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Abstract— Recently, deep learning research has 

demonstrated that being able to train big models improves 

performance substantially. In this work, we consider the 

problem of training a deep neural network with millions of 

parameters using multiple CPU cores. On a single machine with 

a modern CPU platform, training a benchmark dataset of Dogs 

vs Cats can take up to hours; however, distributing training 

across numerous machines has been seen to dramatically reduce 

this time. The current state of the art for a modern distributed 

training framework is presented in this study, which covers the 

many methods and strategies utilized to distribute training. We 

concentrate on synchronous versions of distributed Stochastic 

Gradient Descent, different All Reduce gradient aggregation 

algorithms, and best practices for achieving higher throughput 

and reduced latency, such as gradient compression and large 

batch sizes. We show that using the same approaches, we can 

train a smaller deep network for an image classification problem 

in a shorter time. Although we focus on and report on the 

effectiveness of these approaches when used to train 

convolutional neural networks, the underlying methods may be 

used to train any gradient-based machine-learning algorithm. 

Keywords—deep learning, distributed training, machine 

learning, convolutional neural network. 

I. INTRODUCTION 

Recently, in a wide range of applications, including speech 
recognition, computer vision, text processing, and natural 
language processing, deep learning has outperformed classical 
Machine Learning models in creating models to address 
complicated problems. Despite significant progress in 
customizing neural networks designs, there is still one major 
drawback: training big NNs is memory and time intensive. 
The training of NNs in a distributed way is one answer to this 
problem. The purpose of distributed deep learning systems 
(DDLS) is to scale out the training of big models by 
combining the resources of several separate computers. As a 
result, several of the DDLS presented in the literature use 
various ways to implement distributed model training [1]. 
Training times have increased substantially as models and 
datasets have become more sophisticated, sometimes weeks 
or even months on a single GPU. To address this issue, two 
techniques proposed by many researchers for scaling out big 
deep learning workloads are model and data parallelism. 
Model parallelism seeks to transfer model execution stages 
onto cluster hardware, whereas data-parallel methods treat 

collaborative model training as a 
concurrency/synchronization challenge [1]. The main idea 
behind data parallelism is to enhance the overall sample 
throughput rate by duplicating the model over several 
computers and performing backpropagation in parallel to 
acquire more information about the loss function more 
quickly. It is achieved in the following way. Each cluster node 
begins by downloading the current model. Then, utilizing its 
parallel data assignment, each node executes 
backpropagation. Finally, the various results are combined 
and merged to create a new model [2].   

II. DISTRIBUTED TRAINING ALGORITHMS

In data parallelism, and for a distributed setting, 
distributed SGD algorithms can be roughly classified into two 
variants synchronous and asynchronous [1,3]. 

Asynchronous SGD is a distributed gradient descent 
algorithm that allows multiple model replicas to be trained in 
parallel on different nodes using different data subsets. Each 
model replica requests global weights from parameter servers, 
runs a mini batch to calculate gradients, and then sends them 
back to the parameter server, to finally update the global 
weights.  

In synchronous SGD, the master node aggregates these 
gradients by averaging them to form the new global set of 
gradients for the weight update step. These global gradients 
use the same formula as the single machine SGD to update the 
local weights of each node, after which nodes can begin 
processing the next batch of data. Because this entire 
procedure is analogous to computing a forward pass and 
backpropagation step on a single machine using a single mini 
batch of data, synchronous SGD guarantees convergence 
Research shown in the latest studies that synchronous methods 
scale and provide better performance than asynchronous 
methods [1, 3, 4]. For that, in the next experiment we will use 
the All Reduce SGD, a synchronous SGD variant, and try to 
improve the training time by scaling the batch size. 

III. EXPERIMENT

In this experiment, we will train a CNN model on a 
modern size dataset on a single machine with multiple cores, 
simulating a distributed setting. Each time, the batch size (128, 
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256, 512, 1024) will be increased to see how it affects training 
time and test accuracy. 

A. Dataset 

Similar to the development of image classification 
algorithms, in this study our approach is developed and tested 
on publicly available data. This dataset is provided as a subset 
of photos from a much larger dataset of 3 million manually 
annotated photos. The dataset was developed as a partnership 
between Petfinder.com and Microsoft. The Dogs vs. Cats 
dataset is a standard computer vision dataset that involves 
classifying photos as either containing a dog or cat. The 
dataset contains 25,000 images of dogs and cats. We choose 
22,500 images to be used for training and 2500 for testing. 
Each image in the dataset has a different size, therefore the 
first step in the preprocessing phase is to resize the images to 
256*256 pixels, then we scale the decoded values for each 
pixel by 1/255 (values for the 3 color channels will be between 
0 and 255). The dataset is also divided into batches and we 
will be using different values for the batch size. 

B. Model 

Based on various experiments we did in this study, we will 
be presenting the best combination of architecture / 
configuration that we have achieved both in terms of accuracy 
and training time. Table I below explains in detail the chosen 
model architecture. 

TABLE I. MODEL ARCHITECTURE. 

Layer Units/ 

filters 

Activation Kernel 

size 

Pool 

size 

Dropout 

rate 

Conv2D 32 relu (3, 3) 0 

MaxPooling2D (2, 2) 

Conv2D 64 relu (3, 3) 0 

MaxPooling2D (2, 2) 

Conv2D 128 relu (3, 3) 0 

MaxPooling2D (2, 2) 

Conv2D 128 relu (3, 3) 0 

MaxPooling2D (2, 2) 

Flatten 

Dense 512 relu 0.25 

Dense 256 relu 0.5 

Dense 1 sigmoid 0 

The model is trained using the RMSprop optimizer with 
learning rate value of 0.001 and a Binary cross entropy loss 
function. Accuracy is used to judge the performance of the 
model. 

C. Hardware 

In this experiment, we train our model on a virtual 
machine in the Google Cloud Platform with the following 
hardware configuration. 

TABLE II. HARDWARE CONFIGURATION. 

Memory (GB) 8 - 60 GB 

CPU Platform Intel SkyLake 

CPU Cores 1 - 96 

Tensorflow v2.1.0 

IV. RESULTS AND DISCUSSION

    The next 4 figures shows the results of  4 experiments 

where the variable is the batch size, in each experiment, we 

train the model on the batched dataset and record the training 

time and test accuracy, then we increase the CPUs count and 

train it again. 

Fig. 1. Training a CNN model with batch size = 128 

Fig. 2. Training a CNN model with batch size = 256 

Fig. 3. Training a CNN model with batch size =  512 
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Fig. 4. Training a CNN model with batch size = 1024 

In Figure 1, 2, 3 and 4 we trained the model with a batch 
size of 128, 256, 512 and 1024 on various hardware settings, 
increasing the number of CPU cores each time (i.e., 
distributing the model training) and measuring the training 
time and test accuracy. We notice that the training duration 
decreases until it reaches a limit. We also notice that the test 
accuracy did not decrease with time and remained rather 
constant. 

TABLE III.  TRAINING A CNN ON ONE MACHINE USING DIFFERENT 

BATCH SIZES AND MEASURING THE T RAINING TIME IN SECONDS/EPOCH 

N° CPUs 

Batch size 
1 2 4 8 16 32 64 96 

128 878 865 504 303 195 138 134 128 

256 N/A 806 456 286 200 144 123 112 

512 N/A 806 456 286 200 144 123 112 

1024 

Increase 

wrt batch 

size=128 

N/A 
N/

A 

389 

+22.

8% 

244 

+19.

4% 

156 

+20

% 

122 

+11.

5% 

109 

+18.

6% 

97 

+24.

2% 

Table III illustrates that increasing the batch size reduces 

training time while maintaining test accuracy throughout the 

studies. By just increasing the batch size by a factor of 4, we 

were able to minimize the training time from 128 seconds per 

epoch to 97 seconds per epoch (up to 24,2% gain in training 

time). 

V. CONCLUSION 

Data parallelism techniques using asynchronous 
algorithms have been widely employed to expedite the 
training of deep learning models. To enhance data throughput 
while ensuring computing efficiency in each worker, scale up 
techniques rely on tight hardware integration. Increasing the 
batch size, on the other hand, may results in a loss in test 
accuracy, which may be mitigated by a number of recent 
concepts, such as increasing the learning rate throughout the 
training process and using a learning rate warm up technique. 
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