossil energy with its advantages of being nonpolluting and envi-
ronmentally friendly. Based on the panel data of 30 provinces in China from 2011 to 2019,
this study constructed a multidimensional comprehensive development evaluation system
for RE. It calculated the comprehensive degree of RE development in each region. This
paper explores the coupling and coordination relationship between various dimensions. It
quantitatively identifies the dominant factors that affect the changes in the coupling and
coordination relationship of the comprehensive development of RE in different regions.
This provides directions for further improving the development level of RE in various
regions. The specific conclusions are as follows:

(1) The overall development of China’s RE is at a relatively low level (0.3558), and the
development of the RE industry is still in its infancy. The spatial distribution of provinces
with a high level of comprehensive regional RE development shifted to the east. More-
over, the development potential difference between regions is still apparent. As of 2019,
the leading provinces in the comprehensive development of RE (>0.40) include Qinghai,
Beijing, Jiangsu, Guangdong, Zhejiang, and Shanghai and play the role of leaders in the
comprehensive development of RE. These regions benefited from resource endowment
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and social development, with an average contribution of 2.20% and 1.50%, respectively.
At the same time, limited by environmental sustainability, the average contribution is
−0.47%. The number of provinces with relatively backward comprehensive RE devel-
opment (<0.30) decreased, including only Heilongjiang, Hunan, Liaoning, Sichuan, and
Xinjiang. Among them, Heilongjiang, Liaoning, and Sichuan are mainly limited by eco-
nomic benefits (−2.38%; −2.92%; and −5.51%), Hunan is mainly limited by environmental
sustainability (−0.62%), and Xinjiang is mainly limited by technical support (−31.52%).

(2) The CCD between various dimensions in the comprehensive development of RE is
low, and the overall development is still in the stage of low-level coupling. That is, regional
RE has not achieved coordinated development. The distribution of CCD shows a spatial
distribution characteristic that evolves from “basin type” to high in the east and low in the
west. This result is consistent with the evolution characteristics of the spatial distribution of
the comprehensive development level. Therefore, RE’s comprehensive development level
can be achieved by balancing the coordination between dimensions.

(3) The increase in the CCD between dimensions in different regions is Class III > Class
I > Class II > Class IV. Among them, the CCD of provinces in Class I and Class III regions
is gradually increasing, and energy (2.20% and 4.46%) and society (1.50% and 3.52%) are
the leading factors to promote their coordinated development. However, the CCD of the
provinces in Class II and Class IV regions gradually decreased. Economic (−3.18%), science,
and technology (−8.75%) are the dominant factors restricting the coordinated development
of provinces in Class II and Class IV regions, respectively.

4.2. Policy Implications

The existence of regional differences in the coordinated development process between
the comprehensive development level and dimensions of RE means that regional RE
policies need to be more differentiated to achieve further sustainable and coordinated
development.

(1) From the perspective of comprehensive RE development, provinces in the eastern
and central regions need to rationally develop RE, including establishing a sound and
efficient distributed RE development plan. The leading role of Beijing, Shanghai, Zhejiang,
and Jiangsu provinces should be strengthened. Relevant departments in Sichuan, Guizhou,
Liaoning, Jilin, and most central provinces should appropriately increase their investment
in RE power. They should also improve the level of economic development in various
regions, maintain the new normal development of the economy, and further strengthen
economic exchanges between provinces, thereby providing stable economic support for
the utilization of RE. An interregional innovation technology exchange mechanism should
be established with the developed eastern provinces to realize the regional interaction
of advanced technologies and low-carbon management experience in the RE industry.
Northwestern provinces such as Inner Mongolia, Ningxia, Gansu, Qinghai, and Xinjiang
need to increase technology investment in RE. This includes increasing the construction
speed and scale of cross-regional high-voltage and ultrahigh-voltage power grids to increase
the grid connection capacity and infrastructure support of RE power. At the same time, it
taps its own potential for RE consumption and promotes nearby RE power consumption.
Technical exchanges with technologically developed provinces should be strengthened,
thereby increasing talent support and scientific research support related to RE development.
In addition, the environmental protection expenditure of related industries should be
appropriately increased, especially for high-polluting industries such as the coal chemical
industry and coal power generation. They should reduce the overall level of pollutant
emissions in the region and enhance the mechanism of environmental sustainability to
force the sustainable development of RE.

(2) From the perspective of dimensional contribution and coordinated development,
it is necessary to take location advantages and energy advantages to drive the rapid
development of the wind power industry (onshore wind power + offshore wind power)
in each province in the Class I regions. Furthermore, energy utilization efficiency and
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development potential should be improved, the construction of green digital centers
should be promoted, and a green economy should be realized. They should continue to
pay attention to and improve the construction of environmental protection facilities in the
provinces in Class II areas, strengthen environmental protection publicity and education,
and ensure the coordinated development of the ecological environment and economical
construction. On the premise of ensuring energy advantages, actions taken should include
improving the economic development level of provinces in Class III regions, vigorously
promoting the market transactions of distributed power sources by using regional energy
advantages, improving the business model of RE development, promoting economic
development with energy advantages, and improving the quality of energy utilization with
economic development. They should improve the quality of energy utilization and social
urbanization through economic development and further accelerate the social development
of the Class III areas. The scientific and technological investment of RE in the provinces
in Class IV regions should be strengthened, the technological innovation capabilities of
related enterprises should be enhanced, the introduction of talent should be increased, and
the innovation vitality of talent should be stimulated. In addition, they should make up for
the lagging development of RE caused by insufficient investment in science and technology.
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Appendix A

Table A1. Comprehensive development level of regional renewable energy from 2011 to 2019.

Province 2011 2012 2013 2014 2015 2016 2017 2018 2019 Mean

Beijing 0.5123 0.4960 0.5043 0.5150 0.4990 0.5074 0.5134 0.5124 0.5063 0.5073
Qinghai 0.4189 0.4428 0.4960 0.5267 0.5112 0.4843 0.5244 0.5299 0.5463 0.4978

Shanghai 0.4784 0.4694 0.4564 0.4765 0.4811 0.4654 0.4726 0.4666 0.4648 0.4702
Guangdong 0.4544 0.4647 0.4721 0.4871 0.4653 0.4553 0.4815 0.4673 0.4706 0.4687

Jiangsu 0.4393 0.4410 0.4584 0.4776 0.4730 0.4650 0.4905 0.4893 0.4815 0.4684
Zhejiang 0.4376 0.4316 0.4370 0.4769 0.4643 0.4559 0.4949 0.4673 0.4681 0.4593
Ningxia 0.4485 0.4218 0.4051 0.4826 0.5129 0.4705 0.4389 0.4213 0.3637 0.4406
Gansu 0.4805 0.4383 0.4528 0.4783 0.3860 0.3749 0.3789 0.3766 0.3741 0.4156
Tianjin 0.4188 0.3744 0.3709 0.3891 0.3831 0.4044 0.3798 0.4102 0.3902 0.3912
Fujian 0.3881 0.3825 0.3828 0.3818 0.3790 0.3951 0.4007 0.3910 0.3966 0.3886

Inner Mongolia 0.4167 0.3875 0.3887 0.4275 0.3959 0.3880 0.3838 0.3688 0.3290 0.3873
Shandong 0.3219 0.3213 0.3323 0.3351 0.3342 0.3462 0.3892 0.3604 0.3609 0.3446

Yunnan 0.3417 0.3321 0.3300 0.3602 0.3695 0.3282 0.3412 0.3284 0.3200 0.3390
Hebei 0.3288 0.3315 0.2915 0.3145 0.3164 0.3156 0.3509 0.3755 0.3683 0.3326

Hainan 0.3486 0.3271 0.3167 0.3200 0.3047 0.3081 0.3021 0.3771 0.3192 0.3248
Xinjiang 0.3020 0.3067 0.3420 0.3642 0.3772 0.3175 0.3174 0.3006 0.2827 0.3234
Liaoning 0.3463 0.3369 0.3331 0.3127 0.2863 0.2713 0.2995 0.3029 0.2969 0.3095

Hubei 0.2922 0.2756 0.2926 0.3223 0.3050 0.3142 0.3293 0.3124 0.3196 0.3070
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Table A1. Cont.

Province 2011 2012 2013 2014 2015 2016 2017 2018 2019 Mean

Guangxi 0.2757 0.2755 0.2867 0.2889 0.3457 0.3013 0.3541 0.3040 0.3218 0.3059
Sichuan 0.2720 0.2668 0.3456 0.3481 0.3321 0.2989 0.3020 0.2838 0.2926 0.3047
Anhui 0.2462 0.2632 0.2696 0.3109 0.3000 0.3167 0.3511 0.3341 0.3341 0.3029
Jiangxi 0.2611 0.2538 0.2617 0.2851 0.2975 0.3480 0.3505 0.3272 0.3407 0.3029

Chongqing 0.2633 0.2792 0.2858 0.2853 0.3236 0.2873 0.3083 0.3453 0.3231 0.3001
Jilin 0.3162 0.3009 0.2955 0.2880 0.2698 0.2849 0.3040 0.3137 0.3102 0.2981

Shaanxi 0.2391 0.2363 0.2655 0.2800 0.2757 0.3095 0.3262 0.3317 0.3547 0.2910
Henan 0.2570 0.2386 0.2506 0.2834 0.2637 0.3096 0.3430 0.3300 0.3278 0.2893

Heilongjiang 0.2960 0.2980 0.3036 0.2860 0.2668 0.2623 0.2828 0.3000 0.2991 0.2883
Hunan 0.2625 0.2420 0.2492 0.2972 0.2911 0.2653 0.3027 0.3006 0.2990 0.2788
Shanxi 0.2604 0.2507 0.2441 0.2807 0.2667 0.2664 0.2759 0.2886 0.3019 0.2706

Guizhou 0.2247 0.2788 0.2478 0.2890 0.2715 0.2522 0.2510 0.2433 0.3254 0.2649
Mean 0.3450 0.3388 0.3456 0.3657 0.3583 0.3523 0.3680 0.3653 0.3630 0.3558
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