
978-1-6654-9558-5/22/$31.00 ©2022 IEEE

Reducing the training time of deep learning models
using synchronous SGD and large batch size

Salah Eddine Loukili
Faculty of Science and Technology, Laboratory VTE

Hassan First University of Settat

Settat, Morocco
s.loukili@uhp.ac.ma

Said Ben Alla
Faculty of Science and Technology, Laboratory VTE

Hassan First University of Settat

Settat, Morocco
said.ben.alla@uhp.ac.ma

Abdellah Ezzati
Faculty of Science and Technology, Laboratory VTE

Hassan First University of Settat

Settat, Morocco
abdellah.ezzati@uhp.ac.ma

Brahim Zraibi
Faculty of Science and Technology, Laboratory LAMSAD

Hassan First University of Settat

Settat, Morocco
b.zraibi@uhp.ac.ma

Abstract— Recently, deep learning research has

demonstrated that being able to train big models improves

performance substantially. In this work, we consider the

problem of training a deep neural network with millions of

parameters using multiple CPU cores. On a single machine with

a modern CPU platform, training a benchmark dataset of Dogs

vs Cats can take up to hours; however, distributing training

across numerous machines has been seen to dramatically reduce

this time. The current state of the art for a modern distributed

training framework is presented in this study, which covers the

many methods and strategies utilized to distribute training. We

concentrate on synchronous versions of distributed Stochastic

Gradient Descent, different All Reduce gradient aggregation

algorithms, and best practices for achieving higher throughput

and reduced latency, such as gradient compression and large

batch sizes. We show that using the same approaches, we can

train a smaller deep network for an image classification problem

in a shorter time. Although we focus on and report on the

effectiveness of these approaches when used to train

convolutional neural networks, the underlying methods may be

used to train any gradient-based machine-learning algorithm.

Keywords—deep learning, distributed training, machine

learning, convolutional neural network.

I. INTRODUCTION

Recently, in a wide range of applications, including speech
recognition, computer vision, text processing, and natural
language processing, deep learning has outperformed classical
Machine Learning models in creating models to address
complicated problems. Despite significant progress in
customizing neural networks designs, there is still one major
drawback: training big NNs is memory and time intensive.
The training of NNs in a distributed way is one answer to this
problem. The purpose of distributed deep learning systems
(DDLS) is to scale out the training of big models by
combining the resources of several separate computers. As a
result, several of the DDLS presented in the literature use
various ways to implement distributed model training [1].
Training times have increased substantially as models and
datasets have become more sophisticated, sometimes weeks
or even months on a single GPU. To address this issue, two
techniques proposed by many researchers for scaling out big
deep learning workloads are model and data parallelism.
Model parallelism seeks to transfer model execution stages
onto cluster hardware, whereas data-parallel methods treat

collaborative model training as a
concurrency/synchronization challenge [1]. The main idea
behind data parallelism is to enhance the overall sample
throughput rate by duplicating the model over several
computers and performing backpropagation in parallel to
acquire more information about the loss function more
quickly. It is achieved in the following way. Each cluster node
begins by downloading the current model. Then, utilizing its
parallel data assignment, each node executes
backpropagation. Finally, the various results are combined
and merged to create a new model [2].

II. DISTRIBUTED TRAINING ALGORITHMS

In data parallelism, and for a distributed setting,
distributed SGD algorithms can be roughly classified into two
variants synchronous and asynchronous [1,3].

Asynchronous SGD is a distributed gradient descent
algorithm that allows multiple model replicas to be trained in
parallel on different nodes using different data subsets. Each
model replica requests global weights from parameter servers,
runs a mini batch to calculate gradients, and then sends them
back to the parameter server, to finally update the global
weights.

In synchronous SGD, the master node aggregates these
gradients by averaging them to form the new global set of
gradients for the weight update step. These global gradients
use the same formula as the single machine SGD to update the
local weights of each node, after which nodes can begin
processing the next batch of data. Because this entire
procedure is analogous to computing a forward pass and
backpropagation step on a single machine using a single mini
batch of data, synchronous SGD guarantees convergence
Research shown in the latest studies that synchronous methods
scale and provide better performance than asynchronous
methods [1, 3, 4]. For that, in the next experiment we will use
the All Reduce SGD, a synchronous SGD variant, and try to
improve the training time by scaling the batch size.

III. EXPERIMENT

In this experiment, we will train a CNN model on a
modern size dataset on a single machine with multiple cores,
simulating a distributed setting. Each time, the batch size (128,

20
22

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

te
lli

ge
nt

 S
ys

te
m

s a
nd

 C
om

pu
te

r V
is

io
n

(I
SC

V
) |

 9
78

-1
-6

65
4-

95
58

-5
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
IS

C
V

54
65

5.
20

22
.9

80
61

17

Authorized licensed use limited to: The University of Toronto. Downloaded on September 26,2022 at 18:38:38 UTC from IEEE Xplore. Restrictions apply.

256, 512, 1024) will be increased to see how it affects training
time and test accuracy.

A. Dataset

Similar to the development of image classification
algorithms, in this study our approach is developed and tested
on publicly available data. This dataset is provided as a subset
of photos from a much larger dataset of 3 million manually
annotated photos. The dataset was developed as a partnership
between Petfinder.com and Microsoft. The Dogs vs. Cats
dataset is a standard computer vision dataset that involves
classifying photos as either containing a dog or cat. The
dataset contains 25,000 images of dogs and cats. We choose
22,500 images to be used for training and 2500 for testing.
Each image in the dataset has a different size, therefore the
first step in the preprocessing phase is to resize the images to
256*256 pixels, then we scale the decoded values for each
pixel by 1/255 (values for the 3 color channels will be between
0 and 255). The dataset is also divided into batches and we
will be using different values for the batch size.

B. Model

Based on various experiments we did in this study, we will
be presenting the best combination of architecture /
configuration that we have achieved both in terms of accuracy
and training time. Table I below explains in detail the chosen
model architecture.

TABLE I. MODEL ARCHITECTURE.

Layer Units/

filters

Activation Kernel

size

Pool

size

Dropout

rate

Conv2D 32 relu (3, 3) 0

MaxPooling2D (2, 2)

Conv2D 64 relu (3, 3) 0

MaxPooling2D (2, 2)

Conv2D 128 relu (3, 3) 0

MaxPooling2D (2, 2)

Conv2D 128 relu (3, 3) 0

MaxPooling2D (2, 2)

Flatten

Dense 512 relu 0.25

Dense 256 relu 0.5

Dense 1 sigmoid 0

The model is trained using the RMSprop optimizer with
learning rate value of 0.001 and a Binary cross entropy loss
function. Accuracy is used to judge the performance of the
model.

C. Hardware

In this experiment, we train our model on a virtual
machine in the Google Cloud Platform with the following
hardware configuration.

TABLE II. HARDWARE CONFIGURATION.

Memory (GB) 8 - 60 GB

CPU Platform Intel SkyLake

CPU Cores 1 - 96

Tensorflow v2.1.0

IV. RESULTS AND DISCUSSION

 The next 4 figures shows the results of 4 experiments

where the variable is the batch size, in each experiment, we

train the model on the batched dataset and record the training

time and test accuracy, then we increase the CPUs count and

train it again.

Fig. 1. Training a CNN model with batch size = 128

Fig. 2. Training a CNN model with batch size = 256

Fig. 3. Training a CNN model with batch size = 512

Authorized licensed use limited to: The University of Toronto. Downloaded on September 26,2022 at 18:38:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Training a CNN model with batch size = 1024

In Figure 1, 2, 3 and 4 we trained the model with a batch
size of 128, 256, 512 and 1024 on various hardware settings,
increasing the number of CPU cores each time (i.e.,
distributing the model training) and measuring the training
time and test accuracy. We notice that the training duration
decreases until it reaches a limit. We also notice that the test
accuracy did not decrease with time and remained rather
constant.

TABLE III. TRAINING A CNN ON ONE MACHINE USING DIFFERENT

BATCH SIZES AND MEASURING THE T RAINING TIME IN SECONDS/EPOCH

N° CPUs

Batch size
1 2 4 8 16 32 64 96

128 878 865 504 303 195 138 134 128

256 N/A 806 456 286 200 144 123 112

512 N/A 806 456 286 200 144 123 112

1024

Increase

wrt batch

size=128

N/A
N/

A

389

+22.

8%

244

+19.

4%

156

+20

%

122

+11.

5%

109

+18.

6%

97

+24.

2%

Table III illustrates that increasing the batch size reduces

training time while maintaining test accuracy throughout the

studies. By just increasing the batch size by a factor of 4, we

were able to minimize the training time from 128 seconds per

epoch to 97 seconds per epoch (up to 24,2% gain in training

time).

V. CONCLUSION

Data parallelism techniques using asynchronous
algorithms have been widely employed to expedite the
training of deep learning models. To enhance data throughput
while ensuring computing efficiency in each worker, scale up
techniques rely on tight hardware integration. Increasing the
batch size, on the other hand, may results in a loss in test
accuracy, which may be mitigated by a number of recent
concepts, such as increasing the learning rate throughout the
training process and using a learning rate warm up technique.

REFERENCES

[1] Langer, M., He, Z., Rahayu, W., & Xue, Y. (2020). Distributed training
of deep learning models: A taxonomic perspective. IEEE Transactions
on Parallel and Distribute d Systems, 31(12), 2802 2818.

[2] Shi, S., Zhou, X., Song, S., Wang, X., Zhu, Z., Huang, X., Jiang, X.,
Zhou, F., Guo, Z., Xie, L., & others (2021). Towards scalable
distributed training of deep learning on public cloud clusters.
Proceedings of Machin e L earning and Systems.

[3] Chahal, K., Grover, M., Dey, K., & Shah, R. (2020). A hitchhiker’s
guide on distributed training of deep neural Journal of Parallel and
Distributed Computing, 137, 65 76.

[4] Birnie, C., Jarraya, H., & Hansteen, F. (2021). An introduction to
distributed training of deep neural networks for segmentation tasks
with large seismic datasets. arXiv preprint arXiv:2102.13003.

[5] Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M.,
Ranzato, M., Senior, A., Tucker, P., Yang, K., & others (2012). Large
scale distributed deep networks. Advances in neural information
processing systems, 25, 1223 12

Authorized licensed use limited to: The University of Toronto. Downloaded on September 26,2022 at 18:38:38 UTC from IEEE Xplore. Restrictions apply.

