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A B S T R A C T

With the rapid increase in the volume of data on the aquatic environment, machine learning has become an
important tool for data analysis, classification, and prediction. Unlike traditional models used in water-related
research, data-driven models based on machine learning can efficiently solve more complex nonlinear prob-
lems. In water environment research, models and conclusions derived from machine learning have been applied
to the construction, monitoring, simulation, evaluation, and optimization of various water treatment and man-
agement systems. Additionally, machine learning can provide solutions for water pollution control, water quality
improvement, and watershed ecosystem security management. In this review, we describe the cases in which
machine learning algorithms have been applied to evaluate the water quality in different water environments,
such as surface water, groundwater, drinking water, sewage, and seawater. Furthermore, we propose possible
future applications of machine learning approaches to water environments.
1. Introduction

With rapid economic development, wastewater containing various
pollutants is generated, posing serious threats to natural water environ-
ments. Thus, various water pollution control measures have been devel-
oped. To a large extent, water quality analysis and evaluation have
substantially improved the efficiency of water pollution control [1]. To
date, many methods have been developed to monitor and assess water
quality worldwide, such as the multivariate statistical method [2], fuzzy
inference [3], and the water quality index (WQI) [4]. For evaluating water
quality, although most water quality parameters can be monitored ac-
cording to the procedures defined in the relevant standards, thefinalwater
quality evaluation results may widely vary owing to the choice of param-
eters [5]. Considering all water quality parameters is unrealistic because it
is not only expensive and technically difficult but also fails to deal with the
variability inwaterquality [6].However, in recentyears,with theadvances
inmachine learning methods, an increasing number of researchers believe
that vast amounts of data canbe successfully capturedandanalyzed tomeet
the complex and large-scale water quality evaluation requirements.

In machine learning, a branch of artificial intelligence, algorithms are
used to analyze data and attempt to mine potential patterns in the data to
predict new information [7,8]. As a new data analysis and processing
method, machine learning has been widely used in many fields owing to
its high precision, flexible customization, and convenient extensibility
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[9]. Complex nonlinear relational data can be easily handled with ma-
chine learning, which facilitates the discovery of the underlying mech-
anisms [10]. The excellent adaptability of machine learning has
demonstrated its potential as a tool in the fields of environmental science
and engineering in recent years. Therefore, more accurate evaluation
results can be expected despite the complexity of using machine learning
for water quality analysis and evaluation [11].

Water types, including drinking water, wastewater, groundwater,
surface water, seawater, and freshwater, are complex [12]. These different
types of water have different characteristics, leading to considerable
challenges for research on their quality. Based on the findings of previous
studies, machine learning can be an effective approach to addressing these
challenges. As such, in this review, we summarize the advantages and
disadvantages of commonly usedmachine learning algorithms and discuss
the applications and performance of machine learning in surface water,
groundwater, drinking water, wastewater, and seawater (Fig. 1).

2. Overview of machine learning

As a powerful data analysis approach, machine learning is widely used
to identify patterns or make predictions based on big data generated from
different scenarios. Before machine learning is applied in practice, data
acquisition, appropriate algorithm selection, model training, and model
validation need to be conducted. Among these processes, the choice of
2022

titute of Environmental Sciences, Ministry of Ecology and Environment (MEE) &
ttp://creativecommons.org/licenses/by-nc-nd/4.0/).

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
mailto:bwu@nju.edu.cn
mailto:linye@nju.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eehl.2022.06.001&domain=pdf
www.sciencedirect.com/science/journal/27729850
www.journals.elsevier.com/eco-environment-and-health
https://doi.org/10.1016/j.eehl.2022.06.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.eehl.2022.06.001
https://doi.org/10.1016/j.eehl.2022.06.001
https://doi.org/10.1016/j.eehl.2022.06.001


Fig. 1. Machine learning is widely used in water systems. WWTP, wasterwater treatmemt plant.
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algorithm is crucial. Supervised and unsupervised learning are two main
classes of machine learning technologies [13]. The main difference be-
tween these two classes is the presence of labels in the datasets. Super-
vised learning deduces predictive functions from the labeled training
datasets. Each training instance includes input values and expected output
values. Supervised learning algorithms try to identify the relationships
between the input and output values and generate a predictive model to
predict the result based on the corresponding input data. Supervised
learning can be used for data classification and regression, and a variety of
algorithms, including linear regression, artificial neural network (ANN),
decision tree (DT), support vector machine (SVM), naive Bayes, k-nearest
neighbor (KNN), random forest (RF), etc. have been developed.

In contrast, unsupervised learning is usually used to handle data
without labels, solving various problems in pattern recognition based on
unlabeled training datasets. Unsupervised learning classifies the training
data into different categories according to their different characteristics,
mainly based on dimensionality reduction and clustering [14]. However,
the number of categories is uncertain, nor is the meaning of each category
clear. Therefore,unsupervised learning isusuallyused for classificationand
association mining [13]. Principal component analysis (PCA), K-means,
etc. are the commonly used unsupervised machine learning algorithms.

In addition, reinforcement learning, which refers to the generaliza-
tion ability of a machine to correctly answer unlearned problems, is
regarded as another class of machine learning algorithms. However,
compared with the other two machine learning classes, it is seldom
applied in the field of water environment.

3. Application of machine learning for different water
environments

Many researchers have used machine learning to solve problems in
various aspects of water treatment and management systems (Fig. 2),
including real-time monitoring, prediction, pollutant source tracking,
pollutant concentration estimation, water resource allocation, and water
treatment technology optimization.
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3.1. Applications in surface water

Municipal and industrial wastewater generated by human activities
has become the main factor in deteriorating water quality in urban areas
[15]. The application of machine learning in surface water quality
research has become a hotspot [16,17]. A series of surface water quality
prediction and analysis methods have been developed (Table 1). Many
efforts have been devoted to optimizing machine learning models and
improving their prediction accuracy.

Data acquisition is a fundamental step in developing machine learning
models. Both integrated and periodic water quality monitoring results can
be used as benchmarks in water system management. Traditional envi-
ronmental monitoring methods are widely applied by environmental
agencies. However, for in situ monitoring, the traditional methods are
limited by realistic difficulties [34]. Remote sensing technologies can
meet the needs of real-time and large-scale water quality monitoring, and
can also be used to reveal the migration and distribution characteristics of
pollutants that are difficult to detect using conventional methods. Sagan
et al. [29] found that experiment-based machine learning allowed for
sophisticated optimization based on the combination of real-time moni-
toring sensor data and satellite data, and the accuracies of the partial least
squares (PLS) regression, support vector regression (SVR), and deep
neural network (DNN) models were all higher than those of traditional
models. However, some water quality variables, such as the concentration
of pathogens, cannot be directly measured by remote sensing, as they are
not optically active or lack high-spatial-resolution hyperspectral data, but
can be estimated indirectly using other measurable data [29]. Wu et al.
[30] developed an attentional neural network based on a convolutional
neural network (CNN) to identify clean and polluted water on the basis of
water images. They conducted several comparison experiments on a water
surface image dataset and verified the effectiveness of this attentional
neural network. The advantage of CNN is that the reflectance image is
taken as the direct input without any feature engineering and parameter
tuning. Due to equipment or human reasons, some of the acquired data
will inevitably be missing, wrong, or damaged, leading to a sparse matrix



Fig. 2. Applications of different machine learning algorithms in different water treatment and management systems. SVM, support vector machine; RF, random forest;
ANN, artificial neural network; SOM, self-organizing map; DT, decision tree; PCA, principal component analysis; XGBoost, extreme gradient boosting; DO, dissolved
oxygen; MP, micropollutant.
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and poor performance in model applications. When this happens, data
cleaning, another key step in machine learning applications, becomes
important. Data cleaning can be handled in different ways, including not
using the set of data directly, using averages or medians, or using a
combination of machine learning and matrix completion methods to
supplement the raw data [35]. Ma et al. [22] proposed an approach
combining DNN and deep matrix factorization (deep MF) to predict the
biological oxygen demand (BOD). They verified the validity and reliability
of the method using New York Harbor waters as a case study. Data
cleaning improves the data quality and thus the accuracy of machine
learning model applications.

For machine learning applications, the prediction accuracy is gener-
ally related to two aspects, i.e., the model selection and the quality of the
training dataset. ANN and SVM have provided excellent performance in
the prediction of water quality components [24,23]. In some cases, SVM
may produce higher prediction accuracy and show higher generalization
ability than ANN. One reason is that the optimization of model param-
eters in a neural network is unstable, so the accuracy of the ANN is
remarkably affected by nonlinear disturbances [36]. Moreover, SVM uses
an upper bound on the generalization error rather than reducing the
training error [37]; therefore, it is more effective than ANN in mini-
mizing this error. Due to the complex dynamic changes of river systems
over time, the most effective way to manage rivers is to monitor water
quality in real time, or to make predictions based on other data when
monitoring conditions are insufficient. Researchers have verified that
long short-term memory (LSTM) networks and bootstrapped wavelet
neural networks (BWNN) can handle fluctuating and nonseasonal
time-series water-quality data [18,19]. Some traditional statistical the-
ories, such as the autoregressive integrated moving average (ARIMA)
model, can be applied to time series prediction, but they are basically
linear models [38]. This is inferior to the BWNNmodel, which is inspired
by the self-adaption in the learning process of the ANN and the
time-frequency properties of the wavelet basis functions [18], and the
LSTM model, a type of recurrent neural network structure, which learns
directly from time-series data [39]. LSTM and BWNN can well identify
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the nonlinear relationship between variables and their predicted vari-
ables, and transfer useful information from the past to the future.

The prediction accuracy of machine learning models also depends on
the features used to train themodels. Redundant variables will reduce the
inverse power and accuracy of the model, and increase the complexity.
Dissolved oxygen (DO) is one of the most widely concerned surface water
quality parameters, which directly reflects the status of the aquatic
ecosystem and its ability to sustain aquatic organisms. The linear poly-
nomial neural network (PNN) model was used to predict DO concen-
tration in the Danube River. Among 17 water quality parameters,
temperature, pH, BOD, and phosphorus concentration were found to be
the most important features affecting the prediction accuracy [20]. For
DO concentration prediction in St. John’s River, USA, among the five
input features (chloride, NOx, total dissolved solids, pH, and water
temperature), pH and NOx are strongly correlated with DO and can affect
the prediction accuracy [21]. These findings are consistent with those
obtained by Chen et al. [25], who reported that input parameters affected
the prediction performance of the model. In addition to regular water
parameters, eutrophication is another concern in surface water quality
prediction. Based on the adaptive neuro-fuzzy inference system (ANFIS)
model, Ly et al. [28] found that algal blooms were caused by the com-
bined interaction of nutrients, organic matter, and environmental ele-
ments. Park et al. [27] used meteorological data and weekly water
quality data to predict the concentration of chlorophyll-a in two reser-
voirs in the U.S., and found that SVM and ANN had approximately similar
prediction accuracies. The addition of meteorological factors consider-
ably improved the prediction accuracy. Regional hydrological and so-
cioeconomic factors can also be added to the machine learning model so
that the results may provide stronger support for the comprehensive
management of the regional water environment.

The performance of a machine learning model also depends on its
architecture, so analyzing the logical structure of algorithms is also a key
step in the successful application of machine learning. Compared with
other traditional neural network models, the advantage of PNN in
determining the key model parameters mentioned above is that the



Table 1
Application of machine learning models in surface water.

Task Algorithms Sample size Input parameters Evaluation results Reference

DO prediction BWNN, ANN, ARIMA, BANN 370 DO BWNN > BANN > WNN >

ANN > ARIMA
[18]

DO prediction LSTM 236 DO The model performed well at
74% of sites (NSE � 0.4)

[19]

DO prediction PNN 1912 Cl–, alkalinity, BOD, PO4–P,
COD, pH, temperature,
NO3–N, Ca2þ, P, Mg2þ, and EC

Good interpolation
performance (R2 ¼ 0.82)

[20]

DO prediction CCNN 232 DO and water quality
parameters (e.g., Cl, NOx,
TDS, pH, temperature)

R2 ¼ 0.825
RMSE ¼ 0.550

[21]

BOD prediction DNN, SVR, RF 32323 Latitude, longitude, time, site
actual depth, sea state, degree
of turbulence at sea, wind
speed, DO, temperature,
salinity, total coliform, light
penetration in water,
chlorophyll-a,
polychlorinated biphenyls
plate count, NOx–N, PO4–P,
NH3–N, TP, pH, TSS, EC,
sample depth, density, and
transparency

DNN is 19.20%–25.16%
lower RMSE than traditional
models

[22]

EC, HCO3
–, SO4

2�, Cl, TDS, Naþ,
Mg2þ, Ca2þ prediction

SVM, ANN All data since 1960 Temperature, pH, EC, HCO3
–,

SO4
2�, Cl, TDS, Naþ, Mg2þ,

and Ca2þ

SVM > ANN [23]

TN, TP prediction SVM, ANN 660 River flow, temperature, flow
travel time, rainfall, DO, TN,
and TP

SVM > ANN [24]

Water quality level prediction DT, RF, DCF, and 10 other
models

33612 pH, DO, CONMn, and NH3–N DT, RF, and DCF provide
better predictive performance

[25]

TRP, NO3–N, TP, NH4–N)
prediction

RF 21657 EC, turbulence, temperature,
DO, pH, chlorophyll-a, and
flow rate

Compared with the linear
model, RMSE decreased by
60.1%

[26]

Chlorophyll-a prediction SVM, ANN 357 Chlorophyll-a, PO4–P, NH3–N,
NO3–N, temperature, solar
radiation, and wind speed

SVM > ANN [27]

Algal bloom prediction ANFIS 896 COD, BOD, TOC, TSS, TP,
DTP, PO4–P, TN, NO3–N,
NH3–N, chlorophyll-a,
temperature, precipitation,
flowrate, DO, pH, EC, total
coliform, and fecal coliform

ANFIS performed best in both
quantitative and classification
problems

[28]

Hyperparameter selection
optimization

SVR 223 BGA-PC, chlorophyll-a, DO,
EC, fDOM, turbidity, and
pollution sediments

BGA-PC (accuracy ¼ 0.77),
chlorophyll-a (0.78), TSS
(0.81), fDOM (�), turbidity
(0.55) and DO (�)

[29]

Water pollution monitoring Attention neural network 1000 Water images The resolution accuracy of
clean water was 71.2%, and
that of polluted water was
73.6%

[30]

Water pollution monitoring CNN, SVM, RF 81 Landsat8 images and water
quality level

CNN
(accuracy ¼ 97.12%) > SVM
(96.89%) > RF (86.21%)

[31]

Heavy metal contamination
assessment

PCA 42 Cu, Mn, Cr, Zn, Pb, Cd, Ni, and
Co

Areas with heavy metal
pollution were identified

[32]

WQI parameters selection PCA 240 Temperature, DO, pH, EC,
BOD, NO3–N, fecal coliform,
total coliform, turbidity,
alkalinity, Cl, COD, NH3–N,
total Hardness, Ca2þ, Mg2þ,
Naþ, TDS, and PO4–P

Nine key parameters were
DO, pH, EC, BOD, total
coliform, Cl�, Mg, SO4

2�, and
TDS

[33]

DO, Dissolved oxygen; BWNN, bootstrapped wavelet neural network; ANN, artificial neural network; ARIMA, autoregressive integrated moving average; BANN,
bootstrapped artificial neural network; LSTM, long short-term memory; NSE, Nash-Sutcliffe efficiency; PNN, polynomial neural network; BOD, biological oxygen de-
mand; COD, chemical oxygen demand; EC, electrical conductivity; CCNN, cascade correlation neural network; TDS, Tsinghua/Temporary DeepSpeed; RMSE, lower root
mean square error; DNN, deep neural network; SVR, support vector regression; RF, random forest; SVM, support vector machine; TP, total phosphorus; TN, total ni-
trogen; TRP, total reactive phosphorus; TOC, total organic carbon; TSS, total suspended solids; DTP, dissolved total phosphorus; BGA-PC, blue-green algae phycocyanin,
fDOM, fluorescent dissolved organic matter, CNN, convolutional neural network; PCA, principal component analysis; WQI, water quality index.
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number of hidden neurons and layers of PNN is directly determined by
data, saving the time for trial [20]. The DNN model used in BOD pre-
diction has a 19.20%–25.16% lower root mean square error (RMSE) than
the traditional machine learning model [22]. This is because there are
multiple layers between the input and output layers of DNN, and it uses
110
more advanced activation functions than ANN, which is more conducive
to model convergence than the sigmoid used by traditional ANN and
reduces the difficulty of training [40]. When predicting water quality
over time, LSTM based on time series works relatively well. It is
composed of three information gates, i.e., input gate, forget gate, and
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output gate, as well as two states: cell state and hidden state, which
control the transmission, forgetting, and storage of sequential informa-
tion [41]. BWNN can also achieve this goal but requires a sufficient
number of input features to ensure accuracy [18].

3.2. Applications in groundwater

Groundwater is an important source of drinking water. As such,
ensuring the safety of groundwater is essential to human health. Machine
learning has extensive application prospects in groundwater analysis,
including the assessment and prediction of groundwater quality and
pollution sources.

In recent years, multivariate statistical analysis methods have been
widely applied to analyze groundwater quality. Among them, PCA and
cluster analysis are frequently used [42]. In addition, machine learning
algorithms, such as SVM, DT, RF, and ANN, have also been applied for
groundwater quality assessment. Related studies on groundwater quality
have mainly been designed to compare the evaluation efficiency of
different machine learning algorithms to identify suitable ones for specific
problems. For example, Jeihouni et al. [43] compared five data mining
algorithms, that is, ordinary decision tree, RF, chi-square automatic
interaction detector, and iterative dichotomizer 3, to identify the key
parameters affecting groundwater in semiarid areas and to determine
their effect on high-quality groundwater areas in Tabriz City, Iran. Lee
et al. [44] evaluated the spatial pattern of urban groundwater quality in
Seoul, South Korea, by combining a self-organizing neural network and
fuzzy c-means clustering. They divided the groundwater samples into
three groups using a self-organizing map algorithm according to different
pollution degrees and analyzed the pollution-driven process based on the
spatial distribution of groundwater groups. In addition, geographic in-
formation system techniques have been frequently used to generate
groundwater quality maps to more accurately identify groundwater
pollution [44,45].

The complex hydrogeological conditions of groundwater, compared
with those of surface water, pose additional difficulties when predicting
quality change tendencies. Some researchers have used machine
learning to evaluate existing regional data on a large scale or predict
future water quality. Agrawal et al. [46] estimated and predicted the
WQI of groundwater using a combination of particle swarm optimiza-
tion (PSO) and SVM, which illustrated the feasibility of integrating these
methods for groundwater prediction [47]. The action of a single
pollutant in groundwater, particularly nitrate and arsenic, can be pre-
dicted. Arabgol et al. [48] adopted an SVM to predict the concentration
and distribution of nitrate in groundwater. Sajedi Hosseini et al. [49]
calculated the risk of nitrate pollution in groundwater using boosted
regression tree, multivariate discriminant analysis, and SVM, and
concluded that the risk of nitrate pollution in Iran’s Lennart Plain is
high. Ransom et al. [50] used machine learning to predict groundwater
nitrate levels throughout the United States and found that national-scale
groundwater quality can also be predicted through machine learning
models. Cho et al. [51] used an ANN to predict the potential for arsenic
pollution of groundwater in Cambodia, Laos, and Thailand. In addition,
groundwater levels can also be predicted. Mohapatra et al. [52] pre-
dicted the groundwater level using three machine learning methods
(ANFIS, DNN, and SVM) and found that DNN was most suitable for
seasonal forecast and had higher accuracy and efficiency. Yadav et al.
[53] adopted ensemble modeling to predict the groundwater level in
Indian cities and achieved an accuracy rate of 85%.

The analysis of pollution sources is beneficial for ensuring the safety
of groundwater. PCA and clustering methods are widely used in current
studies. Celestino et al. [45] used PCA to reduce dimensionality, and
after the dimensionality reduction data were clustered by K-means,
natural variations and anthropogenic sources of hydro-geochemistry
were analyzed. Chen et al. [54] applied multivariate statistical anal-
ysis and PCA to identify the key factors affecting changes in ground-
water quality.
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A data mining decision tree is usually used to explore groundwater
quality and resources. This algorithm can learn the relationships between
input variables and corresponding output variables and represent each
relationship by specific rules. RF has advantages in its performance and
ability to generalize rules to identify areas of high-quality groundwater
for drinking. Since the continuous data set is more suitable for ground-
water law induction than the discrete data set, the highest performance
(accuracy of 97.10%) obtained by RF based on continuous data sets
provides good decisions for groundwater resource planning and man-
agement [43]. In terms of the prediction of groundwater quality index,
current research innovation tends to use the integrated model, which can
combine multiple weak learners into one strong learner and improve the
prediction performance. Boosting is a great integration approach. How-
ever, when combining different good models to generate models with
smaller variance, attention should be paid to reducing overfitting.

3.3. Application in drinking water

Machine learning has been widely applied in drinking water treat-
ment and management systems, including drinking water source man-
agement, treatment processes, water distribution, and decision making.
Drinking water is typically derived from surface water or groundwater.
The evaluation and prediction of source water quality based on machine
learning can assist in the early warning and control of pollution. Bouamar
et al. [55] evaluated the possibility of multisensor-based ANN and SVM
algorithms for dynamic water quality monitoring in 2007. Both models
showed acceptable recognition rates in terms of outputting the recogni-
tion rates of the two categories of water. Compared with ANN, SVM was
more stable. Wu et al. [56] proposed an adaptive frequency analysis
method using drinking water quality datasets from four cities in Norway.
Their findings provided a basis for drinking water quality risk warning,
management, and decision-making at an early stage. In addition, Liu
et al. [57] used LSTM and DNN to predict time series data and established
a water quality prediction model that could predict the water quality in
the next six months with relatively good accuracy. Arnon et al. [58] used
an SVM to implement a new scheme that could predict pollution events
under unknown conditions using ultraviolet absorption. The detection
rates for all four datasets obtained by the SVM were high, and the error
rates were low. Most studies have been based on chemical or physical
parameters, while microbial parameters have seldom been considered,
especially for Escherichia coli (E. coli) [59]. The amounts of coagulants
and disinfectants in drinking water plants can also be predicted using
machine learning. Owing to its simple structure and strong robustness,
the SVM algorithm is popular in flocculation and disinfection construc-
tion schemes. According to the residual free chlorine predicted by an
SVM model, Wang et al. [60] proposed a predictive control scheme
model for chemical dosage, which was more effective than the traditional
proportional-integral-derivative feedback control.

The importance of drinking water supply has led scientists to focus on
the normal operation of urban water supply system facilities, fault
monitoring, and disaster prediction [61]. Because of the complexity of
water supply systems, water from drinking water treatment plants that
meet the required standards may be re-contaminated during trans-
portation, which can be assessed using indicators of biological stability
and then disinfected [62]. The cluster analysis can identify the differ-
ences in water quality between water networks [63]. Further, Tian et al.
[64] used cluster analysis to identify the contribution of mixed water
sources to aluminum (Al) residues in metropolitan drinking water supply
systems, including Al migration and seasonal changes in drinking water.
Brester et al. [65] accurately determined water quality via casting using
an RF algorithm. Water supply pipeline bursting results in large-scale
water losses and microbial and chemical pollution during trans-
portation. Deep learning models can predict the potential bursting
location, but with considerable uncertainty [66]. Rayaroth et al. [67]
proposed a random decision tree bagging classifier based on the shuffled
frog-leaping optimization technique to identify water leakage with a
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minimum number of sensors at an optimal position in a water distribu-
tion network. Pipe lifespan is an important factor in water-supply man-
agement. Almheiri et al. [68] proposed an advancedmeta-learningmodel
based on a neural network and found that residual chlorine is one of the
key factors affecting the service life of pipelines. In addition, pollution
events that occur in water distribution systems can be predicted using an
SVM algorithm [69]. Park et al. [70] quantitatively analyzed the impact
of disasters on water supply systems by combining PCA, the analytic
hierarchy process, RF, and extreme gradient boosting (XGBoost) models.
However, the practicability of this method is limited owing to the diffi-
culty of real-time data collection.

Water production capacity has become a factor limiting regional
development and population increases. Zhang et al. [71] combined the
advantages of both ANN and genetic algorithms and established a hybrid
statistical model that can predict the performance of drinking water
treatment plants. The hybrid statistical model can predict changes in
water production under various parameter fluctuation scenarios, proving
itself a useful tool for quickly and reasonably adjusting water treatment
systems. Cardoso et al. [72] proposed an automatic monitoring frame-
work for urban water management based on time-series clustering and
found that the water demand was high from 3 to 6 a.m. in summer due to
the irrigation of municipal and public gardens. To address the problem of
short-term water demand prediction, Guo et al. [73] developed a gated
recurrent unit network and set a 15-min time step to successfully predict
the water demand in the next 15 min and 24 h. Ghiassi et al. [74]
employed a dynamic artificial neural network (DAN2), focused
time-delay neural network, KNN to predict the daily, weekly, and
monthly water demands in Tehran. Among the three models, DAN2
exhibited the best performance. The prediction accuracies of the daily,
weekly, and monthly models were 96%, 99%, and 98%, respectively. The
application of machine learning can help solve the imbalance in
water-supply systems. Accurately predicting water demand is a prom-
ising approach for effectively allocating available water resources.

In summary, the ANN and SVM are widely applied in the field of
drinking water, especially in the application of large dimensions. The
short computing time of the training phase (a few seconds) enables them
to be applied to dynamic monitoring systems to monitor drinking water
quality and safety in real time. With the increase in training techniques,
ANN’s recognition rate has improved significantly, despite being very
sensitive to noise. In contrast, SVM is robust to noise, so the integration of
ANN and SVM is gradually attracting the attention of researchers [55].

3.4. Applications in wastewater

In terms of wastewater treatment, machine learning is widely used for
water quality monitoring and prediction, technology optimization, and
wastewater treatment plant (WWTP) operation and management. Do-
mestic and industrial wastewater contains various pollutants, calling for
an evaluation of water quality before treatment [75]. By combining
multiresolution analysis with PCA, Rosen et al. [76] provided a tool more
sensitive than PCA for monitoring sewage indicators at multiple scales.
The collection, processing, and analysis of big data largely rely on
real-time online monitoring. A soft sensor based on the black box model
was proposed for online, real-time monitoring of E. coli [77], which
showed that the concentrations of E. coli substantially increased after
heavy rainfall, possibly due to urban runoff resuspending sewer sediment
[78,79]. Combining soft sensors with an ANN can be used to overcome
the challenges of the high cost and complexity of WWTP operation and
maintenance, and for online monitoring of chlorine and ammonia in real
time [80,81]. Qin et al. [82] used a boosting-iterative predictor
weighting-partial least squares (Boosting-IPW-PLS) method and multiple
sensors to establish a water quality monitoring system equipped with a
UV spectrometer and turbidimeter to monitor the chemical oxygen de-
mand (COD) and total suspended solids. Boosting-IPW-PLS method
suppressed variables unrelated to water quality by assigning small
weights, and established a prediction model for wastewater quality based
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on weighted variables. Their test results showed that this system per-
formed well in monitoring water quality, with a high correlation coeffi-
cient between the predicted value and the actual value.

The analysis of historical data to optimize wastewater treatment
systems is a practical application of machine learning. Fang et al. [83]
simulated anaerobic, anoxic, and oxic conditions with an SVM and an
adaptive genetic algorithm to save land space by reducing the volume of
the anoxic tank. In addition, machine learning has been used to optimize
tertiary wastewater treatment, such as reverse osmosis (RO), nano-
filtration (NF), ozonation, and adsorption. Cha et al. [84] applied an RF
to predict micropollutant (MP) reduction during ozonation and achieved
a higher removal efficiency. Machine learning based on a high-resolution
fluorescence excitation-emission matrix can provide more accurate re-
sults by better calculating the complex nonlinear relationship between
organic properties and oxidizer exposure. A model predicting MP
removal by membrane separation is essential for the design and selection
of appropriate membranes. Teychene et al. [85] used DT to reveal the
specific sequence through which MP is removed by RO and NF, and
found that particle size exclusion, electric repulsion, and adsorption were
the main separation mechanisms used by NF and RO. In addition,
XGBoost can be used to predict the removal efficiency of MP in RO and
NF [86]. Sigmund et al. [87] developed two neural-network-based
models that enabled practitioners to select the appropriate adsorbent
for a given pollutant. Based on the results of the above cases, machine
learning methods can be widely applied in the advanced treatment of
wastewater containing MPs and new pollutants in the future.

Machine learning has provided predictive information for a more
thorough understanding and analysis of water treatment. ANN can
effectively be used to solve complex nonlinear environmental problems,
especially in pollutant removal [88]. Bayat Varkeshi et al. [89] suc-
cessfully constructed an ANN model that could predict COD and BOD
concentrations in wastewater outflow. At present, water quality pre-
diction models primarily aim at determining the levels of specific pol-
lutants. For instance, after determining the photodegradation rate of
tetracycline (TC) under various practical conditions, Abdi et al. [90]
established CatBoost, which could accurately predict TC removal using a
metal–organic framework. Baek et al. [91] constructed three different
models, using RF, SVM, and ANN, to predict the removal of five different
MPs. All the models were verified, and the results produced by RF
proved to be the most accurate. Biological indicators can also be pre-
dicted using machine learning. Bayes approaches, including both naive
Bayes and seminaïve Bayes networks, have been applied to predict
pathogen removal efficiency and represent the association among
pathogen reduction, operating conditions, and monitoring parameters
[92]. Roguet et al. [93] used RF to predict the abundance of Clostridiales
and Bacteroidales in wastewater. RF has been applied to fill the gap in the
development of comprehensive evaluation and calculation methods for
predicting fecal pollution sources, helping inhibit the spread of water-
borne diseases [94].

The effluent quality of WWTPs can be affected by many factors, and
the operation management and maintenance of WWTPs can be chal-
lenging when costs need to be controlled [95]. Therefore, machine
learning can be further employed because it can provide WWTP man-
agers with opportunities to reduce costs and improve their operations.
Gomez-Munoz et al. [96] used Bayes’ fundamental theorem to estimate
the proportions of various costs of a WWTP, which helped with the
management of the construction, regulation, and operating procedures.
Toxic pollutants discharged into sewage networks can affect the regular
operation of WWTPs. To prevent such cases, XGBoost and RF were used
to identify pollutants and locate their source points in a wastewater
network [97]. Normally, flow-measurement sensors are installed in
sewage pipes. However, measurement instability caused by impurities,
corrosion, and high turbidity can lead to inaccurate measurements. Deep
learning can potentially improve measurement accuracy in various sit-
uations by enhancing existing sensors [98]. Ji et al. [98] used typical
failures described in a historical dataset of the actual sensor settings.
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Once a fault was detected, the model could adjust the process and ensure
the normal operation of the WWTP.

3.5. Application of machine learning in marine environments

Seawater pollution is becoming a serious problem affecting the
Earth’s ecosystems. Monitoring seawater pollutants with the help of
machine learning provide a new solution to these issues. Bhagat et al.
[99] used XGBoost to establish a lead-prediction algorithm, and trained
the model using historical monitoring data from the Bramble and
Deception Bay stations in Australia. They found the model performed
well in selecting input parameters and predicting water quality. Gon-
calves et al. [100] proposed a waste mapping program based on RF and
an automatic unmanned aerial vehicle system that could automatically
monitor coastal plastic waste. An ensemble machine learning approach
with a two-layered learning structure was proposed to predict the con-
centration of coastal microbial pollution in beach water [101]. To
improve the accuracy of antibiotic resistance gene (ARG) prediction in
beach water, Jang et al. [102] adopted an LSTM-CNN model and suc-
cessfully predicted a single ARG. Mancia et al. [103] identified differ-
entially expressed genes in dolphins exposed to marine pollutants using
machine learning classification algorithms. In addition, many researchers
have focused on developing surveillance technologies for algal blooms
that can lead to severe contamination. Ghatkar et al. [104] trained the
XGBoost model with the spectral characteristics of different water types
and algal blooms to identify and distinguish the algae that cause algal
blooms. Du et al. [105] evaluated the water quality along with the North
Yellow and Bohai Seas using a hierarchical cluster analysis water quality
evaluation method based on the Mahalanobis distance. In conclusion,
machine learning methods can identify the types of seawater pollutants,
determine the concentration and distribution of pollutants, and provide a
relevant analysis of the status of marine organisms.

Seawater quality monitoring is essential for protecting marine
ecosystems. Many researchers have applied machine learning methods
to monitor seawater quality. In 2001, Alshehri et al. [106] proposed a
near-shore water quality prediction model based on KNN. Sheng et al.
[107] integrated BPNN, SVR, and LSTM models to establish a water
quality prediction method, which significantly improved water quality
prediction accuracy. Zhou et al. [108] proposed a water quality pre-
diction method on an improved grey regression analysis algorithm and
LSTM on the basis of the multivariate correlation and the time-series
characteristics provided in water quality information. Du et al. [109]
analyzed the data collected by a geosynchronous ocean color imager
and from 1240 water quality sampling points along the coast of Zhe-
jiang, using a water quality assessment method with a geographic
neural network weighted regression model. Additionally, 75% of the
world’s population will face a freshwater crisis by 2050 [110]. Desa-
linated seawater is an important source of freshwater in areas with
extreme water shortages. However, some seawater desalination diffi-
culties remain, with the low efficiency and reliability of desalination
systems being the major obstacles. Alshehri et al. [106] used a CNN
model and transfer learning to classify salt particles with different
concentrations in water to improve the seawater treatment perfor-
mance of water treatment plants. Chawla et al. [111] predicted the
salinity and development trend of the Salton Sea using regression and
machine learning algorithms such as linear regression, RF, SVM, and
LSTM, which facilitated the long-term management of seawater salinity
and seawater desalination.

The single water quality prediction model has been thoroughly
studied in the previous literature, and the integratedmodel has come into
view in recent years. Different models have different mechanisms in the
face of different input features, leading to different predictive perfor-
mances. The integration model proposed by Sheng et al. [107] prefer-
entially selects a classifier. When new data are entered, the prediction
model that best fits the data is first selected before making the prediction.
This is a model selection algorithm based on input features, while the
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XGBoost method proposed by Bhagat et al. [99] can screen input features
and select 5–9 out of 21 features to be integrated with ANN and other
application methods, and the information they learn will not be lost in
the model training stage. XGBoost model is a promising modeling algo-
rithm with the advantages of high accuracy and fast speed, but XGBoost
as a feature selection algorithm depends on sample size.

4. Concluding remarks

Machine learning has been widely used as a powerful tool to solve
problems in the water environment because it can be applied to predict
water quality, optimize water resource allocation, manage water
resource shortages, etc. Despite this, several challenges remain in fully
applying machine learning approaches in this field to evaluate water
quality: (1) Machine learning is usually dependent on large amounts of
high-quality data. Obtaining sufficient data with high accuracy in water
treatment and management systems is often difficult owing to the cost or
technology limitations. (2) As the conditions in real water treatment and
management systems can be extremely complex, the current algorithms
may only be applied to specific systems, which hinders the wide appli-
cation of machine learning approaches. (3) The implementation of ma-
chine learning algorithms in practical applications requires researchers
to have certain professional background knowledge.

To overcome the above-mentioned challenges, the following aspects
should be considered in future research and engineering practices: (1)
More advanced sensors, including soft sensors, should be developed and
applied in water quality monitoring to collect sufficiently accurate data
to facilitate the application of machine learning approaches. (2) The
feasibility and reliability of the algorithms should be improved, and more
universal algorithms and models should be developed according to the
water treatment and management requirements. (3) Interdisciplinary
talent with knowledge in different fields should be trained to develop
more advanced machine learning techniques and apply them in engi-
neering practices.
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